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ABSTRACT

Direct Search (DS) methods are evolutionary algorithms
used to solve constrained optimization problems. DS
methods do not require information about the gradient of
the objective function while searching for an optimum
solution. One of such methods is Pattern Search (PS)
algorithm. This study examines the usefulness of a
constrained pattern search algorithm to solve well-known
power system Economic Load Dispatch problem (ELD)
with a valve-point effect. For illustrative purposes, the
proposed PS technique has been applied to various test
systems to validate its effectiveness. Furthermore,
convergence characteristics and robustness of the
proposed method have been assessed and investigated
through comparison with results reported in literature.
The outcome is very encouraging and suggests that
pattern search (PS) may be very useful in solving power
system economic load dispatch problems.
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1. Introduction

Scarcity of energy resources, increasing power generation
costs and ever-growing demand for energy necessitate
optimal economic dispatch in modern power systems. The
main objective of economic dispatch is to reduce the total
power generation cost while satisfying various equality
and inequality constraints. Traditionally, in economic
dispatch problems, the cost function for generating units
has been approximated as a quadratic function.

A wide variety of optimization techniques have been
applied to solving Economic Load Dispatch problems
(ELD). Some of these techniques are based on classical

optimization methods while others wuse artificial
intelligence methods or heuristic algorithms. Many
references present the application of classical

optimization methods, such as linear programming or
quadratic programming, to solve ELD problems [1, 2].
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Such classical optimization methods are highly sensitive
to staring points and often converge to local optimum or
diverge altogether. Linear programming methods are fast
and reliable but have a disadvantage associated with the
piecewise linear cost approximation. Non-linear
programming methods have known problems of
convergence and algorithmic complexity. Newton based
algorithms have difficulty with handling a large number
of inequality constraints [3]. Methods based on artificial
intelligence techniques, such as artificial neural networks,
have also been applied successfully and are reported for
example in [4, 5]. Lately, many heuristic search
techniques, such as particle swarm optimization [3] and
genetic algorithms [6], have been considered in the
context of the ELD problems. Finally, hybrid methods
have been developed [7], where the conventional
Lagrangian relaxation approach, first order gradient
method and multi-pass dynamic programming are
combined together.

Recently, a particular family of global optimization
methods, introduced and developed by researchers in
1960 [8], has received a great attention, namely the Direct
Search methods. Direct Search methods are simply
structured to explore a set of points, around the current
position, looking for a point that has smaller objective
value than the current one. This family includes Pattern
Search (PS) algorithms, Simplex Methods (SM) (different
from the simplex used in linear programming), Powell
Optimization (PO) and others [9].

Direct Search methods, as opposed to more standard
optimization methods, are often called derivative-free as
they do not require any information about the gradient or
higher derivatives of the objective function to search for
an optimal solution. Therefore Direct Search methods
may very well be used to solve non-continuous, non-
differentiable and multimodal (i.e. multiple local optima)
optimization problems. Since the economic dispatch is
one of such problems, then the proposed method appears
to be a good candidate to tackle the ELD tasks.

The main objective of this study is to introduce the use of
Pattern Search (PS) optimization technique to the subject
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of power system economic load dispatch. In this paper,
the PS method has been employed to solve economic
dispatch problem with a valve-point effect. A valve-point
effect is the rippling effect added to the generating unit
curve when each steam admission valve in a turbine starts
to open. Moreover, to assure accurate results for this
model, an additional term representing the valve-point
effect should be added to the cost function [22]. The
addition of the wvalve-point effect poses a more
challenging task to the proposed method since it increases
the non-linearity of the search space as well as the number
of local minima.

The paper is organized as follows: Section 2 introduces
the problem formulation; Section 3 presents a description
of the proposed PS algorithm; analysis and test results are
presented in Section 4, followed by concluding remarks.

2. Problem Formulation

The traditional formulation of the economic load dispatch
problem is a minimization of summation of the fuel costs
of the individual dispatchable generators subject to the
real power balanced with the total load demand as well as
the limits on generators outputs. In mathematical form the
problem can be stated as:

N
F=Y F(P)
= (1)

with the incremental fuel cost functions of the generation
units with valve-point loading represented as [10]

F(R)=a,P} +bP+c,+| e xsin(f;x(P,,, ~ )|

2
subject to

N
> P, =P,+P,

E 3)
Pgi(min) < Pgi < Pgi(max) TS NS (4)
where
F is the system overall cost function
N

the number of generators in the system

d., b., c .
P2 7i? 7i the constants of fuel function of
generator number i

e, f .
! i the constants of the valve-point effect

of generator number i

P . .
& the active power generation of generator
number ¢
P,
the total power system demand
P,

the total system transmission losses
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& (mi .. .. .
(min) the minimum limit on active power

generation of generator i

#(max) the maximum limit on active power
generation of generator i
N .
§ the set of generators in the system

The sinusoidal term added to the fuel cost function which
models the valve-point effect introduces ripples to heat-
rate curve, thus introducing more local minima to the
search space.

