Provisioning Heterogeneous and Unreliable Providers for Service Workflow

Sebastian Steinand Nicholas R. Jenningsand Terry R. Payne
School of Electronics and Computer Science
University of Southampton
Southampton, SO17 1BJ, UK
{ss04r,nrj,trp @ecs.soton.ac.uk

Abstract

Service-oriented technologies enable software agents to dy-
namically discover and provision remote services for their
workflows. Current work has typically assumed these ser-
vices to be reliable and deterministic, but this is unrealistic
in open systems, such as the Web, where they are offered by
autonomous agents and are, therefore, inherently unreliable.
To address this potential unreliability (in particular, uncertain
service durations and failures), we consider the provisioning
of abstract workflows, where many heterogeneous providers
offer services at differing levels of quality. More specifically,
we show that service provisioning is NP-hard, and then de-
vise two heuristic strategies that use service redundancy in a
flexible manner to address uncertainty and failure. In empir-
ical experiments, we show that these heuristic strategies can
achieve significant improvements over standard approaches
in a wide range of environments.

Introduction

viders, and instead assumed truthful and deterministic ser
vice descriptions when executing workflows. Some work
has considered reliability as a constraint on service selec
tion or as part of a quality-of-service optimisation prahle
(Zenget al. 2003). However, such an approach requires
a human user to manually choose appropriate constraints
and weights that balance the various quality-of-service pa
rameters (which are usually assumed independent of each
other). This shortcoming has partially been addressed by
work that uses utility theory to choose among unreliable ser
vice providers (Collinset al. 2001). However, these ap-
proaches tend to rely only on a single service provider for
each task in a workflow (which makes them vulnerable to
particularly unreliable providers) and do not considerarac
tain service durations in a satisfactory manner.

To address this, we proposed a strategy that uses stochas-
tic performance information about service providers to-flex
ibly provision multiple providers for particularly failer

Web services and other service-oriented technologies are prone tasks in an abstract workflow (Stein, Jennings, &

emerging as popular tools for building and deploying large- Payne 2006). In that work, we showed that this redun-

scale distributed systems, where autonomous agents provid dancy allows the consumer to deal with uncertain service
remote resources and functionality to each other (Huhns & behaviour. However, we did not consider potential perfor-

Singh 2005). By using semantically enriched service de- mance differences between providers that offer the same
scriptions, agents in such systems are able to discover andservice type. This limits the strategy to systems where
invoke services without human intervention. Often, these Providers are homogeneous or where specific information
services are invoked as part of workflows, which describe about individual providers is not available.

the types of services and ordering constraints required to . . .
meet a high-level goal. In this paper, we substantially extend our previous work

Now, a key feature of large distributed systems is that the PY @ddressing service heterogeneity. More specifically, we
behaviour of service providers is usually uncertain. On one advance the state of the art in service provisioning in the fo
hand, this is due to the dynamic and open nature of such 'OWing two ways. First, we formalise the service provision-
systems, where network failures, competition for resairce "9 Problem with heterogeneous providers and prove that it
and software bugs are common. Furthermore, providers are 'S NP-har_d, thus p_rov[dlng_ a strong motivation for the use
often self-interested agents (Jennings 2001), and mag-ther ©f heuristic strategies in this field. Second, we descrilie tw
fore decide to postpone or even ignore service requests if NOVel strategies for solving this problem. In particulagse
it is best for them to do so. Given this, such unreliability [1€Xibly provision multiple heterogeneous providers foctea
must be addressed when executing large workflows of inter- @S in the workflow so as to balance the expected reward of
dependent tasks, where service failures and delays cdy easi COMPleting the workflow with its costs.
jeopardise the overall outcome.

To date, existing work on service-oriented computing has
largely overlooked the potential unreliability of servioe-

The remainder of this paper is structured as follows. Next,
we formalise the service provisioning problem and investi-
gate its complexity. Then, we describe our heuristic strate
gies for provisioning, followed by a detailed discussion of
our experimental results. Finally, we conclude.

Copyright(© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Workfl /

ow Repository,
Planner

Workflow
Selection

vice Registry/
Broker
233
—
ElE

Match-
making

Dom e/
T

ain Knowledg
rust Model

Provisioning

—

Invocation

—

Success

Figure 1: Lifecycle of a workflow.

