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ABSTRACT 
Direct Search (DS) methods are evolutionary algorithms 
used to solve constrained optimization problems.  DS 
methods do not require information about the gradient of 
the objective function while searching for an optimum 
solution. One of such methods is Pattern Search (PS) 
algorithm. This study examines the usefulness of a 
constrained pattern search algorithm to solve well-known 
power system Economic Load Dispatch problem (ELD) 
with a valve-point effect. For illustrative purposes, the 
proposed PS technique has been applied to various test 
systems to validate its effectiveness. Furthermore, 
convergence characteristics and robustness of the 
proposed method have been assessed and investigated 
through comparison with results reported in literature.  
The outcome is very encouraging and suggests that 
pattern search (PS) may be very useful in solving power 
system economic load dispatch problems. 
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1.  Introduction 
 
Scarcity of energy resources, increasing power generation 
costs and ever-growing demand for energy necessitate 
optimal economic dispatch in modern power systems. The 
main objective of economic dispatch is to reduce the total 
power generation cost while satisfying various equality 
and inequality constraints. Traditionally, in economic 
dispatch problems, the cost function for generating units 
has been approximated as a quadratic function. 
 
A wide variety of optimization techniques have been 
applied to solving Economic Load Dispatch problems 
(ELD). Some of these techniques are based on classical 
optimization methods while others use artificial 
intelligence methods or heuristic algorithms. Many 
references present the application of classical 
optimization methods, such as linear programming or 
quadratic programming, to solve ELD problems [1, 2].  

Such classical optimization methods are highly sensitive 
to staring points and often converge to local optimum or 
diverge altogether. Linear programming methods are fast 
and reliable but have a disadvantage associated with the 
piecewise linear cost approximation. Non-linear 
programming methods have known problems of 
convergence and algorithmic complexity. Newton based 
algorithms have difficulty with handling a large number 
of inequality constraints [3].  Methods based on artificial 
intelligence techniques, such as artificial neural networks, 
have also been applied successfully and are reported for 
example in [4, 5]. Lately, many heuristic search 
techniques, such as particle swarm optimization [3] and 
genetic algorithms [6], have been considered in the 
context of the ELD problems. Finally, hybrid   methods 
have been developed [7], where the conventional 
Lagrangian relaxation approach, first order gradient 
method and multi-pass dynamic programming are 
combined together. 
 
Recently, a particular family of global optimization 
methods, introduced and developed by researchers in 
1960 [8], has received a great attention, namely the Direct 
Search methods. Direct Search methods are simply 
structured to explore a set of points, around the current 
position, looking for a point that has smaller objective 
value than the current one. This family includes Pattern 
Search (PS) algorithms, Simplex Methods (SM) (different 
from the simplex used in linear programming), Powell 
Optimization (PO) and others [9].   
 
Direct Search methods, as opposed to more standard 
optimization methods, are often called derivative-free as 
they do not require any information about the gradient or 
higher derivatives of the objective function to search for 
an optimal solution. Therefore Direct Search methods 
may very well be used to solve non-continuous, non-
differentiable and multimodal (i.e. multiple local optima) 
optimization problems. Since the economic dispatch is 
one of such problems, then the proposed method appears 
to be a good candidate to tackle the ELD tasks. 
The main objective of this study is to introduce the use of 
Pattern Search (PS) optimization technique to the subject 
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of power system economic load dispatch. In this paper, 
the PS method has been employed to solve economic 
dispatch problem with a valve-point effect. A valve-point 
effect is the rippling effect added to the generating unit 
curve when each steam admission valve in a turbine starts 
to open. Moreover, to assure accurate results for this 
model, an additional term representing the valve-point 
effect should be added to the cost function [22]. The 
addition of the valve-point effect poses a more 
challenging task to the proposed method since it increases 
the non-linearity of the search space as well as the number 
of local minima.   
 