Finally, we should mention that the system losses will be
ignored for all test cases considered in this study for
simplification purposes.

3. Pattern Search Method

The Pattern Search (PS) optimization routine is an
evolutionary technique that is suitable to solve a variety of
optimization problems that lie outside the scope of the
standard optimization methods. Generally, PS has the
advantage of being very simple in concept, easy to
implement and computationally efficient. Unlike other
heuristic algorithms, such as genetic algorithms [11, 12],
PS possesses a flexible and well-balanced operator to
enhance and adapt the global and fine tune local search.
A useful review of direct search methods for
unconstrained optimization is presented in [9], where the
authors give a modern perspective on the classical family
of derivative-free  algorithms, focusing on the
development of direct search methods.

The Pattern Search (PS) algorithm proceeds by computing
a sequence of points that may or may not approach the
optimal value. The algorithm starts by establishing a set
of points called a mesh, around the given point. This
current point could be the initial starting point supplied by
the user or it could be computed from the previous step of
the algorithm. The mesh is formed by adding the current
point to a scalar multiple of a set of vectors called a
pattern. If a point in the mesh is found to improve the
objective function at the current point, the new point
becomes the current point at the next iteration.

The details of the above process are as follows. First, the
Pattern search begins at the initial point X, that is given as
a starting point by the user. At the first iteration, with a
scalar equal to 1 called the mesh size, the pattern vectors
are constructed as [1 0], [0 1], [-1 0] and [0 —1]; they may
be called the direction vectors. Then the Pattern Search
algorithm adds the direction vectors to the initial point X,
to compute the following mesh points:

X,+[1 0]
X,+[0 1]



X,+[-1 0]
X,+[0 -1]

Figure 1 illustrates the formation of the mesh and pattern
vectors. The algorithm computes the objective function at
the mesh points in the order shown.

X0+[0 1]
o

X0+[-10] X0

X0+[1 0]
o o

o
X0+[0 -1]

Figure 1: PS Mesh points and the Pattern

The algorithm polls the mesh points by computing their
objective function values until it finds the one with a
value smaller than the objective function value of X,. If
there is such a point, then the poll is successful and the
algorithm sets this point as equal to X.

After a successful poll, the algorithm steps to the second
iteration and multiplies the current mesh size by 2 (this is
called the expansion factor and normally has a default
value of 2). The mesh at iteration two contains the
following points: 2*[1 0] + X, 2*[0 1] + Xy, 2*[-1 0] +
Xjand 2*[0 —1] + X,. The algorithm polls the mesh points
until it finds the one whose value is smaller than the
objective function value of X;. The first such point it finds
is called X, and the poll is successful. Because the poll is
successful, the algorithm multiplies the current mesh size
by 2 to get a mesh size of 4 at the third iteration because
the expansion factor equals 2.

Secondly, if iteration 3 (mesh size = 4) ends up being an
unsuccessful poll, i.e. none of the mesh points have a
smaller objective function value than the value at X,, the
algorithm does not change the current point at the next
iteration. That is, X3 = X,. At the next iteration, the
algorithm multiplies the current mesh size by 0.5, a
contraction factor, so that the mesh size at the next
iteration is smaller. The algorithm then polls with a
smaller mesh size.

The Pattern search optimization algorithm will repeat the
illustrated steps until it finds the optimal solution for the
minimization of the objective function. The algorithm
stops when any of the following conditions occurs:

e  The mesh size is less than mesh tolerance.

e The number of iterations performed by the
algorithm reaches a predefined value.

e The total number of objective function evaluations
performed by the algorithm reaches a pre-set
maximum number of function evaluations.
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e The distance between the point found at one
successful poll and the point found at the next
successful poll is less than a set tolerance.

e The change in the objective function from one
successful poll to the next successful poll is less
than a function tolerance.

All the parameters involved in the Pattern search
optimization algorithm can be pre-defined subject to the
nature of the problem being solved.

3.1 Constraints handling

Many ideas have been put forward to ensure that the
solution satisfies the imposed constraints [13]. For
example, the constraint may be augmented with the
objective function using Lagrange multipliers. In this way
the size of the problem will increase by introducing new
parameters. In this study, the Pattern Search (PS) method
handles constraints by using augmented Lagrangian to
solve the nonlinear constrained economic dispatch
problem [14-17]. The wvariables’ bounds and linear
constraints are handled separately from nonlinear
constraints. Thus a sub-problem is formulated and solved,
(having the objective function and nonlinear constraint
function), using the Lagrangian and the penalty factors.
Such a sub-problem is minimized using a pattern search
method, where the linear constraints and bounds are
satisfied. For more explanation on how PS handles
constraints refer to [16, 18, 19].

