
Provisioning Heterogeneous and Unreliable Providers for Service Workflows

Sebastian Steinand Nicholas R. Jenningsand Terry R. Payne
School of Electronics and Computer Science

University of Southampton
Southampton, SO17 1BJ, UK
{ss04r,nrj,trp}@ecs.soton.ac.uk

Abstract

Service-oriented technologies enable software agents to dy-
namically discover and provision remote services for their
workflows. Current work has typically assumed these ser-
vices to be reliable and deterministic, but this is unrealistic
in open systems, such as the Web, where they are offered by
autonomous agents and are, therefore, inherently unreliable.
To address this potential unreliability (in particular, uncertain
service durations and failures), we consider the provisioning
of abstract workflows, where many heterogeneous providers
offer services at differing levels of quality. More specifically,
we show that service provisioning is NP-hard, and then de-
vise two heuristic strategies that use service redundancy in a
flexible manner to address uncertainty and failure. In empir-
ical experiments, we show that these heuristic strategies can
achieve significant improvements over standard approaches
in a wide range of environments.

Introduction
Web services and other service-oriented technologies are
emerging as popular tools for building and deploying large-
scale distributed systems, where autonomous agents provide
remote resources and functionality to each other (Huhns &
Singh 2005). By using semantically enriched service de-
scriptions, agents in such systems are able to discover and
invoke services without human intervention. Often, these
services are invoked as part of workflows, which describe
the types of services and ordering constraints required to
meet a high-level goal.

Now, a key feature of large distributed systems is that the
behaviour of service providers is usually uncertain. On one
hand, this is due to the dynamic and open nature of such
systems, where network failures, competition for resources
and software bugs are common. Furthermore, providers are
often self-interested agents (Jennings 2001), and may there-
fore decide to postpone or even ignore service requests if
it is best for them to do so. Given this, such unreliability
must be addressed when executing large workflows of inter-
dependent tasks, where service failures and delays can easily
jeopardise the overall outcome.

To date, existing work on service-oriented computing has
largely overlooked the potential unreliability of servicepro-

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

viders, and instead assumed truthful and deterministic ser-
vice descriptions when executing workflows. Some work
has considered reliability as a constraint on service selec-
tion or as part of a quality-of-service optimisation problem
(Zeng et al. 2003). However, such an approach requires
a human user to manually choose appropriate constraints
and weights that balance the various quality-of-service pa-
rameters (which are usually assumed independent of each
other). This shortcoming has partially been addressed by
work that uses utility theory to choose among unreliable ser-
vice providers (Collinset al. 2001). However, these ap-
proaches tend to rely only on a single service provider for
each task in a workflow (which makes them vulnerable to
particularly unreliable providers) and do not consider uncer-
tain service durations in a satisfactory manner.

To address this, we proposed a strategy that uses stochas-
tic performance information about service providers to flex-
ibly provision multiple providers for particularly failure-
prone tasks in an abstract workflow (Stein, Jennings, &
Payne 2006). In that work, we showed that this redun-
dancy allows the consumer to deal with uncertain service
behaviour. However, we did not consider potential perfor-
mance differences between providers that offer the same
service type. This limits the strategy to systems where
providers are homogeneous or where specific information
about individual providers is not available.

In this paper, we substantially extend our previous work
by addressing service heterogeneity. More specifically, we
advance the state of the art in service provisioning in the fol-
lowing two ways. First, we formalise the service provision-
ing problem with heterogeneous providers and prove that it
is NP-hard, thus providing a strong motivation for the use
of heuristic strategies in this field. Second, we describe two
novel strategies for solving this problem. In particular, these
flexibly provision multiple heterogeneous providers for each
task in the workflow so as to balance the expected reward of
completing the workflow with its costs.

The remainder of this paper is structured as follows. Next,
we formalise the service provisioning problem and investi-
gate its complexity. Then, we describe our heuristic strate-
gies for provisioning, followed by a detailed discussion of
our experimental results. Finally, we conclude.

Figure 1: Lifecycle of a workflow.

