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Abstract— Quadrature Amplitude Modulation (QAM) is a
bandwidth-efficient transmission technique. The exact average
Bit Error Ratio (BER) of the maximum-minimum-distance rect-
angular QAM (R-QAM) constellation is studied in the context of
asynchronous Co-Channel Interference (CCI) and Nakagami-m
fading. A new formula is derived for the Characteristic Function
(CF) of the CCI, which requires no knowledge of the CCI
distribution. The numerical results obtained from our exact BER
expression are verified by our simulation results and are also
compared to those of the Gaussian Approximation (GA).

I. INTRODUCTION

The family of Quadrature Amplitude Modulation
(QAM) [1] schemes has found its way into virtually all
recent wireless standards, including the third-generation (3G)
High-Speed Downlink Packet Access (HSDPA), the 802.11
Wireless Local Area Network (WLAN) family, as well as the
Digital Audio Broadcast (DAB) and Video Broadcast (DVB)
systems. The maximum-minimum distance rectangular QAM
(R-QAM) constellation is popular, since it achieves the best
BER in uncoded Gaussian scenarios.

The Symbol Error Rate (SER) performance of R-QAM
has been studied using various exact computation techniques
in [2]–[6]. By contrast, the novel contribution of this paper
is that we evaluate the BER performance of R-QAM, when
additionally the Co-Channel Interference (CCI) is taken into
account. Conventionally, the R-QAM BER has been estimated
by using various approximations or bounds [2], [7]. However,
using exact BER calculation is still desirable for verifying the
accuracy of various approximation and bounding techniques.
The exact BER expressions derived for 16-QAM and 64-
QAM constellations were provided in [1]. A general recursive
algorithm devised for the exact BER computation of Square
QAM (S-QAM) was presented in [8], while an exact and
general closed-form BER expression of R-QAM1 was derived
for arbitrary constellation sizes in [9]. Most of these results
were obtained for Additive White Gaussian Noise (AWGN)
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1The generic class of R-QAM contains both the specific subclass of square-
shaped S-QAM constellations, as well as non-square constellations.

channels. The AWGN result of [9] was later extended to
Nakagami-m [10], [11] and Ricean [12] fading channels. A
signal-space partitioning method was proposed for calculating
the exact SER/BER of arbitrary two-dimensional signaling in
the context of various fading channels in [13].

The exact QAM BER calculation becomes even more chal-
lenging, when the CCI is taken into account. Conventionally,
the CCI is assumed to be Gaussian distributed for the sake of
computational simplicity [14]. However, the Gaussian Approx-
imation (GA) is accurate only, when we have a large number of
interferers owning to the Central Limit Theorem (CLT) [15].
Moreover, to the best of the authors’ knowledge, the exact
and general BER expression of R-QAM systems corrupted by
CCI has not been derived. In the existing literature, most exact
BER analyses procedures were performed for BPSK [16]–[25]
and QPSK [24]–[27] systems.

Hence, again, the contribution of this paper is that we derive
an exact and general BER expression for general R-QAM
systems corrupted by both asynchronous CCI and Nakagami-
m fading, while dispensing with the Gaussian distributed CCI
assumption. This paper is organized as follows. In Section II
a general R-QAM system subject to asynchronous CCI and
Nakagami-m fading is described. Its exact BER performance
is investigated based on the Characteristic Function (CF)
approach in Section III. Our numerical results are presented in
Section IV, where we verify the accuracy of our exact BER
expression and demonstrate the limited accuracy of the GA
method. Finally, we conclude this paper in Section V.

II. SYSTEM MODEL

The R-QAM signal consists of two independent amplitude-
modulated signals and can be expressed as [10]:

s(t) = dIbI(t) cos(ωct+ θ) + dQbQ(t) sin(ωct+ θ), (1)

where ωc and θ are the common carrier frequency and the
carrier phase shift. As illustrated in [9], 2dI and 2dQ are the
minimum distance between signal constellation points along
the in-phase and quadrature-phase axes, respectively. Note that
dI and dQ are not necessarily equal in the general rectangular
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QAM constellation. The in-phase and quadrature-phase data
signals, bI(t) and bQ(t), are given by:

bI(t) =
∞∑

n=−∞
bInpTs

(t− nTs), (2)

bQ(t) =
∞∑

n=−∞
bQn pTs

(t− nTs), (3)

where
{
bIn
}∞

n=−∞ and
{
bQn
}∞

n=−∞ are the in-phase and
quadrature-phase data symbols, respectively. The symbol dura-
tion is denoted as Ts and pT (t) is the rectangular pulse having
a duration of T , i.e. we have

pT (t) =
{

1, t ∈ [0, T ),
0, otherwise. (4)

In the M -ary R-QAM scheme, where we have M =
M I × MQ, log2M

I and log2M
Q bits are Gray encoded

and mapped onto the in-phase and quadrature-phase compo-
nents [1], [9], respectively. Hence, the in-phase and quadrature
data symbols, bIn and bQn , are selected from the set of AI =
{±1,±3, ...,±(M I − 1)} and AQ = {±1,±3, ...,±(MQ −
1)}, respectively.

