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Abstract

In this paper we develop a novel probabilistic model of

computational trust that allows agents to exchange and
combine reputation reports over heterogeneous, corre-
lated multi-dimensional contracts. We consider the spe-
cific case of an agent attempting to procure a bundle
of services that are subject to correlated quality of ser-

vice failures (e.g. due to use of shared resources or in-
frastructure), and where the direct experience of other
agents within the system consists of contracts over dif-

ferent combinations of these services. To this end, we
present a formalism based on the Kalman filter that rep-
resents trust as a vector estimate of the probability that
each service will be successfully delivered, and a co-

variance matrix that describes the uncertainty and cor-
relations between these probabilities. We describe how
the agents’ direct experiences of contract outcomes can
be represented and combined within this formalism, and
we empirically demonstrate that our formalism provides

significantly better trustworthiness estimates than the
alternative of using separate single-dimensional trust
models for each separate service (where information re-
garding the correlations between each estimate is lost).

Introduction

Computational models of trust have recently generated a
great deal of research interest within the academic liteeat

of multi-agent systems. Such models allow agents to select

between various suppliers of services on the basis of their
reliability or trustworthiness. To be effective, these mod
els should allow agents (i) to estimate the trustworthiréss

a supplier as they acquire direct experience, (ii) to expres
their uncertainty regarding this estimate, (iii) to excpan
their estimates as reputation reports, and (iv) to filter and
fuse these reputation reports with their own direct experi-
ence to yield more accurate estimates.

While much of the work within this area has used do-
main specific oad hoctrust metrics (see Ramchurn, Hunyh,
& Jennings (2004) for a review), a growing body of re-
search shows that the desiderata described above may b
achieved through grounding computational trust models in
probability theory. Specifically, models of this form have
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been presented by a number of researchers, and typically
they use a beta distribution to represent an agent’s babef t

a supplier will successfully fulfill a single-dimensionalre

tract (Jgsang & Ismail 2002; Teaeyal. 2006).

In recent work we have extended such probabilistic trust
models to consider cases in which a contract’'s success or
failure is measured over multiple dimensions (Reetal.
2007). These cases are common in real-world applications
(e.g. within a supply chain where a contract specifies min-
imum timeliness, quality and quantity criteria), and inlsuc
cases, we would expect there to be correlations between the
success or failure of each contract dimension (e.g. sugplie
may trade-off failure in one dimension to achieve another;
sacrificing quality or shipping a partial order to achieve a
delivery deadline). In this context, we have shown that it
is essential to explicitly consider these correlationshif t
expected utility of interacting with any particular sugpli
is to be accurately estimated. We have presented a for-
malism whereby the Dirichlet distribution (a natural multi
dimensional extension of the beta distribution) is used to
represent an agent’s correlated beliefs regarding these mu
tiple contract dimensions, and we have described how these
beliefs may be communicated between agents as reputation
reports, and fused with an agent’s own direct experience.

However, this formalism explicitly assumes that all agents
observe and record contract outcomes over an identical set o
dimensions (i.e. that the observations of contract outeome
that constitute each agent’s direct experience are homoge-
neous). This limitation means that it can not be applied in
the more general setting where correlations exist but ebser
vations of contract outcomes are heterogeneous. For exam-
ple, consider the case of an agent attempting to negotiate
with a supplier to procure a bundle of video, audio and data
services in order to facilitate an interactive video coafee.

We would expect there to be correlations between the prob-
abilities that each service will be successfully delivejeue

to the fact that the services may share common resources or
infrastructure such as communication networks, routetls an
eserver:s), and thus, in order to estimate the expectedyuflit
interacting with the supplier the agent must estimate these
probabilities and correlations. In order to do so, the agent
would benefit from combining its own limited direct expe-
rience with reputation reports from other agents. However,
in this case, these other agents may only have experience of



subsets of the entire bundle (i.e. one agent may only have positive and negative reports of agents who have interacted

used audio services provided by this supplier, while anothe
may have experience of procuring both video and audio ser-
vices but not data services). As yet, no principled compu-
tational trust model exists that allows an agent to combine
these heterogeneous contract observations, while stili-ma
taining information regarding their correlations.