Service Provisioning Problem
In our work, we assume that a service consumer has an
abstract workflow containing task descriptions and order-
ing constraints required to meet some high-level goal. In
practice, this may originate from a repository of pre-defined
plans or may be synthesised at run-time using planning and
composition techniques. We also assume that the consumer
has identified suitable service providers for each task in the
workflow, using an appropriate matchmaking process (e.g.,
by contacting a service registry or broker). In this con-
text, we focus onprovisioningthese providers, i.e., deciding
which to invoke for each of the tasks (the overall lifecycle
of a workflow is shown in Figure 1). In the following, we
first formalise our system model, then define the provision-
ing problem and show that it is NP-hard.

Formal Model of a Service-Oriented System
A workflow, as selected during the first stage of Figure
1, is a directed acyclic graphW = (T,E), whereT =
{t1, t2, t3, . . . , t|T |} is a set oftasksandE : T ↔ T is a set
of precedence constraints(a strict partial order onT). Fur-
thermore,u(t) ∈ R denotes thereward of completing the
workflow at time stept ∈ Z

+
0 . This is expressed by a max-

imum reward,umax, a deadline,d, and a cumulative penalty
for late completion,δ:

u(t) =

{

umax if t ≤ d
umax− δ(t− d) if t > d ∧ t < d + umax

δ
0 if t ≥ d + umax

δ

(1)

The service providersin a service-oriented system are
given byS = {s1, s2, s3, . . . , s|S|}. To associate workflow
tasks with appropriate providers, there is amatching func-
tion m that represents the result of the matchmaking stage
in Figure 1. This maps each taskti ∈ T to a set of service
providersm(ti) ∈ ℘(S) whose members can accomplish
the task (they provide the sametype of service). We also
assume that some information is known about each provider
si (in practice, this might be learnt through previous interac-
tions or obtained through a trust model (Teacyet al. 2006)):

• f(si) ∈ [0, 1] is thefailure probabilityof providersi (i.e.,
the probability that the provider will default or fail to pro-
vide a satisfactory result),

• D(si, t) ∈ [0, 1] is the(cumulative) duration distribution
of providersi (i.e., the probability that the provider will
taket ∈ Z

+ time steps or less to complete an invocation),

• c(si) ∈ R is the invocation costof providersi (this may
be a financial remuneration for the provided service or a
communication cost).

Furthermore, we introduce the notion ofservice popu-
lations, to group sets of services whose behaviour is as-
sumed identical. Hence, there is a set partition ofS, P =
{P1, P2, P3, . . . , P|P |}, whose members are disjoint subsets
of S with

⋃

i Pi = S. Any two memberssx andsy of a given
populationPi always have the same failure probability, du-
ration distribution and cost, and each task that is mapped to
sx by m is also mapped tosy.

This notion is introduced for convenience, because we
believe that it is a common feature of distributed systems,
where a number of agents may use the same service im-
plementation, might adhere to certain quality standards, or
where the consumer’s knowledge about service providers is
limited (e.g., in the absence of more accurate information,a
service consumer may simply classifyP1 = {s1, s2, s3} as
cheap, unreliable providers, andP2 = {s4, s5} as reliable,
but expensive providers).

During the invocation stage, a workflowW is completed
by invoking appropriate providers for each task, accordingto
the precedence constraintsE. When invoked, the consumer
first pays a cost,c(si), then the service provider completes
the task successfully with probability1− f(si) in a random
amount of time distributed according toD(si, t). As the
service is executed by an autonomous agent, we assume that
the outcome of an invocation is not known to the consumer
until this time has passed (if successful), and that a failure
is not communicated at all. Furthermore, a single provider
can be invoked for several distinct tasks in the workflow,
but not repeatedly for a given task. When multiple providers
are invoked for a task, it is completed when the first provider
returns a successful response. Finally, to evaluate the perfor-
mance of a consumer, we define thenet profitof a workflow
execution as the difference of the reward given byu(t) (or 0
if unsuccessful) and the total cost incurred.

