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Abstract— The attainable capacity and integrity of a state-of-the-art
broadband multi-carrier communication system is highly sensitive to the
accuracy of the information available concerning the channel conditions
encountered. The majority of existing advanced channel estimation
schemes assume knowledge of the channel’s Power Delay Profile (PDP)
in order to estimate the corresponding instanteneous Channel Impulse
Response (CIR). It is evident however that in realistic mobile channels,
where at least one of the communicating terminals is in motion, the power
delay profile will also be time-variant and thus may not be known a priori
at the receiver. In this paper we propose a decision directedchannel
estimation scheme employing the so-called Projection Approximation
Subspace Tracking (PAST) algorithm. The PAST algorithm is utilised for
the sake of achieving low-complexity recursive tracking ofthe channel’s
PDP. The achievable perormance of the proposed method is documented
in the context of an OFDM system communicating in realistic channel
conditions characterized by a time-variant fractionally-spaced PDP.

I. I NTRODUCTION

The ever-increasing demand for high data-rates in wirelessnet-
works requires the efficient utilisation of the limited bandwidth avail-
able, while supporting a high grade of mobility in diverse propagation
environments. On the other hand, Orthogonal Frequency Devision
Multiplexing (OFDM) [1] is capable of satisfying these requirements.
This is a benefit of its ability to cope with highly time-variant
wireless channel characteristics. However, as pointed outin [2], the
capacity and the achievable integrity of communication systems is
highly dependent on the system’s knowledge concerning the channel
conditions encountered. Thus, the provision of an accurateand robust
channel estimation strategy is a crucial factor in achieving a high
performance.

The family of well-documenteddecision directedchannel estima-
tion (DDCE) methods [1], [3]–[5] provides a suitable solution for the
problem of channel estimation in OFDM-based systems. The major
benefit of the DDCE scheme is that in contrast to purelypilot assisted
channel estimation methods [6], [7] both the pilot symbols as well
as all the information symbols are utilised for channel estimation
[1]. The simple philosophy of this method is that in the absence
of transmission errors we can benefit from the availability of 100%
pilot information by using the detected subcarrier symbolsas ana
posteriori reference signal. The employment of this method allows
us to reduce the number of pilot symbols required.

The majority of the aforementioned channel estimation methods
rely on the a priori knowlege of the channel statistics commonly
characterized by the channel’s Power Delay Profile (PDP) forthe sake
of estimating the instantenious Channel Impulse Response and the
corresponding frequency-domain Channel Transfer Function (CTF).
It is evident however that in realistic wireless mobile channels,
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where at least one of the communicating terminals is in motion, the
channel’s PDP will also become time-variant and thus may notbe a
priori known at the receiver. In this paper we propose a decision-
directed channel estimation method, which employs the so-called
Projection Approximation Subspace Tracking (PAST) algorithm [8]
for the sake of recursive tracking of the channel’s PDP and subsequent
estimation of the instantaneous CTF.

II. SYSTEM MODEL

The discrete frequency-domain model of the OFDM system can
be described as in [9]

y[n, k] = H[n, k]x[n, k] + w[n, k], (1)

for k = 0, . . . , K − 1 and all n, where y[n, k], x[n, k] and w[n, k]
are the received symbol, the transmitted symbol and the Gaussian
noise sample respectively, corresponding to thekth subcarrier of
the nth OFDM block. Furthermore,H[n, k] represents the complex-
valued Channel Transfer Function (CTF) coefficient associated with
the kth subcarrier and time instancen. In the case of anM-
QAM modulated OFDM system,x[n, k] corresponds to theM-QAM
symbol accommodated by thekth subcarrier.

