
Formal Specifications and Verification of Message

Ordering Properties in a Broadcasting System using

Event-B

Divakar Yadav∗and Michael Butler†

Dependable Systems and Software Engineering Group
School of Electronics and Computer Science

University of Southampton
Southampton SO17 1BJ ,U.K

Abstract

Causal and total order broadcast has been proposed as a mechanism to
provide fault tolerance for constructing reliable distributed systems. The use
of formal methods to develop a model of a system, specifying critical properties
and the verification of them is a way of obtaining better design of dependable
services. Event-B is a formal technique which provides a framework for de-
veloping mathematical models of distributed systems by rigorous description
of the problem, gradually introducing solutions in the refinement steps, and
verification of solutions by discharge of proof obligations. In this paper, we
present a formal development of a system where processes communicate by
broadcast and the messages are delivered following a causal and a total order.
We first present separate models of a broadcast system each for a causal or-
der and a total order. Subsequently, we verify that the models of the system
preserves the required ordering properties. Further, we develop a model of a
system satisfying both causal and a total order on the messages. Later in the
refinement, we outline how these ordering properties can correctly be imple-
mented by the vector clocks. In this approach we discover some interesting
invariant properties which describes the relationship of abstract causal and
total order with the vector clocks and the sequence numbers.

Keywords : Distributed System, Formal Method, Verification, Message
Ordering, Event-B

1 Introduction

Distributed systems are difficult to understand, build and reason about due to un-
avoidable concurrency [20]. In a fully asynchronous message passing system, there is
no natural ordering of the messages. In such systems there is no concept of real time
and it is assumed that messages are eventually delivered and processes eventually
respond, but no assumption on time can be made. Group communication primitives
provides higher guarantees on the delivery of messages to different processes. These
group communication primitives have been used as a basic building block for the

∗Divakar Yadav is a Commonwealth Scholar supported by the Commonwealth Scholarship
Commission in the United Kingdom.

†Michael Butler’s contribution is part of the IST project IST 511599 RODIN (Rigorous Open
Development Environment for Complex Systems)

1

development of reliable fault tolerant distributed applications [12]. The solutions
based on group communication are used in the real world. For example, ISIS [8]
based solutions are used at the New York Stock Exchange for providing reliable
multicast communication, Swiss Electronic Bourse and for developing new genera-
tion of the French Air Traffic Control System [13]. These primitives have also been
proposed for processing transactions and managing replicated databases [16, 17, 18].
The total order [12] broadcast is one primitive which ensures that a message is de-
livered to the different recipient processes in the same order. The total order alone
does not guarantee that messages are delivered in the order they were sent. The
causal order [9, 12] primitive provide guarantees that delivery order is also consis-
tent with the order they were sent. A causal order on the messages are build when
they are sent by a single process (FIFO order) or the different processes(local order).
In this paper we present a formal development of a system that guarantees a total
order conforming with the causal dependencies. This totally ordered causal broad-
cast first builds a causal order then a total order on the messages. Our approach
of gradual development of the system is based on the notion of abstraction and re-
finement. The important feature of this approach is to formally define an abstract
global model of a system independent of the architecture and successively refine it
to a detailed distributed design in a series of intermediate steps. The work present
in the paper constitutes a part of our work on formal development of transactions
for replicated databases [28].

Distributed algorithms can be deceptive. An algorithm that looks simple may
have complex execution paths and allow unanticipated behavior. Rigorous reasoning
about the algorithms is required to ensure that an algorithm achieves what is it
supposed to do [20]. The group communication services have been studied as a basic
building block for many fault tolerant distributed services, however the application
of formal methods for providing clear specifications and proofs of correctness is
rare [12]. Some of the important work on application of formal methods to group
communication services in order to verify the properties of algorithm are [13, 27].
The work reported in [13] uses I/O automata for the specifications and proves
properties about all trace behavior of the automation. A series of invariants relating
state variables and reachable states are proved by hand using method of induction.
In [27] formal results are provided that defines whether or not a totally ordered
protocol provides a causal order. They provide a proof of correctness by doing
proofs by hand. Instead, our approach is based on defining properties in abstract
model and proving that our model of algorithm is a correct refinement of the abstract
model. Also, we use a tool for generating proof obligations and discharging them.

The approach of specifying the system and verification is based on the technique
of abstraction and refinement. This technique is supported by the Event-B [2, 22],
an event driven approach used together with B Method [1]. This formal technique
consists of the following steps :

- Rigorous description of abstract problem.

- Introduce solutions or details in refinement steps to obtain more concrete
specifications.

- Verifying that proposed refinements are valid.

This formal approach supports a step-wise development from initial abstract specifi-
cations to a detailed design of a system in the refinement steps. Through refinement
we verify that the design of detailed system conforms to the abstract specifications.
We have used the Click’n’Prove [4] B tool for proof obligation generation and for
discharging proof obligations. The tool generate proof obligations for refinement

2

and consistency checking. These proofs help to understand the complexity of prob-
lem and the correctness of the solutions. They also guide us to discover new system
invariants which provide a clear insight to the system.

The approach for building causal and total order on the messages is based on
the work reported in ISIS [9]. We present separate models of message passing
systems each for causal order and a total order. These models of message passing
system delivers the messages following a causal order and a total order respectively.
We also verify that these models of the system preserves the required ordering
properties. Further we develop a model of a system satisfying both causal and
a total order on the messages. In the refinement, we show that this model can
correctly be refined by a system of vector clocks. In the refinement, the causal
order is implemented by using a vector clock while the total order is implemented
using a fixed sequencer algorithm [12]. In the further refinement, we verify that a
total order can be build by using the services of vector clocks alone thus replacing
the need for explicit sequence numbers to be generated by a sequencer. We also
discover some interesting properties as invariants which describes the relationship
between abstract causal and total order with the vector clocks and the sequence
numbers.

The remainder of the paper is organized as follows: Section 2 presents our
modelling approach and introduction to Event-B notations , Section 3 informally
presents various ordering properties, Section 4 present abstract B specification of
causal order properties, Section 5 present abstract B specification of total order
properties, Section 6 present the specification of a system which respect both total
and a causal order, lastly section 7 concludes the paper.

2 Modelling Approach in Event-B

The Event-B [2, 22] is a formal technique consist of describing rigorously the prob-
lem, introduce solutions or details in the refinement steps to obtain more concrete
specifications, and verifying that proposed solutions are correct. The system is mod-
elled in terms of an abstract state space using variables with set theoretic types and
the events that modify state variables. Event-B, a variant of B [1], was designed for
developing distributed systems. In Event-B, the events consists of guarded actions
occurring spontaneously rather then being invoked. The invariants state properties
that must be satisfied by the variables and maintained by the activation of the
events.

In the refinement steps, guards may be strengthened and the new events may be
introduced. Abstract and concrete variables are related through gluing invariants.
At each refinement step a more concrete specification of the system are obtained.
This technique requires the discharge of the proof obligations for consistency check-
ing and refinement checking. The consistency checking involves showing that a
machine preserves the invariants when events are invoked. The refinement check-
ing involves showing that the specifications at each refinement step are valid. We
have used the Click’n’Prove [4] B tool for proof management which provides an
environment for generation of proof obligations for consistency checking and re-
finement checking. This tool also provides an automatic and an interactive prover.
The majority of the proof obligations are proved by the automatic prover however
some of the complex proof obligations need to be proved interactively. Some of
the applications of the B method to distributed systems are modelling web based
system [25], verification of one copy equivalence criterion in a distributed database
system [28], verification of IEEE 1394 tree protocol distributed algorithm [5], and
a general modelling approach for distributed system may be found in [10, 11].

3

2.1 Event-B Notations

The Event-B notations are based on set theoretic notations and frequently used
notations in our models are explained here.

Let A and B be two sets, then the relational constructor (↔) defines the set of
relations between A and B as :

A ↔ B = P(A× B)

where × is cartesian product of A and B. A mapping of element a ∈ A and b ∈ B
in a relation R ∈ A ↔ B is written as a 7→ b.

The domain of a relation R ∈ A ↔ B is the set of elements of A that R relates
to some elements in B defined as :

dom(R) = {a | a ∈ A ∧ ∃b.(b ∈ B ∧ a 7→ b ∈ R)}

Similarly, the range of relation R ∈ A ↔ B is defined as set of elements in B related
to some element in A defined as :

ran(R) = {b | b ∈ B ∧ ∃a.(a ∈ A ∧ a 7→ b ∈ R)}

A relation R ∈ A ↔ B can be projected on a domain U ⊆ A called domain restric-
tion(¢) defined as

U ¢ R = {a 7→ b | a 7→ b ∈ R ∧ a ∈ U}

The domain anti-restriction (U ¢− R) is defined as :

U ¢−R = {a 7→ b | a 7→ b ∈ R ∧ a /∈ U}

The Relational image R[U] where U⊆A is defined as :

R[U] = {b | ∃a · a 7→ b ∈ R ∧ a ∈ U}

The relational inverse (R−1) of a relation R is defined as :

R−1 = {b 7→ a | a 7→ b ∈ R}

If R0 ∈ A ↔ B and R1 ∈ A ↔ B are relations defined on set A and B, the relational
over-ride operator (R0 ¢− R1) replaces mappings in relation R0 by those in relation
R1.