The paper is organized as follows:  Section 2 introduces 
the problem formulation; Section 3 presents a description 
of the proposed PS algorithm; analysis and test results are 
presented in Section 4, followed by concluding remarks.   
 
2.  Problem Formulation 
 
The traditional formulation of the economic load dispatch 
problem is a minimization of summation of the fuel costs 
of the individual dispatchable generators subject to the 
real power balanced with the total load demand as well as 
the limits on generators outputs. In mathematical form the 
problem can be stated as: 
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with the incremental fuel cost functions of the generation 
units with valve-point loading represented as [10] 
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where 
 
F           is the system   overall   cost   function 
N          the number of generators in the system 

, ,i i id b c  the constants of fuel  function of  
                       generator number i  

,i ie f     the constants of the valve-point effect  
                of generator number i  

giP
     the active power  generation of generator  

             number i 

DP      the total power system demand 

LP       the total system transmission losses 

 ( )mingiP
 the  minimum limit on active power  

               generation of generator  i     

( )maxgiP
 the maximum limit on active  power  

              generation of generator i 

sN        the set of generators in the system 
 
The sinusoidal term added to the fuel cost function which 
models the valve-point effect introduces ripples to heat-
rate curve, thus introducing more local minima to the 
search space.    
 
Finally, we should mention that the system losses will be 
ignored for all test cases considered in this study for 
simplification purposes. 
 
3. Pattern Search Method 
 
The Pattern Search (PS) optimization routine is an 
evolutionary technique that is suitable to solve a variety of 
optimization problems that lie outside the scope of the 
standard optimization methods. Generally, PS has the 
advantage of being very simple in concept, easy to 
implement and computationally efficient. Unlike other 
heuristic algorithms, such as genetic algorithms [11, 12], 
PS possesses a flexible and well-balanced operator to 
enhance and adapt the global and fine tune local search.  
A useful review of direct search methods for 
unconstrained optimization is presented in [9], where the 
authors give a modern perspective on the classical family 
of derivative-free algorithms, focusing on the 
development of direct search methods. 
 
The Pattern Search (PS) algorithm proceeds by computing 
a sequence of points that may or may not approach the 
optimal value. The algorithm starts by establishing a set 
of points called a mesh, around the given point. This 
current point could be the initial starting point supplied by 
the user or it could be computed from the previous step of 
the algorithm. The mesh is formed by adding the current 
point to a scalar multiple of a set of vectors called a 
pattern. If a point in the mesh is found to improve the 
objective function at the current point, the new point 
becomes the current point at the next iteration.   
 
The details of the above process are as follows. First, the 
Pattern search begins at the initial point X0 that is given as 
a starting point by the user. At the first iteration, with a 
scalar equal to 1 called the mesh size, the pattern vectors 
are constructed as [1 0], [0 1], [−1 0] and [0 −1]; they may 
be called the direction vectors.  Then the Pattern Search 
algorithm adds the direction vectors to the initial point X0 
to compute the following mesh points:  

[ ]0 1 0X +
 

[ ]0 0 1X +
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[ ]0 1 0X + −
 

[ ]0 0 1X + −
 

Figure 1 illustrates the formation of the mesh and pattern 
vectors.  The algorithm computes the objective function at 
the mesh points in the order shown.  
 

+X0+[-1 0]

X0+[0 -1]

X0+[0 1]

X0+[1 0]X0

 
Figure 1: PS Mesh points and the Pattern 

 
The algorithm polls the mesh points by computing their 
objective function values until it finds the one with a 
value smaller than the objective function value of X0. If 
there is such a point, then the poll is successful and the 
algorithm sets this point as equal to X1. 
 
After a successful poll, the algorithm steps to the second 
iteration and multiplies the current mesh size by 2 (this is 
called the expansion factor and normally has a default 
value of 2). The mesh at iteration two contains the 
following points: 2*[1 0] + X1, 2*[0 1] + X1, 2*[−1 0] + 
X1 and 2*[0 −1] + X1. The algorithm polls the mesh points 
until it finds the one whose value is smaller than the 
objective function value of X1. The first such point it finds 
is called X2, and the poll is successful. Because the poll is 
successful, the algorithm multiplies the current mesh size 
by 2 to get a mesh size of 4 at the third iteration because 
the expansion factor equals 2. 
 