To rectify this shortcoming, in this paper we develop just
such a computational trust model. In doing so, we adopt
a formalism common within the academic literature of tar-
get tracking and data fusion, and we use the Kalman filter
to combine these heterogeneous contract observations. Thi
approach is attractive since not only does it provide a solu-
tion to the problem at hand, but it also enables other results
within the data fusion literature such as the gating of incon
sistent estimates and the elimination of rumour propagatio
within decentralised information systems to be naturaily i
corporated into future computational trust models.

In more detail, we first show that in order to estimate the
expected utility of a bundle of services, an agent must use
a trust model that allows it to estimate (i) the probability
that each service will be successfully delivered, and i) t

with it, and this reputation is represented by a beta distrib
tion. Likewise, Teacyet al. (2005) use the beta distribution
to describe an agent’s belief in the probability that a sigppl
will successfully fulfill its commitments. They present &-fo
malism based on Bayesian statistics that allows an agent (i)
to estimate this probability from its own direct experience
(i) to communicate these estimates as reputation reps¥ts u
ing the sufficient statistics of the beta distribution, aiiigl (
to combine such reports to provide more accurate estimates.

While these models only deal with single dimensional
contracts, other researchers have noted the need for multi-
dimensional models, and indeed, a number of such models
have been published. For example, both Sabater & Sierra
(2001) and Griffiths (2005) present multi-dimensional trus
models, in which agents form contracts based on multiple
variables. Both models provide heuristics to update these
dimensions given observations of contract outcomes, and to
combine these dimensions into a scalar metric that can be
used to select between suppliers.

In earlier work we have combined these approaches
within a probabilistic multi-dimensional trust model in

correlations between these estimates. We then build on this which the Dirichlet distribution is used to represent an

model and make the following contributions:

e We develop a benchmark trust model for dealing with

heterogeneous contract observations that uses separat

single-dimensional trust models (specifically independen
beta distributions) for each individual service within the

bundle. This approach provides consistent estimates but

does not represent correlations between the services.

agent's correlated beliefs regarding the probability that
supplier will successfully fulfill each contract dimension

Ve considered an agent that is attempting to estimate the

expected utility of a contract, and showed that this leads to
a principled means of combining multi-dimensional beliefs
into expected utility.

In this paper, we significantly extend this approach by
considering the case that the agents’ direct experience-rep

We describe a novel formalism that uses the Kalman fil- - sents contracts over heterogeneous dimensions. In thés cas
ter to combine agents’ heterogeneous contract observa-the formalism described above can not be used since it is
tions while also explicitly representing the correlations not possible to simply aggregate the observed contract out-
between the services. We show how agents can calculate comes in this way. Thus, we must develop an alternative
prior trust estimates and reputation reports from their own approach and here we use the Kalman filter in order to fuse
direct experience, and how these can be fused together tothese heterogeneous contract observations.

yield posterior trust estimates.

We empirically demonstrate that by explicitly captur- Expected Utility of a Contract

ing the correlations betwe_en the services, our formalism We start by considering an agent attempting to procure a
based upon the Kalman filter yields far more precise es- pyndle of services (such as audio, video and data services)
timates of the trustworthiness and expected utility com-  from a single supplier. In order to make a rational decision,
pared to the alternative approach of using independent o {5 negotiate a price for this bundle, the agent must es-
beta distributions. In our experiments the information timate the expected utility of a contract with this supplier
content of estimates derived from the Kalman filter is typ-  Thys we denote the outcome of a contract as a vegfor,
ically three times that of estimates derived from the inde- hat indicates whether or not each service within the bun-
pendent beta distributions. dle was successfully delivered (. = {0, = 1,05 =

0,0. = 0,...} indicates that service was successfully de-
livered, while service$ andc were not). Ifu(o, = 1) is

the marginal utility that the agent derives if services suc-
cessfully deliveret] then the expected utility of the agent
will depend on the probability that this happep&, = 1).
However, neither the probabilities, nor the correlations b
tween them, are not known to the agent, and thus, it must use
observations of previous contract outcomes to determine a

The remainder of this paper is organized as follows: we first
review related work, and then discuss the specific model we
consider in this paper. We then describe our formalism us-
ing the Kalman filter, and present an empirical validation.
Finally, we conclude and discuss future work.