R0 ¢−R1 = (dom(R1) ¢−R0) ∪R1

A function is a relation with certain restrictions. The function may be a partial
function (7→) or a total function(→).

A partial function from set A to B (A 7→ B) is a relation which relates an
element in A to at most one element in B.

A total function from set A to B (A → B) is a partial function where dom(f)=A
i.e. each element of set A is related to exactly one element of set B. Given f ∈ A
7→ B and a ∈ dom(f), f(a) represents the unique value that a is mapped to by f.

2.2 Event-B System

The mathematical foundations for development of event based system in B is dis-
cussed in [3]. An abstract machine consists of sets, constants and variables clause
modelled as set theoretic constructs. The invariants and properties are defined as
first order predicates. The event system is defined by its state and contain number

4

of events. The state is defined by variables. The constants and variables are con-
strained by the conditions defined in the properties and invariant clause known as
invariant properties of the system. Each event in the abstract model is composed
of a guard and an action. The events are modelled using generalized substitution
which include construct like assignment (x:= E(x)) and guarded statement (WHEN
G THEN S END). A typical abstract machine may be outlined as below.

MACHINE M
SETS S1,S2,S3...
CONSTANTS C
PROPERTIES P
VARIABLES v1,v2,v3...
INVARIANTS I
INITIALISATION init
EVENTS

E1 ∼= WHEN G1 THEN S1 END ;
E2 ∼= WHEN G1 THEN S1 END ;
.......

END

In the guarded statement(WHEN G THEN S END), the guard(G) of the events
are expressed as first order predicate. The actions of an events are specified as
simultaneous assignment of state variable using substitution statements(S). The
events occur spontaneously whenever their guard holds (true) and they are executed
atomically. After building a model of a system as abstract machine, it must be
proved that a system is consistent with respect to the invariant properties of the
system. The consistency of the machine is shown by proving that each event of the
system preserves the invariant.

In an incremental development approach for system modelling, we begin with
abstract definition of problem. The system in build in several stages by gradually
introducing the details in the refinement steps. At every refinement step we verify
that proposed refinements are valid. An abstract machine can be refined by adding
new events and new variable. A refined system state must relate to the abstract
one by abstraction relation. This abstraction relation is defined by a invariant
known as Gluing Invariant. This invariant defines relationship between abstract
state variables and concrete(refined) state variables. More precisely, if a statement
S that acts on variable x, is refined by another statement T that acts on variable
y under invariants I then we write S vI T. The invariant I is called the gluing
invariant and it defines the relationships between x and y. The each event of
abstract model is refined to one or more corresponding concrete event. A concrete
event is said to refine corresponding abstract one, if it is obtained by strengthening
the guards of abstract one and the gluing invariant is preserved by joined action of
both event.

Replacing the abstract variable by the concrete variable in the refinement results
in proof obligations generated by the B tool. These proof obligations are associated
with the events in the refinement. The B Tool help to factorize the large and complex
proof obligations in to simpler proof obligations. In most cases majority of the proof
are proved by the automatic prover, however in some cases we need to prove them
by interaction. The B Tool also remembers the proved and unproved proofs in the
form of proof tree. In some cases, in order to prove unproved proof obligations
we may have to add gluing invariants to the model. In these cases the unproved
proof obligations guide us to construct the gluing invariants. The addition of new
gluing invariants further generate the proof obligations which may require addition
of new gluing invariants. After several stages of invariant strengthening we arrive at

5

a set of invariants which are sufficient to discharge all proof obligations. Addition
of an appropriate invariant is a key to proving the correctness of the refinement.
In this approach not only proof obligations and interactive prover together guide
constructing new gluing invariants, but also has a consequence that the form of
gluing invariant closely matches the form of proof obligations thereby making the
mechanical proof much easier and in many cases completely automatic.

3 Ordering Properties

In context of ordered broadcast, Hadzilacos and Toueg [14] defines that a Reliable
Broadcast satisfies following properties.

– Validity : If a correct process broadcasts a message m, then it eventually
delivers m.

– Agreement : All correct processes delivers a same set of message, i.e. if a
process delivers a message m then all correct processes eventually delivers m.

– Integrity : No spurious messages are ever delivered, i.e., for any message m,
every correct process delivers m at most once and only if m was previously
broadcast by sender(m).

A Reliable Broadcast is defined in terms of two primitives called broadcast and
deliver. A reliable broadcast imposes no restriction on the order in which messages
are delivered to the processes. However, many application requires a stronger no-
tion of reliable broadcast that provide higher order guarantees on message delivery.
A reliable broadcast can be used to deliver messages to the processes following a
FIFO Order, Local Order, Causal Order or a Total Order providing higher order-
ing guarantees on the message delivery. Various definitions of ordering properties
have been discussed in [6, 9, 12, 26]. An informal specifications of these ordering
properties are given below.

FIFO Order

If a particular process broadcasts a message M1 before it broadcasts a message M2,
then each recipient process delivers M1 before M2.

A FIFO Broadcast is defined as a reliable broadcast that delivers the messages
in FIFO order. As shown in Fig. 1, process P1 first broadcasts M1 followed by M2.
Each recipient process delivers message M1 before M2 respecting FIFO order. The
FIFO order is said to be preserved by the system if all processes deliver M1 before
delivering M2. The delayed message M1 shown as dotted line violates the FIFO
order.

M2M1

P3

P2

P1

Figure 1: FIFO order

6

Local Order

If a process delivers M1 before broadcasting the message M2, then each recipient
process delivers M1 before M2.

As shown in Fig. 2, process P2 delivers M1 before it broadcasts M2. Each recip-
ient process delivers message M1 before M2 respecting local order. The local order
is said to be preserved by the system if all processes deliver M1 before delivering
M2. The delayed message M1 shown as dotted line violates the local order.

M2

M1

P3

P2

P1

Figure 2: Local order

Causal Order

If the broadcast of a message M1 causally precedes the broadcast of a message M2,
then no process delivers M2 unless it has previously delivered M1.

The notion of causality is based on causal precedence relation (→) defined by
the Lamport [19] as follows. Let e and f be two events in the distributed system,
the causal precedence relation (e → f) holds, if and only if,

– e and f are the events occurring in the same process and e happened before f.

– e and f are the event of message send and message receive respectively oc-
curring in the different processes.

– There exist another event g, such that e → g and g → f. (Transitivity)

The causal precedence relation defines an irreflexive partial ordering on the set of
events. This relationship can be extended to define causality among the messages.
A message mi causally precedes mj if either of following holds,

– the broadcast event of mi causally precedes broadcast of mj .

– the receive event of mi causally precedes broadcast of mj .

The causal order is defined by combining the properties of both FIFO and Local
order [14]. A Causal Order Broadcast is a reliable broadcast that satisfies causal
order requirement. A causal order broadcast delivers the messages respecting their
causal precedence, however if the broadcast of any two message is not related by
causal precedence then it does not impose any requirement on the order they can
be delivered.

Total Order

If two process P1 and P2 both delivers the messages M1 and M2 then P1 deliver
M1 before M2 if only if P2 also delivers M1 before M2.

7

A Total Order Broadcast1 is a reliable broadcast that satisfies total order require-
ment. The Agreement and Total Order requirements of Total Order Broadcast im-
ply that all correct processes eventually deliver the same sequence of messages [14].

Since a total order define a arbitrary ordering on the delivery of messages, it
does not satisfy causal relations. Consider the following two cases given in the Fig. 3
and Fig. 4. In the first case, the messages are delivered conforming to both causal
and total order, however, in the second the delivery order respect total order but
violates causal order.

M3M2

M1

P3

P2

P1

Figure 3: Total Order and a Causal Order

As shown in Fig. 3, broadcast of message M1 causally precedes broadcast of M2,
each recipient process delivers M1 before delivering M2. Similarly, the broadcast
of message M2 causally precedes broadcast of M3, each recipient process delivers
M2 before delivering M3. Therefore, the system delivers messages respecting the
causal order. It can also be noticed that all processes delivers the message in the
same sequence i,e.(m1,m2, followed by m3), the delivery order also conforms to
total order. A reliable broadcast which satisfies both causal order and total order
is called causally and totally order broadcast2.

As shown in Fig. 4, all processes deliver the same sequence of messages, i.e.,
each process delivers M1 followed by M3, and lastly M2. Thus the delivery order
conforms to the total order property, however the delivery order does not respect the
causal order for the following reason. Since the broadcast of M2 causally precedes
the broadcast of M3, each recipient must deliver M2 before delivering M3. It can
be noticed that each process deliver M3 before delivering M2 violating the causal
order.

