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Abstract

In this paper we develop a novel probabilistic model of
computational trust that allows agents to exchange and
combine reputation reports over heterogeneous, corre-
lated multi-dimensional contracts. We consider the spe-
cific case of an agent attempting to procure a bundle
of services that are subject to correlated quality of ser-
vice failures (e.g. due to use of shared resources or in-
frastructure), and where the direct experience of other
agents within the system consists of contracts over dif-
ferent combinations of these services. To this end, we
present a formalism based on the Kalman filter that rep-
resents trust as a vector estimate of the probability that
each service will be successfully delivered, and a co-
variance matrix that describes the uncertainty and cor-
relations between these probabilities. We describe how
the agents’ direct experiences of contract outcomes can
be represented and combined within this formalism, and
we empirically demonstrate that our formalism provides
significantly better trustworthiness estimates than the
alternative of using separate single-dimensional trust
models for each separate service (where information re-
garding the correlations between each estimate is lost).

Introduction
Computational models of trust have recently generated a
great deal of research interest within the academic literature
of multi-agent systems. Such models allow agents to select
between various suppliers of services on the basis of their
reliability or trustworthiness. To be effective, these mod-
els should allow agents (i) to estimate the trustworthinessof
a supplier as they acquire direct experience, (ii) to express
their uncertainty regarding this estimate, (iii) to exchange
their estimates as reputation reports, and (iv) to filter and
fuse these reputation reports with their own direct experi-
ence to yield more accurate estimates.

While much of the work within this area has used do-
main specific orad hoctrust metrics (see Ramchurn, Hunyh,
& Jennings (2004) for a review), a growing body of re-
search shows that the desiderata described above may be
achieved through grounding computational trust models in
probability theory. Specifically, models of this form have
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been presented by a number of researchers, and typically
they use a beta distribution to represent an agent’s belief that
a supplier will successfully fulfill a single-dimensional con-
tract (Jøsang & Ismail 2002; Teacyet al. 2006).

In recent work we have extended such probabilistic trust
models to consider cases in which a contract’s success or
failure is measured over multiple dimensions (Reeceet al.
2007). These cases are common in real-world applications
(e.g. within a supply chain where a contract specifies min-
imum timeliness, quality and quantity criteria), and in such
cases, we would expect there to be correlations between the
success or failure of each contract dimension (e.g. suppliers
may trade-off failure in one dimension to achieve another;
sacrificing quality or shipping a partial order to achieve a
delivery deadline). In this context, we have shown that it
is essential to explicitly consider these correlations if the
expected utility of interacting with any particular supplier
is to be accurately estimated. We have presented a for-
malism whereby the Dirichlet distribution (a natural multi-
dimensional extension of the beta distribution) is used to
represent an agent’s correlated beliefs regarding these mul-
tiple contract dimensions, and we have described how these
beliefs may be communicated between agents as reputation
reports, and fused with an agent’s own direct experience.

However, this formalism explicitly assumes that all agents
observe and record contract outcomes over an identical set of
dimensions (i.e. that the observations of contract outcomes
that constitute each agent’s direct experience are homoge-
neous). This limitation means that it can not be applied in
the more general setting where correlations exist but obser-
vations of contract outcomes are heterogeneous. For exam-
ple, consider the case of an agent attempting to negotiate
with a supplier to procure a bundle of video, audio and data
services in order to facilitate an interactive video conference.
We would expect there to be correlations between the prob-
abilities that each service will be successfully delivered(due
to the fact that the services may share common resources or
infrastructure such as communication networks, routers and
servers), and thus, in order to estimate the expected utility of
interacting with the supplier the agent must estimate these
probabilities and correlations. In order to do so, the agent
would benefit from combining its own limited direct expe-
rience with reputation reports from other agents. However,
in this case, these other agents may only have experience of



subsets of the entire bundle (i.e. one agent may only have
used audio services provided by this supplier, while another
may have experience of procuring both video and audio ser-
vices but not data services). As yet, no principled compu-
tational trust model exists that allows an agent to combine
these heterogeneous contract observations, while still main-
taining information regarding their correlations.

To rectify this shortcoming, in this paper we develop just
such a computational trust model. In doing so, we adopt
a formalism common within the academic literature of tar-
get tracking and data fusion, and we use the Kalman filter
to combine these heterogeneous contract observations. This
approach is attractive since not only does it provide a solu-
tion to the problem at hand, but it also enables other results
within the data fusion literature such as the gating of incon-
sistent estimates and the elimination of rumour propagation
within decentralised information systems to be naturally in-
corporated into future computational trust models.