We consider a general R-QAM system subjected to K
asynchronous co-channel interferers. The received signal r(t)
subjected to fading may be written as:

r(t) =
K∑

k=0

hk{dI
kb

I
k(t− τk) cos[ωc(t− τk) + θk + ϕk] (5)

+ dQ
k b

Q
k (t− τk) sin[ωc(t− τk) + θk + ϕk]} + η(t),

where the fading amplitude hk obeys the Nakagami-m dis-
tribution having parameters {mk,Ωk} [28], the fading phase
ϕk is typically assumed to be uniformly distributed over
[0, 2π) [28], the time delay τk of the kth user is uniformly
distributed over [0, Ts), and the Additive White Gaussian
Noise (AWGN) η(t) has a double-sided power spectral density
of N0/2.

Without loss of generality, we assume that the 0th user is the
desired one. In the case of coherent demodulation as well as
perfect channel estimation, the in-phase and quadrature-phase
decision statistics, ZI and ZQ, are given by:

ZI = dI
0h0b

I
0,0 +

K∑
k=1

hk

(
XI

k cos ∆k +XQ
k sin∆k

)
+ ηI , (6)

ZQ = dQ
0 h0b

Q
0,0 +

K∑
k=1

hk

(
XQ

k cos ∆k −XI
k sin ∆k

)
+ ηQ,(7)

where the phase shift difference ∆k = −ωc(τk − τ0) + (θk −
θ0)+(ϕk−ϕ0) between the kth interferer and the desired user
is uniformly distributed over [0, 2π). The noise components ηI

and ηQ can be shown to be zero-mean Gaussian distributed
random variables, both having a variance of N0/Ts. The
random variables XI

k and XQ
k are defined as:

XI
k = dI

k[bIk,−1νk + bIk,0(1 − νk)], (8)

XQ
k = dQ

k [bQk,−1νk + bQk,0(1 − νk)], (9)

where νk = τk/Ts is the time delay of the kth interferer
normalized by the symbol duration.

III. BER ANALYSIS

Let us now continue by analyzing the error probability of
the in-phase component based on the CF approach. The error
probability of the quadrature component may be derived in the
same way.

Upon exploiting the results of [29], we have the CF of
the in-phase CCI II

k = hk

(
XI

k cos ∆k +XQ
k sin∆k

)
con-

ditioned on XI
k and XQ

k in the following form:

ΦII
k |XI

k ,XQ
k

(ω) = 1F1

(
mk; 1;− Ωk

4mk

[
(XI

k)2 + (XQ
k )2
]
ω2

)
,

(10)
where 1F1(α;β;x) is the confluent hypergeometric func-
tion [30]. Upon averaging ΦII

k |XI
k ,XQ

k
(ω) over the kth inter-

ferer’s data symbols bIk,−1, bQk,−1, bIk,0, bQk,0 and the time delay
τk, we obtain the CF of II

k , ΦII
k
(ω), as follows:

ΦII
k
(ω) =

1
M2

k

∑
bI

k,−1,bI
k,0∈AI

k

∑
bQ

k,−1,bQ
k,0∈AQ

k

ΦII
k |λ0,λ1,λ2

(ω),

(11)
where the coefficients λ0, λ1 and λ2 are defined as:

λ0 = (dI
k)2(bIk,0)

2 + (dQ
k )2(bQk,0)

2, (12)

λ1 = (dI
k)2bIk,0(b

I
k,−1 − bIk,0) + (dQ

k )2bQk,0(b
Q
k,−1 − bQk,0), (13)

λ2 = (dI
k)2(bIk,−1 − bIk,0)

2 + (dQ
k )2(bQk,−1 − bQk,0)

2. (14)

The conditional CF, ΦII
k |λ0,λ1,λ2

(ω), may be shown to be
given by Equation 15 seen at the top of the next page.
When we have Mk = 2, i.e. the kth interferer adopts BPSK
modulation and experiences Nakagami-m fading, Equation 15
reduces to Equations 8 and 9 of [25]. By contrast, when
Mk = 4, dI

k = dQ
k and m = 1, i.e. the kth interferer

adopts QPSK modulation and experiences Rayleigh fading,
Equation 15 reduces to Equations 17, 19 and 21 of [25].