M3M2

M1

P3

P2

P1

Figure 4: Total Order but not a Causal Order

1The Total Order Broadcast is also known as Atomic Broadcast. Both of the terms are used
interchangeably. However we prefer former as the term atomic suggest the agreement property
rather than total order.

2A reliable broadcast that satisfies both causal and total order is also called Causal Atomic
Broadcast.

8

4 Causal Order Broadcast

In this section we present an incremental development of a system of causal order
broadcast consisting of five levels. A brief outline of each level is given below.

L1 This consist of abstract model of reliable broadcast. In this model a process
communicate by broadcast and messages are delivered to the processes only
once.

L2 This is a refinement of abstract model which introduces causal ordering on
the messages. In this refinement we outline how an abstract causal order is
constructed by the sender.

L3 In this refinement we introduce the notion of vector clocks. The abstract
causal order is replaced by the vector clocks rules. We also discover gluing
invariants which defines the relationship of abstract causal order and vector
rules.

L4 In this refinement steps we present the simplification of vector rules updating
the vector clock of recipient process. Here we show that instead of updating
whole vector of recipient process, a single value is updated.

L5 This is a simple refinement further simplifying of causal deliver event.

4.1 Abstract Model of Reliable Broadcast

The abstract model of a reliable broadcast system is presented as a B machine in
the Fig. 5. The PROCESS and MESSAGE are defined as sets. The brief description
of this machine is given as follows.

MACHINE Broadcast
SETS PROCESS; MESSAGE
VARIABLES sender , cdeliver
INVARIANT
/* I-1*/ sender e MESSAGE ß PROCESS

 /* I-2*/ ¶ cdeliver e PROCESS 1 MESSAGE
 /* I-3*/ ¶ ran(cdeliver) (dom(sender)

INITIALISATION sender := 0 || cdeliver := 0

OPERATIONS
 Broadcast (pp e PROCESS , mm e MESSAGE) =
 WHEN mm ‰ dom(sender)
 THEN sender := sender U {mm å pp}
 END;

CausalDeliver (pp e PROCESS , mm e MESSAGE) =
 WHEN mm e dom(sender)
 ¶ (pp å mm) ‰ cdeliver
 THEN cdeliver := cdeliver U {pp å mm}
 END ;
END

Figure 5: Abstract Model of Broadcast

9

The sender is a partial function from MESSAGE to PROCESS defined in in-
variant I-1. The mapping (m 7→ p) ∈ sender indicate that message m was sent by
process p. The cdeliver is a relation between PROCESS and MESSAGE defined in
invariant I-2. A mapping of form (p 7→ m) ∈ cdeliver indicate that a process p has
delivered a message m. The sender and cdeliver are initialized as empty set.

In our model of reliable broadcast, a sent message is also delivered to its sender.
It may be noticed that all delivered messages must be messages whose Message Sent
event is also recorded. This property is defined as invariant I-3. The events of send-
ing and casually ordered delivery of messages are modelled as Broadcast(pp,mm)
and CausalDeliver(pp,mm). When a Broadcast event is invoked, the entry of a pro-
cess and the corresponding message is made to the sender. The CausalDeliver event
is guarded by predicates. These predicates ensures that a process delivers a mes-
sage whose Message Sent event is recorded and the message has not been delivered
before. A message is delivered to a process if both conditions are satisfied.

4.2 First Refinement : Introducing Causal Order

In this refinement we introduce the causal ordering on the messages. We also outline
how a causal order for the message is constructed by the sender. The refinement of
abstract model of broadcast is given in Fig. 6 and Fig. 7. A brief description of the
refinement steps are given below.

The abstract causal order is represented by a variable corder. A mapping of the
form (m1 7→ m2) ∈ corder indicate that message m1 causally precedes m2 (Inv
I-4). In order to represent the delivery order of messages at a process, variable
delorder is used. A mapping (m1 7→ m2) ∈ delorder(p) indicate that process p has
delivered m1 before m2 (Inv I-5). A causal order on the messages can be defined
only on those messages whose message sent event is recorded (Inv I-6).

REFINEMENT CausalOrder
REFINES Broadcast
VARIABLES sender, cdeliver, corder, delorder
INVARIANT
/* I-4*/ corder e MESSAGE 1 MESSAGE
/* I-5*/ ¶ delorder e PROCESS ß (MESSAGE 1 MESSAGE)
/* I-6*/ ¶ dom(corder) z dom(sender)
/* I-7*/ ¶ ran(corder) z dom(sender)

INITIALISATION sender := 0 || cdeliver := 0
 || corder := 0 || delorder := 0

 Figure 6: Causal Order Broadcast : Initialization

The events Broadcast(pp,mm) and CausalDeliver(pp,mm) respectively models
the events of broadcasting a message and the causally ordered delivery of a mes-
sage. As shown in the operation of the Broadcast event, a causal order is built
by the sender process following a FIFO order and a Local order. When a process
pp broadcasts a message mm, the variable corder is updated by the mappings in
(sender−1[{pp}]× {mm}). This indicate that all message sent by pp before broad-
casting mm causally precedes mm conforming to the FIFO order. Similarly, all
mappings in (cdeliver[{pp}]× {mm}) indicate that all messages causally delivered
to the process pp before broadcasting mm also causally precedes mm conforming
to a local order.

10

On the occurrence of the Broadcast event, variable sender is updated with corre-
sponding entries of sender process and the message. The guard mm /∈ dom(sender)
ensures that each time a fresh message is broadcasted. In the CausalDeliver event,
a process pp delivers a message mm only when all messages which causally precedes
mm are delivered. The guards of this event also ensures that a message is delivered
only once.

Broadcast (pp e PROCESS , mm e MESSAGE) Å
 WHEN mm ‰ dom(sender)
 THEN corder := corder U ((sender -1[{pp}] * {mm})
 U (cdeliver [{pp}] * {mm}))
 || sender := sender U {mm å pp}
 END;

CausalDeliver (pp e PROCESS , mm e MESSAGE) Å
 WHEN mm e dom(sender)
 ¶ (pp å mm) ‰ cdeliver
 ¶ Am.(m e MESSAGE ¶ (m å mm) e corder
 fi (pp å m) e cdeliver)
 THEN cdeliver := cdeliver U {pp å mm}
 || delorder(pp) := delorder(pp) U (cdeliver [{pp}] * {mm})
 END

Figure 7: Causal Order Broadcast : Events

4.3 Invariant Properties of the Model of Causal Order

After building the model of the abstract causal order our goal was to formally
verify that this model preserves the causal order properties informally defined in
the section 3. It state that the delivery order of the messages at a given process
must conforms to the abstract causal order among them. Consider following two
cases generated by the Pro B [21] ,an animator and a model checker for B.

M2 M2

M2

M1

M1

P2

M1
P1

Figure 8: Causal Order : CASE-I

As shown in Fig. 8, messages M1 and M2 have same delivery order at processes
P1 and P2 but have different delivery order as shown in Fig. 9. This is possible

11

M2

M2 M1M2

M1

P2

M1
P1

Figure 9: Causal Order : CASE-II

when M1 and M2 does not have any causal ordering among them. Also [14] reports
that if the broadcast of two messages are not related by causal precedence, a causal
broadcast does not impose any requirement on the order they are delivered and the
delivery order of any two messages may be different at various processes. Therefore
we add following invariant to our model as a primary invariant.

m1 7→ m2 ∈ corder
p 7→ m2 ∈ cdeliver
⇒
m1 7→ m2 ∈ delorder(p)

In order to verify that our model also preserves the transitivity property on the
messages, we also add following invariant to our model as a primary invariant.

m1 7→ m2 ∈ corder
m2 7→ m3 ∈ corder
⇒
m1 7→ m3 ∈ corder

The important invariant properties of the model of causal order broadcast system
are given in Fig. 10 as first order predicates. We have omitted the quantifications
over all identifiers to avoid clutter.

4.4 Proof Obligations and Invariant Discovery

In this section we outline how we verify that the model CausalOrder given in Fig. 6
and Fig. 7 preserves the causal ordering on the messages. We also outline how the
proof obligations generated by B Tool and the interactive prover guide us construct-
ing new invariants.

We first add the invariant Inv-1 given in Fig. 10 to our model. After addition of
this invariant to the model, the B Tool generated two proof obligations associated
with events Broadcast and CausalDeliver. These proof obligations were discharged
using interactive prover without having to add new invariants.

In the next step, we add invariant Inv 2 to our model. This invariant state
that our model of Causal Broadcast preserves causal precedence relationship on the
messages. When this invariant is added to the model, the Click’n’Prove B Tool
generates following complex proof obligation associated with the Broadcast event.