Service Provisioning Problem

In our work, we assume that a service consumer has an
abstract workflow containing task descriptions and order-
ing constraints required to meet some high-level goal. In
practice, this may originate from a repository of pre-define

plans or may be synthesised at run-time using planning and

composition techniques. We also assume that the consumer(p, p, P,

has identified suitable service providers for each tasken th
workflow, using an appropriate matchmaking process (e.g.,
by contacting a service registry or broker). In this con-
text, we focus omprovisioningthese providers, i.e., deciding
which to invoke for each of the tasks (the overall lifecycle
of a workflow is shown in Figure 1). In the following, we
first formalise our system model, then define the provision-
ing problem and show that it is NP-hard.

Formal Model of a Service-Oriented System

A workflowy as selected during the first stage of Figure
1, is a directed acyclic grapl’ = (T, E), whereT =
{t1,t2,t3,...,ti7} is asetottasksand ' : T« T'is a set

of precedence constrain{a strict partial order of”). Fur-
thermore,u(t) € R denotes theeward of completing the
workflow at time steg € Z7 . This is expressed by a max-
imum rewardumax, @ deadlined, and a cumulative penalty
for late completiong:

Umax if t <d
U(t):{umax(S(td) ift>dAt <d4 "= (1)
0 if ¢ > d+ Yoo

The service providerdn a service-oriented system are
given byS = {s1,s2,53,...,55}. To associate workflow
tasks with appropriate providers, there isnatching func-
tion m that represents the result of the matchmaking stage
in Figure 1. This maps each taske T to a set of service
providersm(t;) € (S) whose members can accomplish
the task (they provide the santgpe of service). We also
assume that some information is known about each provider
s; (in practice, this might be learnt through previous interac
tions or obtained through a trust model (Teatwl. 2006)):

e f(s;) € [0, 1] is thefailure probabilityof providers; (i.e.,
the probability that the provider will default or fail to pro
vide a satisfactory result),

e D(s;,t) € [0,1] is the(cumulative) duration distribution
of providers; (i.e., the probability that the provider will
taket € Z* time steps or less to complete an invocation),

e ¢(s;) € Ris theinvocation cosbf providers; (this may
be a financial remuneration for the provided service or a
communication cost).

Furthermore, we introduce the notion sérvice popu-
lations to group sets of services whose behaviour is as-
sumed identical. Hence, there is a set partitiorbpf? =
..., Pp}, whose members are disjoint subsets
of Swith | J, P; = S. Any two members, ands, of a given
populationP; always have the same failure probability, du-
ration distribution and cost, and each task that is mapped to
s by m is also mapped te,.

This notion is introduced for convenience, because we
believe that it is a common feature of distributed systems,
where a number of agents may use the same service im-
plementation, might adhere to certain quality standards, o
where the consumer’s knowledge about service providers is
limited (e.g., in the absence of more accurate informaton,
service consumer may simply class®y = {si, s2,s3} as
cheap, unreliable providers, add = {s4, s5} as reliable,
but expensive providers).

During the invocation stage, a workflol” is completed
by invoking appropriate providers for each task, accortting
the precedence constrairits When invoked, the consumer
first pays a costg(s;), then the service provider completes
the task successfully with probability— f(s;) in a random
amount of time distributed according 0(s;,t). As the
service is executed by an autonomous agent, we assume that
the outcome of an invocation is not known to the consumer
until this time has passed (if successful), and that a filur
is not communicated at all. Furthermore, a single provider
can be invoked for several distinct tasks in the workflow,
but not repeatedly for a given task. When multiple providers
are invoked for a task, it is completed when the first provider
returns a successful response. Finally, to evaluate tlierper
mance of a consumer, we define tiet profitof a workflow
execution as the difference of the reward givenufs) (or O
if unsuccessful) and the total cost incurred.