As it was pointed out in [5], in OFDM systems using a sufficiently
long cyclic prefix and adequate synchronisation, the subcarrier-related
CTF can be expressed as

H[n, k] , H(nT, k∆ f ) = C(k∆ f )
L

∑
l=1

αl [n]Wkτl/Ts

K , (2)

whereα[n] is the fractionally-spaced CIR andC( f ) is an aggregate
transfer function of the transmitter-receiver pulse-shaping filter pair.
Note that in realistic channel conditions associated with non-sample-
spaced time-variant path-delaysτl(n) the fractionally-spaced CIR
(FS-CIR) αl [n] , αl(nT) will be constituted by a low number of
L non-zero statistically independent taps associated with distinctive
propagation paths. The corresponding PDPλl [n] constituted by the
Mean Square (MS) valuesE

{

|αl [n]|2
}

may be identified as the
vector of the eigenvalues of the channel’s covariance matrix

CH = E

{

H[n]HH[n]
}

= W [n]diag (λl [n]) WH[n], (3)

whereW is a (K × L)-dimensional matrix having the eigenvectors
of the channel covariance matrixCH [n] as its columns. The columns
of the transformation matrixW span the so-calledsignal subspace
of the random vector process associated with the subcarrier-related
CTF H[n]. Furthermore, Equation (2) can be expressed in a matrix
form as

H[n] = W [n]α[n]. (4)

III. PARAMETRIC FS-CIR ESTIMATION

A. Projection Approximation Subspace Tracking

Let H[n] ∈ CK be the vector of the subcarrier-related CTF
coefficients associated with the channel model of Equation (1). As
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described in Section II, the CIR associated with the CTF coefficient
vector H[n] is constituted by a relatively low number ofL ≪ K
statistically-independent Rayleigh fading paths. The corresponding
CIR components are related to the CTF coefficientsH[n, k] by means
of Equation (2). The motivation for employing the so-calledsubspace
technique [10] here is that usually we haveL ≪ K and thus it is
more efficient to estimate a low number of CIR-related taps inthe
low-dimensional signal subspace than estimating all theK FD-CTF
coefficients.

Let λl and ul be the eigenvalues and the corresponding eigenvec-
tors of the CTF’s covariance matrixCH of Equation (3). Then, we
haveCH = UΣUH, whereΣ = diag (λl) and U = [u1 · · · uK].

The eigenvalues aligned in a descending order may be expressed
as

λ1 ≥ · · · ≥ λL > λL+1 = · · · = λK = σ2
w, (5)

where the firstL dominant eigenvaluesλ1, · · · , λL in conjunction
with the L corresponding eigenvectorsu1, · · · , uL may be termed
as the signal eigenvalues and eigenvectors, respectively [8]. The
remaining eigenvaluesλL+1, · · · , λK and eigenvectorsuL+1, · · · , uK

are termed thenoiseeigenvalues and eigenvectors. The resultant sets
of signal andnoiseeigenvectors, which are column vectors, span the
mutually orthogonalsignal and noise subspacesUS and UN , such
that we have

US = [u1, · · · , uL] and UN = [uL+1, · · · , uK ]. (6)

The corresponding time-domain-relatedL-tap estimate of the FS-CIR
vector α[n] may be obtained as follows

α̂ = UH

S[n]H̃[n]. (7)

Furthermore, the reduced-noise estimate of the CTF vectorH[n] may
reconstructed using

Ĥ[n] = US[n]α̂[n]. (8)

For the sake of evaluating and tracking the potentially time-variant
signal subspaceUS[n] we employ subspace tracking method de-
veloped by Yang [8]. More specifically, we consider the following
real-valued scalar objective function having the matrix argument of
W ∈ CK×L

J(W ) = E

{

‖H − WWHH‖2
}

= tr (CH) − 2 tr

(

WHCHW
)

+ tr

(

WHCHW · WHW
)

(9)

As demonstrated by Yang in [8], the objective functionJ(W) of
Equation (9) exhibits the following important properties

1) W is a stationary point ofJ(W) if and only if we have
W = ULQ, where UL ∈ CK×L contains anyL distinct
eigenvectors ofCH and Q ∈ CL×L is an arbitrary unitary
matrix. Furthermore, at each stationary point,J(W) equals the
sum of these particular eigenvalues, whose eigenvectors are not
involved in UL [8, Theorem 1].