12

 Invariants Required By
__

/*Inv-1*/ (m1 å m2) e corder ¶ (p åm2) e cdeliver Broadcast,
 fi (m1 å m2) e delorder(p) CausalDeliver

/*Inv-2*/ (m1 å m2) e corder ¶ (m2 åm3) e corder Broadcast
 fi (m1 å m3) e corder

/*Inv-3*/ (m1åm2) e corder ¶ (m2 å p) e sender Broadcast,
 fi ((m1 åp e sender) u (p åm1 e cdeliver)) CausalDeliver

/*Inv-4 */ (m1åm2) e corder ¶ (p åm2) e cdeliver Broadcast,
 fi (p åm1) e cdeliver CausalDeliver

Figure 10: Invariants-I

Broadcast(pp,mm)PO1


Inv2 ∧
mm /∈ dom(sender) ∧
m1 7→ m2 ∈ (corder ∪ (sender−1[{pp}]× {mm}) ∪ (cdeliver[{pp}]× {mm})) ∧
m2 7→ m3 ∈ (corder ∪ (sender−1[{pp}]× {mm}) ∪ (cdeliver[{pp}]× {mm}))
⇒
m1 7→ m3 ∈ (corder ∪ (sender−1[{pp}]× {mm}) ∪ (cdeliver[{pp}]× {mm}))




This proof obligation is reduced to following two simple proof obligations using
interactive prover.

Broadcast(pp,mm)PO2


m1 7→ m2 ∈ corder
m2 7→ pp ∈ sender
m1 7→ pp /∈ sender
⇒
m1 ∈ cdeliver[{pp}]




and
Broadcast(pp,mm)PO3


m1 7→ m2 ∈ corder
m2 7→ pp ∈ sender
m1 /∈ cdeliver[{pp}]
⇒
m1 7→ pp ∈ sender




The proof obligation PO2 generated by the Broadcast event state that if a
message m1 causally precedes m2 i.e., (m1 7→ m2) ∈ corder, and that pp is sender
of m2 and m1 was not sent by process pp then process pp must have delivered
m1. This corresponds to the property of local order. Similarly, the proof obligation
PO3 state that if m1 causally precedes m2; and pp is sender of m2 and pp have
not delivered m1 then pp is sender of m1. It can be noticed that this property
corresponds to the FIFO order. Therefore, to discharge these proof obligations, we
add following invariant to the model.

13

m1 7→ m2 ∈ corder ∧
m2 7→ p ∈ sender
⇒
((m1 7→ p) ∈ sender) ∪ ((p 7→ m1) ∈ cdeliver)

This invariant is given as Inv 3 in the Fig. 10. After adding invariant Inv 3 to
the model we discharge the proof obligations PO2 and PO3 associated with the
Broadcast event. However, due to addition of Inv 3 additional proof obligations
associated with Broadcast and CausalDeliver events are generated. The proof obli-
gation associated with the Broadcast event is discharged using interactive prover.
The following proof obligation associated with CausalDeliver event can not be dis-
charged interactively.

CausalDeliver(pp,mm)PO4


Inv 3 ∧
m1 7→ m2 ∈ corder
pp 7→ m2 ∈ cdeliver
⇒
m1 ∈ (sender−1[{pp}]) ∪ (cdeliver[{pp}])




The PO4 state that for message m1 and m2 where m1 causally precedes m2
and a process pp has delivered m2 then pp has either delivered m1 or broadcasted
m1. On simplifying the PO4 with the hypothesis given as Inv 2, it require us to
prove following.

m1 7→ m2 ∈ corder ∧
p 7→ m2 ∈ cdeliver
⇒
p 7→ m1 ∈ cdeliver

We add above as an invariant to our model given as Inv 4 in the Fig. 10. It
state that if m1 causally precedes m2 then for any process p who has delivered m2
implies that it has also delivered m1. After adding invariant Inv 4 to the model
we are able to discharge PO4. Addition of Inv 4 generate new proof obligations
associated with Broadcast and CausalDeliver events. These proof obligations are
also discharged interactively using interactive prover. It can be noticed that invari-
ant Inv 4 also state the causal order correctness criterion and is discovered during
invariant strengthening.

We observe that after three iteration of invariant strengthening we arrive at a
set of invariants that is sufficient to discharge all proof obligations. By discharg-
ing all proof obligations we ensure that this model preserves the causal precedence
relationship on the messages.

4.5 Second Refinement : Introducing Vector Clocks

In this section we present how abstract causal order can be implemented by vector
clocks. The goals of this refinement are given below.

– To replace abstract global variable corder with equivalent vector clock rules.

– To refine operation Broadcast to generate the vector timestamp of message
which is equivalent to global causal order.

– To refine operation CausalDeliver to include a mechanism by which early
message or messages violating the global causal order may be detected at the
recipient process.

14

In a system of vector clocks [9, 7, 23, 24], every process maintains a vector of size
N where N is the total number of processes in the system. Process Pi maintains
a vector clock VTPi where VTPi(i) is the local logical time at Pi while VTPi(j)
represents the process Pi’s latest knowledge of the time at process Pj . More
precisely VTPi(j) (i 6=j) represents the time of occurrence of an event at process Pj

when the most recent message was sent from Pj to Pi directly or indirectly.
In our model, we use following vector rules [9] to update the vector clock of a

process sending or receiving a message and to timestamp a message.

I. While sending a message M from process Pi to Pj , sender process Pi updates
its own time(ith entry of vector) by updating VTPi(i) as VTPi(i) := VTPi(i)
+ 1. The message time stampVTM of message M is generated as VTM (k) :=
VTPi(k), ∀ k ∈ (1..N), where N is number of processes in system. Since a
process Pi increments its own value only at the time of sending a message,
VTPi(i) indicates number of messages sent out by process Pi.

II. The recipient process Pj delays the delivery of message M until following
conditions are satisfied.

i VTPj(i)= VTM (i) - 1

ii VTPj(k)≥ VTM (k), ∀k ∈ (1..N) ∧ (k 6= i).

The first condition ensures that process Pj has received all but one mes-
sage sent by process Pi. The second condition ensures that process Pj has
received all messages received by sender Pi before sending the message M.
These conditions ensures global ordering on messages.

III. The recipient process Pj updates its vector clock VTPj at message receive
event of message M as VTPj(k) := max (VTPj(k),VTM (k)). Therefore
in vector clock of process Pj , VTPj(i) indicates the number of messages
delivered to process Pj sent by process Pi.

This refinement(second refinement) consists of four state variables sender, cde-
liver, VTP and VTM. The new state variables VTP and VTM respectively rep-
resents vector time of a process and the vector time stamp of a message. These
variables are typed as follows.

V TP ∈ PROCESS → (PROCESS →NATURAL)
V TM ∈ MESSAGE → (PROCESS →NATURAL)

These variables are initialized as follows,

V TP := PROCESS × {PROCESS × 0}
V TM := MESSAGE × {PROCESS × 0}

As shown above, the variables VTP and VTM are initialized by assigning a array
of vector initialized with zero to each process and messages.

The refined specifications of Broadcast, and CausalDeliver event are given in
Fig 11. As shown in the BroadCast specifications operations involving abstract
variable corder are replaced by the vector rules. It can be noticed that at the
time of broadcasting a message mm, process pp increments its own clock value
VTP(pp)(pp) by one. The VTP(pp)(pp) represents the number of messages sent by
process pp. The modified vector timestamp of process is assigned to message mm
giving vector timestamp of message mm.

As shown in the event CausalDeliver, the messages are delivered at a process
only if it has delivered all but one message from the sender of that message. Vector
timestamp of recipient process and message are also compared to ensure that all

15

 BroadCast (pp e PROCESS , mm e MESSAGE) Å
 WHEN mm ‰dom(sender)
 THEN LET nVTP BE
 nVTP = VTP(pp) + { pp å VTP(pp)(pp)+1}
 IN VTM(mm) := nVTP
 || VTP(pp) := nVTP
 END
 || sender := sender U {mm å pp}
 END ;

 CausalDeliver(pp e PROCESS , mm e MESSAGE) Å
 WHEN mm e dom(sender)
 ¶ (pp å mm) ‰ cdeliver
 ¶ Ap.(p e PROCESS & p ≠sender(mm) fi VTP(pp)(p) ≥ VTM(mm)(p))
 ¶ VTP(pp)(sender(mm)) = VTM (mm)(sender(mm)) - 1
 THEN cdeliver := cdeliver U {pp å mm}
 || VTP(pp) := VTP(pp) + ({q | q e PROCESS ¶ VTP(pp)(q) < VTM(mm)(q)} r VTM(mm))
 END;

Figure 11: Refinement with Vector Clocks

messages delivered by the sender of the message before sending it, are also delivered
at the recipient process. These conditions are included as a guard in CausalDeliver
operation. It can be noticed that the guard involving the variable corder in the
abstract model are replaced by the guards involving comparison of vector timestamp
of message and process in the refinement.3, 4

4.6 Gluing invariants relating Causal Order and Vector Rules

The replacement of the operations and guards involving variable corder in abstract
model with operations and guards involving vector clock rule in refinement generates
proof obligations. These proof obligations can be discharged interactively using a B
Prover after three round of invariant strengthening. A full set of gluing invariants
involving abstract causal order and vector clock rules are given in Fig. 12. A brief
description of these properties are given below.

