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Abstract. A new general framework for shape extraction is presented, based on 
the paradigm of water flow. The mechanism embodies the fluidity of water and 
hence can detect complex shapes. A new snake-like force functional combining 
edge-based and region-based forces produces capability for both range and ac-
curacy.  Properties analogous to surface tension and adhesion are also applied 
so that the smoothness of the evolving contour and the ability to flow into nar-
row branches can be controlled. The method has been assessed on synthetic and 
natural images, and shows encouraging detection performance and ability to 
handle noise, consistent with properties included in its formulation. 

1. Introduction  

Complex shape extraction is of great interest in practical uses such as vessel detection 
in iridology. There are two popular techniques which both involve contour evolution: 
active contours or snakes, and region growing. 

Snakes evolve a parameterized curve from an initial position to the boundaries of 
the object following some rules to minimize a specified energy functional. The func-
tional is defined so that the minimization can give rise to a smooth and even contour. 
In complex feature extraction, however, the classical snake is of limited use as it 
needs good initialization near the boundary and cannot handle topological changes 
like boundary concavities. Many methods have been proposed to overcome these 
problems. The balloon models [1], distance potentials [2], and gradient vector flow 
(GVR) field [3] have been introduced as the solutions of initialization and concave 
boundary detection. Snake energy functionals using region statistics or likelihood in-
formation have also been proposed [4, 5]. A common premise is to increase the cap-
ture range of the external forces to guide the curve towards the boundaries. For more 
complex topology detection, several authors have proposed adaptive methods like the 
T-snake [6] based on repeated sampling of the evolving contour on an affine grid. 
Geometric active contours [7,8] have also been developed where the planar curve is 
represented as a level set of an appropriate 2-D surface. They work on a fixed grid 
and can automatically handle topological changes. However, many methods solve 
only one problem whilst introducing new difficulties. The balloon models introduce 
an inflation force so that it can “pull” or “push” the curve to the target boundary, but 
the force cannot be too strong otherwise “weak” edges would be overwhelmed. Re-
gion-based energy can give a large basin of attraction and can converge even when 
the explicit edges do not exist but it cannot yield as good localization of the contour 



near the boundaries as edge-based methods. Level set methods detect complex shapes 
well at the cost of increased dimensionality and hence much greater complexity. 

The region growing techniques mainly rely on the assumption that adjacent pixels 
in the same object or region have similar characteristics such as intensity and texture. 
They test the statistics inside the growing region and then decide whether or not the 
adjacent pixel can be merged according to the specified homogeneity criterion. Re-
gion growing techniques are free of topological changes since they are pixel-wise 
techniques without smoothness constraints [9]. However, this property also tends to 
yield irregular boundaries and small holes, especially for noisy images [10]. Besides, 
the region statistics comparison standards on which they are based can lead to inac-
curate contour detection. 

This paper proposes a new feature extraction method based on water flow. Unlike 
the famous watershed method, which is based on mathematical morphology and is 
often combined with snakes [11] and region growing [12], the focus is now on the 
“water” itself rather than the “landscape” of images because the properties of water, 
like fluidity and surface tension, are well suited to complex feature extraction. We 
first introduce the related physical principles and the framework of the technique, and 
then define all the analogical factors. Finally, results both for synthetic and for real 
iris images are presented, which show the resolution of problems like topological 
changes, and good noise immunity. 

2. Methodology 

Water flow is a compromise between several factors: the position of the leading front  
of a water flow depends on pressure, surface tension, adhesion/capillarity. There are 
some other natural properties like turbulence and viscosity, which are ignored here. 
Image edges and some other characteristics that can be used to distinguish objects are 
treated as the “walls” terminating the flow. The final static shape of the water should 
describe the related object’s contour.  

The flow is determined by pressure and the resistance. The relationship between 
the flow rate fr, the flow resistance R and the pressure difference, is given by: 

fr = Pi - Po (1) 

where Pi and Po are pressure of the inflow and outflow, respectively. The pressure 
difference drives the flow and 

fr = AVeffective (2) 

where A is the cross-sectional area and Veffective is the effective flow velocity. Hence 
the velocity can be related to force and resistance through equations (1) and (2).  

There are small discontinuities or weak regions existent on the contours which may 
lead to “leakage” of water. The surface tension, which can form a water “film” to 
bridge gaps, is then applied to overcome the problem. An attractive force existing 
between water and walls, named adhesion is defined as the attractive force generated 
by image edges. It is adopted in the new technique to assist surface tension to bridge 
edge gaps and allow flow into narrow braches.  



