Exact BER Analysis of OFDM Systems
Communicating over Frequency-Selective Fading
Channels Subjected to Carrier Frequency Offset

Xiang Liu and Lajos Hanzo

School of Electronics and Computer Science, University of Southampton, SO17 1BJ, UK
Ih@ecs.soton.ac.uk, www-mobile.ecs.soton.ac.uk

Abstract— Orthogonal Frequency Division Multiplexing
(OFDM) has been employed in numerous wireless standards.
However, the performance of OFDM systems is degraded by both
the Carrier Frequency Offset (CFO) and the Phase Estimation
Error (PER). Hence new exact closed-form expressions are
derived for calculating the average BER of OFDM systems in
the presence of both CFO and PER in the context of frequency-
selective Nakagami-m fading channels. Our simulation results
verify the accuracy of our exact BER analysis. By contrast,
the Gaussian approximation slightly over-estimates the average
BER, especially when the normalized CFO is small, the number
of OFDM subcarriers is low and when the fading is less severe.

I. INTRODUCTION

In recent years Orthogonal Frequency Division Multiplexing
(OFDM) has attracted intensive research efforts and, as a
result, has found its way into numerous wireless standards [1].
However, OFDM is sensitive to the effects of Carrier Fre-
quency Offset (CFO), which destroys the orthogonality of the
OFDM subcarriers and inflicts Inter-Carrier Interference (ICI).
The performance degradation imposed by the CFO has been
extensively studied in the open literature [2]-[14].

As a benefit of the associated mathematical simplicity, the
Signal-to-Interference-plus-Noise Ratio (SINR) or Signal-to-
Noise Ratio (SNR) have been the predominantly quantified
performance metrics over the past decade [2]-[7]. Neverthe-
less, the most important performance evaluation metrics are
the Bit Error Ratio (BER) [8]-[10] and the Symbol Error Ratio
(SER) [7], [11], which characterize the associated performance
degradation more accurately.

One of the difficulties in the analysis of the performance
degradation caused by CFO in OFDM systems is the statistical
characterization of the ICI. Typically the ICI is assumed to be
approximately Gaussian distributed [7]-[10], [12], which is
based on the Central Limit Theorem (CLT) [15]. However, the
accuracy of the Gaussian Approximation (GA) is limited [8],
especially when the SNR encountered is high. This is because
at high SNRs the effects of ICI become more dominant,
particularly at low Doppler frequencies, when the ICI is
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typically constituted by a low number of immediately adjacent
subcarriers. In this scenario the CLT is not satisfied. The
exact analysis of the ICI distribution was provided based on
either multiple integrals [10] or on the Characteristic Function
(CF) [11]-13].

At the time of writing the exact analytical BER/SER degra-
dation caused by CFO in OFDM systems has been quantified
in the context of Additive White Gaussian Noise (AWGN)
channels [11]-[13], Rayleigh fading channels [10], [12], [14]
and Ricean fading channels [10]. Moreover, to the best of the
authors’ knowledge, there are no studies in the open literature
on the exact analytical BER performance of OFDM systems
in the context of communicating over Nakagami-m fading
channels in the presence of CFO. Against this background,
the novel contribution of this paper is that we provide a
closed-form expression, rather than a sum of the infinite series
in [11], [12], for the average BER calculation of OFDM
systems in the presence of both CFO and Phase Estimation
Error (PER) in the context of frequency-selective Nakagami-m
fading channels.

This paper is organized as follows. In Section II an OFDM
system using the BPSK modulation communicating over
frequency-selective Nakagami-m channels in the presence
of CFO is presented. Then, in Section III its exact BER
performance is investigated based on the CF approach. Our
numerical results are presented in Section IV and finally, our
conclusions are provided in Section V.

II. SYSTEM MODEL

We consider an OFDM system having /N subcarriers using
the BPSK modulation for communicating over frequency-
selective Nakagami-m slow-fading channels.

Let us assume that the data symbols {A;}7 ' transmitted
over the N subcarriers are mutually independent and selected
from the constellation set according to a uniform probabil-
ity distribution. The transmitted equivalent baseband OFDM
signal 5(¢) can be expressed in the time-domain as [14]:
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where T, and T, are the duration of the cyclic prefix and the
useful data signal segment, respectively, Ay is the informa-
tion symbol modulating the kth subcarrier in the Frequency-
Domain (FD) and N is the number of OFDM subcarriers.