Related Work

A number of researchers have presented probabilistic com-
putatlonal trust mOdels for S|ng|e d|mens|0na| contracts. 1Our formalism can be app“ed to more Comp|ex ut|||ty func-

Jgsang & Ismail (2002) describe the Beta Reputation System tions that exhibit complementarities between services, however for
whereby the reputation of a supplier is compiled from the clarity we present the simpler additive example in this paper.



distribution over their possible values. It can then deteem
an expectation of the expected utility of the contract:

B[E[U]] = p(X)"U(X) €N
and a variance, describing its uncertainty:
Var(E[U]) = U(X)" P(X)U(X) 2)
where:
u(og = 1)
u(op =1)
UX)= | u(o. =1) )

Thus, the agent’s estimate of the expected utility is depen-

dent on a trust estimate composed of two expressions: a vec-

tor estimate of the probability that each service is success
fully delivered:

p(X) (4)

of an agent who only observed one service. Thus, in this sec-
tion, we present two formalisms that address the more gen-
eral case where contract observations are heterogeneeus. W
first describe a simple benchmark formalism using indepen-
dent beta distributions, and then describe our full foremali
that uses the Kalman filter.

Inflated Independent Beta Distributions

We can provide a reasonable benchmark formalism for deal-
ing with heterogeneous contracts through a simple exten-
sion of a single dimensional trust model. That is, we do
not explicitly represent the correlations between the ser-
vices within the bundle, but rather, we use independent beta
distributions to represent each individual service. This,
an agent has direct experience/éfprevious contract out-
comes, in which service was successfully delivered,
times, then the trust estimatg(X), can simply be calcu-
lated using the standard result from the beta distribétion
that:

. ng +1

plog =1) = N2 (6)
Similarly, we can calculate the diagonal terms of the coevari
ance matrix,P(X), by again using the standard result from

and a covariance matrix that describes the uncertainty and the beta distribution that:

correlations in these estimates:

Va Oab O(LC
Cab W) Cbc

P(X) = Cac Cvbc ch (5)

where the diagonal term§,, V}, andV,, represent the un-
certainties ip(o, = 1), p(o, = 1) andp(o. = 1), and the
off-diagonal terma’,;,, C,. andC},. represent the correla-
tions between these probabilities.

Heterogeneous Contracts

The previous section showed that in order to estimate the
utility of a contract an agent must calculate a trust esti-
mate composed of the vect@i(,X ), and covariance matrix,
P(X). In earlier work we presented a formalism using the
Dirichlet distribution that allows an agent to calculatetbo
these expressions from its direct experience of previons co
tract outcomes (Reec al. 2007). Within this formalism,

an agent that has observadcontract outcomes in total sim-
ply records, for each pair of services (eagandbd), the num-

ber of times that both were delivered successfull, the
number of times both were delivered unsuccessfully,

and both combinations in which one was successfully de-
livered and the other unsuccessfully deliveregh, andnsb.

(ng +1)(N —ng +1) e
(N +2)2(N +3)

Finally, rather than explicitly calculating the off-diagal el-

ements of the covariance matrix, we can derive a conserva-

tive covariance matrikby simply setting the off-diagonal el-

ements to zero, and multiplying the diagonal variance terms

by the number of dimensions in the state veckor,Thus in

the case of two services we have:

2V, 0
Cr o) ®)

This process is known as covariance inflation, and reflects
the fact that while we do not know the correlations be-
tween the services, we know that they may be correlated, and
thus, we require a conservative covariance matrix thatrsove
any possible correlation (Hanebeck, Briechle & Horn 2001,
Reece & Roberts 2005).

This simple formalism is attractive; by not explicitly mod-
elling the correlations between services it allows us te fus
heterogeneous contract observations by simply aggrepatin
the counts (i.e. finding the total number of times service
was successfully delivered out of the total number of con-
tract observations). However, as we shall show later, the
lack of explicit correlation information causes it to parfo
poorly. Thus, in the next section we develop a more sophis-
ticated approach using the Kalman filter to fuse heteroge-

Vo =

P(X)

These counts over contract outcomes can be communicatedneous estimates containing correlation information.

as reputation reports, and these reputation reports can be

combined by simply aggregating the counts.
However, this formalism is limited to the case that con-
tract observations are homogeneous (i.e. all agents abserv

2See Teacgt al. (2005) or Reecet al. (2007) for example.