Problem Definition and Complexity

During the provisioning stage, a consumer decides which
service providers to invoke for the tasks of its workflow. To
formalise this problem, we letr € (T — (S x Z7))

be aprovisioning allocationthat maps workflow tasks to
sets of service providers and associated invocation times.
These times are relative to the time a task first becomes exe-
cutable and indicate in what order different service prexsd

should be invoked for the task (given that it has not already
been completed). For example, the provisioning allocation
a(ty) = {(s1,0), (s2,100)} indicates that up to two service
providers will be invoked for task : s; andss. The first,sq,

will be invoked as soon ag becomes available, and will

be invoked ifsy was still unsuccessful after 100 time units.
With this, we formulate service provisioning as follows:

Definition 1. (PROVISIONING): Given a workflowi/, util-
ity functionu, matching functionn and quality functions,
D and ¢, find a provisioning allocatior* that maximises
the expected net profit of a consumer following it.

Theorem 1. PROVISIONING is NP-hard.

We prove this by giving a polynomial time transformation
from an instance of the NP-completeiKpPSACK problem to
a PrRoVISIONING instance.

Definition 2. (KNAPSACK): Given a finite set of items =
{1,2,3,...,N}, aweightw(i) € Z* and a valuev(i) €
77 for each itemi ¢ I, an overall capacityC € Z* and

a target valueV € Z*, decide whether there is a subset
I'C I, sothaty”, , w(i) <Cand) , , v(i) > V.

Proof. Let vmax be the highest value of any item In Then,
for every itemi € I, create a service provides; with
f(s;) = 0, ¢(si) = vmax — v(i) + 1 and defineD(s;,)
so that the service duration is always exaeily) + 1 time
units (i.e.,D(s;,t) = 0if ¢t < w(i) + 1 andD(s;,t) = 1
if t > w(i) + 1). Also, create a service provides with
f(so) = 0, ¢(s0) = vmax + 1 and defineD(sg,t), SO
that the service duration is always exactly Create work-
flow W = (T, E) with T = {¢1,t2,...ty} and letE be
any total order ori’. Now define a matching functiom,
so thatm(t;) = {s;, so} for all ¢;. Finally, create utility
function v with deadlined = N + C, maximum utility
Umax = N(vmax+ 1) — V + 1 and penalty) = umax. This
transformation is performed i@ (N). It is easy to see that
a non-empty solution to this newrBVISIONING instance
exists if and only if the answer to the originaNKPSACK
instance is “yes”. O

Heuristic Provisioning

In order to deal with the inherent difficulty of service pro-
visioning, we outline two heuristic strategies in this smtt
The first ull flexible) performs a local search for a good pro-
visioning allocation using a novel heuristic utility esttion
function. This strategy considers a large solution spaat th
covers all feasible choices far. However, because it may
potentially take a long time to converge to a good solution,
our second strategydst flexiblg considers provisioning at
the higher level of service populations (rather than irddivi
ual providers), thus reducing the space of candidate solu-
tions and allowing the search to converge faster.

Full Flexible Provisioning
Formulated as an optimisation problem, the aim of our flexi-
ble provisioning strategy is to find an optimal allocatioh

)

o* = arg mgx(?(a) — ()

Algorithm 1 Local search to find a good allocatiori.

1. o «+ CREATEINITIAL (P) > Initial solution
2: 4 «— ESTIMATEUTILITY (o, P)

3: failed— 0
4: repeat > Main loop
5 failed « failed+ 1
6: T «—T
7 while failed > 0 A |T”| > 0 do
8 tieT’ > Random choice
9 T T \ tl
10: N t; < GENERATENEIGHBOURS«, t;, P)
11; forall o/ € N,,, do
12: ' «— ESTIMATEUTILITY (¢/, P)
13: if 4/ > @ then
14: (o, @) — (o, @)
15: failed «— 0
16: end if
17: end for
18: end while
19: until failed > maxFai | ed
20: return «o

wherer(«a) is theexpected rewardf following o andé(«)
theexpected cosHowever, as we have shown, this problem
is inherently difficult. For this reason, we chose local skar
as a commonly used heuristic technique to find good solu-
tions for intractable problems (Michalewicz & Fogel 2004).
The local search algorithm we use is given in Algorithm 1
and follows the common structure of such methods.