2) All stationary points ofJ(W) are local saddle points except,
whenUL contains theL dominant eigenvectors ofCH . In this
case,J(W ) attains the global minimum [8, Theorem 2].

3) The global convergence ofW is guaranteed by using iterative
minimization of J(W) and the columns of the resultant value
of W will span the signal subspace ofCH .

4) The use of an iterative algorithm to minimizeJ(W ) will always
converge to an orthonormal basis of the signal subspace ofCH

without invoking any orthonormalization operations during the
iterations.

5) The global minimum ofJ(W), W does not necessarily contain
the signal eigenvectors, but an arbitrary orthogonal basisof
the signal subspace ofCH as indicated by the unitary matrix
Q introduced in Property 1. In other words, we haveW =
argmin J(W) if and only if W = USQ, where Q is an
arbitrary unitary matrix.

6) For the simple scalar case ofL = 1, the solution minimizing
J(W) is given by the most dominant normalized eigenvector
of CH .

Subsequently, Yang [8] proposes an iterative RLS algorithmfor
tracking of the signal subspace of the channel’s covariancematrix
CH . Specifically, upon replacing the expectation value in Equation
(9) by the exponentially weighted sum of the RLS algorithm, we
arrive at the following new objective function

J(W [n]) =
n

∑
i=1

ηn−i‖H[i]− W [n]WH[n]H[i]‖2, (10)

where η ∈ (0, 1) is the so-calledforgetting factor, which accounts
for possible deviations of the actual channel statistics encountered
from the WSS assumption. Observe that the sole difference between
the objective functions of Equations (9) and (10) is the introduction
of the time-variant exponentially weighted sample covariance matrix
[8], which may be expressed as

CH [n] =
n

∑
m=1

ηn−mH[m]HH[m] = ηCH [n − 1] + H[n]HH[n]

(11)

instead of the time-invariant matrixCH = E

{

HHH
}

of Equation
(3).

The PAST algorithm may be derived by approximating the ex-
pressionWH[n]H[m] in Equation (10), which may be interpreted
as a projection of the vectorH[m] onto the column space of the
matrix W [n], by the readily availablea posteriori vector α[m] =
WH[m]H[m]. The resultant modified cost function may be formulated
as

J′(W [n]) =
n

∑
m=1

ηn−m‖H[m]− W [n]α[m]‖2. (12)

As is argued in [8], for stationary or slowly varying signals, the
aforementioned projection approximation, hence the name PAST,
does not substantially change the error surface associatedwith the
corresponding cost function of Equation (12) and thereforedoes
not significantly affect the convergence properties of the derived
algorithm.

Similarly to other RLS estimation schemes [11], [12], the cost
function J′(W [n]) is minimized if

W = CHα[n]C−1
αα [n], (13)

where we have

CHα[n] =
n

∑
i=1

ηn−iH[i]αH[i] = ηCHα[n − 1] + H[n]αH[n] (14)

and

Cαα[n] =
n

∑
i=1

ηn−i
α[i]αH[i] = ηCαα[n − 1] + α[n]αH[n]. (15)

Following the RLS approach [8], a low-complexity solution of the
computational problem associated with minimizing the costfunction
J′(W [n]) of Equation (12) may be obtained using recursive updates
of the matrixW [n]. More specifically, we have

W [n] = W [n − 1] + e[n]kH[n], (16)
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Algorithm 1 Deflation PAST

H1[n] = H[n] (21a)

for l = 1, 2, . . . , L do

αl [n] = wH

l [n − 1]H l [n] (21b)

λl [n] = βλl [n − 1] + |αl [n]|2 (21c)

el [n] = H l [n]− wl [n − 1]αl [n] (21d)

wl [n] = wl [n − 1] + el [n](α∗l [n]/λl[n]) (21e)

H l+1[n] = H l [n]− wl [n]αl[n] (21f)

end for

wheree[n] is the estimation error vector, which may be recursively
obtained as

e[n] = H[n]− W [n − 1]α[n − 1], (17)

while

k[n] =
P[n − 1]α[n]

η + α
H[n]P[n − 1]α[n]

(18)

denotes the RLS gain vector. Furthermore, the matrixP[n] is the
inverse of the CIR-related taps’(L × L)-dimensional covariance
matrix Cαα, which can be recursively calculated as follows

P[n] =
1

η
Tri{(I − k[n]αH[n])P[n − 1]}, (19)

where the operatorTri{·} indicates that only the upper triangular
part of P[n] is calculated and its Hermitian conjugate version is
copied to the lower triangular part [8].