In more detail, we first show that in order to estimate the
expected utility of a bundle of services, an agent must use
a trust model that allows it to estimate (i) the probability
that each service will be successfully delivered, and (ii) the
correlations between these estimates. We then build on this
model and make the following contributions:

• We develop a benchmark trust model for dealing with
heterogeneous contract observations that uses separate
single-dimensional trust models (specifically independent
beta distributions) for each individual service within the
bundle. This approach provides consistent estimates but
does not represent correlations between the services.

• We describe a novel formalism that uses the Kalman fil-
ter to combine agents’ heterogeneous contract observa-
tions while also explicitly representing the correlations
between the services. We show how agents can calculate
prior trust estimates and reputation reports from their own
direct experience, and how these can be fused together to
yield posterior trust estimates.

• We empirically demonstrate that by explicitly captur-
ing the correlations between the services, our formalism
based upon the Kalman filter yields far more precise es-
timates of the trustworthiness and expected utility com-
pared to the alternative approach of using independent
beta distributions. In our experiments the information
content of estimates derived from the Kalman filter is typ-
ically three times that of estimates derived from the inde-
pendent beta distributions.

The remainder of this paper is organized as follows: we first
review related work, and then discuss the specific model we
consider in this paper. We then describe our formalism us-
ing the Kalman filter, and present an empirical validation.
Finally, we conclude and discuss future work.

Related Work
A number of researchers have presented probabilistic com-
putational trust models for single dimensional contracts.
Jøsang & Ismail (2002) describe the Beta Reputation System
whereby the reputation of a supplier is compiled from the

positive and negative reports of agents who have interacted
with it, and this reputation is represented by a beta distribu-
tion. Likewise, Teacyet al. (2005) use the beta distribution
to describe an agent’s belief in the probability that a supplier
will successfully fulfill its commitments. They present a for-
malism based on Bayesian statistics that allows an agent (i)
to estimate this probability from its own direct experience,
(ii) to communicate these estimates as reputation reports us-
ing the sufficient statistics of the beta distribution, and (iii)
to combine such reports to provide more accurate estimates.

While these models only deal with single dimensional
contracts, other researchers have noted the need for multi-
dimensional models, and indeed, a number of such models
have been published. For example, both Sabater & Sierra
(2001) and Griffiths (2005) present multi-dimensional trust
models, in which agents form contracts based on multiple
variables. Both models provide heuristics to update these
dimensions given observations of contract outcomes, and to
combine these dimensions into a scalar metric that can be
used to select between suppliers.

In earlier work we have combined these approaches
within a probabilistic multi-dimensional trust model in
which the Dirichlet distribution is used to represent an
agent’s correlated beliefs regarding the probability thata
supplier will successfully fulfill each contract dimension.
We considered an agent that is attempting to estimate the
expected utility of a contract, and showed that this leads to
a principled means of combining multi-dimensional beliefs
into expected utility.

In this paper, we significantly extend this approach by
considering the case that the agents’ direct experience repre-
sents contracts over heterogeneous dimensions. In this case,
the formalism described above can not be used since it is
not possible to simply aggregate the observed contract out-
comes in this way. Thus, we must develop an alternative
approach and here we use the Kalman filter in order to fuse
these heterogeneous contract observations.

Expected Utility of a Contract
We start by considering an agent attempting to procure a
bundle of services (such as audio, video and data services)
from a single supplier. In order to make a rational decision,
or to negotiate a price for this bundle, the agent must es-
timate the expected utility of a contract with this supplier.
Thus, we denote the outcome of a contract as a vector,X,
that indicates whether or not each service within the bun-
dle was successfully delivered (e.g.X = {oa = 1, ob =
0, oc = 0, . . .} indicates that servicea was successfully de-
livered, while servicesb andc were not). Ifu(oa = 1) is
the marginal utility that the agent derives if servicea is suc-
cessfully delivered1, then the expected utility of the agent
will depend on the probability that this happens,p(oa = 1).
However, neither the probabilities, nor the correlations be-
tween them, are not known to the agent, and thus, it must use
observations of previous contract outcomes to determine a

1Our formalism can be applied to more complex utility func-
tions that exhibit complementarities between services, however for
clarity we present the simpler additive example in this paper.



distribution over their possible values. It can then determine
an expectation of the expected utility of the contract:

E[E[U ]] = p̂(X)T U(X) (1)

and a variance, describing its uncertainty:

Var(E[U ]) = U(X)T P (X)U(X) (2)

where:

U(X) =









u(oa = 1)
u(ob = 1)
u(oc = 1)

...