– If the vector time of process P is equal or more than vector time stamp of
any sent message M then P must have delivered message M. (Inv-5)

– For any two messages m1 and m2 where m1 causally precedes m2, the vector
time stamp of m1 is always less than vector time stamp of m2.(Inv-6)

– Since VTP(p)(p) represent total number of messages sent by process p and
VTM(m)(p) represent number of messages received by the sender of m from
process p before sending m , the number of messages sent by process p will be
greater than or equal to the number of messages received by sender(m) from
p .(Inv-7)

– A message whose time stamp is a vector of zero’s implies that it is not causally
ordered. (Inv-8)

3(f ¢− g) represents function f overridden by g.
4(s ¢ f) represents function f is domain restricted by s.

16

– For any two separate processes p1 and p2 , knowledge of occurrence of events
of p2 at p1 can not be better than knowledge at p2 itself. This property exists
in the distributed system where any common clock or memory does not exist.
(Inv-9)

4.7 Third and Fourth Refinement : Refinement of Causal
Deliver Event

It may be recalled that according to Rule III of vector clock, in the event of causally
ordered delivery of message M sent by the process Pi, the recipient process Pj
updates its vector clock VTPj as, VTPj(k) := max (VTPj(k),VTM (k)). It can be
be noticed that according to Rule II, the recipient process Pj delays the delivery
of message M until following conditions are satisfied.

i VTPj(i)= VTM (i) - 1

ii VTPj(k)≥ VTM (k), ∀k ∈ (1..N) ∧ (k 6= i).

The above conditions are included as guards in the event CausalDeliver given in
Fig. 11. In the third refinement we show that in the event of delivery of a message,
only one value in the vector clock of recipient process which corresponds to the
sender process of message, is modified. Consider the following statement of second
refinement.

V TP (pp) := V TP (pp)¢−
{(q | q ∈ PROCESS ∧ V TP (pp)(q) < V TM(mm)(q)}¢ V TM(mm))

The above operation is replaced by the following simplified operation in the third
refinement,

V TP (pp) := V TP (pp) ¢− {sender(mm) 7→ V TM(mm)(sender(mm))}

The above expression state that only one value in the vector clock of the recipient
process pp corresponding to the sender process of message is updated. The refined
CausalDeliver event is shown in the Fig. 13.

Invariants Required By

/*Inv-5*/ m e dom(sender) ¶ VTP(p1)(p2) ≥ VTM(m)(p2) Broadcast,
 fi (p1 å m) e cdeliver) CausalDeliver

/*Inv-6*/ (m1 å m2) e corder Broadcast,
 fi VTM (m1)(p) ≤ VTM(m2)(p)) CausalDeliver

/*Inv-7*/ m e dom(sender) Broadcast,
 fi VTM(m)(p) ≤ VTP(p)(p)) CausalDeliver

/*Inv-8*/ VTM (m) (p) = 0 Broadcast
 fi m ‰ (dom(corder) U ran(corder))

/*Inv-9*/ p1 ≠ p2 fi VTP (p1)(p2) ≤ VTP (p2) (p2)) Broadcast

Figure 12: Invariants-II

17

 CausalDeliver(pp e PROCESS , mm e MESSAGE) Å
 WHEN mm e dom(sender)
 ¶ (pp å mm) ‰ cdeliver
 ¶ Ap.(p e PROCESS & p ≠sender(mm) fi VTP(pp)(p) ≥ VTM(mm)(p))
 ¶ VTP(pp)(sender(mm)) = VTM (mm)(sender(mm)) - 1
 THEN cdeliver := cdeliver U {pp å mm}
 || VTP(pp) := VTP(pp) + { sender(mm) å VTM(mm)(sender(mm) }
 END;

Figure 13: Refined Causal Deliver Event : Third Refinement

This operation is further refined to the following in the fourth refinement which
precisely state that only one value in the vector clock of recipient process is updated.
The refined operations of model of vector clock implementation of abstract causal
order are given in Fig. 14.

V TP (pp)(sender(mm)) := V TM(mm)(sender(mm))

 BroadCast (pp e PROCESS , mm e MESSAGE) Å
 WHEN mm ‰dom(sender)
 THEN LET nVTP BE
 nVTP = VTP(pp) + { pp å VTP(pp)(pp)+1}
 IN VTM(mm) := nVTP
 || VTP(pp) := nVTP
 END
 || sender := sender U {mm å pp}
 END ;

 CausalDeliver(pp e PROCESS , mm e MESSAGE) Å
 WHEN mm e dom(sender)
 ¶ (pp å mm) ‰ cdeliver
 ¶ Ap.(p e PROCESS & p ≠sender(mm) fi VTP(pp)(p) ≥ VTM(mm)(p))
 ¶ VTP(pp)(sender(mm)) = VTM (mm)(sender(mm)) - 1
 THEN cdeliver := cdeliver U {pp å mm}
 || VTP(pp) (sender(mm)) := VTM(mm)(sender(mm))
 END;

Figure 14: Refined Causal Deliver Event : Fourth Refinement

Proof Statistics

The over all proof statistics is given in Table 1. Approximately sixty eight percent
of the proofs were discharged by the automatic prover, the rest were discharged by
using interactive prover of B Tool.

5 Total Order Broadcast

In this section we present the incremental development of a system of total order
broadcast. It is our assumption that processes communicate by a reliable broadcast.

18

Machine Total POs Completely Automatic Required Interaction
Abstract Model 14 14 00

Refinement1 43 21 22
Refinement2 47 28 19
Refinement3 06 06 00
Refinement4 02 02 00

Total 112 71 41

Table 1: Proof Statistics- Causal Order Broadcast

The key issues with respect to the total order broadcast algorithms are ; how to
build an order? and what information is necessary for defining a total order? In
our refinement we show that a total order on the messages can be achieved using a
fixed sequencer algorithm [12].

In the sequencer based algorithms, a specific process is elected as a sequencer
and become responsible for building a total order. A sequencer process may also
takes the role of a sender and destination in addition to the role of sequencer. In
a fixed sequencer approach [9, 15], to broadcast a message m, a sender sends m
to the sequencer. Upon receiving m, sequencer assigns it a sequence number and
send its sequence number to all destinations through control messages. There exist
three variants of fixed sequencer algorithms called UB(Unicast Broadcast), BB(
Broadcast Broadcast) and UUB(Unicast Unicast Broadcast). Our mechanism for
implementation of total order is based on the Broadcast Broadcast(BB) variant [9].
The protocol consists of first broadcasting m to all destinations including sequencer,
followed by a another broadcast of its sequence numbers by the sequencer.

[seqno(m)]
control message (m’)

Sequencer

computation message (m)

P3

P2

P1

Figure 15: BB variant of fixed sequencer

As shown in the Fig. 15 process P2 broadcast a computation message m. Upon
delivery of m to sequencer process, sequencer assigns a sequence number and broad-
cast its sequence number through a control message(m’). Upon receipt of the con-
trol messages, a destination process deliver its computation message according to
sequence numbers. In the following sections we present a formal analysis of total
order broadcast with respect to the Broadcast Broadcast(BB) variant of the fixed
sequencer approach.

In the following sections we outline incremental development of a system of total
order broadcast. Our refinement chain consists of six levels. A brief outline of each
level is given below.

L1 This consist of abstract model of total order broadcast. In this model, abstract
total order is constructed when a message is delivered to a process for the first
time. At all other processes a message is delivered in the total order.

L2 This is a refinement of abstract model which introduces sequencer. In this

19

refinement we show that the total order is built by the sequencer.

L3 This is a very simple refinement giving more concrete specification of Deliver
event. Through this refinement we illustrate that a total order can be built
using the messages delivered to the sequencer.

L4 In this refinement we introduce the notion of computation messages. Global
sequence numbers of the computation message are generated by the sequencer.
The delivery of the messages is done based on the sequence numbers.

L5 In this refinement we introduce notion of control messages. We also introduce
the relationship of each computation message with the control messages.

L6 A new event Receive Control is introduced. We illustrate that a process
other than sequencer can deliver a computation message only if it has received
control message for it.

5.1 Abstract Model of Total Order Broadcast

The abstract model of total order broadcast system is given in Fig. 16 and Fig. 17.
The specification consists of four variables sender, totalorder, tdeliver and delorder.
A brief description of the machine is given in the following steps.