B. Deflation PAST

In this work, however, we aim for maintaining the lowest possible
complexity hence we are particularly interested in thedeflation-based
version of the PAST algorithm derived in [8], which is referred to
as the PASTD algorithm. The simple philosophy of thedeflation
method is the sequential estimation of the principal components
of the CTF covariance matrixCH [13]. Consequently, we first
update the most dominant eigenvectorw1[n] by applying the PAST
method of Section III-A in conjunction withL = 1. Subsequently,
the projection of the current sample vectorH[n] onto the updated
eigenvectorw1[n] is subtracted from itself, resulting in a modified
(deflated) version of the CTF vector in the following formH2[n] =
H[n] − w1[n]wH

1 [n]H[n]. The second most dominant eigenvector
w2[n] has now become the most dominant one and therefore may be
updated similarly tow1[n]. By repeatedly applying this procedure,
all the desired eigencomponents may be estimated. The resultant
PASTD method is summarized in Algorithm 1.

A particularly important property of the PASTD method of Algo-
rithm 1 is that as opposed to the PAST method of Section III-A,it
enables the explicit tracking of the time-variant eigencomponents of
the channel covariance matrixCH [n], namely the eigenvectorswl [n]
as well as of the corresponding eigenvaluesλl [n] according to

wl [n] = wl [n − 1] +
α∗l [n]

λl [n]
(H l [n]− wl [n − 1]αl [n]), (20)

where we haveαl [n] = wH

l [n − 1]H[n] and λl [n] = βλl [n − 1] +
|αl [n]|2.

Ȟ[n]

y[n]

ŝ[n]

ŝ[n]

y[n]

CTF Ĥ[n] CIR CIR
PredictorEstimatorEstimator

α̂[n] α̌[n+1] Ȟ[n+1]

DecoderDetector

W̃H[n]

s̃[n] ŝ[n]

Decision Directed Channel Estimator

Fig. 1. Schematics of a generic receiver employing DecisionDirected
Channel Estimator constituted by ana posteriori decision-directed CTF
Estimator, followed by a CIR Estimator and ana priori CIR predictor.

C. PASTD -Aided FS-CIR Estimation

In this section we would like to utilize the PASTD method detailed
in Section III-B in the context of the decision-directed channel
estimation scheme depicted in Figure 1.

More specifically, our channel estimator is constituted by what we
refer to as ana posteriori decision-directed CTF estimator followed
by ana posterioriFS-CIR estimator and ana priori CIR predictor [1].
We consider a PASTD -aideda posteriori FS-CIR estimator, which
corresponds to the CIR Estimator module of Figure 1. As seen in
Figure 1, the task of the CIR estimator is to estimate the FS-CIR
taps of Equation (2).
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Fig. 2. MSE versus SNR performance exhibited by the 4QAM-OFDM system
employing thePASTD CIR estimator of Algorithm 1 and trackingL = 2, 4, 6
and 8 CIR taps. The value of the PASTD forgetting factor wasη = 0.95.
The Doppler frequency wasfD = 0.005. Additional system parameters are
summarized in Table I.