We consider a time-invariant frequency-selective fading
channel. Typically the length T}, of the cyclic prefix is designed
so that it becomes longer than the maximum propagation delay.
Hence the Inter-Symbol Interference (ISI) between consecutive
OFDM symbols is considered to be negligible in our analysis.
Then the received signal 7(¢) encountered in the presence of
CFO can be expressed as:
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where fa denotes the carrier frequency offset between the
transmitter and the receiver, and 7(¢) denotes the zero-mean
complex-valued AWGN. More explicitly, hy, = hpel% rep-
resents the complex-valued Frequency-Domain (FD) channel
transfer function (FDCHTF) of the kth subcarrier, which are
considered to be mutually independent. In practice this as-
sumption becomes valid, when the channel is quite dispersive
and hence the CIR becomes significantly longer than the bit
duration at the input of the OFDM modem. The FDCHTF
hy is characterized with the aid of the parameters {myg, Q. },
where my, and ), are the Nakagami-m fading parameter and
the average power of the kth subcarrier, respectively! [16].
The associated Probability Density Function (PDF) and Char-
acteristic Function (CF) of the FDCHTF hj, were given in [17],
while the fading phase 6, is typically assumed to be uniformly
distributed over the interval of [0, 27) [18].
The received signal is sampled within an OFDM symbol at

the time instants:

nT,
N
Then the N Time-Domain (TD) samples {b, }"~;' within an
OFDM symbol are given by:

n=0,1,..,N—1. 3)

tn, =

N-1

~ ~ 1 mne ~  omkn~ -

by, = T(tn) = \/—7N€]2 E AkGJQJ\]; hy, + Mns 4)
k=0

where € = faT, is the normalized CFO and 7,, = 7(t,,) is
the noise sample at the nth sampling instant within an OFDM
symbol.

Upon performing Fast Fourier Transform (FFT) based
demodulation [1], the Frequency-Domain (FD) symbols
{Bi/} o —4 can be expressed as:

Z Tae K (5)

'When the time-domain fading is Nakagami-m distributed, it is not
strictly true that the frequency-domain fading is also Nakagami-m distributed.
Nevertheless, this is a reasonable approximation, as it was argued in [16] and
hence it will be exploited in this treatise.

where the frequency-offset-dependent ~ complex-valued
FDCHTF-contribution dj, [9]-[11] induced by the CFO of
the kth subcarrier is given by:

sin[r(k + €)]
N sin[ % (k + €)]

If the receiver is capable of compensating for the aggregate
phase-shift (1o + 05/) of the k'th subcarrier experiencing a
phase estimation error of ¢/, the decision statistics Zj/ may
be written as:

dy, = dpe?Vr = eIm(A= ) (k+e) (6)
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where the signal component ka, the ICI component INE;C
imposed on the kth subcarrier and the noise component Ay
are given by:
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If we assume furthermore that the noise samples 7,, n =
0,1,...,N — 1 are independently and identically distributed
zero-mean complex Gaussian variables having a variance of
20 Ay may be shown to be a zero-mean complex -valued
Gauss1an random variable having a variance of 20

ITIT. BER ANALYSIS
A. Exact BER Analysis

If BPSK modulation is used, we may judiciously assume
that the data symbol Ay transmitted over the kth subcarrier
ob?s the symmetrlc Bernoulli distribution [15], i.e. we have

Ay = :I:l} . Since the CF of R{h} is known when

ﬁk isa complex-valued Nakagami-m distributed variable [19],
the conditional CF @y 7, 7, (w) of the real ICI component
imposed by the kth subcarrler may be expressed as [19]:

(mk;l;—

where 1y («; 8;2) is the confluent hypergeometric func-
tion [20]. It becomes explicit from Equation 11 that
OSSR (w) is independent of the transmitted symbol Ay.
Hence the CF ®g, (G} (w) of the real ICI component imposed
by the kth subcarrier may be formulated as:
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It may be readily shown that the ICI contributions I, k'k»
k =0,1,...,N —1 and k # k' imposed by the different
subcarriers are mutually independent. Upon defining the total
interference plus noise & experienced by the k’th subcarrier
as:
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it transpires that both the PDF fy & }( x) and the CF
(I)%{Eﬁ }( w) of R{&} are even functions. The CF @mgk/}(w)
may be expressed as:
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Upon performing the inverse Fourier transform on
q)%{gk/}(w), we arrive at the PDF f%{gk/} (x) of R{& }. Then,
upon integrating fy (& }( x), we generate the Cumulative Dis-

tribution Function (CDF) Fy, = }( ) of R{&, }. The average

BEP P, 5, 1., (k") conditioned on the transmitted symbol Ay,
and the fadlng amplitude hy/ is given by:
Pogon, (K)=1-Fue (‘%{Dk,} ). as