(3)

Thus, the agent’s estimate of the expected utility is depen-
dent on a trust estimate composed of two expressions: a vec-
tor estimate of the probability that each service is success-
fully delivered:

p̂(X) =









p̂(oa = 1)
p̂(ob = 1)
p̂(oc = 1)

...









(4)

and a covariance matrix that describes the uncertainty and
correlations in these estimates:

P (X) =









Va Cab Cac . . .
Cab Vb Cbc . . .
Cac Cbc Vc . . .

...
...

...









(5)

where the diagonal terms,Va, Vb andVc, represent the un-
certainties inp(oa = 1), p(ob = 1) andp(oc = 1), and the
off-diagonal termsCab, Cac andCbc represent the correla-
tions between these probabilities.

Heterogeneous Contracts
The previous section showed that in order to estimate the
utility of a contract an agent must calculate a trust esti-
mate composed of the vector,p̂(X), and covariance matrix,
P (X). In earlier work we presented a formalism using the
Dirichlet distribution that allows an agent to calculate both
these expressions from its direct experience of previous con-
tract outcomes (Reeceet al. 2007). Within this formalism,
an agent that has observedN contract outcomes in total sim-
ply records, for each pair of services (e.g.a andb), the num-
ber of times that both were delivered successfully,nab

11
, the

number of times both were delivered unsuccessfully,nab
00

,
and both combinations in which one was successfully de-
livered and the other unsuccessfully delivered,nab

01
andnab

10
.

These counts over contract outcomes can be communicated
as reputation reports, and these reputation reports can be
combined by simply aggregating the counts.

However, this formalism is limited to the case that con-
tract observations are homogeneous (i.e. all agents observe
contracts over the same dimensions). This is the case since
there is no way of aggregating the counts over contract out-
comes of an agent who has observed two services, with those

of an agent who only observed one service. Thus, in this sec-
tion, we present two formalisms that address the more gen-
eral case where contract observations are heterogeneous. We
first describe a simple benchmark formalism using indepen-
dent beta distributions, and then describe our full formalism
that uses the Kalman filter.

Inflated Independent Beta Distributions
We can provide a reasonable benchmark formalism for deal-
ing with heterogeneous contracts through a simple exten-
sion of a single dimensional trust model. That is, we do
not explicitly represent the correlations between the ser-
vices within the bundle, but rather, we use independent beta
distributions to represent each individual service. Thus,if
an agent has direct experience ofN previous contract out-
comes, in which servicea was successfully deliveredna

times, then the trust estimate,p̂(X), can simply be calcu-
lated using the standard result from the beta distribution2

that:

p̂(oa = 1) =
na + 1

N + 2
(6)

Similarly, we can calculate the diagonal terms of the covari-
ance matrix,P (X), by again using the standard result from
the beta distribution that:

Va =
(na + 1)(N − na + 1)

(N + 2)2(N + 3)
(7)

Finally, rather than explicitly calculating the off-diagonal el-
ements of the covariance matrix, we can derive a conserva-
tive covariance matrix3 by simply setting the off-diagonal el-
ements to zero, and multiplying the diagonal variance terms
by the number of dimensions in the state vector,X. Thus in
the case of two services we have:

P (X) =

(

2Va 0
0 2Vb

)

(8)

This process is known as covariance inflation, and reflects
the fact that while we do not know the correlations be-
tween the services, we know that they may be correlated, and
thus, we require a conservative covariance matrix that covers
any possible correlation (Hanebeck, Briechle & Horn 2001;
Reece & Roberts 2005).

This simple formalism is attractive; by not explicitly mod-
elling the correlations between services it allows us to fuse
heterogeneous contract observations by simply aggregating
the counts (i.e. finding the total number of times servicea
was successfully delivered out of the total number of con-
tract observations). However, as we shall show later, the
lack of explicit correlation information causes it to perform
poorly. Thus, in the next section we develop a more sophis-
ticated approach using the Kalman filter to fuse heteroge-
neous estimates containing correlation information.