The achievable performance of the subspace tracking methodof
Section III-B is characterized in Figures 2, 3 and 4, where wedefine
the Mean Square Error (MSE) performance criterion as follows

MSE = E

{

∑
l

|el [n]|2
}

, (22)

where el is the FD-CTF tracking error defined by Equation 17. In
our simulations we consider an OFDM system havingK = 128
orthogonal QPSK-modulated subcarriers. The system characteristics
are outlined in Table I. We employ an OFDM-frame-variant channel
model having a time-variant 8-tap PDP characterized by the COST-
207 BU channel model [14]. Additionally, each individual propa-
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Fig. 3. MSE versus SNR performance exhibited by the 4QAM-OFDM
system employing thePASTD method of Algorithm 1. The values of the
PASTD forgetting factor wwereη = 0.9, 0.95 and0.9. The Doppler frequency
was fD = 0.005. Additional system parameters are summarized in Table I.

gation path undergoes fast Rayleigh fading with a corresponding
OFDM-symbol-normalized Doppler frequency offD = 0.005. The
resultant channel can be characterised as a mutli-path Rayleigh-
fading channel with slowly-varying PDP, where the relativedelaysτl

associated with different PDP taps vary with time at a rate determined
by the drift rate parameterντ

Firstly, Figure 2 characterizes the achievable FD-CTF MSE perfor-
mance of the PASTD method of Algorithm 1 for different ranksL of
the estimated subspace, while assuming a constant value ofη = 0.95
for the forgetting factor. From Figure 2, we may conclude that a high
CIR estimator performance may be achieved when assuming that
the estimated CTF signal subspace has a rank ofL = 4, regardless
of the actual number of paths constituting the multi-path channel
encountered.

Secondly, Figure 3 characterizes the achievable MSE performance
of the PASTD method of Algorithm 1 for different values of the
forgetting factorη, while assuming a constant rank ofL = 4 for
the estimated subspace. As may be concluded from Figure 3, the
optimum value of the forgetting factorη is largely dependent on the
SNR as well as on the Doppler frequency encountered. Nevertheless,
the compromise value ofη = 0.95 appears to constitute a relatively
good choice in the practical ranges of both SNR values and Doppler
frequencies.

Finally, Figure 4 characterizes the achievable MSE performance
of the PASTD method of Section III-B for different values of the
OFDM-symbol-normalized PDP tap drift rateντ = T v

c , whereT is
the OFDM symbol’s duration, whilev and c denote the speeds of
the communicating terminal and light, respectively. Observe that the
specific values of the parameterντ assumed in Figure 4 substantially
exceed the maximum value considered in the base-line scenario
outlined in Table I. Consequently, we may conclude that the CIR
tracking method of Algorithm 1 exhibits an adequate performance
over the entire range of practical channel conditions.

IV. PASTD A IDED DDCE

The detailed schematic of the channel estimation scheme proposed
is depicted in Figure 5. Our channel estimator is constituted by a bank
of the per-subcarriera posterioriMMSE CTF estimators [1], followed
by the PASTD -aided CIR estimator of Algorithm 1 as well as by
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Fig. 4. MSE versus SNR performance exhibited by the 4QAM-OFDM system
employing thePASTD method of Algorithm 1, while encountering different
values of the PDP tap drift rateντ = 3 · 10−5, 10−4 and 3 · 10−4 as well
as the Doppler frequency offD = 0.005. Additional system parameters are
summarized in Table I.
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CTF
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H̃[n, 0]y[n, 0]

ŝ[n, 1]

y[n,K−1]

ŝ[n, K]

H̃[n,K−1]
W [n]

qH

L
[n]

qH

1
[n]

Ȟ[n+1,1]

Ȟ[n+1,K]

α̂1[n] α̌1[n+1]

α̌L[n+1]α̂L[n]

P
A

S
T

D

W
[n

]

Fig. 5. Detailed structure of the 2D channel estimator corresponding to the
DDCE module of Figure 1. The channel estimator comprises a PAST module,
which performs recursive tracking of the CIR. The resultantCIR related taps
α̂l [n] are filtered by the adaptive RLS-based prediction filter resulting in the
a priori estimates of the CIR-related tapsα̌l [n + 1]. Finally, the a priori
estimates of the subcarrier-related coefficientsH[n + 1, k] are obtained by
applying the transform matrixW [n] provided by the PASTD module.