Upon integrating P, i, h., (E') over Ay and hy, we arrive
at the average BEP P, (k ) 'of the K'th subcarrier as:
) {(I)hk/ (dow cos gk/)} dw,
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where @, ,(w) is the imaginary part of the CF of the fading
amplitude hjs of the k’th subcarrier, which is given by Table
IT of [17]. Upon exploiting the integral identity of Equation
5.2.4.35 in [21], we arrive at the closed-form version of
Equation 16 in the form of:
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and v, k=0,1,..., N — 1, are given by:
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If there is no CFO, i.e. we have ¢ = 0, there will be no ICI
and the system is equivalent to a single-carrier and single-user
Nakagami-m fading model [22]. Accordingly, Equation 17
reduces to
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where oF;(a, 8;v;2) is the hypergeometric function [20].
Equation 21 is equivalent to Equation 8.106 in [22] for BPSK,
except that there is a multiplicative factor of cos?¢ in
Equation 20, which is induced by the phase estimation error.

B. Special Case: Rayleigh Fading

When all subcarriers are subjected to Rayleigh fading, i.e.

we have my =1 for £k =0,1,..., N — 1, Equation 11 reduces

to:
Lo 2
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Furthermore, Equation 17 reduces to:
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C. Gaussian Approximation

The ICI is typically assumed to be Gaussian distributed [7]—
[10], [12] and hence it may be treated as additional AWGN.
Hence the CF @y 7 (w) of the real ICI component imposed
by the kth subcarrier may be approximated using Equa-
tion 22 for BPSK modulation. Therefore, this scenario is also
equivalent to the single-carrier and single-user Nakagami-m
fading model, except that the noise is replaced by the com-
bined interference-plus-noise component. The average BER
expressed in Equation 17 may be shown to be approximated
as:
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In fact, the GA corresponds to the case, when all interfer-
ing subcarriers are subjected to Rayleigh fading, although
there is no reason for the desired subcarrier to suffer from
fading statistics different from those of other subcarriers. If
all subcarriers are subjected to Rayleigh fading, Equation 24
reduces to Equation 23. In this case the results obtained by
the Gaussian approximation coincide with those obtained by
our exact analysis and this has been reported in [9], [10].

IV. NUMERICAL RESULTS

In this section we will verify the accuracy of our exact BER
analysis provided in Sections III-A for the BPSK modulation,
as well as demonstrate the relatively high accuracy of the
Gaussian ICI approximation provided in Section III-C. Since
the effects of PER only introduce a multiplicative factor
of cos?¢ in Equation 20, we will focus our attention on
considering the effects of the CFO, i.e. we assume having no
PER, yielding ¢;» = 0.
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Fig. 1. BER versus the per-bit SNR in a BPSK-modulated OFDM system

subjected to frequency-selective Nakagami-m fading. All OFDM subcarriers
experience the same fading distribution, i.e. we have my = m = 5. The
number of OFDM subcarriers is N = 64. The normalized CFO is ¢ = 0,

160 &7 i and %, respectively. Perfect channel estimation is assumed, i.e. we
have ¢ = 0.

Figure 1 illustrates the average BER performance versus
the per-bit SNR in conjunction with various normalized CFO
values in a BSPK-modulated OFDM system in the presence
of CFO and frequency-selective Nakagami-m fading. We
included no GA results in Figure 1, when we have ¢ = 0,
since there is no ICI when there is no CFO. We can see
from Figure 1 that generally speaking the BER decreases, as
the SNR value increases, but eventually remains limited by
the ICI, leading to an error floor. There are two exceptions,
namely when we have e = 0 and % When there is no CFO,
i.e. we have ¢ = 0, the BPSK-modulated OFDM system is
noise-limited. By contrast, when the CFO is relatively high,
i.e. we have € = %, the system behaves interference-limited.
Furthermore, Figure 1 shows that the results obtained from our
exact BEP analysis and those accruing from simulations match
well for various normalized CFO values. The GA is also fairly
accurate, but it slightly over-estimates the BER in Figure 1,
especially, when the SNR is high and when the normalized
CFO is low.