Problem Definition and Complexity

During the provisioning stage, a consumer decides which
service providers to invoke for the tasks of its workflow. To
formalise this problem, we letα ∈ (T → ℘(S × Z

+
0))

be aprovisioning allocationthat maps workflow tasks to
sets of service providers and associated invocation times.
These times are relative to the time a task first becomes exe-
cutable and indicate in what order different service providers

should be invoked for the task (given that it has not already
been completed). For example, the provisioning allocation
α(t1) = {(s1, 0), (s2, 100)} indicates that up to two service
providers will be invoked for taskt1: s1 ands2. The first,s1,
will be invoked as soon ast1 becomes available, ands2 will
be invoked ifs0 was still unsuccessful after 100 time units.
With this, we formulate service provisioning as follows:

Definition 1. (PROVISIONING): Given a workflowW , util-
ity functionu, matching functionm and quality functionsf ,
D and c, find a provisioning allocationα∗ that maximises
the expected net profit of a consumer following it.

Theorem 1. PROVISIONING is NP-hard.

We prove this by giving a polynomial time transformation
from an instance of the NP-complete KNAPSACKproblem to
a PROVISIONING instance.

Definition 2. (KNAPSACK): Given a finite set of itemsI =
{1, 2, 3, . . . , N}, a weightw(i) ∈ Z

+ and a valuev(i) ∈
Z

+ for each itemi ∈ I, an overall capacityC ∈ Z
+ and

a target valueV ∈ Z
+, decide whether there is a subset

I ′ ⊆ I, so that
∑

i∈I′ w(i) ≤ C and
∑

i∈I′ v(i) ≥ V .

Proof. Let vmax be the highest value of any item inI. Then,
for every item i ∈ I, create a service providersi with
f(si) = 0, c(si) = vmax − v(i) + 1 and defineD(si, t)
so that the service duration is always exactlyw(i) + 1 time
units (i.e.,D(si, t) = 0 if t < w(i) + 1 andD(si, t) = 1
if t ≥ w(i) + 1). Also, create a service providers0 with
f(s0) = 0, c(s0) = vmax + 1 and defineD(s0, t), so
that the service duration is always exactly1. Create work-
flow W = (T,E) with T = {t1, t2, . . . tN} and letE be
any total order onT . Now define a matching functionm,
so thatm(ti) = {si, s0} for all ti. Finally, create utility
function u with deadlined = N + C, maximum utility
umax = N(vmax + 1) − V + 1

2 and penaltyδ = umax. This
transformation is performed inO(N). It is easy to see that
a non-empty solution to this new PROVISIONING instance
exists if and only if the answer to the original KNAPSACK
instance is “yes”.

Heuristic Provisioning
In order to deal with the inherent difficulty of service pro-
visioning, we outline two heuristic strategies in this section.
The first (full flexible) performs a local search for a good pro-
visioning allocation using a novel heuristic utility estimation
function. This strategy considers a large solution space that
covers all feasible choices forα. However, because it may
potentially take a long time to converge to a good solution,
our second strategy (fast flexible) considers provisioning at
the higher level of service populations (rather than individ-
ual providers), thus reducing the space of candidate solu-
tions and allowing the search to converge faster.

Full Flexible Provisioning
Formulated as an optimisation problem, the aim of our flexi-
ble provisioning strategy is to find an optimal allocationα∗:

α∗ = arg max
α

(r̄(α)− c̄(α)) (2)

Algorithm 1 Local search to find a good allocationα∗.
1: α← CREATEINITIAL (P) ⊲ Initial solution
2: ũ← ESTIMATEUTILITY (α,P)
3: failed← 0
4: repeat ⊲ Main loop
5: failed← failed+ 1
6: T ′ ← T
7: while failed > 0 ∧ |T ′| > 0 do
8: ti ∈ T ′ ⊲ Random choice
9: T ′ ← T ′ \ ti

10: Nα,ti
← GENERATENEIGHBOURS(α, ti,P)

11: for all α′ ∈ Nα,ti
do

12: ũ′ ← ESTIMATEUTILITY (α′,P)
13: if ũ′ > ũ then
14: (α, ũ)← (α′, ũ′)
15: failed← 0
16: end if
17: end for
18: end while
19: until failed≥ maxFailed
20: return α

wherer̄(α) is theexpected rewardof following α andc̄(α)
theexpected cost. However, as we have shown, this problem
is inherently difficult. For this reason, we chose local search
as a commonly used heuristic technique to find good solu-
tions for intractable problems (Michalewicz & Fogel 2004).
The local search algorithm we use is given in Algorithm 1
and follows the common structure of such methods.