The in-phase CCI II
k imposed by the different interferers is

mutually independent. Upon defining the total in-phase inter-

ference plus noise term as ξI =
K∑

k=1

II
k + ηI , it transpires that

both its PDF fξI (x) and its CF ΦξI (ω) = ΦηI (ω)
K∏

k=1

ΦII
k
(ω)

are even. Hence the Cumulative Distribution Function (CDF)
FξI (x) of the total in-phase interference plus noise can be
shown to be:

FξI (x) =
1
2

+
1
π

∫ ∞

0

sin(ωx)
ω

ΦξI (ω)dω. (16)

Extending the AWGN result of [9] to the scenarios encoun-
tered in presence of interference plus noise, the conditional
error probability of the uth bit of the in-phase component,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings. 
 



ΦII
k |λ0,λ1,λ2

(ω) =




1F1

(
mk; 1;− Ωk

4mk
λ0ω

2

)
, λ2 = 0,

x

λ2
F

1:0;1
1:0;1

(
[(mk) : 1, 1] :− ; [( 1

2 ) : 1] ;
[(1) : 1, 1] :− ; [(3

2 ) : 1] ; −
Ωk

4mk

(
λ0 − λ2

1

λ2

)
ω2,− Ωk

4λ2mk
ω2x2

)∣∣∣∣
λ1+λ2

λ1

, λ2 �= 0,
(15)

where F
A:B(1);...;B(n)

C:D(1);...;D(n)

( [
(a) : θ(1), ..., θ(n)

]
:
[
(b(1)) : φ(1)

]
; ...;

[
(b(n)) : φ(n)

]
;[

(c) : ψ(1), ..., ψ(n)
]
:
[
(d(1)) : δ(1)

]
; ...;

[
(d(n)) : δ(n)

]
;
x1, ..., xn

)
is the generalized Lauricella func-

tion of n variables defined as Equations 21 - 23 of [31] and f(x)|x2
x1

= f(x2) − f(x1).

P I
b|h0

(u), can be expressed as follows when fξI (x) is even:

P I
b|h0

(u) =
1
M I

k

(1−2−u)MI
k−1∑

l=0

{
(−1)

⌊
l2u−1

MI
k

⌋

×
(

2u−1 −
⌊
l2u−1

M I
k

+
1
2

⌋) [
2
(
1 − FξI

(
(2l + 1)dI

0h0

))]}
,

(17)

where �x� denotes the largest integer no greater than x.
Upon averaging P I

b|h0
(u) over h0 and applying Parseval’s

theorem [32], we obtain the error probability P I
b (u) of the

uth bit of the in-phase component in the form of:

P I
b (u) =

1
2
− 2
πM I

k

∫ ∞

0

ΦξI (ω)
ω

(1−2−u)MI
k−1∑

l=0

{
(−1)

⌊
l2u−1

MI
k

⌋

×
(

2u−1 −
⌊
l2u−1

M I
k

+
1
2

⌋)
�{Φh0

[
(2l + 1)dI

0ω
]}}

dω,

(18)

where �{Φh0(ω)} is the imaginary part of the CF of the
desired user’s fading amplitude, h0, which is given by Table
II of [32].

Following the same approach, we may derive the error
probability PQ

b (u) of the uth bit of the quadrature-phase
component in the form of:

PQ
b (u) =

1
2
− 2

πMQ
k

∫ ∞

0

ΦξQ(ω)
ω

(1−2−u)MQ
k −1∑

l=0


(−1)

⌊
l2u−1

M
Q
k

⌋

×
(

2u−1 −
⌊
l2u−1

MQ
k

+
1
2

⌋)
�
{

Φh0

[
(2l + 1)dQ

0 ω
]}}

dω.

(19)

Finally, the average BER of M -ary general R-QAM can
be obtained by averaging the error probabilities given by
Equations 18 and 19 [9]:

Pb =
1

log2M0


log2 MI

0∑
u=1

P I
b (u) +

log2 MQ
0∑

u=1

PQ
b (u)


 . (20)

When there is no interference, i.e. we have K = 0, Equa-
tions 18 and 19 reduce to the single-user results of [10], [11].
As expected, when only BPSK or QPSK are considered, i.e.
we have dI

k = dQ
k and Mk = 2, 4 for all users, Equations 18

and 19 reduce to the results of [25].

IV. NUMERICAL RESULTS

In this section, we will verify the accuracy of our exact
BER expression provided in Section III and demonstrate the
limited accuracy of the GA method by simulations.