2See Teacyet al. (2005) or Reeceet al. (2007) for example.
3A covariance matrix isconsistent(or conservative) when it

is not less than the actual distribution of the true trustworthiness,
p(X), around the estimate,̂p(X). Conservative covariance matri-
ces ensure that we never assign greater credibility to a trust estimate
than it deserves, and are thus important when risk averse decisions
are made (Uhlmann 2002).



A Kalman Filter Trust Model
The Kalman filter is a natural choice for our formalism,
since within the academic literature of data fusion it is com-
monly used to fuse observations over multiple correlated
dimensions (Bar-Shalom, Li, & Kirubarajan 2001). This
work generally assumes Gaussian distributions. However,
the Kalman filter can also be used for non-Gaussian distri-
butions (Maryak, Spall, & Heydon 2004), and we describe
how it can be applied to Dirichlet distributions in order to
fuse heterogeneous trust estimates from multiple agents.

Our Kalman filter trust model operates by fusing an
agent’s prior trust estimate (calculated from an agent’s own
direct experience of previous contract outcomes) with rep-
utation reports that are received from other agents in order
to give a posterior trust estimate. As described earlier, these
trust estimates are represented by a vector,p̂(X), and a co-
variance matrix,P (X), and the standard form of the Kalman
filter provides two equations to update these:

p̂posterior = p̂prior + K(o − p̂prior) (9)

Pposterior = Pprior[1 − K] (10)

whereK is the Kalman gain:

K = Pprior(Pprior + R)−1 (11)

ando is an observation with covarianceR, that together rep-
resent the reputation reports received from other agents (we
discuss the details of these later).

Now, when we have heterogeneous contracts, one or more
dimensions of either the prior estimate or the reputation re-
ports may be missing. Within the Kalman filter framework
we can simply represent these missing contract observations
by setting the corresponding diagonal elements of the co-
variance matrix to infinity. By doing this we are effectively
saying that the estimate for this contract part has no cer-
tainty.

Actually, performing these matrix operations involving
infinity can be problematic. We can avoid this by using the
information form of the Kalman filter whereby an estimate
is represented by its precision,Y , which is the inverse of the
correlation matrix (i.e.Y = P (X)−1), and its information
estimate,ŷ, which is the product of the precision and the
state estimate (i.e.̂y = P (X)−1p̂(X)).

In this case, the missing information can be represented
by inserting zeros into the precision matrix, and as before,
the Kalman filter allow us to combine reputation reports with
prior beliefs to yield a posterior information estimate and
precision matrix:

ŷposterior = ŷprior + ŷo (12)

Yposterior = Yprior + Yo (13)

whereYo = R−1 andŷ = R−1o. The information form of
the Kalman filter is particularly useful within multi-agent
systems since reputation reports from multiple agents are
simply added (in any order) to an agent’s prior estimate.
However, the two forms are exactly equivalent, and we can
easily switch between the two.

Thus having presented the Kalman filter in the context
of a computational trust model, we describe how an agent’s
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Figure 1: Conservative bounding matrix (shown as a bold
ellipse), R∗, constructed from the family of all possible ma-
trices,R (shown as plain ellipses).

prior estimate is calculated from its own direct experience,
and how other agents can communicate reputation reports
calculated from their own direct experience.

Calculating a Prior Belief from Direct Experience: The
prior belief of the agent is represented by a trust estimate,
p̂(X), and a covariance matrix,P (X). These can be calcu-
lated from an agent’s direct experience using the Dirichlet
formalism described in our earlier work (Reeceet al. 2007).
More specificallyp̂(X) and the diagonal elements ofP (X)
are calculated from the counts of contract outcomes (as per
equations 6 and 7), while the full details of the Dirichlet dis-
tribution are required to calculate the off-diagonal termsof
P (X). See appendix A for full details.

This prior explicitly represents the correlations over the
subset of services for which the agent has directly observed
previous contract outcomes. When the agent has no direct
experience of some services, it may simply insert infinity
into the relevant diagonal element ofP (X) to reflect this
lack of information (or alternatively insert zero intoY if the
information form of the Kalman filter is being used).

Calculating Reputation Reports: The Kalman filter
fuses a prior estimate with an observation,o, whose covari-
ance isR. In our computational trust model,o andR to-
gether represent a reputation report and are calculated from
the direct experience of the originating agent. This calcula-
tion is different from that which generatesp̂(X) andP (X),
since the covarianceR describes the variability ofo about
the true probabilities,p(X), while the covarianceP (X) de-
scribes the variability ofp(X) about the estimatêp(X). This
is a subtle but important difference.