In more detail, the algorithm takes as input a PROVISION-
ING instanceP and starts with a random allocationα (line
1), which is then iteratively improved, based on an estimated
utility value (lines 4 – 19). During each iteration, the algo-
rithm picks a random taskti from the workflow (line 8),
and considers each of a set of neighbours ofα, which are
obtained by randomly applying small changes to the provi-
sioned service providers for taskti. During this process, the
algorithm keeps track of the best neighbour so far, which is
then used as the new allocationα for the following iteration
(line 14). If no better neighbour is found for taskti, the
algorithm continues to consider all other tasks in a random
order. It terminates when the main search loop is executed
maxFailed1 times without discovering a better solution,
at which point the currentα is returned (line 20).

Algorithm 1 depends on three functions: CREATEINI-
TIAL , GENERATENEIGHBOURS and ESTIMATEUTILITY .
Respectively, these create an initial solution, generate neigh-
bour allocations of a givenα and estimate its utility. We
describe the first two briefly below, followed by a more de-
tailed discussion of ESTIMATEUTILITY .

Initial Provisioning Allocation Creation: Initially, we
provision a random2 non-empty subset of the matching

1This accounts for the fact that we select random neighbours
and may miss potentially better solutions (we set this to10).

2Unless stated otherwise, a random choice is picked uniformly
at random from the set of all candidates.

providers for each taskti, and assign a random time to each
provider from the interval{0, 1, 2, . . . , tmax− 1}, where
tmax is the first time step at which the consumer receives
no more reward from the workflow (i.e.,u(tmax − 1) >
u(tmax) = 0). Finally, for each taskti, we find the low-
est invocation time of any provisioned provider forti, and
deduct it from all invocation times forti. This ensures that
there are no unnecessary delays before the first invocation.

Neighbour Generation: We generate neighbours of a par-
ticular provisioning allocationα by considering only a given
taskti (see Algorithm 1, line 10). To this end, we first pick
a random population (that has at least one provider provi-
sioned) and then a random provisioned membersx of this
population. Finally, the following transformations are ap-
plied separately toα, where possible, in order to generate
the set of neighbours (Nα,ti

):

• Providersx is removed fromα.

• Providersx is replaced by another suitable provider of a
different population (using the same time).

• A random unprovisioned providersy of the same popula-
tion assx is provisioned for the same time assx.

• The time forsx is changed (increased and decreased in
integer and random steps, yielding four new neighbours).

• A random unprovisioned providersz from any suitable
population is provisioned at a random time.

We again alter the provisioning times of all new neigh-
bours to ensure that there are no unnecessary delays.

Heuristic Utility Estimation: The objective of our utility
estimation function is to estimate the expected utility of an
allocation, as shown in Equation 2. To solve this exactly is
intractable, as the expected rewardr̄(α) requires the distri-
bution of the overall workflow completion time — a problem
that is known to be#P -complete (Hagstrom 1988). Hence,
our heuristic function uses the overall success probability of
the workflow (p), a probability density function for the es-
timated completion time if successful (dW (x)) and an esti-
mated cost (̃c) to estimate the utility (̃u) as follows (omitting
parameters for brevity):

ũ = p

∫ ∞

0

dW (x)u(x) dx − c̃ (3)

These parameters are calculated in two steps. First, we
determine a number oflocal parameters for each taskti, and
then, these are combined to givep, dW (x) and c̃. For the
local calculations, we let̂D(sx, t) = (1− f(sx)) ·D(sx, t)
be the probability that a service providersx has completed
its service successfully within no more thant time steps (not
conditional on overall success). Furthermore, we letSi(α, t)
be the set of provisioned service providers and associated
times that are invoked at mostt time steps after taskti was
started. Then,Ti(α, t) = 1 −∏

(x,y)∈Si(α,t)(1 − D̂(x, t −
y)) is the probability that taskti was completed successfully
within no more thant time steps. With this, we calculate the
following four local parameters for each taskti:

• Success Probability (pi): This is the probability thatti
will be completed successfully no later thantmax time
steps after the task was started:

pi = Ti(α, tmax) (4)

• Mean Completion Time (λi): This is the mean time until
the task is completed, conditional on the task being suc-
cessfully completed withintmax time steps3:

λi =
1

pi

tmax
∑

t=1

t · (Ti(α, t)− Ti(α, t− 1)) (5)

• Variance (vi): This is the variance of the completion
time, conditional on successful completion as above:

vi = −λ2
i +

1

pi

tmax
∑

t=1

t2 · (Ti(α, t)− Ti(α, t− 1)) (6)

• Expected Cost (ci): The total cost the consumer is ex-
pected to spend on this task:

ci =
∑

(x,y)∈α(ti)

(1− Ti(α, y)) · c(x) (7)

Next, these parameters are aggregated to obtain the over-
all estimated utility of the allocation. This process is similar
to the one described in (Stein, Jennings, & Payne 2006) with
the notable difference that task duration variance is taken
into account to give a more accurate estimate of the dura-
tion distribution. To this end, we first calculate the overall
success probability of the workflow (p) as the product of all
individual success probabilities (p =

∏

{i | ti∈T} pi).
The estimated cost for the workflow is the sum of the ex-

pected cost of all tasks, each multiplied by the probability
that it is reached (i.e., all its predecessors are successful):

c̃ =
∑

{i | ti∈T}

rici (8)

ri =

{

1 if ∀tj · ((tj 7→ ti) /∈ E)
∏

{j|(tj 7→ti)∈E} pj otherwise

Finally, to estimate the duration distribution of the work-
flow, we employ a technique commonly used in operations
research (Malcolmet al. 1959), and evaluate only the crit-
ical path of the workflow (i.e., the longest path when con-
sidering mean task durations). To obtain an estimated dis-
tribution for the duration of this path, we use the central
limit theorem and approximate it with a normal distribu-
tion that has a meanλW equal to the sum of all mean
task durations along the path and a variancevW equal to
the sum of the respective task variances. The correspond-
ing probability density function for this duration is then
dW (x) = (vW 2π)−1/2 e−(x−λW)2/(2vW).

To solve the integral in Equation 3, we letDW (x) be the
cumulative probability function4 of dW (x), we let Dd =

3In practice, we approximate this by evaluating successively
more finely grained time intervals to reach an estimate inλi ± 0.1.

4DW (x) =
R

x

−∞
dW (y) dy is a common function that can be

approximated numerically. In our work, we use the SSJ library
(http://www.iro.umontreal.ca/∼simardr/ssj).

DW (d) be the probability that the workflow will finish no
later than the deadlined andDl = DW (t0) − DW (d) the
probability that the workflow will finish after the deadline
but no later than timet0 = umax

δ + d (both conditional
on overall success), and we note the general form ofu(t)
(Equation 1) to write:

ũ = p · (Dd · umax + Dl · u(λW + (9)

+ (e
−(d−λW)2

2vW − e
−(t0−λW)2

2vW)

√
vW

Dl ·
√

2π
))− c̃

This concludes our discussion of thefull flexiblestrategy.
In the following, we describe a second strategy,fast flexible,
that includes some modifications to reduce the search space
and convergence time of our provisioning approach.

Fast Flexible Strategy
A potential drawback of the above strategy is the fact that
it explores a large state-space, which may take a long time
to converge to a good solution (there could be thousands of
service providers). To address this, it is possible to sim-
plify the search space. Hence, rather than considering ser-
vice providers individually, we associate three integer values
with each possible service populationPk for a given taskti:

• nk,i ∈ {0, 1, 2, . . . , |Pk|}: the number of providers to in-
voke in parallel (0 means none are invoked),

• wk,i ∈ {1, 2, 3, . . . , tmax}: the number of time steps be-
fore invoking more providers from the same population,

• bk,i ∈ {0, 1, 2, . . . , tmax}: the number of time steps before
the first set of service providers is invoked.

For example,nk,i = 7, wk,i = 15, bk,i = 5 means
that the consumer should provision 7 service providers of
populationPk, to be invoked 5 time steps after the relevant
task was started, and that the consumer will invoke another
7 providers after 15 more time steps, and so on, untiltmax
or until no more providers are available. The special case
nk,i = 0 denotes the case where no providers of population
Pk are provisioned for taskti.