2.1 Framework of the Operator 

The method has little dependence on the starting contour shape. The only limitation 
on initialization is that it cannot cross the target object’s boundaries. One pixel in the 
image is considered to be one basic unit of the water, and the pressure between an 
element and each of its neighbors is assumed to be the same. An adaptive source is 
assumed so that the water can keep flowing until stasis, where flow ceases. An inner 
element with symmetrical distribution of neighbors hence suffers zero resultant pres-
sure. A water contour element, however, has asymmetrically distributed neighbors 
(and possibly an additional adhesive force), thus has non-zero pressure difference 
which leads to a non-zero velocity by equations (1) and (2), and is possible to move 
outwards. Hence only boundary elements are of interest. 

The flow process is assumed to be made up of two separable steps. The first stage 
is acceleration: the contour element achieves a velocity due to the presence of the 
pressure difference (and any adhesive force), and the ultimate value is given by equa-
tion (1) and (2). The next step is external movement where the moving element is now 
free from the influence from other water elements and suffers only external image 
forces. This is not consistent with a real action but is sufficient for the digital image 
analogy and greatly simplifies the algorithm. 

The water element can move outwards in any direction for which the component of 
velocity is positive. However, only if the velocity in the direction is sufficiently large, 
can the element break through the image resistant forces and reach the new position. 
To reconcile the flow velocity with forces, dynamical formulae are used. We may 
compute the displacement of a contour element on each possible direction within a 
fixed time interval, which is similar to snake techniques. However, for simplicity and 
avoiding the interpolation problem, a framework like region growing and the greedy 
snake is used: the element will flow to some positions if certain conditions or formu-
lae are satisfied. Here, an equation describing the conservation of energy is employed. 
If assuming that an element, which has a positive velocity v on a particular direction 
and is acted by the force F during the process, can arrive at the direction-related posi-
tion ultimately, then this equalization must be fulfilled: 

mvF
2/2 = FS + mv2/2 (3) 

where vF is the final scalar velocity after fixed displacement S and m is the assumed 
mass. In this equation, force F is a scalar which is positive when the force is consis-
tent with velocity v, and negative otherwise. The summation on the right hand side is 
just the movement decision operator: only if F is negative, can the summation be 
negative and thus the equality above cannot be satisfied. 

2.2 Flow Driving Force with Surface Tension 

The pressure on each contour element should be outwards normal to the contour line. 
Since the flow on each possible direction will be examined separately, the related 
component of forces rather than the composition is of interest, and a simple convolu-
tion method is used. The force on a contour element is determined by the surface inte-
rior i.e., the amount and position of the adjacent elements. For a certain direction, the- 



 

 

Fig. 1. the convolution masks for component forces on the direction of (from left to right) 90 
degrees, 0 degree, 135 degrees, and 45 degrees. The other 4 masks are the transpose of these 
and we can define the driving force on the opposite direction as negative.  

re will be supporting and opposing elements. The property is determined by their rela-
tive position to the flow direction. The elements located at the normal to the direction 
do not affect the movement. The ones located at the inner half exhibit positive effects 
on the flow and the opposite ones give negative forces since the interactive force be-
tween elements is repulsion. The 3×3 templates are shown by figure 1. A matrix W is 
used to save the water information where a water element has value one and others 
are all zeros. Denoting the convolution template for direction i as Ti, the correspond-
ing matrix saving the normalized driving force strength on direction i, FD,,i, is then 
calculated by convolution as:  

FD,i = W*Ti / SPM (4) 

where SPM is the possible maximum of the convolution sums. For each mask, the 
maximal value is achieved when water elements locate at all positions of 1’s and none 
of those of -1’s and hence SPM = 3 for the above masks. The driving force strength on 
direction i at point (x, y) is then just the (x, y)th entry of FD,i. 