Secondly, if iteration 3 (mesh size = 4) ends up being an 
unsuccessful poll, i.e. none of the mesh points have a 
smaller objective function value than the value at X2, the 
algorithm does not change the current point at the next 
iteration. That is, X3 = X2. At the next iteration, the 
algorithm multiplies the current mesh size by 0.5, a 
contraction factor, so that the mesh size at the next 
iteration is smaller. The algorithm then polls with a 
smaller mesh size. 
 
The Pattern search optimization algorithm will repeat the 
illustrated steps until it finds the optimal solution for the 
minimization of the objective function. The algorithm 
stops when any of the following conditions occurs: 
 

• The mesh size is less than mesh tolerance. 
• The number of iterations performed by the 

algorithm reaches a predefined value. 
• The total number of objective function evaluations 

performed by the algorithm reaches a pre-set 
maximum number of function evaluations. 

• The distance between the point found at one 
successful poll and the point found at the next 
successful poll is less than a set tolerance. 

• The change in the objective function from one 
successful poll to the next successful poll is less 
than a function tolerance. 

 
All the parameters involved in the Pattern search 
optimization algorithm can be pre-defined subject to the 
nature of the problem being solved. 
 
3.1 Constraints handling 
 
Many ideas have been put forward to ensure that the 
solution satisfies the imposed constraints [13]. For 
example, the constraint may be augmented with the 
objective function using Lagrange multipliers. In this way 
the size of the problem will increase by introducing new 
parameters. In this study, the Pattern Search (PS) method 
handles constraints by using augmented Lagrangian to 
solve the nonlinear constrained economic dispatch 
problem [14-17]. The variables’ bounds and linear 
constraints are handled separately from nonlinear 
constraints. Thus a sub-problem is formulated and solved, 
(having the objective function and nonlinear constraint 
function), using the Lagrangian and the penalty factors. 
Such a sub-problem is minimized using a pattern search 
method, where the linear constraints and bounds are 
satisfied. For more explanation on how PS handles 
constraints refer to [16, 18, 19]. 
 
4. Numerical results 
 
In order to assess the effectiveness and robustness of the 
proposed Pattern Search method, three test cases of 
economic load dispatch with a valve-point effect have 
been considered. For simplicity, transmission losses are 
ignored in all cases (PL in Equation 3 is set to zero). The 
non-linear minimization problem formulation of all test 
cases has been solved using the predefined function 
pattern search incorporated in the GA & DS toolbox of 
Matlab [19]. This function implements the Pattern Search 
algorithm described in section 3. Thus, cost coefficients 
of the fuel cost and the combined objective function for 
the considered test cases were coded in Matlab 
environment. The three test cases differ in the number of 
generating units, which were assumed as 3, 13 and 40 
respectively. Lack of space allows only for the first two 
cases to be described in detail, but for the 40-generator 
case the tendencies and the properties of the algorithm are 
similar to those observed when studying Case II. 
 
Initially, several runs have been carried out with different 
values of the key parameters of PS, such as the initial 
mesh size and the mesh expansion and contraction factors.  
In this study, the mesh size and the mesh expansion and 
contraction factors are selected as 1, 2 and 0.5 
respectively. In addition, a vector of initial points, i.e. X0, 
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was randomly generated (each initial point is bounded 
within the generators limits) to provide an initial guess for 
the PS to proceed. As for the stopping criteria, all 
tolerances were set to 10-6 and the maximum number of 
iterations and function evaluations were set to 1000. All 
runs have been conducted on a modest 1GHz Pentium 3 
processor with 256 MB of RAM laptop computer, so the 
comparisons of computing times with those given in 
literature should be fair. 
 