The hill-climbing procedure for this search space is sim-
ilar to thefull flexiblestratgey. Again, we choose a random
initial provisioning allocation, normalisebk,i for all popu-
lations of a given task, so that there is at least onePk with
bk,i = 0, and then proceed to generate random neighbours
by changingnk,i, wk,i andbk,i of one randomly chosen pop-
ulation (again in both unit and randomly-sized steps).

To further reduce the running time of the algorithm, we
also exploit itsanytimeproperty and stop its main loop (lines
4–19 in Algorithm 1) afterg iterations. Because this may
result in terminating the algorithm before it is was able to
reach a good solution, we performh random restarts and
use the best solution5. Due to its aim of reducing the time of
finding a good provisioning allocation, we refer to this strat-
egy as thefast flexiblestrategy. In the following, we evaluate
both our strategies and compare their respective merits.

5We useg = 100 andh = 5, because these values lead to good
results in a variety of environments.

Empirical Evaluation
Because of the inherent intractability of our original problem
and the heuristic nature of our strategies, we decided to con-
duct an empirical evaluation of the work presented herein.
Our main aim is to investigate whether our strategies can
achieve significant improvements over the currently preva-
lent approaches that do not consider service uncertainty, and
to compare our two strategies to each other. In the follow-
ing, we first describe our experimental setup and then report
our results.

Experimental Setup
To test the performance of our strategies, we simulate a
service-oriented system with randomly generated service
providing agents and workflows. More specifically, we first
generate five randomservice typesthat broadly characterise
the services found in our system. We attach an average fail-
ure probability to each type by sampling from a beta distri-
bution with meanθ and variance0.01 (denotedB(θ, 0.01)),
whereθ represents the overall average failure probability in
the system and is the main variable we vary throughout our
experiments. We also attach an average cost, duration shape
and scale6 to each service type, which are drawn from the
continuous uniform distributionsUc(1, 10), Uc(1, 10) and
Uc(1, 5), respectively.

Next, we generate a random number of populations for
each service type (drawn from the discrete uniform distri-
bution Ud(3, 10)), and populate each with a random num-
ber of providers (drawn fromUd(1, 100)). Then, to intro-
duce further heterogeneity, we vary the performance char-
acteristics between the populations of each type, based on
the type-specific values determined above. To this end, we
generate the failure probability of a population by sampling
from B(x, 0.005), wherex is the type-specific average fail-
ure probability. Furthermore, we determine the cost of each
provider as the product2 · y · z, wherey is the type-specific
average cost andz is sampled fromB(0.5, 0.05). This is re-
peated for the duration parameters (resamplingz for each).

Finally, workflows always consist of 10 tasks, with prece-
dence constraints that are generated by randomly populating
an adjacency matrix until at least25% of all possible edges
are added, ignoring any that would create a cyclic graph. We
defineu(t) by settingd = 100, umax = 1000 andδ = 50.
The matching functionm(ti) is created by mapping each
task to the providers of a randomly chosen service type. This
process ensures that our strategies are tested across a large
spectrum of randomly generated environments, with con-
siderable heterogeneity across service types and within the
populations of a given type. Overall, this setup was chosen
to represent a plausible workflow scenario, but we have ex-
perimented with other environments and observed the same
trends as discussed in our results.

For each experimental run, we record the overall net profit
our strategies achieve by provisioning and then executing a
single workflow. To obtain statistical significance, we repeat
all experiments1000 times with new randomly generated

6These refer to the shape and scale of a discretised Gamma dis-
tribution, which is commonly used for service and queueing times.

−200

 0

 200

 400

 600

 800

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 N
et

 P
ro

fit

Failure Probability (θ)

naïve
full flexible

best fixed
fixed(5,25)

Figure 2: Performance of thefull flexiblestrategy.

agents and workflows, and carry out appropriate statistical
tests (we use two-sample t-tests and ANOVA at the99%
confidence level). To evaluate our strategies, we compare
them to the following three benchmark strategies:

• näıve: Thenäıvestrategy models current approaches that
do not consider service uncertainty, and so it provisions
only single providers for each task in the workflow (cho-
sen randomly from all matching providers).

• fixed(n,w): This strategy provisions multiple providers
for each task in the workflow, but does so in a fixed man-
ner without explicitly considering the service parameters.
Specifically, thefixed(n,w)strategy provisions sets ofn
random service providers in parallel, everyw time-steps
after a task becomes available.