The convolution mechanism allows situations of more than two adjacent contour 
elements which is common in complex shape extraction. The mask size can be ex-
panded so that more information of local water structure can be involved and the cal-
culation will be expected to give a more reasonable result. For instance, a single line 
would have smaller driving force when using 5*5 mask than that by a 3*3 one be-
cause the possible maximum is much larger but the convolution sum is just increased 
by 1. In addition, the method makes the application of surface tension more straight-
forward. From physics, the surface tension is decided by the temperature and the wa-
ter itself. In this image analogy, it is defined as a constant attractive force between the 
contour elements. So in the previous convolution, we can just modify the water matrix 
with the contour position information so that the point will exhibit attractive forces. 
This is done by setting contour elements entries in W as fixed negative values, like -t. 
Then, replacing W in equation (5) with the new matrix W’ and noting that the possi-
ble maximum is now (3+2t) will give the driving force combined with surface ten-
sion. Here, we set t=1. 

2.3 Resistance to Flow and the Velocity 

From equation (1) and (2), the flow velocity is inversely proportional to the resistance 
of water. In a physical model, the flow resistance is decided by the water, the flow 
channel and temperature etc. Since this is a physical analogy which offers great free-
dom in selection of parameter definitions, we can assign high resistance values for 



unwanted image attributes and low values to preferred ones. For instance, in vessel 
detection in images of the retina, if the vessels have relatively low intensity, we can 
define the resistance to be proportional to the intensity of the pixel. If we couple the 
resistance with the edge information, the process will become adaptive. That is, when 
the edge response is strong, resistance would be large and so the flow velocity would 
be weakened. According to equation (3), the movement decision will now be domi-
nated by the force acting during the exterior movement. Thereby, even if the driving 
force set by users is too “strong”, the resistance would lower its influence at edge po-
sitions and the problem in balloon models [1], where strong driving forces may over-
whelm “weak” edges, can be eliminated. From equations (1) and (2), the velocity is: 

Vi = Fi / AR (5) 

where Vi is the resulting flow velocity. The direction of V is the same as the force Fi. 
In this paper, A is set as a constant, and R at position (u, v) is determined by  

R(u,v) = exp{-k E(u,v)} (6) 

where E is the edge response matrix and k controls the fall of the exponential curve.  

2.4 Image Forces 

The gradient of an edge response map is often defined as the potential force in active 
contour methods since it gives rise to vectors pointing to the edge lines [3]. This is 
also used here. The force is large only in the immediate vicinity of edges and always 
pointing towards them. The second property means that the forces at two sides of an 
edge have opposite directions. Thus it will attract water elements onto edges and pre-
vent overflow. The potential force on a contour element (xc, yc) is given by: 

FP = ▽E(xt, yt) (7) 

where ▽E is the gradient of the edge map, and (xt, yt) are the coordinates of the flow 
target because the potential force is presumed to act during the second stage of flow 
where the element has left the contour and is moving to the target.  

Adhesion is defined as the attraction between water and adjacent vessel walls in 
physics. In the image analogy, it is determined by potential force based on an edge 
map with “flooded” positions set to zero. In this map, the edges that have been occu-
pied by the water are ignored so that the edges are clipped. As water flows, vectors 
(forces) pointing from the flooded edges to the existent ones are generated iteratively 
and thus assist in flow to the reserved edge lines. It is defined as  

FA = ▽D(x, y) (8) 

where D is the edge map eroded by the flowing water and (x, y) are the coordinates of 
a contour point. This equation effectively defines the attractive force from edges to 
the water. Therefore, even if the water has flowed onto an edge point, it can still move 
to the adjacent edges. This will thus help water flow into narrow branches, and 
“flood” small noise pixel clusters to give noise robustness. 

The forces defined above work well as long as the gradient of edges pointing to the 
boundary is correct and meaningful. However, as with corners, the gradient can 



sometimes provide useless or even incorrect information. Unlike the method used in 
the inflation force [1] and T-snake [6], where the evolution is turned off when the in-
tensity is bigger than some threshold, we propose a pixel-wise regional statistics based 
image force. The statistics of the region inside and outside the contour are considered 
respectively and thus yield a new image force: 

FS = −(I(xt, yt)- µint)
2 nint /(nint+1) + (I(xt, yt)- µext)

2 next /(next+1) (9) 

where subscripts “int” and “ext” denote inner and outer parts of the water, respec-
tively; µ and n are the mean intensity and number of pixels of each area, separately; I 
is the original image. The equation is deduced from the Mumford-Shah functional [5]:  

F1(C)+ F2(C)=∫inside(C)|I(x, y)- µint|
2 + ∫outside(C)|I(x, y)- µext|

2 (10) 

where C is the closed evolving curve. If we assume C0 is the real boundary of the ob-
ject in the image, then when C fits C0, the term will achieve the minimum. Instead of 
globally minimizing the term as in [5], we obtain equation (9) by looking at the 
change of the total sum given by single movement of the water element. If an image 
pixel is flooded by water, the statistics of the two areas (water and non-water) will 
change and are given by equation (9). The derivation is shown in the Appendix.  