In more detail, the algorithm takes as inputRA¥ISION-

ING instanceP and starts with a random allocatien(line

1), which is then iteratively improved, based on an estichate
utility value (lines 4 — 19). During each iteration, the algo
rithm picks a random task; from the workflow (line 8),
and considers each of a set of neighbourspfvhich are
obtained by randomly applying small changes to the provi-
sioned service providers for tagsk During this process, the
algorithm keeps track of the best neighbour so far, which is
then used as the new allocatiorfor the following iteration
(line 14). If no better neighbour is found for tagk the
algorithm continues to consider all other tasks in a random
order. It terminates when the main search loop is executed
maxFai | ed! times without discovering a better solution,
at which point the current is returned (line 20).

Algorithm 1 depends on three functions:REATEINI-
TIAL, GENERATENEIGHBOURS and ESTIMATEUTILITY .
Respectively, these create an initial solution, generaigha
bour allocations of a givea and estimate its utility. We
describe the first two briefly below, followed by a more de-
tailed discussion of ETIMATEUTILITY .

Initial Provisioning Allocation Creation: Initially, we
provision a randor non-empty subset of the matching

This accounts for the fact that we select random neighbours
and may miss potentially better solutions (we set thisp

2Unless stated otherwise, a random choice is picked uniformly
at random from the set of all candidates.

providers for each task, and assign a random time to each
provider from the intervaf0, 1,2, ...,tmax— 1}, Where
tmax IS the first time step at which the consumer receives
no more reward from the workflow (i.ey(tmax — 1) >
u(tmax) = 0). Finally, for each task;, we find the low-
est invocation time of any provisioned provider fgr and
deduct it from all invocation times far,. This ensures that
there are no unnecessary delays before the first invocation.

Neighbour Generation: We generate neighbours of a par-
ticular provisioning allocatioa by considering only a given
taskt; (see Algorithm 1, line 10). To this end, we first pick
a random population (that has at least one provider provi-
sioned) and then a random provisioned memfeof this
population. Finally, the following transformations are- ap
plied separately ta, where possible, in order to generate
the set of neighbours\(, +,):

e Providers,, is removed fromu.

e Providers, is replaced by another suitable provider of a
different population (using the same time).

o A random unprovisioned providey, of the same popula-
tion ass, is provisioned for the same time ag.

e The time fors, is changed (increased and decreased in
integer and random steps, yielding four new neighbours).

e A random unprovisioned provider, from any suitable
population is provisioned at a random time.

We again alter the provisioning times of all new neigh-
bours to ensure that there are no unnecessary delays.

Heuristic Utility Estimation: The objective of our utility
estimation function is to estimate the expected utility of a
allocation, as shown in Equation 2. To solve this exactly is
intractable, as the expected rewaid) requires the distri-
bution of the overall workflow completion time — a problem
that is known to be# P-complete (Hagstrom 1988). Hence,
our heuristic function uses the overall success probgluifit
the workflow), a probability density function for the es-
timated completion time if successfuly{ (z)) and an esti-
mated costd) to estimate the utilityd) as follows (omitting
parameters for brevity):

= p/ooo dw (z)u(x)de —¢ 3)

e Success Probability f;): This is the probability that;
will be completed successfully no later thap,x time
steps after the task was started:

DPi = Ti(aa tmax) (4)

e Mean Completion Time (\;): This is the mean time until
the task is completed, conditional on the task being suc-
cessfully completed withitinay time steps:

tmax

Ai = iZt. (Ty(ov, t) — Ty(a, t — 1))

Pii3

(®)

e Variance (v;): This is the variance of the completion
time, conditional on successful completion as above:

tmax
1
v; = —)\12 + — Z
bi i
e Expected Cost ¢;): The total cost the consumer is ex-
pected to spend on this task:

Y. (1-T(ay))-cx)

(z,y)€a(t:)

> (Ti(a,t) — Ty(a,t — 1)) (6)

)

C; =

Next, these parameters are aggregated to obtain the over-
all estimated utility of the allocation. This process is ikim
to the one described in (Stein, Jennings, & Payne 2006) with
the notable difference that task duration variance is taken
into account to give a more accurate estimate of the dura-
tion distribution. To this end, we first calculate the ovkral
success probability of the workflow) as the product of all
individual success probabilitiep & H{i | teT} Di).