• best fixed: This strategy represents an upper bound for
the quality achieved by anyfixed(n,w)strategy. We obtain
this by exhaustively testing all feasible parameters forn
andw in a given environment (for eachθ value) and then
retaining the result of the best performing strategy.

Full Flexible Profit Results
In our first set of experiments, we compared thefull flexible
strategy to our various benchmarks strategies. The resultsof
this are shown in Figure 2 (all results are given with 95%
confidence intervals). Here, thenäıve strategy performs
badly, clearly demonstrating the need for more flexible pro-
visioning approaches. In fact, even when providers never
fail (i.e., θ = 0.0), it only achieves an average net profit of
430.3±28.8 due to the uncertain and heterogeneous service
durations that frequently cause it to miss its deadline. As the
failure probability rises, performance degrades further,and
the strategy begins to make a net loss whenθ = 0.3. After
this, it stays constantly low as it rarely finishes any work-
flows successfully.

Figure 2 also showsfixed(5,25)as one of the overall best
performing strategies with constant redundancy and waiting
times. This strategy performs well in most environments
tested and achieves significantly better results than thenäıve
strategy up to a failure probability ofθ = 0.6. However,

 0

 200

 400

 600

 800

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 N
et

 P
ro

fit

Failure Probability (θ)

full flexible
fast flexible

Figure 3: Performance comparison offast/full strategies.

beyond that, it starts to make considerable losses because it
now fails to complete workflows successfully, but still com-
mits a high level of investment to each task (5 providers are
invoked in parallel every 25 time steps). For comparison,
we also showbest fixed, which achieves slightly better re-
sults in some cases and avoids making large losses whenθ
is high. Despite these promising results for the benchmark
strategies, it should be noted that both were chosen retro-
spectively from a large set of strategies (the potential choices
for n andw), most of which performed significantly worse.
In reality, finding these at run-time would be non-trivial and
therefore necessitates more flexible mechanisms.

Finally, the figure shows the results of thefull flexible
strategy. This follows a similar trend as thebest fixed, but
retains a positive net profit even when providers have an av-
erage failure probability of 0.9. More importantly, it signif-
icantly outperforms all other strategies at all failure proba-
bilities. Unlike the other strategies, it also avoids making
an average net loss in any environment (rather, it starts to ig-
nore infeasible workflows, e.g., whenθ = 1). Averaged over
all values forθ, full flexible achieves an average net profit
of 535.66 ± 8.29, while best fixedandfixed(5,25)achieve
362.49±7.74 and263.4±9.1, respectively. Thenäıvestrat-
egy only achieves48.33± 4.24.

Fast/Full Comparison Results
Given these results of thefull flexiblestrategy, we were inter-
ested in how it compares to thefast flexiblestrategy. Because
of the simplified search space, we expectedfast flexibleto
reach a solution faster, but possibly perform worse overall
(as less solutions are considered).

To investigate this, we recorded the time taken by each
strategy to reach a provisioning allocation during the exper-
iments outlined in the previous section (these were executed
on 2.2 GHz AMD Opterons with 1.98 GB RAM). Measured
over allθ, the average time offull flexible is 37.82 ± 0.51s,
the average time offast flexibleis only4.82±0.04s, thus re-
ducing the run-time by over 85%. Similarly, the respective
standard deviations are27.29 ± 0.36s (72% of the average)
and1.88 ± 0.02s (39% of the average), indicating that the

time of fast flexibleis also significantly less variable.
To compare the performance of both strategies, we re-

corded their average net profit in the same environments
as discussed in the preceding section. The resulting data
is shown in Figure 3, and it indicates that they are highly
similar. In fact, when averaging over all failure probabili-
ties, the average net profits are536.0 ± 8.23 (full flexible)
and539.0 ± 8.03 (fast flexible). Hence, their overall per-
formance is not significantly different. This trend continues
when comparing the results individually for all values for
θ > 0.0. The only exception is atθ = 0.0, when thefull
flexibleslightly outperforms thefast flexiblestrategy. This is
because the former is able to provision single providers ini-
tially, but can provision multiple providers at a later timeif
the single service takes unusually long. However, the differ-
ence is minor — atθ = 0.0, thefull flexiblestrategy achieves
an average net profit of924.5 ± 6.8 while the fast flexible
achieves890.4± 9.4.