4. Numerical results

In order to assess the effectiveness and robustness of the
proposed Pattern Search method, three test cases of
economic load dispatch with a valve-point effect have
been considered. For simplicity, transmission losses are
ignored in all cases (P, in Equation 3 is set to zero). The
non-linear minimization problem formulation of all test
cases has been solved using the predefined function
pattern search incorporated in the GA & DS toolbox of
Matlab [19]. This function implements the Pattern Search
algorithm described in section 3. Thus, cost coefficients
of the fuel cost and the combined objective function for
the considered test cases were coded in Matlab
environment. The three test cases differ in the number of
generating units, which were assumed as 3, 13 and 40
respectively. Lack of space allows only for the first two
cases to be described in detail, but for the 40-generator
case the tendencies and the properties of the algorithm are
similar to those observed when studying Case II.

Initially, several runs have been carried out with different
values of the key parameters of PS, such as the initial
mesh size and the mesh expansion and contraction factors.
In this study, the mesh size and the mesh expansion and
contraction factors are selected as 1, 2 and 0.5
respectively. In addition, a vector of initial points, i.e. X,



was randomly generated (each initial point is bounded
within the generators limits) to provide an initial guess for
the PS to proceed. As for the stopping criteria, all
tolerances were set to 10° and the maximum number of
iterations and function evaluations were set to 1000. All
runs have been conducted on a modest 1GHz Pentium 3
processor with 256 MB of RAM laptop computer, so the
comparisons of computing times with those given in
literature should be fair.

4.1 Casel: Three Generating Units

This test case consists of three generating units with
quadratic cost function combined with the effects of
valve-point loading. The units data (upper and lower
bounds) along with the cost coefficients for the fuel cost
(a, b, c, e, and f) for the three generators with valve-point
loadings are given in [10, 20]. The Pattern Search
algorithm has been executed 100 times with different
starting points to study its performance and effectiveness.
The solutions obtained using the PS method and the
execution times for the 100 runs were compared with the
outcome of other evolutionary methods, for example
Genetic Algorithm (GA) and Evolutionary Programming
(EP), applied to the same test system in [20]. The
comparison of performance of PS with the other methods
is in terms of dispatching costs and convergence speed.
Table 1 shows the optimal solutions determined by PS for
the three units while the execution time and cost
comparisons are shown in Table 2. The definition of the
various methods (GAB, GAF, etc) may be found in [20].

Table 1: Generator loading and fuel cost determined by
PS with total load demand of 850 MW

Generator Production

Generator (MW)
Pg; 300.2663
Pg, 149.7331
Pg; 399.9996

X Pgi= 850 MW Total cost: $8234.05

Table 2: Comparison of PS and EP
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GAB 35.80 3246 |  --—--- — 8234.08
GAF 24.65 23.03 | -——-- — 8234.07
CEP 20.46 18.35 8235.97 8241.83 8234.07
FEP 445 3.79 8234.24 8241.78 8234.07
MFEB 8.00 6.31 8234.71 8241.80 8234.08
IFEP 6.78 6.11 8234.16 8234.54 8234.07

PS 0.81 0.62 8352.41 8453.00 8234.05

All methods give a similar ‘best’ solution, whereas
‘mean’ and ‘maximum’ costs differ. The PS algorithm is
significantly faster than methods described in [20].
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The convergence of optimal solution using PS is shown in
Figure 2, where only about 22 iterations were needed to
find the optimal solution. However, PS may be allowed
to continue the search in the neighborhood of the optimal
point to increase the confidence in the result. PS stops
after 44 more iteration and returns the optimal value.

Optimal Value: 8234.0537
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Figure 2: Convergence of PS for Case |

Figure 3 depicts the mesh size throughout the
convergence process. It is apparent that the mesh size
decreases until the algorithm terminates, in this case at a
mesh size of 1.5259e-005 which is more than the stopping
criteria, thus indicating that this particular run did not
terminate using the mesh size tolerance. Figure 3 shows
that for the first 8 iterations the poll was successful since
the mesh size keeps increasing as the algorithm had to
expand the scope of the search. This is accomplished by
multiplying the current mesh size by the expansion factor,
in this study taken as 2. This scenario continued until
iteration number 8 when the mesh size reached 256. At
iteration number 9 the mesh size decreased by half due to
multiplying the current mesh size by the contracting
factor, indicating an unsuccessful poll in the previous
iteration. This process continues until reaching one of the
termination criteria.
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Figure 3: Convergence of PS Mesh Size (Case I)