A covariance matrix iconsistent(or conservative when it
is not less than the actual distribution of the true trustworthiness,
p(X), around the estimatg(X ). Conservative covariance matri-

contracts over the same dimensions). This is the case sinceces ensure that we never assign greater credibility to a trust estimate
there is no way of aggregating the counts over contract out- than it deserves, and are thus important when risk averse decisions
comes of an agent who has observed two services, with thoseare made (Uhlmann 2002).



A Kalman Filter Trust Model

The Kalman filter is a natural choice for our formalism,
since within the academic literature of data fusion it is eom
monly used to fuse observations over multiple correlated
dimensions (Bar-Shalom, Li, & Kirubarajan 2001). This
work generally assumes Gaussian distributions. However,
the Kalman filter can also be used for non-Gaussian distri-
butions (Maryak, Spall, & Heydon 2004), and we describe
how it can be applied to Dirichlet distributions in order to
fuse heterogeneous trust estimates from multiple agents.

Our Kalman filter trust model operates by fusing an
agent’s prior trust estimate (calculated from an agents ow
direct experience of previous contract outcomes) with rep-
utation reports that are received from other agents in order
to give a posterior trust estimate. As described earlieseh
trust estimates are represented by a vegigX,), and a co-
variance matrixP(X), and the standard form of the Kalman
filter provides two equations to update these:

ﬁposte’rio’r' = ﬁprior + K(O - f)p’rio'r‘) (9)
Pposterior = Pprior[l - K] (10)

whereK is the Kalman gain:
K = Pprior (Pprior + R)_l (11)

ando is an observation with covarianég that together rep-
resent the reputation reports received from other agerds (w
discuss the details of these later).
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Figure 1: Conservative bounding matrigshbwn as a bold
ellipsg, R*, constructed from the family of all possible ma-
trices, R (shown as plain ellipsgs

prior estimate is calculated from its own direct experience
and how other agents can communicate reputation reports
calculated from their own direct experience.

Calculating a Prior Belief from Direct Experience: The
prior belief of the agent is represented by a trust estimate,

Now, when we have heterogeneous contracts, one or more (X ), and a covariance matrix?(X). These can be calcu-

dimensions of either the prior estimate or the reputatien re
ports may be missing. Within the Kalman filter framework
we can simply represent these missing contract obsergation
by setting the corresponding diagonal elements of the co-
variance matrix to infinity. By doing this we are effectively
saying that the estimate for this contract part has no cer-
tainty.

Actually, performing these matrix operations involving
infinity can be problematic. We can avoid this by using the
information form of the Kalman filter whereby an estimate
is represented by its precisiari, which is the inverse of the
correlation matrix (i.eY = P(X)~1), and its information
estimate,j, which is the product of the precision and the
state estimate (i.g} = P(X)~'p(X)).

In this case, the missing information can be represented
by inserting zeros into the precision matrix, and as before,
the Kalman filter allow us to combine reputation reports with
prior beliefs to yield a posterior information estimate and
precision matrix:

12)
(13)

whereY, = R~! andj = R~!o. The information form of
the Kalman filter is particularly useful within multi-agent
systems since reputation reports from multiple agents are
simply added (in any order) to an agent’s prior estimate.
However, the two forms are exactly equivalent, and we can
easily switch between the two.

Thus having presented the Kalman filter in the context
of a computational trust model, we describe how an agent’s

Yposterior = Yprior + Yo

Yposterior = Yprior +Y,

lated from an agent’s direct experience using the Dirichlet
formalism described in our earlier work (Reexteal. 2007).
More specificallys(X) and the diagonal elements B{ X)

are calculated from the counts of contract outcomes (as per
equations 6 and 7), while the full details of the Dirichlet-di
tribution are required to calculate the off-diagonal tewhs
P(X). See appendix A for full details.

This prior explicitly represents the correlations over the
subset of services for which the agent has directly observed
previous contract outcomes. When the agent has no direct
experience of some services, it may simply insert infinity
into the relevant diagonal element & X) to reflect this
lack of information (or alternatively insert zero intoif the
information form of the Kalman filter is being used).