The estimated cost for the workflow Is the sum of the ex-
pected cost of all tasks, each multiplied by the probability
that it is reached (i.e., all its predecessors are sucdgssfu

c= TiC; 8)

{i| tieT}

i H{j\(thti)EE} p; otherwise

Finally, to estimate the duration distribution of the work-
flow, we employ a technique commonly used in operations
research (Malcolnet al. 1959), and evaluate only the crit-
ical path of the workflow (i.e., the longest path when con-
sidering mean task durations). To obtain an estimated dis-
tribution for the duration of this path, we use the central

These parameters are calculated in two steps. First, we limit theorem and approximate it with a normal distribu-

determine a number ddcal parameters for each task and
then, these are combined to givedw (z) andé. For the
local calculations, we leD(s,,t) = (1 — f(sz)) - D(s4, 1)
be the probability that a service provider has completed
its service successfully within no more thiatime steps (not
conditional on overall success). Furthermore, weS}ét, ¢)

be the set of provisioned service providers and associated cumulative probability functichof dy (z), we let Dy

times that are invoked at mostime steps after task was

started. ThenT;(a.,t) = 1 =[], ,yesi (a1 — Dl@,t —
y)) is the probability that task was completed successfully
within no more thart time steps. With this, we calculate the
following four local parameters for each tagk

tion that has a meany, equal to the sum of all mean
task durations along the path and a variange equal to
the sum of the respective task variances. The correspond-
ing probability density function for this duration is then
dw (z) = (vw2m)~Y/2 e~ (@=Aw)*/(2vw)

To solve the integral in Equation 3, we 1Bty (x) be the

3In practice, we approximate this by evaluating successively
more finely grained time intervals to reach an estimatk; it 0.1.

‘Dw(x) = JZ.. dw(y) dy is a common function that can be
approximated numerically. In our work, we use the SSJ library
(http://www. iro.unontreal.cal ~simardr/ssj).

Dy (d) be the probability that the workflow will finish no
later than the deadliné and D; = Dy (t9) — Dw(d) the
probability that the workflow will finish after the deadline
but no later than timg, = *“3= + d (both conditional
on overall success), and we note the general form(of
(Equation 1) to write:

u=p- (Dd “Umax+ Dy - U()\W + (9)
A2 a2
Fe T) Yy g
Dl . 2T

This concludes our discussion of thél flexible strategy.
In the following, we describe a second stratefggt flexible
that includes some modifications to reduce the search space
and convergence time of our provisioning approach.

Fast Flexible Strategy

A potential drawback of the above strategy is the fact that
it explores a large state-space, which may take a long time
to converge to a good solution (there could be thousands of
service providers). To address this, it is possible to sim-
plify the search space. Hence, rather than considering ser-
vice providers individually, we associate three integéues

with each possible service populatiéy for a given task;:

ngq € {0,1,2,...,|Px|}: the number of providers to in-
voke in parallel (O means none are invoked),

wi; € {1,2,3,...,tmax}: the number of time steps be-
fore invoking more providers from the same population,

be: € {0,1,2,...,tmax}: the number of time steps before
the first set of service providers is invoked.

For exampleng; = 7, wy; = 15, by; = 5 means
that the consumer should provision 7 service providers of
populationPy, to be invoked 5 time steps after the relevant
task was started, and that the consumer will invoke another
7 providers after 15 more time steps, and so on, Wptit
or until no more providers are available. The special case
ni,; = 0 denotes the case where no providers of population
Py, are provisioned for task .

The hill-climbing procedure for this search space is sim-
ilar to thefull flexible stratgey. Again, we choose a random
initial provisioning allocation, normalisg;, ; for all popu-
lations of a given task, so that there is at least &peavith
br,s = 0, and then proceed to generate random neighbours
by changingu ;, wy, ; andby, ; of one randomly chosen pop-
ulation (again in both unit and randomly-sized steps).