Since the evaluation of the effects of CCI on the QAM
BER is the main objective of our analysis, we assume that
the effects of noise are negligible. We assume furthermore
that the minimum distances between signal points of the in-
phase and quadrature-phase components are the same, i.e.
we have dI

k = dQ
k , which is typical in QAM, although our

analysis in Section III also applies to more general cases,
where dI

k and dQ
k are not necessarily equal. Furthermore,

the average interference power imposed by each interferer
is common and they experience the same fading statistics
as the desired signal, i.e. we have the same mk value for
all users, k = 0, 1, ...,K. Nevertheless, our analysis attained
in Section III applies to various general cases, where the
average power of each interferer is different or where each
user experiences different fading distributions. We define the
per-bit Signal-to-Interference Ratio (SIR) as:

SIR =
1

log2M0

[
(dI

0)
2 + (dQ

0 )2
]
Ω0∑K

k=1

[
(dI

k)2 + (dQ
k )2
]
Ωk

. (21)

Figures 1, and 2 illustrate the average BER performance
versus the per-bit SIR expressed in dB in the context of
Nakagami-m fading channels associated with the parameters
of m = 5 and m = 10, respectively. We assume that the
number of interferers is K = 6 in the simulations of both
figures. This is typical in the hexagonal cellular model of
TDMA cellular networks, where each cell is surrounded by
K = 6 adjacent so-called first-tier interfering cells and usually
only the interference from these K = 6 adjacent cells is
considered. As seen in both figures, the results calculated by
our exact BER analysis and the simulation results match both
for various constellation sizes and for various Nakagami-m
fading parameters. On the other hand, the GA slightly over-
estimates the average BER. As expected, when the per-bit SIR
is high, the fading becomes less severe, i.e. the Nakagami-m
parameter increases, and the number of bits/symbol is low, the
GA becomes less accurate.

Although there are six adjacent first-tier interfering cells,
different interferers may have different levels of influence.
It is typical that there are one or two dominant interferers.
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Fig. 1. BER versus the per-bit SIR in a R-QAM system subjected
to asynchronous CCI and Nakagami-m fading. All users have the same
constellation size, i.e. Mk = M . The constellation size is M = 4, 8, 16, 32,
64, 128, 256, 512 and 1024, respectively. The minimum distances between
signal points of the in-phase and quadrature-phase components are the same,
i.e. dI

k = dQ
k . The number of interferers is K = 6. The average power of

each interferer is common and they experience the same fading distribution
as the desired signal, i.e. mk = 5. The background noise is ignored.
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Fig. 2. BER versus the per-bit SIR in a R-QAM system subjected
to asynchronous CCI and Nakagami-m fading. All users have the same
constellation size, i.e. Mk = M . The constellation size is M = 4, 8, 16, 32,
64, 128, 256, 512 and 1024, respectively. The minimum distances between
signal points of the in-phase and quadrature-phase components are the same,
i.e. dI

k = dQ
k . The number of interferers is K = 6. The average power of

each interferer is common and they experience the same fading distribution
as the desired signal, i.e. mk = 10. The background noise is ignored.
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Fig. 3. BER versus the number of interferers in a R-QAM system subjected
to asynchronous CCI and Nakagami-m fading. All users have the same
constellation size, i.e. Mk = M . The constellation size is M = 4, 8, 16, 32,
64, 128, 256, 512 and 1024, respectively. The minimum distances between
signal points of the in-phase and quadrature-phase components are the same,
i.e. dI

k = dQ
k . The per-bit SIR is 10dB. The average power of each interferer

is common and they experience the same fading distribution as the desired
signal, i.e. mk = 5. The background noise is ignored.
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Fig. 4. BER versus the number of interferers in a R-QAM system subjected
to asynchronous CCI and Nakagami-m fading. All users have the same
constellation size, i.e. Mk = M . The constellation size is M = 4, 8, 16, 32,
64, 128, 256, 512 and 1024, respectively. The minimum distances between
signal points of the in-phase and quadrature-phase components are the same,
i.e. dI

k = dQ
k . The per-bit SIR is 10dB. The average power of each interferer

is common and they experience the same fading distribution as the desired
signal, i.e. mk = 10. The background noise is ignored.
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Figures 3 and 4 illustrate the average BER performance versus
the number of interferers. For the sake of simplicity, we
assume that the average power of all dominant interferers is
the same and the influence of all non-dominant interferers
is negligible. As we expected, the results obtained by our
exact BER analysis and the simulation results match for
various constellation sizes and various Nakagami-m fading
parameters. On the other hand, the GA over-estimates the
average BER, especially when the constellation size is small,
the fading becomes less severe and the number of interferers
is small.

V. CONCLUSION

An exact and general BER expression has been derived for
general R-QAM systems subjected to asynchronous CCI and
Nakagami-m fading, which requires only two single numerical
integrations. A new closed-form formula was provided for
the CF of the CCI with the aid of the generalized Lauricella
function of n variables [31]. Our simulation results verified the
accuracy of our exact BER analysis for different constellation
sizes and for various channel statistics. By contrast, the Gaus-
sian model of CCI fails to accurately predict the QAM BER
performance. Our future work may consider deriving similar
formulae for both dispersive channels and for CDMA systems.
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