The edge-based potential forces can provide a good localization of the contour near 
the real boundaries (i.e., accuracy) but have very limited capture range and are not 
suitable for edge corners, whilst the region-based forces have a large basin of attrac-
tion but cannot provide good detection accuracy. The complementary properties mo-
tivate a unification of the two forces. A convex combination method is hence chosen 
and the combined force is given by: 

F =αFP + (1−α)FS (11) 

where all terms are scalar quantities, and α (0≤α≤1) is determined by the user to con-
trol the balance between them.  

2.5 Movement Decision Process 

Equation (3) has provided the inequality to determine the feasibility of outwards flow. 
For each contour element, we have presented equations computing driving force FD 
modified by surface tension, adhesion FA and resistance R. Flow velocity V can then 
be obtained through equation (5). If the velocity points towards the exterior of the 
water, the element is assumed to leave the original position. A unified image force F 
provided by equations (7) and (11) is then turned on. The summation in equation (3) 
can be computed and the sign determines the result of the movement. 

Defining m and S in equation (3) as constants, we can then present the new and de-
tailed expression with parameters defined before: 

J =λ{ (FD+ FA)
/R(x, y)}

2 + F (12) 

where λ is a regularization parameter set by users which controls the tradeoff between 
the two energy terms. It can be considered to be determined by the combination of 
mass m, displacement S and area A. Its value reflects smoothing of image noise. For 
example, more noise requires larger λ. FA and FD are the scalar components on the 



movement direction of FA and FD, respectively. A positive direction is defined from 
the origin to the target. The movement decision can be completely made by this op-
erator since the term of right hand side inside the brackets gives the velocity informa-
tion and J corresponds to the ultimate kinetic energy. If the velocity component is 
greater than zero and if J is positive, the movement is said to be feasible and the target 
point will be flooded by water.  

3. Experimental Results 

The new technique is applied to both synthetic and natural images, and is evaluated 
both qualitatively and quantitatively.  

3.1 Synthetic Images  

There are two sorts of initialization for the method. The water “source” can be either 
inside or outside the target object. The former is suited to most cases, whilst the latter 
is useful when simultaneously detecting multiple objects in an image. The whole 
“background” will be flooded, thus the static water will give the targets’ shape infor-
mation. An example is given in figure 2 with initialization from the image border. All 
the shapes are detected including the helical pipe which has boundary concavities. 
The result is accurate even with some noise contamination. 

 

         

Fig. 2. Multi-object detection: the image is corrupted with 10% Gaussian noise 

A 512×512 test image was generated for a performance evaluation according to 
certain criterion: a) horizontal, vertical and diagonal branches are included; b) narrow 
and wide branches are presented, respectively; c) there is a circular pipe so that we get 
a curve with smoothly changing curvature; d) each half of the object has a different 
intensity so that weak edges exist between them. The image is suited to assess the op-
erator’s ability in complex feature detection, and the noise immunity is also tested by 
adding Gaussian and impulsive noise to the image. Figure 3 shows the evolutions and 
the final results. The detection is successful in total, and the immunity to impulsive 
noise should be emphasized. It’s very difficult for snakes and region growing methods 



   
      (a) evolving contour                  (b) evolving contour        

   
(c) final result           (d) final result 

  
(e) one further seed added         (f) improved result    

Fig. 3. Flow progress and results for test images contaminated by 10% Gaussian noise (a and b) 
and 5% impulsive noise (c, d, e and f).  

to deal with impulsive noise as the edge response is very strong. In figure 3(c) and 
(d), almost all the noise points inside the object are flooded, and the detected contour 
is reasonably accurate. The robustness to impulsive noise arises from the fluidity and 



the adhesion: water surrounds the small clusters of impulsive noise pixels, and the 
adhesive force given by the noise response attracts the water to flow over the noise 
area. So, unless the noise clusters are too large, the noise pixels will be flooded.  