Calculating Reputation Reports: The Kalman filter
fuses a prior estimate with an observationwhose covari-
ance isR. In our computational trust moded, and R to-
gether represent a reputation report and are calculated fro
the direct experience of the originating agent. This calcul
tion is different from that which generatg6X) and P(X),
since the covarianc®& describes the variability of about
the true probabilitiegy(X '), while the covarianc® (X)) de-
scribes the variability gf(X') about the estimat& X ). This

is a subtle but important difference.

Calculatingo is straightforward since it is a vector esti-
mate of the probability that each service is successfully de
livered (i.e. 0 = {04, 0p,0c,...}). Itis calculated from an
agent’s previous contract outcomes, and thus, if the agent
has observedVv contracts in total, and servieewas suc-
cessfully delivered im,, of these therv, = n,/N. Note



that due to the reasons described above this expression is

different from that shown in equation 6.

CalculatingR is more complex. Since we are using the
Kalman filter with a Dirichlet distribution (rather than the
more common Gaussian distribution), the covariar¢eis
itself dependent upon the probabilities that each sengce i
successfully deliveredy(X). These probabilities are not
known; indeed, these are what we attempting to estimate.
However, the beauty of the Kalman filter lies in its flexibil-
ity and we need not worry about finding exactly. Pro-
vided that we can find a conservative matd¥;, to use in
place ofR, we can guarantee that our estimates will remain
consistent.
matrix for R from an agent’s direct experience and a com-
monly used method from the data fusion literature: namely
covariance inflation (Hanebeck, Briechle & Horn 2001;
Reece & Roberts 2005).

The full details of this calculation are presented in ap-
pendix B. However, we provide a sketch of the procedure
here. Our starting point is the Dirichlet distribution oyp&s-
sible values op(X) calculated using the agent’s direct expe-
riences (as used above to calculate an agent’s prior esfimat
We then sample possible valuespgfX') from this distribu-
tion, and generate a family of possible covariance matrices
for R. We then use covariance inflation to construct a con-
servative covariance matrix from the entire family. In figur
1 we present an example of this process for two serfices
We plot the family of possibléd? matrices as ellipses, with
the bounding conservative covariance matfix, in bold.

Example: To illustrate the formalism we consider an ex-
ample where agent A is estimating the utility of procuring
a bundle of two services, andb. These two services share

a common resource, and thus, the probabilities of them be-
ing successfully delivered are positively correlated. digé

has some direct experience of procuring both services from
this supplier, and thus, it can use the Dirichlet distribnti

to calculate prior estimates ¢f X') and P(X). This prior
estimate is plotted in figure 2 as a dotted ellipse.

Agent B has also interacted with this supplier in the past,
but in these interactions it has only observed contract out-
comes involving service. It communicates these contract
outcomes to agend in the form of an observation vector,

o, and a conservative estimate of its covariange,This is
shown as the dashed-dot ellipse in figure 2. Note that the
variance in thé dimension is infinite (the covariance ellipse
looks rectangular) reflecting the fact that agéhsupplies

no information about the reliability of serviée

Agent A can then fuse its own prior estimate with the rep-
utation report received from ageBt(using the information
form of the Kalman filter and inserting the necessary zeros
to indicate that agenB provides no information about ser-
vice b). The resulting posterior estimate is shown as a solid
ellipse in figure 2. Note that although agdstsupplies in-
formation about service only, the uncertainty in agent’s
estimate for both dimensions is reduced. This occurs be-

“We choose two services for this and others examples in this
paper since this allows us to plot covariance matrices as ellipses.
Our formalism obviously generalises to any number of services.

We can build such a conservative covariance
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Figure 2: Kalman filter and inflated independent beta esti-
mates for heterogeneous contract observations.

cause agen#l’s prior estimate encodes a non-zero correla-
tion between the services and the Kalman filter uses this to
map the new evidence about servicento service.

This is a key benefit of our formalism. We can compare
this result to the benchmark presented earlier that uses ind
pendent beta distributions to describe each separateservi
(shown as the dashed ellipse in figure 2). Since this bench-
mark fails to represent the positive correlations betwéen t
services (i.e. the ellipse is not tilted to the right), itlgie
a highly pessimistic covariance estimate (i.e. the elligse
substantially larger than that calculated by our formalism
based upon the Kalman filter). In the next section we de-
scribe metrics that describe the information content amd co
sistency of these estimates, in order to perform a more de-
tailed comparison of these two formalisms.