MACHINE TotalOrder
SETS PROCESS; MESSAGE
VARIABLES sender, totalorder, delorder, tdeliver
INVARIANT sender e MESSAGE ß PROCESS ¶ totalorder e MESSAGE 1 MESSAGE ¶ delorder e PROCESS ß (MESSAGE 1 MESSAGE) ¶ tdeliver e PROCESS 1 MESSAGE
INITIALISATION
 sender := 0 || totalorder :=0
 delorder := PROCESS * {0} || tdeliver := 0

Figure 16: TotalOrder: Initial Part

The sender is a partial function from MESSAGE to PROCESS. The mapping
(m 7→ p) ∈ sender indicates that message m was sent by process p. The variable
totalorder is defined as a relation among the messages. A mapping of the form (m1
7→ m2) ∈ totalorder indicates that message m1 is totally ordered before m2.

In order to represent the delivery order of messages at a process, variable delorder
is used. A mapping (m1 7→ m2) ∈ delorder(p) indicate that process p has delivered
m1 before m2. The variable tdeliver represent the messages delivered following a
total order. A mapping of form (p 7→ m) ∈ tdeliver represents that a process p has
delivered m following a total order.

The event Broadcast given in the Fig. 17 models the broadcast of a message.
Similarly the event Deliver models the first ever delivery of a message to any process.
The global total order on the messages is constructed when it delivered to a process
for the first time. Later in the refinement we show that it is a role of a sequencer.
The TODeliver models the delivery of the messages when a total order on the
message has been constructed.

20

Broadcast (pp e PROCESS , mm e MESSAGE) Å
 WHEN mm ‰ dom(sender)
 THEN sender := sender U {mm å pp}

 END;

Deliver (pp e PROCESS ,mm e MESSAGE) Å
 WHEN mm e dom(sender)
 ¶ mm ‰ ran(tdeliver)
 ¶ ran(tdeliver) (tdeliver[{pp}]
 THEN tdeliver := tdeliver U {pp å mm}
 || totalorder := totalorder U (ran(tdeliver) * {mm})
 || delorder(pp) := delorder(pp) U (tdeliver[{pp}] * {mm})

END;

 TODeliver (pp e PROCESS , mm e MESSAGE) Å
 WHEN mm e dom(sender)
 ¶ mm e ran (tdeliver)
 ¶ pp å mm ‰ tdeliver
 ¶ Am.(m e MESSAGE ¶ (må mm) e totalorder
 fi (pp å m) e tdeliver)
 THEN tdeliver := tdeliver U {pp å mm}
 || delorder(pp) := delorder(pp) U (deliver[{pp}] * {mm})

END

Figure 17: TotalOrder: Events

Constructing a Total Order

The event Deliver models the delivery of a message (mm) at a process (pp) when
it is delivered for the first time. The following guards of this event ensures that the
message(mm) has not been delivered elsewhere and that each message delivered at
any other process has also been delivered to this process(pp).

mm /∈ ran(tdeliver)
ran(tdeliver) ⊆ tdeliver[{pp}]

Later in the refinement we show that this is a function of a designated process
called sequencer. As a consequence of the occurrence of Deliver event, the message
mm is delivered to the process pp and variable totalorder is updated by mappings
in (ran(tdeliver) × mm). This indicates that all messages delivered at any process
in the system are ordered before mm. Similarly, the delivery order at the process
is also updated such that all messages delivered at any process precedes mm. It
can be noticed that the total order for a message is built when it is delivered to a
process for the first time.

The event TOdeliver(pp,mm) models the delivery of a message mm to a process
pp respecting the total order. As the guard mm ∈ ran(tdeliver) implies that the mm
has been delivered to at least one process and it also implies that the total order on
the message mm has also been constructed. Later in the refinement we show that
process pp represents a process other than the sequencer process. The guard of the
event ensure that message mm has already been delivered elsewhere and that all
messages which precedes mm in abstract total order has also been delivered to pp.

21

5.2 Proof Obligations and Invariant Discovery

In this section we outline how the proof obligations generated by the B Tool guide
us discovering new invariants. A full set of invariant properties of the model of
total order broadcast system are given in Fig. 18 and 19 as first order predicates.
The invariant Inv-1 in Fig. 18 is the primary invariant which state total ordering
property and the other invariants(Inv 2-5) are discovered when the proof obligations
with respect to Inv-1 are discharged. In the second step we add Inv-6 in Fig. 19 as
enforcement invariant which state transitivity on total order. Other invariants(Inv
7-9) are discovered when the proof obligations with respect to Inv-6 are discharged.
A process of finding new invariants is briefly outlined below.

 Invariants Required By
__

/*Inv-1*/ (m1åm2) e delorder(p) Deliver, TOdeliver
 fi (m1 åm2) e totalorder

/*Inv-2*/ (p å m1) e tdeliver ¶ (p åm2) ‰ tdeliver TOdeliver
 ¶ m2 e ran(tdeliver)
 fi (m1 å m2) e totalorder

/*Inv-3*/ (p å m1) e tdeliver ¶ (p åm2) e tdeliver Deliver, TOdeliver
 ¶ (m2 å m1) ‰ totalorder
 fi (m1 å m2) e totalorder

/*Inv-4 */ (p1 å m1) e tdeliver ¶ (p1 åm2) ‰ tdeliver Deliver, TOdeliver
 ¶ (p2 å m1) e tdeliver ¶ (p2 åm2) e tdeliver
 fi (m1 å m2) e totalorder

/*Inv-5*/ m e MESSAGE fi m å m ‰ totalorder Deliver, TOdeliver

Figure 18: Invariants-I

The agreement and total order requirement imply that all correct process even-
tually deliver all messages in the same order [14]. Thus we add following invariant
to our model as a primary invariant.

∀(m1,m2, p).((m1 7→ m2) ∈ delorder(p) ⇒ (m1 7→ m2) ∈ totalorder)

When we add this invariant to our model two proof obligations were generated
associated with the event Deliver and TODeliver. Proof obligation associated with
the event Deliver was discharged using interactive prover, however the proof obli-
gation associated with TOdeliver could not be discharged. Following is simplified
form of proof obligation generated by interactive prover.

TOdeliver(PO1)


p 7→ m1 ∈ tdeliver
p 7→ m2 /∈ tdeliver
m2 ∈ ran(tdeliver)
⇒
m1 7→ m2 ∈ totalorder




In order to discharge this proof obligation we add a invariant to our model given
as Inv-2 in Fig. 18. Addition of Inv-2 was sufficient to discharge PO1, however a

22

new proof obligation associated with TODeliver was generated due to addition of
Inv-2. Following is the simplified form of the proof obligation.

TOdeliver(PO2)


p 7→ m1 ∈ tdeliver
p 7→ m2 ∈ tdeliver
m2 7→ m1 /∈ totalorder
⇒
m1 7→ m2 ∈ totalorder




In order to discharge the proof obligation we add another invariant Inv-3 to our
model. Addition of this invariant to the model further generate proof obligations.
After three round of invariant strengthening we arrive at a set of invariant given in
Fig. 18 which were sufficient to discharge all proof obligations.

Invariants Required By

/*Inv-6 */ (m1 å m2) e totalorder ¶ (m2 åm3) e totalorder Broadcast, Deliver

 fi (m1 å m3) e totalorder TOdeliver

/*Inv-7 */ (m1åm2) e totalorder ¶ (påm2) e tdeliver Broadcast, Deliver
 fi (p åm1) e tdeliver TOdeliver

/*Inv-8 */ m e (dom (totalorder) u ran(totalorder)) Deliver
 fi m e ran(tdeliver)

/*Inv-9 */ m ‰ dom(sender) fi m ‰ dom(totalorder) Broadcast, Deliver

 m ‰ dom(sender) fi m ‰ ran(totalorder) TOdeliver
 ran(tdeliver) z dom(sender)

Figure 19: Invariants-II

In the next step our goal was to verify that our model of Total Order also
preserves transitive properties on the total ordering. In order to verify that total
order is transitive, we add following as a enforcement invariant to the list of the
invariants.

(m1 7→ m2) ∈ totalorder
(m2 7→ m3) ∈ totalorder
⇒
(m1 7→ m3) ∈ totalorder

Addition of this invariant generate proof obligations associated with the event
Broadcast, Deliver and TODeliver. We are able to discharge proofs related with
Broadcast event using interactive prover, however the following proof obligation
associated with Deliver event could not be discharged by automatic prover.

Deliver(pp,mm)PO3


(m1 7→ m2) ∈ totalorder
(p 7→ m2) ∈ tdeliver
⇒
(p 7→ m1) ∈ tdeliver




23

This property on the messages states that for two computation message m1 and
m2 if m1 is totally ordered before m2 then for any process p who has delivered m2
implies that it has also delivered m1. In order to discharge the this proof obligations
we add Inv-7 given in Fig. 19.

When we add this invariant to our model it generate further proof obligations
associated with the events Broadcast, Deliver and TOdeliver. The proof obligation
associated with TOdeliver is discharged using automatic prover. The simplified
form of proof obligation associated with the events BroadCast which can not be
discharged automatically is given below.