4.1 Case I: Three Generating Units 
 
This test case consists of three generating units with 
quadratic cost function combined with the effects of 
valve-point loading. The units data (upper and lower 
bounds) along with the cost coefficients for the fuel cost 
(a, b, c, e, and f) for the three generators with valve-point 
loadings are given in [10, 20]. The Pattern Search 
algorithm has been executed 100 times with different 
starting points to study its performance and effectiveness.  
The solutions obtained using the PS method and the 
execution times for the 100 runs were compared with the 
outcome of other evolutionary methods, for example 
Genetic Algorithm (GA) and Evolutionary Programming 
(EP), applied to the same test system in [20]. The 
comparison of performance of PS with the other methods 
is in terms of dispatching costs and convergence speed.  
Table 1 shows the optimal solutions determined by PS for 
the three units while the execution time and cost 
comparisons are shown in Table 2. The definition of the 
various methods (GAB, GAF, etc) may be found in [20]. 
 

Table 1: Generator loading and fuel cost determined by 
PS with total load demand of 850 MW 

Generator Generator Production 
(MW) 

Pg1 300.2663 
Pg2 149.7331 

Pg3 399.9996 

Σ Pgi =  850 MW Total cost:  $8234.05 

 
Table 2: Comparison of PS and EP 
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GAB 35.80 32.46 ------ ------ 8234.08 
GAF 24.65 23.03 ------ ------ 8234.07 
CEP 20.46 18.35 8235.97 8241.83 8234.07 
FEP 4.45 3.79 8234.24 8241.78 8234.07 

MFEB 8.00 6.31 8234.71 8241.80 8234.08 
IFEP 6.78 6.11 8234.16 8234.54 8234.07 

PS 0.81 0.62 8352.41 8453.00 8234.05 
All methods give a similar ‘best’ solution, whereas 
‘mean’ and ‘maximum’ costs differ. The PS algorithm is 
significantly faster than methods described in [20].   

 
The convergence of optimal solution using PS is shown in 
Figure 2, where only about 22 iterations were needed to 
find the optimal solution.  However, PS may be allowed 
to continue the search in the neighborhood of the optimal 
point to increase the confidence in the result. PS stops 
after 44 more iteration and returns the optimal value.  
 

0 10 20 30 40 50 60 70
8200

8300

8400

8500

8600

8700

8800

8900

Iteration

O
bj
ec

tiv
e 

va
lu
e

Optimal Value: 8234.0537

 
Figure 2: Convergence of PS for Case I 

 
Figure 3 depicts the mesh size throughout the 
convergence process.  It is apparent that the mesh size 
decreases until the algorithm terminates, in this case at a 
mesh size of 1.5259e-005 which is more than the stopping 
criteria, thus indicating that this particular run did not 
terminate using the mesh size tolerance.  Figure 3 shows 
that for the first 8 iterations the poll was successful since 
the mesh size keeps increasing as the algorithm had to 
expand the scope of the search.  This is accomplished by 
multiplying the current mesh size by the expansion factor, 
in this study taken as 2.  This scenario continued until 
iteration number 8 when the mesh size reached 256.  At 
iteration number 9 the mesh size decreased by half due to 
multiplying the current mesh size by the contracting 
factor, indicating an unsuccessful poll in the previous 
iteration.  This process continues until reaching one of the 
termination criteria. 
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Figure 3: Convergence of PS Mesh Size (Case I) 

 
It is worth mentioning that the mean and the maximum 
costs are higher than those of the other methods, and this 
is a certain drawback of the performance of PS in this test. 
Moreover, it has been observed that the algorithm is quite 
sensitive to the initial (starting) point and how far it is 
from the global optimal solution.  Figure 4 illustrates the 
sensitivity of PS where a hundred solutions were obtained 
by PS with different initial values.  The optimal solution 
has been reached a number of times for initial points 
around run number 80.  The total execution time for the 
100 runs was 80.75 sec. Other quality answers occurred 
for runs between 32 to 40 and 84 to 100. However, there 
were also several less successful results as illustrated in 
Figure 4. 
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Figure 4: Objective Function Value for 100 different 

Starting Points (Case I) 
 
4.2 Case II: 13 Generating Units 
 
This test assumes 13 generating units with quadratic cost 
function combined with the effects of valve-point loading.  
The units data (upper and lower bounds) and cost 
coefficients for the fuel cost (a, b, c, e, and f) for the 13 
generators with valve-point loading are given in [20, 21].   
 