To further reduce the running time of the algorithm, we
also exploit itsanytimeproperty and stop its main loop (lines
4-19 in Algorithm 1) aftery iterations. Because this may
result in terminating the algorithm before it is was able to
reach a good solution, we performrandom restarts and
use the best soluti6nDue to its aim of reducing the time of
finding a good provisioning allocation, we refer to this stra
egy as thdast flexiblestrategy. In the following, we evaluate
both our strategies and compare their respective merits.

SWe useyg = 100 andh = 5, because these values lead to good
results in a variety of environments.

Empirical Evaluation

Because of the inherent intractability of our original pesh

and the heuristic nature of our strategies, we decided to con
duct an empirical evaluation of the work presented herein.
Our main aim is to investigate whether our strategies can
achieve significant improvements over the currently preva-
lent approaches that do not consider service uncertaimty, a
to compare our two strategies to each other. In the follow-
ing, we first describe our experimental setup and then report
our results.

Experimental Setup

To test the performance of our strategies, we simulate a
service-oriented system with randomly generated service
providing agents and workflows. More specifically, we first
generate five randoservice typeshat broadly characterise
the services found in our system. We attach an average fail-
ure probability to each type by sampling from a beta distri-
bution with mearg and varianc#.01 (denotedB(6, 0.01)),
whered represents the overall average failure probability in
the system and is the main variable we vary throughout our
experiments. We also attach an average cost, duration shape
and scalt to each service type, which are drawn from the
continuous uniform distribution®’,(1, 10), U.(1,10) and
U.(1,5), respectively.

Next, we generate a random number of populations for
each service type (drawn from the discrete uniform distri-
bution Uy,(3, 10)), and populate each with a random num-
ber of providers (drawn froni/,;(1,100)). Then, to intro-
duce further heterogeneity, we vary the performance char-
acteristics between the populations of each type, based on
the type-specific values determined above. To this end, we
generate the failure probability of a population by sangplin
from B(z,0.005), wherex is the type-specific average fail-
ure probability. Furthermore, we determine the cost of each
provider as the produ&- y - z, wherey is the type-specific
average cost andis sampled fromB(0.5,0.05). This is re-
peated for the duration parameters (resamplifigr each).

Finally, workflows always consist of 10 tasks, with prece-
dence constraints that are generated by randomly popglatin
an adjacency matrix until at lea®5% of all possible edges
are added, ignoring any that would create a cyclic graph. We
defineu(t) by settingd = 100, umax = 1000 andd = 50.

The matching functiorm(t;) is created by mapping each
task to the providers of a randomly chosen service type. This
process ensures that our strategies are tested acros&a larg
spectrum of randomly generated environments, with con-
siderable heterogeneity across service types and witkin th
populations of a given type. Overall, this setup was chosen
to represent a plausible workflow scenario, but we have ex-
perimented with other environments and observed the same
trends as discussed in our results.

For each experimental run, we record the overall net profit
our strategies achieve by provisioning and then executing a
single workflow. To obtain statistical significance, we rajpe
all experimentsl000 times with new randomly generated

5These refer to the shape and scale of a discretised Gamma dis-
tribution, which is commonly used for service and queueing times.

1000

naive ——

. full flexible =
800 [i S best fixed ---+-- 1
- g Bog fixed(5,25) =
S600f TRy R 1
o \% - é
Z 400 R R 1
© SR
> ‘\% ", £
g 200 1
< L2 B
0r % - -
-200 f sw,

0 01 02 03 04 05 06 07 08 09 1
Failure Probability @)

Figure 2: Performance of tHall flexible strategy.

agents and workflows, and carry out appropriate statistical
tests (we use two-sample t-tests and ANOVA at 90&;

1000 \

full flexible o
fast flexible ——

800 e]
600 | RN 1

400 | ‘ | |

Average Net Profit

200 | ’ 1

0 | | | | | | | | il
0O 01 02 03 04 05 06 07 08 09 1

Failure Probability §)

Figure 3: Performance comparisonfastfull strategies.

beyond that, it starts to make considerable losses because i
now fails to complete workflows successfully, but still com-

confidence level). To evaluate our strategies, we compare mits a high level of investment to each task (5 providers are

them to the following three benchmark strategies:

e naive: Thenaivestrategy models current approaches that
do not consider service uncertainty, and so it provisions
only single providers for each task in the workflow (cho-
sen randomly from all matching providers).

e fixed(n,w): This strategy provisions multiple providers
for each task in the workflow, but does so in a fixed man-
ner without explicitly considering the service parameters
Specifically, thefixed(n,w)strategy provisions sets of
random service providers in parallel, evantime-steps
after a task becomes available.

e best fixed: This strategy represents an upper bound for
the quality achieved by arfixed(n,w)strategy. We obtain
this by exhaustively testing all feasible parametersrifor
andw in a given environment (for eachvalue) and then
retaining the result of the best performing strategy.