BroadCast(pp,mm)PO4


Inv7
mm /∈ dom(sender)
(pp 7→ m2) ∈ tdeliver
(mm 7→ m2) ∈ totalorder
m1 = mm
m2 6= mm
⇒
(pp 7→ mm) ∈ tdeliver




It can be noticed that there is a contradiction in the hypothesis of this proof obli-
gation i.e., the hypothesis mm /∈ dom(sender) and (mm 7→ m2) ∈ totalorder can
not be true simultaneously because of our assumption that a totalorder is built only
when a message has been sent out. Similarly, the goal (pp 7→ mm) ∈ tdeliver can
not be proved under the hypothesis mm /∈ dom(sender). Thus we add following
invariant(s) to our model given as Inv-8,9 in Fig. 19.

∀m .(m ∈ (dom(totalorder) ∪ ran(totalorder)) ⇒ m ∈ ran(tdeliver))
∀(m).(m /∈ dom(sender) ⇒ m /∈ ran(totalorder))
∀(m).(m /∈ dom(sender) ⇒ m /∈ dom(totalorder))
ran(deliver) ⊆ dom(sender)

Addition of these invariants were sufficient to discharge all proof obligations. There-
fore after four iterations of invariant strengthening we arrive at a set of invariant
that is sufficient to discharge all proof obligations generated due the addition of Inv
6. A full set of invariant are given in the Fig. 19.

5.3 First Refinement : Introducing Sequencer

In this refinement we introduce the notion of the sequencer. The refinement given
in the Fig. 20 refines abstract model given in Fig. 16 and Fig. 17. The sequencer
is defined as a constant for this model as sequencer ∈ PROCESS. As shown in the
refined specification of Deliver event given in Fig. 20, a message is first delivered
to the sequencer process. It can be noticed that the the following guards in the
abstract specification

mm /∈ ran(tdeliver)
ran(tdeliver) ⊆ tdeliver[pp]

are replaced by following.

pp = sequencer
(sequencer 7→ mm) /∈ tdeliver

The replacement of the guards in the Deliver event generate new proof obli-
gations. Using the same approach of invariant discovery, we arrived at a set of
invariants which was sufficient to discharge all proof obligations. These invariants
are given in Fig. 21. A brief description of these invariants are given in the following
steps.

24

 Broadcast (pp e PROCESS , mm e MESSAGE) Å
 WHEN mm ‰ dom(sender)
 THEN sender := sender U {mm å pp}
 END;

Deliver (pp e PROCESS ,mm e MESSAGE) Å
 WHEN pp = sequencer ¶ mm e dom(sender) ¶ (sequencer å mm) ‰ tdeliver
 THEN tdeliver := tdeliver U {pp å mm}
 || totalorder := totalorder U (ran(tdeliver) * {mm})
 END;

 TODeliver (pp e PROCESS , mm e MESSAGE) Å
 WHEN pp ≠ sequencer
 ¶ mm e dom(sender)
 ¶ mm e ran (tdeliver)
 ¶ pp å mm ‰ tdeliver
 ¶ Am.(m e MESSAGE ¶ (må mm) e totalorder
 fi (pp å m) e tdeliver)
 THEN tdeliver := tdeliver U {pp å mm}
 END

Figure 20: TotalOrder Refinement-I

– All messages delivered to any process in the system has also been delivered
to the sequencer(Inv-10).

– A message not delivered to the sequencer is not delivered elsewhere(Inv-11).

– If a total order on any message m has been constructed then it must have
been delivered to the sequencer(Inv-12,13).

Similarly it can be noticed a guard pp 6= sequencer is added in the specifications
of TODeliver event. Thus on occurrence of the event of TODeliver, a message mm
is delivered to a process other than the sequencer.

 Invariants Required By
__

/*Inv-10*/ ran(tdeliver) (tdeliver[{sequencer}] Deliver,TOdeliver

/*Inv-11*/ (sequencer å m) ‰ tdeliver fi m ‰ ran(tdeliver) Deliver

/*Inv-12*/ m e dom(totalorder) fi (sequencer å m) e tdeliver Deliver

/*Inv-13*/ m e ran(totalorder) fi (sequencer å m) e tdeliver Deliver

Figure 21: TotalOrder Refinement-I : Invariants

25

5.4 Second Refinement : Refinement of Deliver event

This is a very simple refinement giving more concrete specification of Deliver event.
Through this refinement we illustrate that a total order can be built using the
messages delivered to the sequencer. As shown in the Fig. 20, a total order is
generated as,

totalorder := totalorder ∪ (ran(tdeliver)× {mm})
It state that all messages delivered at any process are ordered before the new

message mm. In the refined Deliver event the totalorder is constructed as below,

totalorder := totalorder ∪ (tdeliver[{sequencer}]× {mm})
It state that all messages delivered to the sequencer are ordered before the new

message mm. The refined specifications of Deliver event are given in the Fig. 22.

Deliver (pp e PROCESS ,mm e MESSAGE) Å
 WHEN pp = sequencer ¶ mm e dom(sender) ¶ (sequencer å mm) ‰ tdeliver
 THEN tdeliver := tdeliver U {pp å mm}
 || totalorder := totalorder U (tdeliver[{sequencer}] * {mm})
 END;

 Figure 22: TotalOrder Refinement-II : Refined Deliver Event

5.5 Third Refinement : Introducing the Sequence Numbers

In the third refinement we introduce the computation messages and the sequence
numbers. The messages broadcast by the the processes which need to be delivered
in the total order are called computation messages. In this intermediate refinement
step, the sequence number to computation messages are assigned by the sequencer.
This refinement introduces following new variables.

computation ⊆ MESSAGE
seqno ∈ computation 7→Natural
counter ∈ Natural

Similarly, variable seqno is to assign sequence number to the computation mes-
sages. The counter, initialized with zero, is maintained by the sequencer process
and incremented by one each time a control message is sent out by the sequencer
process. It can be noted in the specification of TODeliver event that these message
are delivered to the processes other than the sequencer in their sequence numbers.
The refined model is given in the Fig. 23.

It can be noticed that following guard in the abstract TODeliver

∀m.(m ∈ MESSAGE ∧ (m 7→ mm) ∈ totalorder ⇒ (pp 7→ m) ∈ tdeliver)

is replaced by

∀m.(m ∈ MESSAGE ∧ seqno(m) < seqno(mm) ⇒ (pp 7→ m) ∈ tdeliver)

The change of the guards in the TODeliver event generate new proof obligations.
These proof obligations are discharged by adding following two invariant to the
model.

26

 Broadcast (pp e PROCESS , mm e MESSAGE) Å
 WHEN mm ‰ dom(sender)
 THEN sender := sender U {mm å pp}
 || computation := computation U {mm}

 END;

Deliver (pp e PROCESS ,mm e MESSAGE) Å
 WHEN pp = sequencer ¶ mm e dom(sender) ¶ mm e computation ¶ (sequencer å mm) ‰ tdeliver
 THEN totalorder := totalorder U (deliver[{sequencer}] * {mm})
 || tdeliver := tdeliver U {pp å mm}

 || seqno := seqno U {mm å counter}
 || counter:= counter + 1
 END;

 TODeliver (pp e PROCESS , mm e MESSAGE) Å
 WHEN pp ≠ sequencer
 ¶ mm e dom(sender)
 ¶ mm e ran (tdeliver)
 ¶ pp å mm ‰ tdeliver
 ¶ Am.(m e MESSAGE ¶ (seqno(m) < seqno(mm))
 fi (pp å m) e tdeliver)
 THEN tdeliver := tdeliver U {pp å mm}
 END

 Figure 23: Refinement-III

∀(m1,m2) · ((m1 7→ m2) ∈ totalorder ⇒ seqno(m1) < seqno(m2)) (1)

∀(m) · (m ∈ computation ∧m ∈ dom(seqno) ⇒ sequencer 7→ m ∈ tdeliver) (2)

5.6 Fourth Refinement : Introducing Control Messages

In this refinement we introduces control messages. The messages are classified as
either a computation message or a control message. A computation message is one
which can be sent by any process and that need to be delivered following a total
order. For each computation message there is an associated control message. The
control messages are sent by the sequencer process once it delivers a computation
message. We have illustrated this protocol in the Fig. 15.