Empirical Evaluation

In order to evaluate the effectiveness of our formalism, we
present simulation results in which ten agents, each with
their own direct experience of a supplier that provides two
services, participate within a reputation system. We agsum
that one of these agents is attempting to evaluate the trust-
worthiness of the supplier in order to calculate the expkcte
utility of interacting with it. As such, the agent must fuse i
own direct experience with reputation reports receivethfro
the other nine agents. We compare two formalisms:

¢ Inflated Independent Beta Distributions: We use in-
flated independent beta distributions to represent each ser
vice separately (as described earlier).

e Kalman Filter: We use the formalism based upon the
Kalman filter developed in this paper which explicitly
captures correlations between the services.

In each simulation run, contract outcomes are drawn from an
arbitrary joint distribution that induces correlationdween

the services. The contract outcomes are randomly allocated
such that some agents observe both services, while others
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2 ‘ ‘ :
- - -Inflated Indepedent Beta Method ‘ E[E[U]] £ /Var(E[U]) ‘
—Kalman filter True Distribution 5.80 £ 0.27

1.5 ] Inflated Independent Beta 5.86 +0.53
Kalman Filter 5.82+0.34

Table 1: Estimated expected utility and its standard devia-
tion calculated from an agents posterior trust estimate.

o
a

In figure 3 we present these results (with the standard er-
ror in the expected values shown as error bars) as the number

==

Expected Information ConterE[l])
[

o

0 100 200 300 400 of contract observations ranges from 10 to 400. We note that
Number of Contract Observations the information content of the trust estimates generated by
. our Kalman filter formalism far exceeds that of those gener-
L&— Inflated Indepedém Beta ated using inflated independent beta distributions (tyiyica
— Kalman Filter by a factor of three). By explicitly representing the corre-
1.6 ] lations between the services our formalism generates more

precise trust estimates. This increased precision is Rot re
alised at the cost of producing inconsistent estimates; the
normalised standard error of both formalisms is less than
two, and thus, they both generate consistent estimates. Fi-
nally, we note that as the number of contracts increases, the
Kalman filter encodes more precise correlation information
and the difference between the formalisms also increases.
Finally, in table 1 we illustrate the effect that the preaisi
‘ ‘ ‘ of the trust estimate has on an agent’s estimate of the ex-
100 200 300 400 pected utility of a contract (calculated using the relagtuips
Number of Contract Observations shown in equations 1 and 2 in an example setting where
u(oq = 1) = 2 andu(o, = 1) = 6). While both formalisms
Figure 3: Comparison of the expected information content, generate estimates of expected utility close to the true dis
E[I], and normalised standard erraV,SE, for formalisms tribution, the more precise covariance matrix of the Kalman
using the Kalman filter and independent beta distributions. filter results in a better estimate of the standard deviatfon
the expected utility (while that of the inflated independent
beta distribution is approximately double the true value).

=
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=
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Normalised Standard ErrdiNSE)

o
o®

observe just one service. We apply our formalisms to calcu- )
late posterior trust estimates and then calculate two osetri Conclusions
The first is a scalar measure of the information content of the In this paper we addressed the need for a princip]ed prob_

trust estimate; a standard way of measuring the uncertainty apilistic model of computational trust that allows heterog
encoded within the covariance matrix (Bar-Shalom, Li, & neous contract observations to be fused together. Prior to
Kirubarajan 2001). More specifically, we calculate the de- our work no such model existed. We considered the case of
terminant of the inverse of the covariance matrix: an agent procuring a bundle of services subject to corglate
[ =det(P(X)}) (14) failures, and we showed that we could use the Kalman filter
to fuse observations from agents who have direct experience
and note that the greater the information content, the more of previous contracts for different subsets of these sesvic
precisep(X ) will be. The second metric measures the nor-  Qur future work concerns two areas. First, we note that
malised error of the estimate: the normalised standard erréé$B of our formalism is gen-
A B T 1A _ erally much less than 2 (see figure 3). This suggests that
E=[p(X) = p(X)I" PX)™ [p(X) = p(X)] (15) there is some scope for deriving less conservative covari-
We perform 1000 repeated simulation runs and calculate the ance matrices to represent the agents’ reputation repois,
expectation of these two metrics (and the standard error in we are currently exploring this possibility. Second, weenot
these expectations). We note that the expectation of the nor that data fusion is a mature research field with many well
malised error is commonly termed the normalised standard developed techniques for filtering and fusing observations
error, NSE, and it describes the consistency of the estimate. made by different agents. As such, we intend to incorporate
A consistent estimate has a normalised standard error lesssome of these results within our computational trust model,
than the cardinality of the trust estimate; two in this case. and we are particularly interested in techniques to dedl wit
normalised standard error much less than this value ireicat  erroneous or inconsistent estimates that are received from
that the covariance matrix is too conservative. malicious (or misinformed) agents.