Full Flexible Profit Results

In our first set of experiments, we compared thiéflexible
strategy to our various benchmarks strategies. The results
this are shown in Figure 2 (all results are given with 95%
confidence intervals). Here, theive strategy performs
badly, clearly demonstrating the need for more flexible pro-
visioning approaches. In fact, even when providers never
fail (i.e., 8 = 0.0), it only achieves an average net profit of
430.3 £+ 28.8 due to the uncertain and heterogeneous service
durations that frequently cause it to miss its deadline.h&s t
failure probability rises, performance degrades furtherd

the strategy begins to make a net loss whena 0.3. After

this, it stays constantly low as it rarely finishes any work-
flows successfully.

Figure 2 also showBxed(5,25)as one of the overall best
performing strategies with constant redundancy and witin
times. This strategy performs well in most environments
tested and achieves significantly better results thandhe
strategy up to a failure probability ¢f = 0.6. However,

invoked in parallel every 25 time steps). For comparison,
we also showbest fixedwhich achieves slightly better re-
sults in some cases and avoids making large losses when
is high. Despite these promising results for the benchmark
strategies, it should be noted that both were chosen retro-
spectively from a large set of strategies (the potentiaiags

for n andw), most of which performed significantly worse.

In reality, finding these at run-time would be non-triviadan
therefore necessitates more flexible mechanisms.

Finally, the figure shows the results of tifidl flexible
strategy. This follows a similar trend as thest fixed but
retains a positive net profit even when providers have an av-
erage failure probability of 0.9. More importantly, it sifn
icantly outperforms all other strategies at all failure lpao
bilities. Unlike the other strategies, it also avoids makin
an average net loss in any environment (rather, it startsto i
nore infeasible workflows, e.g., whén= 1). Averaged over
all values for6, full flexible achieves an average net profit
of 535.66 £ 8.29, while best fixedandfixed(5,25)achieve
362.49+7.74 and263.4+9.1, respectively. Thaaivestrat-
egy only achieved8.33 + 4.24.

Fast/Full Comparison Results

Given these results of thell flexiblestrategy, we were inter-
ested in how it compares to tfest flexiblestrategy. Because
of the simplified search space, we expedst flexibleto
reach a solution faster, but possibly perform worse overall
(as less solutions are considered).

To investigate this, we recorded the time taken by each
strategy to reach a provisioning allocation during the expe
iments outlined in the previous section (these were exdcute
on 2.2 GHz AMD Opterons with 1.98 GB RAM). Measured
over allg, the average time dtill flexibleis 37.82 + 0.51s,
the average time dast flexibleis only 4.82 + 0.04s, thus re-
ducing the run-time by over 85%. Similarly, the respective
standard deviations ag¥.29 + 0.36s (72% of the average)
and1.88 + 0.02s (39% of the average), indicating that the

time of fast flexibleis also significantly less variable.

where services are not invoked on demand, but rather in the

To compare the performance of both strategies, we re- context of pre-negotiated service level agreements.

corded their average net profit in the same environments
as discussed in the preceding section. The resulting data

Acknowledgements

is shown in Figure 3, and it indicates that they are highly g work was funded by the Engineering and Physical Sci-

similar. In fact, when averaging over all failure probabili
ties, the average net profits &86.0 + 8.23 (full flexible)
and539.0 + 8.03 (fast flexiblg. Hence, their overall per-
formance is not significantly different. This trend congsu
when comparing the results individually for all values for
6 > 0.0. The only exception is &1 = 0.0, when thefull
flexibleslightly outperforms théast flexiblestrategy. This is
because the former is able to provision single providers ini
tially, but can provision multiple providers at a later tirifie
the single service takes unusually long. However, the diffe
ence is minor — af = 0.0, thefull flexiblestrategy achieves
an average net profit ¢f24.5 + 6.8 while thefast flexible
achieves390.4 + 9.4.