The most significant failure shown by figure 3(d) is the incomplete detection of the 
thinnest diagonal branch in the top right corner. This is because the branch is too nar-
row and a noise cluster “blocks” the pipe. In practical applications, this kind of gap 
will exist and makes the contour extraction terminate early. Flow from multiple 
sources can be considered, to overcome the problem. In this simple case, as shown in 
figures 3(e) and (f), a new source is initialized inside the undetected area. It then fills 
the region and merges with the “main” part. Therefore a complete detection can be 
achieved. Similar multiple seeds methods are often incorporated with watershed and 
region growing techniques, and are not invoked here. 

The immunity to noise is also assessed quantitatively, and figure 4 shows the re-
sult. The mean square error is used as the criterion with a synthetic test image as the 
ground truth, which has been deliberately designed to incorporate a narrow boundary 
concavity. Two typical sorts of noise, Gaussian and impulsive, are added on the im-
age, and the operator performs well and stably for both types of noise, until severe 
noise contamination (below 10 dB). An example of the detection result is also shown. 
 

 

 

 

Fig. 4. Mean square error results for impulsive and Gaussian noise in different SNR levels. 
(α=0.5, 0.5≤λ≤1, k=5); and an example for Gaussian noisy image (SNR=6.58, MSE=0.41). 
(note that the y-axis has been reversed for the conventional curve indication purpose).  

3.2 Natural Images 

Natural images with complex topology are also assessed. Figure 5 shows the result for 
the image of a river delta with different parameters, where the river is the target ob-
ject. It is suited to performance evaluation since gaps and “weak” edges exist in the 
image. One example is the upper part of the river, where boundaries are blurred and 
irregular. There are also inhomogeneous areas inside the river, which are small is-
lands and have lower intensity. Our water flow based operator can overcome these 
problems. As shown in figure 5 (a), a reasonably accurate and detailed contour of the 
river is extracted. At the upper area, some very weak boundaries are also detected. 
This is achieved by using high value of k which makes the operator highly sensitive to 



 
(a) α=0.7, λ=3, k=50 

 
(b) α=0.5, λ=0.1, k=0 

Fig. 5. water-flow detection results for delta map image with different parameters: decreased α 
and λ reduce the significance of edges, and smaller k makes flow less sensitive to edges, there-
fore the detail detection level is lower in (b).  

edge response. The contour is relatively smooth by virtue of surface tension. The flu-
idity leading to topological adaptability is shown well by successful flow to the 
branches at the lower area. Most of them are detected except failure at several narrow 
branches. The barriers are caused either by natural irregularities inside them or noise.  

Different initializations inside the river were tried and with the same parameters 
chosen, the results are almost the same, as expected. The operator is insensitive to the 
source positions. By changing the parameters, however, some alternative results can 
be achieved. For example, figure 5(b) shows a segmentation of the whole basin of the 
river. It is analogy to a flood from the river. The water floods the original channels 



and stops at the relatively high regions. This shows the possibility of achieving dif-
ferent level of detail just by altering some parameters.  

4. Conclusions  

This paper introduces a new general feature extraction framework. The operator suc-
cessfully implements the key attributes of water flow process: the fluidity, the surface 
tension and the adhesion. The resistance given by images is defined by a combination 
of object boundary and regional information. The problems of complex topological 
changes are solved whilst the attractive properties of snakes such as the smooth con-
tour is retained. Those are approved by the results on both synthetic and real images. 
Good noise immunity is also justified both qualitatively and quantitatively. Besides, 
the complexity of the algorithm is relatively low. Therefore the method is expected to 
be of potential use in practical areas like medical imaging and remote sensing where 
target objects are often complicated shapes corrupted by noise.  
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Appendix 

The sums of integrations in equation (10) first need be modified to discrete form:  



   (A.1) 
where subscript “0” means the state before movement, and uint and uext represent pix-
els inside and outside the water region respectively. After a single pixel flow, the 
numbers become nint+1 and next-1, respectively with corresponding changes in the sta-
tistics. By denoting the flooded pixel as un, we can deduce the changes. For the exter-
nal term, the new term is  

 
Denote (un-µext0) as ∆, then (as ), hence 

 
The change to the external region is then [-∆2next / (next-1)]. The coefficient is greater 
than 1, but for ∆, we have: 

 
So the maximum of ∆ is achieved when un=1 (normalized) and uj=0 for others. The 
external change should satisfy: 

 
Similarly, we can derive the change of the internal factor caused by the movement, 
which is given by 

 
The sum of the two changes gives equation (10). Since the absolute values of both 

terms fall in the range [0 1) for normalized images, the value range of the regional 
force is (-1 1), which can be directly applied to the formula 