It is worth mentioning that the mean and the maximum
costs are higher than those of the other methods, and this
is a certain drawback of the performance of PS in this test.
Moreover, it has been observed that the algorithm is quite
sensitive to the initial (starting) point and how far it is
from the global optimal solution. Figure 4 illustrates the
sensitivity of PS where a hundred solutions were obtained
by PS with different initial values. The optimal solution
has been reached a number of times for initial points
around run number 80. The total execution time for the
100 runs was 80.75 sec. Other quality answers occurred
for runs between 32 to 40 and 84 to 100. However, there
were also several less successful results as illustrated in
Figure 4.
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Figure 4: Objective Function Value for 100 different
Starting Points (Case I)

4.2 Casell: 13 Generating Units

This test assumes 13 generating units with quadratic cost
function combined with the effects of valve-point loading.
The units data (upper and lower bounds) and cost
coefficients for the fuel cost (a, b, ¢, e, and f) for the 13
generators with valve-point loading are given in [20, 21].

Table 3: Generator loading and fuel cost determined by
PS with total load demand of 1800 MW

Generator Generator Production (MW)

Pg, 538.5587
Pg, 224.6416
Pg; 149.8468
Pg, 109.8666
Pgs 109.8666
Pgs 109.8666
Pg; 109.8666
Pg; 109.8666
Pgy 109.8666
Pgio 77.4666

Pgi, 40.2166

Pgi 55.0347

Pg;; 55.0347

X Pgi= 1800 MW Total cost: $17969.17

The Pattern Search algorithm has been executed 50 times
with different starting points and similar comparisons as
for Case I are summarized by Tables 3 and 4. The results
for all the ‘EP’ methods are taken from [20] and [21].

Table 4: Comparison of PS and EP

£ g g 2 S S
b= RO =l PN g —~ E —~
E$S = 9 <3 =& S & ERD
S © g @2 2 2 & = g = E =
> = ) 53 9 = o=
= = Q = = £
= =
CEP 294.96 293.41 18190.32 | 18404.04 | 18048.21
FEP 168.11 166.43 18200.79 | 18453.82 | 18018.00
MFEP 317.12 315.98 18192.00 18416.89 | 18028.09
IFEP 157.43 156.81 18127.06 | 18267.42 | 17994.07
PS 5.88 1. 65 18088.84 | 18233.52 | 17969.17

In this case the PS method outperforms all other
algorithms in terms of all costs: minimum, mean and
maximum, while at the same time offering significant
saving in computing times.
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The convergence of the PS algorithm is shown in Figure
5. As before, the search continues beyond the 70 iterations
(when the optimal solution has been reached) to improve
the confidence in the result. A total of 122 iterations have

been performed.

x 10° Optimal Value: 17969.1689

Ohjective value

Iteration

Figure 5: Convergence of PS for the 13 Generating Units

The dynamics of the mesh size is depicted by Figure 6. As
before, the initial polling is successful leading to mesh
size increases, whereas subsequently the mesh size is
being reduced (with the exception of iterations 11 and 23)
indicating unsuccessful polls. As for Case I, the termi-
nation criteria for the mesh size have not been reached.

Although the PS has achieved the ‘best’ optimum only on
three occasions out of 50 runs (see Figure 7), the overall
minimum and mean costs are still better than those
obtained by other methods. The total execution time for
50 runs is 294.06 s, which is comparable to just one run
using the other techniques.

Current Mesh Size: 1.5259e-005

Figure 6: Convergence of PS Mesh Size for the 13
Generating Units
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Figure 7: Objective Function Value for 50 different
Starting Point (Case II)



5. Conclusion

This paper introduces a new approach based on Pattern
Search (PS) optimization to study the power system
economic dispatch with valve-point effect, which is
formulated as a constrained optimization problem. The
proposed method has been applied to two test cases.
When compared with Evolutionary Programming (EP),
and in one case also with a Genetic Algorithm (GA), the
analysis results have demonstrated that PS outperforms
the other methods in terms of a better optimal solution
and significant reduction of computing times. On the
other hand, the PS is more sensitive to the initial guess
and appears to rely on how close the given initial point is
to the global solution. This makes the PS method possibly
more susceptible to getting trapped in local minima.
However, the much improved speed of computation
allows for additional searches to be made to increase the
confidence in the solution. It should also be noted that GA
and EP methods normally start with a population of
starting points, rather than a single initial point like the
PS, thus require even more computational effort. Overall,
the PS algorithm has been shown to be very helpful in
studying optimization problems in power systems.
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