the a priori RLS CIR predictor [15]. The task of the CTF estimator
seen in Figure 5 is to estimate the subcarrier-related CTF coefficients
H[n, k] of Equation (2). The resultant estimated subcarrier-related
samplesH̃[n, k], which serve as an observation vector of the FD-CTF
coefficientsH[n, k] are fed to the PASTD subspace-based tracking
module, which performs recursive tracking of the channel’scovari-
ance matrixCH signal subspace and the associated CIR-related taps.
The output of the PASTD module is constituted by the instantaneous

TABLE I
SYSTEM PARAMETERS.

Parameter Value

Carrier frequencyfc 2.5 GHz
Channel bandwidthB 8 MHz
Number of carriersK 128
FFT frame durationTs 16 µs
OFDM symbol durationT 20 µs (4 µs of cyclic prefix)
Max. delay spreadτmax 4 µs
Max. terminal speedv 130 km/h
Norm. Max. Doppler spreadfD 0.006 = T · 300 Hz
Norm. Max. PDP tap driftντ 2.4 · 10−6 µs = T · 0.12 µs/s
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CIR-related tap estimateŝαl [n] and the corresponding estimate of
the transformation matrixW [n] of Equation (16). The CIR-related
estimate vector̂αl [n] is then fed into the low-rank time-domain CIR-
related tap predictor of Figure 5 for the sake of producing ana priori
estimateα̌l [n + 1], l = 1, · · · , L of the next CIR-related tap-vector
on a tap-by-tap basis [1]. Finally, the predicted CIR is converted to
the subcarrier-related CTF with the aid of the transformation matrix
W [n] provided by the PASTD module of Figure 5. The resultant
FD-CTF is employed by the receiver for the sake of detecting and
decoding of the next OFDM symbol. Note that this principle requires
the transmission of a frequency-domain pilot-based channel sounding
sequence, such as for example a pilot-assisted OFDM symbol,during
the initialisation stage.

A. Performance Results and Conclusions
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Fig. 6. (a) MSE and (b) BER versus SNR exhibited by the 4QAM-OFDM
system employing thePASTD -aided DDCE. The value of the parameters
L = 4, η = 0.95 and β = 0.9 has been assumed. The Doppler frequency was
fD = 0.003. Additional system parameters are summarized in Table I.

The achievable performance of the PASTD aided DDCE scheme
proposed is characterized in Figure 6. In our simulations weconsid-
ered an OFDM system havingK = 128 QPSK-modulated orthogonal

subcarriers. The system characteristics are outlined in Table I. We
employ an OFDM-frame-variant channel model associated with a
time-variant 7-tap PDP characterized by the COST-207 BU channel
model [14]. Additionally, each individual propagation path undergoes
fast Rayleigh fading having an OFDM-symbol-normalized Doppler
frequency of fD = 0.003. We assumed the valuesL = 4 and
η = 0.95 for the PASTD module-related subspace rank and forgetting
factor parameters respectively, as well as the value ofβ = 0.9 for the
RLS CIR-tap predictor-related forgetting factor. Additional system
parameters are summarized in Table I.

Figure 6(a) portrays the achievable MSE performance of the
PASTD aided DDCE for the pilot overhead ratiosε = 0.03, 0.1, 0.3
and 1.0, where ε = 0.03 and ε = 1.0 correspond to having3%
and 100% pilots, respectively. Furthermore, Figure 6(b) portrays the
corresponding BER performance of the rate1

2 turbo-coded QPSK-
modulated OFDM system.

In conclusion, in this paper we have discribed a PAST-aided DDCE
scheme. We have documented the achievable performance of the
PAST-DDCE method proposed in the context of an OFDM system
communicating in realistic channel conditions characterized by a
time-variant fractionally-spaced PDP. We have demonstrated, that the
channel estimation method proposed exhibits good performance over
the entire range of relevant channel conditions, while using as little
as 10% of pilot overhead.
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