Appendices
A. The Dirichlet Distribution

In this section, we describe how an agent may use the stan-

dard results of the Dirichlet distribution to calculate tifé
diagonal terms withir?(X'). For each pair of service (e.g.
andb), we must consider all possible combinations of con-
tract outcomes, and thus we defin@’ as the number of
contract outcomes for which both, = ¢ ando, = j. For
examplen{§ represents the number of contracts for which
0, = 1 ando, = 0 (i.e. service: was successfully delivered,
while serviceb was not).

Now, using the standard Dirichlet notation, we can define
gl = ng) 41 for all i and; taking values) and1, and then,
to calculate the cross-correlations between the two sesvic
a andb, we note that the Dirichlet distribution over pair-wise
joint probabilities is:

Prot(pa) = Ko [[ [ ploa=i.0o =)0~ (16)
i€{0,1} j€{0,1}
where:
Y > ploa=io=j)=1 (17)

1€{0,1} j€{0,1}
and K, is a normalising constant (Evans 1993). From this
we can derive pair-wise probability estimates and variance
ab

ai,'
Elplow =0 =) = (18)
. . af?(ag — afb)
Vip(og =1i,0p = j)] = m (19)
0
where:
a= > > af (20)

1€{0,1} je{0,1}
and in fact,ag = N + 2, whereN is the total number of
contracts observed. Likewise, we can express the covarianc
in these pair-wise probabilities in similar terms:
ab _ab

. . — Q5 Oy
Clp(0a = i,00 = j),p(0a = m,0p, =n)] = m (21)
Finally, we can use the expression:
plog=1) = Z p(og = 1,0, = j) (22)

je{0,1}
to determine the covariancg,;,. To do so, we first simplify
the notation by defining/%* £ V{p(o, = i,0, = j)] and
Cit o = Clplog = i,00 = j),p(oa = m,op = n)]. The
covariance for the probability of positive contract out@sm
is then the covariance betwen; ., 1, p(0a = 1,0, = j)

andzz’e{oi}p(% =,0p = 1), and thus:

Cap = Cfgo1 + Citor + Cions + VA7 (23)
Thus, given a set of contract outcomes that represent previ-
ous interactions with a supplier, an agent may use the Dirich
let distribution to calculate an estimate of the probayilit
that any service will be successfully delivergd,X), and
the uncertainty and correlations between these prohiabilit
P(X), may be calculated and used as a prior belief in our
Kalman filter trust model.

B. Covariance Inflation

In this section we describe a method whereby an agent can
calculate a conservative matrik;", to use in place oR, in
the reputation report that it sends to other agents (see equa
tion 11). The approach uses covariance inflation (Hanebeck,
Briechle & Horn 2001; Reece & Roberts 2005) to calculate
a bounding (i.e. consistent) covariance matrix from a (pos-
sibly sparse) set of contract outcomes. Covariance inflatio
is traditionally used to obtain a consistent covariance ma-
trix for a family of covariance matrices when only the cross-
terms in the family differ (i.e. the diagonal variance terms
are assumed to be known). In this section we extend covari-
ance inflation to the case where not only the off-diagonal
terms, but also the diagonal variance terms, are unknown
(but bounded).

We start by considering that the contract outcome obser-
vation covariance matrixz, is given by:

Pa(l —Pa)  Pab — PaPb Pac — PaPe
Pab — PaPo Db(1 —Pb)  Poc — DbDe

R = Pac — PaPec Pbe — PbPec pc(l - pc) (24)

wherep,;, with x € {a,b,¢, ...}, is the probability that the
servicex is successfully delivered (e.g., = p(o, = 1) and
py = p(op = 1)) andp,,, is the probability that services
andv, with k, v € {a,b, ¢, ...}, are both successfully deliv-
ered (e-gpab = p(oa =10, = 1))

The probabilities within this matrix (e.¢a, andp,;) are
not known. However, they can be estimated by sampling
the distributions (by observing contract outcomes) and the
using the Clopper-Pearson method (Clopper 1934) to find
confidence intervalsver them. These intervals describe a
family of possible covariance matricésfrom which a con-
servative covariance matrix* can be calculated.