Figure 2 illustrates the achievable average BER versus the
normalized CFO performance in conjunction with various
numbers of OFDM subcarriers in a BSPK-modulated OFDM
system in the context of frequency-selective Nakagami-m
fading. Note that there should be no bit errors in the context
of a single-carrier BPSK-modulated OFDM system, when
the effects of noise are ignored. However, when multi-carrier
modulation is adopted, the ICI induced by the CFO limits
the achievable BER performance. Nevertheless, as the number
of OFDM subcarriers is increased, the BER performance
degradation is not aggravated further, provided that the number
of OFDM subcarriers is sufficiently high. Upon their further
increase, the associated BER curve of 64-subcarrier OFDM
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Fig. 2. BER versus the normalized CFO in a BPSK-modulated OFDM system
subjected to frequency-selective Nakagami-m fading. All OFDM subcarriers
experience the same fading distribution, i.e. we have my = m = 5. The
number of OFDM subcarriers is N = 4, 64 and 1024, respectively, but the
associated BER curves of N = 64 and 1024 are indistinguishable for both
the exact results and for the GA. Perfect channel estimation is assumed, i.e.
we have ¢ = 0. The background noise is ignored, i.e. we have oy = 0.

and of 1024-subcarrier OFDM becomes indistinguishable in
the BPSK-modulated OFDM system considered. We can see
from Figure 2 that the CFO significantly degrades the achiev-
able BER performance of OFDM systems. When there is
no CFO, there are no bit errors, since we stated before that
we have ignored the effects of background noise. When the
normalized CFO is low, the BER increases exponentially with
the normalized CFO. Again, Figure 2 shows that the results
obtained from our exact analysis and those accruing from
our simulations match well for various numbers of OFDM
subcarriers. Similarly, the GA estimates the BER performance
in Figure 2 fairly accurately, although the BER is slightly over-
estimated, especially when the normalized CFO is low and
when the number of OFDM subcarriers is low.

Figure 3 illustrates the achievable average BER performance
of a BSPK-modulated OFDM system versus the normalized
CFO in conjunction with various Nakagami-m fading parame-
ters in the context of frequency-selective Nakagami-m fading.
Although we do not plot the curves for small values of the
normalized CFO, i.e. for ¢ < 0.02, the BERs recorded for all
Nakagami-m fading parameters should be zero, when there is
no CFO, i.e. for ¢ = 0, since we have ignored the effects of
noise. Therefore, we can see from Figure 3 that the CFO has
a more detrimental impact on the system suffering from more
severe fading, i.e. when the Nakagami-m parameter is lower.
When the normalized CFO is low, the BER increases exponen-
tially with the normalized CFO. Again, Figure 3 shows that
the results obtained from our exact analysis and those accruing
from our simulations match well for the various numbers of
OFDM subcarriers considered. As stated in Section III-C, the
results obtained by the GA in Figure 3 match with those
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Fig. 3.  BER versus the normalized carrier frequency offset in a BPSK-

modulated OFDM system subjected to frequency-selective Nakagami-m fad-
ing. All OFDM subcarriers experience the same fading distribution, i.e. we
have mj = m. The Nakagami-m parameter is m = 0.5, 1, 2, 5 and 10,
respectively. Note that the BER curves obtained by our exact analysis and by
the Gaussian approximation are not distinguishable when m = 0.5, 1 and 2.
The number of OFDM subcarriers is N = 64. Perfect channel estimation is
assumed, i.e. we have ¢ = 0. The background noise is ignored, i.e. we have
on =0.

generated by our exact analysis, when the fading is Rayleigh,
i.e. when we have m = 1. However, the GA slightly over-
estimates the BER, when the fading is less severe, i.e. when
the Nakagami-m fading parameter is high, especially when
the normalized CFO is low.

V. CONCLUSION

We have analyzed the BER degradation of a BPSK-
modulated OFDM system induced by both the CFO and the
PER in the context of frequency-selective Nakagami-m fading
channels. In contrast to the sum of the infinite series provided
in [11], [12], a closed-form expression was provided for
calculating the average BER of such OFDM systems, which
were derived based on the CF approach. Our simulation results
verified the accuracy of our exact BER analysis for various
combinations of the normalized CFO value, the number of
OFDM subcarriers and the Nakagami-m fading parameter.
The Gaussian approximation of the ICI also estimates the
average BER fairly accurately, although when the per-bit SNR
is high, the normalized CFO is small, the number of OFDM
subcarriers is low and when the fading is less severe, the GA
slightly over-estimates the BER.
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