Conclusions and Future Work
In this paper, we have extended the state of the art in ser-
vice provisioning by focussing on environments where many
heterogeneous and unreliable providers offer the same ser-
vice types at different levels of quality and for varying costs.
In particular, we have described a novel strategy (thefull
flexiblestrategy), which provisions multiple heterogeneous
providers for the tasks of a workflow, and we have given
practical modifications that provide faster solutions (thefast
flexiblestrategy) with typically equally good results.

As service heterogeneity is a central feature of most large
distributed systems, our work is pertinent for agent develop-
ers in a diverse range of areas. In particular, our strategies
are equally applicable to the workflows of scientists in Grid
environments, to the business processes of companies in e-
commerce, and to agents that manage and broker resources
in service-oriented systems.

Furthermore, the system model described in this paper
is based loosely on current service-oriented frameworks,
which are becoming popular for building distributed sys-
tems (such as Web or Grid services). Despite this, we have
given an abstract model that does not depend on a partic-
ular implementation and so can be applied in a variety of
settings and frameworks. In addition, we have employed
commonly used stochastic measures to describe services,
which can, in practice, be inferred through existing machine
learning techniques or trust frameworks, and naturally al-
low some uncertainty about the performance characteristics
of services. Hence, our work is applicable in realistic de-
ployment scenarios, where complete performance informa-
tion about providers is not necessarily available7.

In future work, we will consider the adaptive provision-
ing of services as more information becomes available dur-
ing workflow execution (e.g., to provision more services as
the agent starts to fall behind schedule). Furthermore, we
are interested in the use of advance negotiation mechanisms,

7In related work, we showed that our approach achieves good
results even if the available information is inaccurate (Stein, Payne,
& Jennings 2007).

where services are not invoked on demand, but rather in the
context of pre-negotiated service level agreements.

Acknowledgements
This work was funded by the Engineering and Physical Sci-
ences Research Council (EPSRC) and a BAE Systems stu-
dentship.

References
Collins, J.; Bilot, C.; Gini, M.; and Mobasher, B. 2001.
Decision processes in agent-based automated contracting.
IEEE Internet Computing5(2):61–72.
Hagstrom, J. N. 1988. Computational complexity of PERT
problems.Networks18:139–147.
Huhns, M. N., and Singh, M. P. 2005. Service-oriented
computing: Key concepts and principles.IEEE Internet
Computing9(1):75–81.
Jennings, N. R. 2001. An agent-based approach for build-
ing complex software systems.Communications of the
ACM 44(4):35–41.
Malcolm, D. G.; Roseboom, J. H.; Clark, C. E.; and Fazar,
W. 1959. Application of a technique for research and
development program evaluation.Operations Research
7(5):646–669.
Michalewicz, Z., and Fogel, D. B. 2004.How to solve it:
Modern Heuristics. Springer, 2nd edition.
Stein, S.; Jennings, N. R.; and Payne, T. R. 2006. Flexible
provisioning of service workflows. InProc. 17th European
Conference on Artificial Intelligence (ECAI06), Riva del
Garda, Italy, 295–299. IOS Press.
Stein, S.; Payne, T. R.; and Jennings, N. R. 2007. An effec-
tive strategy for the flexible provisioning of service work-
flows. In Proc. Workshop on Service-Oriented Comput-
ing: Agents, Semantics, and Engineering (SOCASE 2007),
Honolulu, Hawai’i, USA, volume 4504 ofLecture Notes in
Computer Science, 16–30. Springer.
Teacy, W. T. L.; Patel, J.; Jennings, N. R.; and Luck, M.
2006. TRAVOS: Trust and reputation in the context of inac-
curate information sources.Journal of Autonomous Agents
and Multi-Agent Systems12(2):183–198.
Zeng, L.; Benatallah, B.; Dumas, M.; Kalagnanam, J.; and
Sheng, Q. Z. 2003. Quality driven web services compo-
sition. In Proc. 12th International World Wide Web Con-
ference (WWW’03), Budapest, Hungary, 411–421. ACM
Press.