Calculatingo is straightforward since it is a vector esti-
mate of the probability that each service is successfully de-
livered (i.e. o = {oa, ob, oc, . . .}). It is calculated from an
agent’s previous contract outcomes, and thus, if the agent
has observedN contracts in total, and servicea was suc-
cessfully delivered inna of these thenoa = na/N . Note



that due to the reasons described above this expression is
different from that shown in equation 6.

CalculatingR is more complex. Since we are using the
Kalman filter with a Dirichlet distribution (rather than the
more common Gaussian distribution), the covariance,R, is
itself dependent upon the probabilities that each service is
successfully delivered,p(X). These probabilities are not
known; indeed, these are what we attempting to estimate.
However, the beauty of the Kalman filter lies in its flexibil-
ity and we need not worry about findingR exactly. Pro-
vided that we can find a conservative matrix,R∗, to use in
place ofR, we can guarantee that our estimates will remain
consistent. We can build such a conservative covariance
matrix for R from an agent’s direct experience and a com-
monly used method from the data fusion literature: namely
covariance inflation (Hanebeck, Briechle & Horn 2001;
Reece & Roberts 2005).

The full details of this calculation are presented in ap-
pendix B. However, we provide a sketch of the procedure
here. Our starting point is the Dirichlet distribution overpos-
sible values ofp(X) calculated using the agent’s direct expe-
riences (as used above to calculate an agent’s prior estimate).
We then sample possible values ofp(X) from this distribu-
tion, and generate a family of possible covariance matrices
for R. We then use covariance inflation to construct a con-
servative covariance matrix from the entire family. In figure
1 we present an example of this process for two services4.
We plot the family of possibleR matrices as ellipses, with
the bounding conservative covariance matrix,R∗, in bold.

Example: To illustrate the formalism we consider an ex-
ample where agent A is estimating the utility of procuring
a bundle of two services,a andb. These two services share
a common resource, and thus, the probabilities of them be-
ing successfully delivered are positively correlated. AgentA
has some direct experience of procuring both services from
this supplier, and thus, it can use the Dirichlet distribution
to calculate prior estimates of̂p(X) andP (X). This prior
estimate is plotted in figure 2 as a dotted ellipse.

AgentB has also interacted with this supplier in the past,
but in these interactions it has only observed contract out-
comes involving servicea. It communicates these contract
outcomes to agentA in the form of an observation vector,
o, and a conservative estimate of its covariance,R. This is
shown as the dashed-dot ellipse in figure 2. Note that the
variance in theb dimension is infinite (the covariance ellipse
looks rectangular) reflecting the fact that agentB supplies
no information about the reliability of serviceb.

AgentA can then fuse its own prior estimate with the rep-
utation report received from agentB (using the information
form of the Kalman filter and inserting the necessary zeros
to indicate that agentB provides no information about ser-
vice b). The resulting posterior estimate is shown as a solid
ellipse in figure 2. Note that although agentB supplies in-
formation about servicea only, the uncertainty in agentA’s
estimate for both dimensions is reduced. This occurs be-

4We choose two services for this and others examples in this
paper since this allows us to plot covariance matrices as ellipses.
Our formalism obviously generalises to any number of services.
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Figure 2: Kalman filter and inflated independent beta esti-
mates for heterogeneous contract observations.

cause agentA’s prior estimate encodes a non-zero correla-
tion between the services and the Kalman filter uses this to
map the new evidence about servicea onto serviceb.

This is a key benefit of our formalism. We can compare
this result to the benchmark presented earlier that uses inde-
pendent beta distributions to describe each separate service
(shown as the dashed ellipse in figure 2). Since this bench-
mark fails to represent the positive correlations between the
services (i.e. the ellipse is not tilted to the right), it yields
a highly pessimistic covariance estimate (i.e. the ellipseis
substantially larger than that calculated by our formalism
based upon the Kalman filter). In the next section we de-
scribe metrics that describe the information content and con-
sistency of these estimates, in order to perform a more de-
tailed comparison of these two formalisms.