Table 3: Generator loading and fuel cost determined by 
PS with total load demand of 1800 MW 
Generator Generator Production (MW) 

Pg1 538.5587 
Pg2 224.6416 
Pg3 149.8468 
Pg4 109.8666 
Pg5 109.8666 
Pg6 109.8666 
Pg7 109.8666 
Pg8 109.8666 
Pg9 109.8666 
Pg10 77.4666 
Pg11 40.2166 
Pg12 55.0347 
Pg13 55.0347 

Σ Pgi =  1800 MW Total cost:  $17969.17 

 
The Pattern Search algorithm has been executed 50 times 
with different starting points and similar comparisons as 
for Case I are summarized by Tables 3 and 4. The results 
for all the ‘EP’ methods are taken from [20] and [21]. 
 

Table 4: Comparison of PS and EP 
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CEP 294.96 293.41 18190.32 18404.04 18048.21 
FEP 168.11 166.43 18200.79 18453.82 18018.00 

MFEP 317.12 315.98 18192.00 18416.89 18028.09 
IFEP 157.43 156.81 18127.06 18267.42 17994.07 

PS 5.88 1. 65 18088.84 18233.52 17969.17 
 
In this case the PS method outperforms all other 
algorithms in terms of all costs: minimum, mean and 
maximum, while at the same time offering significant 
saving in computing times. 
 

The convergence of the PS algorithm is shown in Figure 
5. As before, the search continues beyond the 70 iterations 
(when the optimal solution has been reached) to improve 
the confidence in the result. A total of 122 iterations have 
been performed. 
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Figure 5: Convergence of PS for the 13 Generating Units 
 
The dynamics of the mesh size is depicted by Figure 6. As 
before, the initial polling is successful leading to mesh 
size increases, whereas subsequently the mesh size is 
being reduced (with the exception of iterations 11 and 23) 
indicating unsuccessful polls. As for Case I, the termi-
nation criteria for the mesh size have not been reached. 
 
Although the PS has achieved the ‘best’ optimum only on 
three occasions out of 50 runs (see Figure 7), the overall 
minimum and mean costs are still better than those 
obtained by other methods.  The total execution time for 
50 runs is 294.06 s, which is comparable to just one run 
using the other techniques. 

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

Iteration

M
es

h 
si

ze

Current Mesh Size: 1.5259e-005

 
Figure 6: Convergence of PS Mesh Size for the 13 
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5. Conclusion 
 
This paper introduces a new approach based on Pattern 
Search (PS) optimization to study the power system 
economic dispatch with valve-point effect, which is 
formulated as a constrained optimization problem.  The 
proposed method has been applied to two test cases.  
When compared with Evolutionary Programming (EP), 
and in one case also with a Genetic Algorithm (GA), the 
analysis results have demonstrated that PS outperforms 
the other methods in terms of a better optimal solution 
and significant reduction of computing times.  On the 
other hand, the PS is more sensitive to the initial guess 
and appears to rely on how close the given initial point is 
to the global solution. This makes the PS method possibly 
more susceptible to getting trapped in local minima. 
However, the much improved speed of computation 
allows for additional searches to be made to increase the 
confidence in the solution. It should also be noted that GA 
and EP methods normally start with a population of 
starting points, rather than a single initial point like the 
PS, thus require even more computational effort. Overall, 
the PS algorithm has been shown to be very helpful in 
studying optimization problems in power systems. 
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