Conclusions and Future Work

In this paper, we have extended the state of the art in ser-
vice provisioning by focussing on environments where many

ences Research Council (EPSRC) and a BAE Systems stu-
dentship.

References

Collins, J.; Bilot, C.; Gini, M.; and Mobasher, B. 2001.
Decision processes in agent-based automated contracting.
IEEE Internet Computing(2):61-72.

Hagstrom, J. N. 1988. Computational complexity of PERT
problems.Networks18:139-147.

Huhns, M. N., and Singh, M. P. 2005. Service-oriented
computing: Key concepts and principle$EEE Internet
Computing9(1):75-81.

Jennings, N. R. 2001. An agent-based approach for build-
ing complex software systemsCommunications of the
ACM 44(4):35-41.

Malcolm, D. G.; Roseboom, J. H.; Clark, C. E.; and Fazar,

heterogeneous and unreliable providers offer the same ser- . 1959. Application of a technique for research and

vice types at different levels of quality and for varying ts

In particular, we have described a novel strategy (the
flexible strategy), which provisions multiple heterogeneous
providers for the tasks of a workflow, and we have given
practical modifications that provide faster solutions (st
flexiblestrategy) with typically equally good results.

As service heterogeneity is a central feature of most large
distributed systems, our work is pertinent for agent dgwelo
ers in a diverse range of areas. In particular, our stragegie
are equally applicable to the workflows of scientists in Grid

environments, to the business processes of companies in e-

development program evaluationOperations Research
7(5):646-669.

Michalewicz, Z., and Fogel, D. B. 2004ow to solve it:
Modern Heuristics Springer, 2nd edition.

Stein, S.; Jennings, N. R.; and Payne, T. R. 2006. Flexible
provisioning of service workflows. IRroc. 17th European
Conference on Atrtificial Intelligence (ECAIO06), Riva del
Garda, Italy, 295-299. 10S Press.

Stein, S.; Payne, T. R.; and Jennings, N. R. 2007. An effec-
tive strategy for the flexible provisioning of service work-

commerce, and to agents that manage and broker resources flows. In Proc. Workshop on Service-Oriented Comput-

in service-oriented systems.

Furthermore, the system model described in this paper
is based loosely on current service-oriented frameworks,
which are becoming popular for building distributed sys-
tems (such as Web or Grid services). Despite this, we have
given an abstract model that does not depend on a partic-
ular implementation and so can be applied in a variety of
settings and frameworks. In addition, we have employed

commonly used stochastic measures to describe services,

which can, in practice, be inferred through existing maehin
learning techniques or trust frameworks, and naturally al-
low some uncertainty about the performance charactesistic
of services. Hence, our work is applicable in realistic de-
ployment scenarios, where complete performance informa-
tion about providers is not necessarily availdble

In future work, we will consider the adaptive provision-
ing of services as more information becomes available dur-
ing workflow execution (e.g., to provision more services as
the agent starts to fall behind schedule). Furthermore, we
are interested in the use of advance negotiation mechanisms

"In related work, we showed that our approach achieves good
results even if the available information is inaccurate (Stein, Payne,
& Jennings 2007).

ing: Agents, Semantics, and Engineering (SOCASE 2007),
Honolulu, Hawai'i, USAvolume 4504 of_ecture Notes in
Computer Sciencd 6—30. Springer.

Teacy, W. T. L.; Patel, J.; Jennings, N. R.; and Luck, M.
2006. TRAVOS: Trust and reputation in the context of inac-
curate information sourcedournal of Autonomous Agents
and Multi-Agent Systeni®(2):183-198.

Zeng, L.; Benatallah, B.; Dumas, M.; Kalagnanam, J.; and
Sheng, Q. Z. 2003. Quality driven web services compo-
sition. In Proc. 12th International World Wide Web Con-
ference (WWW’03), Budapest, Hunga#i1-421. ACM
Press.