Empirical Evaluation
In order to evaluate the effectiveness of our formalism, we
present simulation results in which ten agents, each with
their own direct experience of a supplier that provides two
services, participate within a reputation system. We assume
that one of these agents is attempting to evaluate the trust-
worthiness of the supplier in order to calculate the expected
utility of interacting with it. As such, the agent must fuse its
own direct experience with reputation reports received from
the other nine agents. We compare two formalisms:

• Inflated Independent Beta Distributions: We use in-
flated independent beta distributions to represent each ser-
vice separately (as described earlier).

• Kalman Filter: We use the formalism based upon the
Kalman filter developed in this paper which explicitly
captures correlations between the services.

In each simulation run, contract outcomes are drawn from an
arbitrary joint distribution that induces correlations between
the services. The contract outcomes are randomly allocated
such that some agents observe both services, while others
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Figure 3: Comparison of the expected information content,
E[I], and normalised standard error,NSE, for formalisms
using the Kalman filter and independent beta distributions.

observe just one service. We apply our formalisms to calcu-
late posterior trust estimates and then calculate two metrics.
The first is a scalar measure of the information content of the
trust estimate; a standard way of measuring the uncertainty
encoded within the covariance matrix (Bar-Shalom, Li, &
Kirubarajan 2001). More specifically, we calculate the de-
terminant of the inverse of the covariance matrix:

I = det(P (X)−1) (14)

and note that the greater the information content, the more
precisep̂(X) will be. The second metric measures the nor-
malised error of the estimate:

E = [p̂(X) − p(X)]
T

P (X)−1 [p̂(X) − p(X)] (15)

We perform 1000 repeated simulation runs and calculate the
expectation of these two metrics (and the standard error in
these expectations). We note that the expectation of the nor-
malised error is commonly termed the normalised standard
error,NSE, and it describes the consistency of the estimate.
A consistent estimate has a normalised standard error less
than the cardinality of the trust estimate; two in this case.A
normalised standard error much less than this value indicates
that the covariance matrix is too conservative.

Method E[E[U ]] ±
√

Var(E[U ])

True Distribution 5.80 ± 0.27
Inflated Independent Beta 5.86 ± 0.53
Kalman Filter 5.82 ± 0.34

Table 1: Estimated expected utility and its standard devia-
tion calculated from an agents posterior trust estimate.

In figure 3 we present these results (with the standard er-
ror in the expected values shown as error bars) as the number
of contract observations ranges from 10 to 400. We note that
the information content of the trust estimates generated by
our Kalman filter formalism far exceeds that of those gener-
ated using inflated independent beta distributions (typically
by a factor of three). By explicitly representing the corre-
lations between the services our formalism generates more
precise trust estimates. This increased precision is not re-
alised at the cost of producing inconsistent estimates; the
normalised standard error of both formalisms is less than
two, and thus, they both generate consistent estimates. Fi-
nally, we note that as the number of contracts increases, the
Kalman filter encodes more precise correlation information,
and the difference between the formalisms also increases.

Finally, in table 1 we illustrate the effect that the precision
of the trust estimate has on an agent’s estimate of the ex-
pected utility of a contract (calculated using the relationships
shown in equations 1 and 2 in an example setting where
u(oa = 1) = 2 andu(ob = 1) = 6). While both formalisms
generate estimates of expected utility close to the true dis-
tribution, the more precise covariance matrix of the Kalman
filter results in a better estimate of the standard deviationof
the expected utility (while that of the inflated independent
beta distribution is approximately double the true value).

Conclusions
In this paper we addressed the need for a principled prob-
abilistic model of computational trust that allows heteroge-
neous contract observations to be fused together. Prior to
our work no such model existed. We considered the case of
an agent procuring a bundle of services subject to correlated
failures, and we showed that we could use the Kalman filter
to fuse observations from agents who have direct experience
of previous contracts for different subsets of these services.

Our future work concerns two areas. First, we note that
the normalised standard error (NSE) of our formalism is gen-
erally much less than 2 (see figure 3). This suggests that
there is some scope for deriving less conservative covari-
ance matrices to represent the agents’ reputation reports,and
we are currently exploring this possibility. Second, we note
that data fusion is a mature research field with many well
developed techniques for filtering and fusing observations
made by different agents. As such, we intend to incorporate
some of these results within our computational trust model,
and we are particularly interested in techniques to deal with
erroneous or inconsistent estimates that are received from
malicious (or misinformed) agents.