The Clopper-Pearson method calculates confidence inter-
vals, I, and,,, for each of the marginal distributions over
p, and the joint distributions ovep,, respectively. The
magnitude of the confidence interval is determined by a
user specifiedonfidence valueThe confidence value is the
probability that the interval contains the actual positiea-
tract outcome probability. In many applications it is com-
mon to choose the5 percentile confidence value. For any
dimensions labelled andv the confidence intervals are de-
fined in terms of their upper and lower limits thus:

Ili £ [Iﬂ,hlﬂ,u] (25)
Im/ £ [Imu,lv-[mz,u] (26)

Our aim is to find a covariance matrix* which is consis-
tent with R for all values ofp,, andp,, in their confidence
intervals. For any covariance matr¥ to be consistent with
R, we require that the diagonal elements ®fto be the
largest possible values that the diagonal element’ o&n
take. Thus, we can restate our problem as that of finding a
covariance matrib* which is consistent with alk’ where:

R:za Pab — PaPb  Pac — PaPc
o | pab = pape Ry Pre — DbPe .-
= Pac — PaPc Pbe — PbPe Rcc e (27)



and, for alls,v € {a,b,¢,...}, px € I, andp,,, € I, and
R = maxy, er, {px(1 — p)}-
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to give the limits:

- Im,llz/,l > Prv — PrPv > Im/,l - Im,ulz/,u (28)

However, we can often find tighter bounds. SinBeis

a covariance matrix then the magnitude of the cross term
Prr — PxPr Must be less than the square root of the prod-
uct of the variancep, (1 — p.) andp, (1 — p,). Since the
variances are bounded above By, andR,,, then:

e < Vel = p)pu (L —p) < /R, (29)
Thus, we can obtain the range of possible values for the
off-diagonal covariance terms as a function of the Clopper-
Pearson intervals. The upp€r, and lowerL,, bounds for
each cross-tern/,., > ¢., > L., are given by:

Iml/,u

U,,ﬂ, = IHiIl{ lyyj Ircl/,u - Ili,l-[u,l} (30)
L,.ﬂ, = max{f\/m, I,Lcu,l - IK,,UII/,U} (31)

To build the observation covariance mati, we iterate
through the contract dimensiods Initially, R*[1] = R/,
where R),, = max, cr, {p.(1 — p,)}. Each subsequent
iterationd = {2,3,...} augments a row and column to
R*[d — 1]. Covariance inflation is used at each iteration to
incorporate the unknown, but bounded cross-terms:

R (1+ K3Sq)R*[d — 1] Eq (32)
BT (1+£2) Ry,

where R}, = maxp,cr,{pa(1 — pa)}. The scalarS, is

calculated with the aid of two vector§,;(1) andCy(u), that

are of sizel — 1 and are obtained from the Clopper-Pearson
confidence interval limits:

Ca(l) = [Lig,Lag,-.
Ca(u) = [Uia,Uszas .-
and is given by:

Sq =max |© max{abgCy(u) — Ey),

S Lgq 4" (33)
U1 4" (34)

abgCy(l) — Ed)}R:;z([1

where® is the sphering matrix oR*[d — 1], max, is the
value of the maximum element in the vector, andx and

(35)

abs are the element wise maximum and absolute operators

respectively. The — 1 vector £, and the scalak ; are cho-
sen to minimise the determinant (det) Bf, subject to the
constraint thatR; is positive semi-definite. This constraint
is a requirement of all covariance matrices. Thus the optima
value for{ K, E4} is found using sequential quadratic pro-
gramming (Fletcher 1987) to solve the nonlinear program-
ming problem:
min det(R}) subject to eigenvaluég);) > 0
Ka,Eq
The final result of this iterative procedure is a consereativ
covariance matrix2*, to use in place of?, in the agent’s
reputation report.

(36)
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