Appendices

A. The Dirichlet Distribution
In this section, we describe how an agent may use the stan-
dard results of the Dirichlet distribution to calculate theoff-
diagonal terms withinP (X). For each pair of service (e.g.a
andb), we must consider all possible combinations of con-
tract outcomes, and thus we definenab

ij as the number of
contract outcomes for which bothoa = i andob = j. For
example,nab

10
represents the number of contracts for which

oa = 1 andob = 0 (i.e. servicea was successfully delivered,
while serviceb was not).

Now, using the standard Dirichlet notation, we can define
αab

ij , nab
ij +1 for all i andj taking values0 and1, and then,

to calculate the cross-correlations between the two services
a andb, we note that the Dirichlet distribution over pair-wise
joint probabilities is:

Prob(pab) = Kab

∏

i∈{0,1}

∏

j∈{0,1}

p(oa = i, ob = j)αab
ij −1 (16)

where:
∑

i∈{0,1}

∑

j∈{0,1}

p(oa = i, ob = j) = 1 (17)

andKab is a normalising constant (Evans 1993). From this
we can derive pair-wise probability estimates and variances:

E[p(oa = i, ob = j)] =
αab

ij

α0

(18)

V [p(oa = i, ob = j)] =
αab

ij (α0 − αab
ij )

α2

0
(1 + α0)

(19)

where:
α0 =

∑

i∈{0,1}

∑

j∈{0,1}

αab
ij (20)

and in fact,α0 = N + 2, whereN is the total number of
contracts observed. Likewise, we can express the covariance
in these pair-wise probabilities in similar terms:

C[p(oa = i, ob = j), p(oa = m, ob = n)] =
−αab

ij αab
mn

α2

0
(1 + α0)

(21)

Finally, we can use the expression:

p(oa = 1) =
∑

j∈{0,1}

p(oa = 1, ob = j) (22)

to determine the covarianceCab. To do so, we first simplify
the notation by definingV ab

ij , V [p(oa = i, ob = j)] and

Cab
ijmn , C[p(oa = i, ob = j), p(oa = m, ob = n)]. The

covariance for the probability of positive contract outcomes
is then the covariance between

∑

j∈{0,1} p(oa = 1, ob = j)

and
∑

i∈{0,1} p(oa = i, ob = 1), and thus:

Cab = Cab
1001

+ Cab
1101

+ Cab
1011

+ V ab
11

(23)

Thus, given a set of contract outcomes that represent previ-
ous interactions with a supplier, an agent may use the Dirich-
let distribution to calculate an estimate of the probability
that any service will be successfully delivered,p̂(X), and
the uncertainty and correlations between these probabilities,
P (X), may be calculated and used as a prior belief in our
Kalman filter trust model.

B. Covariance Inflation
In this section we describe a method whereby an agent can
calculate a conservative matrix,R∗, to use in place ofR, in
the reputation report that it sends to other agents (see equa-
tion 11). The approach uses covariance inflation (Hanebeck,
Briechle & Horn 2001; Reece & Roberts 2005) to calculate
a bounding (i.e. consistent) covariance matrix from a (pos-
sibly sparse) set of contract outcomes. Covariance inflation
is traditionally used to obtain a consistent covariance ma-
trix for a family of covariance matrices when only the cross-
terms in the family differ (i.e. the diagonal variance terms
are assumed to be known). In this section we extend covari-
ance inflation to the case where not only the off-diagonal
terms, but also the diagonal variance terms, are unknown
(but bounded).

We start by considering that the contract outcome obser-
vation covariance matrix,R, is given by:

R =









pa(1 − pa) pab − papb pac − papc . . .

pab − papb pb(1 − pb) pbc − pbpc . . .

pac − papc pbc − pbpc pc(1 − pc) . . .
...

...
...









(24)

wherepκ, with κ ∈ {a, b, c, . . .}, is the probability that the
serviceκ is successfully delivered (e.g.pa = p(oa = 1) and
pb = p(ob = 1)) andpκν is the probability that servicesκ
andν, with κ, ν ∈ {a, b, c, . . .}, are both successfully deliv-
ered (e.g.pab = p(oa = 1, ob = 1)).

The probabilities within this matrix (e.g.pa andpab) are
not known. However, they can be estimated by sampling
the distributions (by observing contract outcomes) and then
using the Clopper-Pearson method (Clopper 1934) to find
confidence intervalsover them. These intervals describe a
family of possible covariance matricesR from which a con-
servative covariance matrixR∗ can be calculated.

The Clopper-Pearson method calculates confidence inter-
vals,Iκ andIκν , for each of the marginal distributions over
pκ and the joint distributions overpκν respectively. The
magnitude of the confidence interval is determined by a
user specifiedconfidence value. The confidence value is the
probability that the interval contains the actual positivecon-
tract outcome probability. In many applications it is com-
mon to choose the95 percentile confidence value. For any
dimensions labelledκ andν the confidence intervals are de-
fined in terms of their upper and lower limits thus:

Iκ , [Iκ,l, Iκ,u] (25)

Iκν , [Iκν,l, Iκν,u] (26)

Our aim is to find a covariance matrixR∗ which is consis-
tent withR for all values ofpκ andpκν in their confidence
intervals. For any covariance matrixR′ to be consistent with
R, we require that the diagonal elements ofR′ to be the
largest possible values that the diagonal elements ofR can
take. Thus, we can restate our problem as that of finding a
covariance matrixR∗ which is consistent with allR′ where:

R
′ =











R′
aa pab − papb pac − papc . . .

pab − papb R′
bb pbc − pbpc . . .

pac − papc pbc − pbpc R′
cc . . .

...
...

...











(27)



and, for allκ, ν ∈ {a, b, c, . . .}, pκ ∈ Iκ andpκν ∈ Iκν and
R′

κκ = maxpκ∈Iκ
{pκ(1 − pκ)}.

To determine the range of values that the cross-terms
cκν , pκν − pκpν can take we use equations 25 and 26
to give the limits:

Iκν,u − Iκ,lIν,l ≥ pκν − pκpν ≥ Iκν,l − Iκ,uIν,u (28)

However, we can often find tighter bounds. SinceR is
a covariance matrix then the magnitude of the cross term
pκν − pκpν must be less than the square root of the prod-
uct of the variancespκ(1 − pκ) andpν(1 − pν). Since the
variances are bounded above byR′

κκ andR′
νν then:

|cκν | ≤
√

pκ(1 − pκ)pν(1 − pν) ≤
√

R′
κκR′

νν (29)

Thus, we can obtain the range of possible values for the
off-diagonal covariance terms as a function of the Clopper-
Pearson intervals. The upperUκν and lowerLκν bounds for
each cross-term,Uκν ≥ cκν ≥ Lκν , are given by:

Uκν = min{
√

R′
κκR′

νν , Iκν,u − Iκ,lIν,l} (30)

Lκν = max{−
√

R′
κκR′

νν , Iκν,l − Iκ,uIν,u} (31)

To build the observation covariance matrixR∗, we iterate
through the contract dimensionsd. Initially, R∗[1] = R′

aa

whereR′
aa = maxpa∈Ia

{pa(1 − pa)}. Each subsequent
iteration d = {2, 3, . . .} augments a row and column to
R∗[d − 1]. Covariance inflation is used at each iteration to
incorporate the unknown, but bounded cross-terms:

R∗[d] =

(

(1 + KdSd)R
∗[d − 1] Ed

ET
d

(

1 + Sd

Kd

)

R′
dd

)

(32)

whereR′
dd = maxpd∈Id

{pd(1 − pd)}. The scalarSd is
calculated with the aid of two vectors,Cd(l) andCd(u), that
are of sized− 1 and are obtained from the Clopper-Pearson
confidence interval limits:

Cd(l) = [L1d, L2d, . . . , Ld−1 d]
T (33)

Cd(u) = [U1d, U2d, . . . , Ud−1 d]
T (34)

and is given by:

Sd =max
v

[

Θmax{abs(Cd(u) − Ed),

abs(Cd(l) − Ed)}R
′
dd

−1
]

(35)

whereΘ is the sphering matrix ofR∗[d − 1], maxv is the
value of the maximum element in the vector, andmax and
abs are the element wise maximum and absolute operators
respectively. Thed−1 vectorEd and the scalarKd are cho-
sen to minimise the determinant (det) ofR∗

d subject to the
constraint thatR∗

d is positive semi-definite. This constraint
is a requirement of all covariance matrices. Thus the optimal
value for{Kd, Ed} is found using sequential quadratic pro-
gramming (Fletcher 1987) to solve the nonlinear program-
ming problem:

min
Kd,Ed

det(R∗
d) subject to eigenvalues(R∗

d) ≥ 0 (36)

The final result of this iterative procedure is a conservative
covariance matrix,R∗, to use in place ofR, in the agent’s
reputation report.
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