In this refinement of total order broadcast,a process broadcasts a computation
message mm to all processes including the sequencer. Upon delivery of this mes-
sage, the sequencer assigns it a sequence number and broadcast its control message.
All process except the sequencer deliver the corresponding computation messages
in the order of the sequence numbers. This refinement also consists of following new
state variables typed as follows,

27

 Broadcast (pp e PROCESS , mm e MESSAGE) Å
 WHEN mm ‰ dom(sender)
 THEN sender := sender U {mm å pp}
 || computation := computation U {mm}

 END;
Deliver (pp e PROCESS ,mm e MESSAGE,mc e MESSAGE) Å
 WHEN pp = sequencer ¶ mm e dom(sender) ¶ mm e computation ¶ (sequencer å mm) ‰ tdeliver ¶ mc ‰ dom(messcontrol) ¶ mm ‰ ran(messcontrol)
 THEN totalorder := totalorder U (tdeliver[{sequencer}] * {mm})
 || tdeliver := tdeliver U {pp å mm}
 || control := control U {mc}

 || messcontrol := messcontrol U {mc å mm}
 || seqno := seqno U {mm å counter}
 || counter:= counter + 1
 END;

 TODeliver (pp e PROCESS , mm e MESSAGE) Å
 WHEN pp ≠ sequencer ¶ mm e dom(sender) ¶ mm e ran (messcontrol)
 ¶ pp å mm ‰ tdeliver
 ¶ Am.(m e MESSAGE ¶ (seqno(m) < seqno(mm))
 fi (pp å m) e tdeliver)
 THEN tdeliver := tdeliver U {pp å mm}
 END

 Figure 24: Refinement-IV

control ⊆ MESSAGE
messcontrol ∈ control 7½ computation

The variables control and computation are used to cast a message as either a
computation or a control message. The set control contains the control messages
sent by the sequencer. The variable messcontrol is a partial injective function
which defines relationship among a control message and its computation message.
A mapping (m1 7→ m2) ∈ messcontrol indicate that message m1 is the control
message related to the computation message m2. Since messcontrol is defined as
a partial injective function, it also implies that there can only be a one control
message for each computation message and vice-versa. The set ran(messcontrol)
contains the computation messages for which control messages has been sent by the
sequencer. The refined model is given in the Fig. 24.

The change in the guards in Deliver and TOdeliver generate some proof obliga-
tions which are discharged by adding following invariant to the model.

ran(messcontrol) = ran(tdeliver) (3)

ran(messcontrol) ⊆ computation (4)

28

5.7 Fifth Refinement : Introducing Receive Control Event

A new event ReceiveControl is introduced in this refinement. This event, which
refines skip in the abstraction, models receiving of control messages at a processes.
A new variable receive is also introduced in this refinement as receive ∈ PROCESS
↔ control. A mapping p 7→ m ∈ receive indicate that process p has received control
message m. The specifications of the refined events are given in Fig. 25, 26.

 Broadcast (pp e PROCESS , mm e MESSAGE) Å
 WHEN mm ‰ dom(sender)
 THEN sender := sender U {mm å pp}
 || computation := computation U {mm}

 END;

Deliver (pp e PROCESS ,mm e MESSAGE,mce MESSAGE) Å
 WHEN pp = sequencer ¶ mm e dom(sender) ¶ mm e computation ¶ mm ‰ ran(messcontrol) ¶ mc ‰ dom(messcontrol) ¶ (sequencer å mm) ‰ tdeliver
 THEN totalorder := totalorder U (tdeliver[{pp}] * {mm})
 || tdeliver := tdeliver U {pp å mm}
 || messcontrol := messcontrol U {mc å mm}

 || control := control U {mc}
 || seqno := seqno U {mm å counter}
 || counter:= counter + 1
 END;

Figure 25: Refinement-V : Part-1

As shown in the Fig. 25, the event BroadCast(pp,mm) models the broadcast of
a computation message. The Deliver models the event of sending a control message
once a computation message is delivered at the sequencer. It can be noticed that a
sequencer assigns a sequence number to each computation message using a counter.
Variable messcontrol is also updated to contain the relationship of a control and
a computation message. The entry mc ∈ control, indicate that message mc is
a control message sent by the sequencer. The sequence number of the associated
computation message is sent through the control message and a recipient of a control
message delivers the computation message according the sequence numbers. The
new event ReceiveControl models the recipe of the control message at processes. The
variable receive is updated when a control message is received at a process. The
event TOdeliver models event of delivery of a computation message to a process. As
shown in the Fig. 26, the guard mm ∈ ran(messcontrol) is replaced by the following,

(pp 7→ messcontrol−1(mm)) ∈ receive

This guard of the TOdeliver event ensures that a process pp delivers a computation
message mm only when its corresponding control message has been received by the
process pp. The change in the guards generate the proof obligations associated with
the event TOdeliver. In order to discharge these proof obligation we add following
to the list of invariants.

∀m · (m ∈ computation ∧messcontrol−1(m) ∈ receive ⇒ m ∈ ran(messcontrol))

29

 ReceiveControl (pp e PROCESS , mc e MESSAGE) Å

 WHEN mc e control ¶ (pp å mc) ‰ receive
 THEN receive := receive U {pp å mc}
 END

 TODeliver (pp e PROCESS , mm e MESSAGE) Å
 WHEN pp ≠ sequencer ¶ mm e dom(sender) ¶ mm e computation ¶ (pp å mm) ‰ tdeliver ¶ (pp å messcontrol-1 (mm)) e receive ¶ Am.(m e MESSAGE & (seqno(m) < seqno(mm)
 fi (pp å m) e tdeliver)
 THEN tdeliver := tdeliver U {pp å mm}
 END

Figure 26: Refinement-V : Part-2

Proof Statistics

The over all proof statistics for the development of a system of total order broadcast
is given in Table 2. Approximately seventy five percent of the proofs were discharged
by the automatic prover, the rest were discharged by using interactive prover of B
Tool.

Machine Total POs Completely Automatic Required Interaction
Abstract Model 48 29 19

Refinement1 19 16 03
Refinement2 2 2 00
Refinement3 18 14 04
Refinement4 15 14 01
Refinement5 04 04 00

Total 106 79 27

Table 2: Proof Statistics- Total Order Broadcast

6 Total Causal Order Broadcast

We have presented B specifications of causal order broadcast system and the total
order broadcast system as separate development in the sections 4 and 5. In this
section we present B specification of an execution model of a system which respect
both total and a causal order on the computation messages. A process is said to
codeliver a message when it is delivered following a causal order, similarly a process
is said to todeliver a message when it is delivered following a total order. In this
model we use a fixed sequencer algorithm to implement total order. The protocol
works as follows. A process first broadcasts a computation message after building
a causal order. This computation message is codelivered to all processes including
the sequencer. As discussed in the section 5, the sequencer is an specific process
which builds the total order on the computation messages. Upon codelivery of the

30

computation message at the sequencer process, sequencer assigns computation mes-
sage a sequence number and further broadcast its sequence number through control
message. All messages inclusive of control message in our model are codelivered.
Since a broadcast of a computation message causally precedes the broadcast of its
control message, each process codelivers computation message before it delivers its
control message. Upon codelivery of a control message, a process todelivers the
computation message in the order of sequence numbers. As shown in Fig. 27, when
two process P2 and P3 broadcast computation messages M1 and M2, they are
first codelivered to all processes including the sequencer. The sequencer builds a
total order on the computation messages in the order they were codelivered to the
sequencer and broadcast their sequence number through their respective control
messages. When a process codelivers the control message, it then todeliver the cor-
responding computation message. Thus each process codelivers the control message
respecting the causality of their respective computation message.

Sequencer

M2’M1’

M2

M1

P3

P2

P1

Figure 27: Execution Model of Total Causal Order

The incremental development of system of Total Causal Order broadcast is de-
veloped in three levels. These levels are outlined below.

L1 This level consists of abstract model of causally and totally ordered broadcast.

L2 In this refinement step we replace abstract variables causalorder and totalorder
with the vector clock rules and sequence numbers respectively.

L3 In this refinement we show that sequence numbers are redundant and they can
be replaced by the vector clock rules. We also present the gluing invariants
relating abstract causalorder, totalorder, vector clocks and sequence numbers.

6.1 Abstract Model of Total Causal Order Broadcast

The initial part of abstract model of this system is given as TotalCausalOrder in
Fig. 28 as a B Machine. The specifications of the events of the machine are given
in Fig. 29 and Fig. 30. As shown in the Fig. 28, sequencer is defined as a constant.
Variable sender is used to represent the messages broadcasted by a process.

The variable cdeliver represents the messages codelivered to the processes follow-
ing a causal order. Similarly, variable tdeliver represent the messages todelivered to
the processes following a total order. The variable messcontrol is a partial injective
function which defines relationship between a computation message and its control
message. A mapping (m1 7→ m2) ∈ messcontrol indicate that message m1 is the
control message related to the computation message m2. The set ran(messcontrol)
contains the computation messages for which control messages has been sent by the
sequencer.

In order to represent the causally ordered delivery of the messages at a process,
variable cdeloder is used. A mapping of the form (m1 7→m2) ∈ cdelorder(p) indicate
that the process p has codelivered m1 before m2. Similarly, a mapping m1 7→ m2)

31

MACHINE TotalCausalOrder
CONSTANTS sequencer
PROPERTIES sequencer e PROCESS
SETS PROCESS; MESSAGE;
 MTYPE= {Computation , Control}
VARIABLES sender , cdeliver , tdeliver , mtype ,
 messcontrol , causalorder , totalorder,
 cdelorder,tdelorder
INVARIANT sender e MESSAGE ß PROCESS ¶ cdeliver e PROCESS 1 MESSAGE
 ¶ tdeliver e PROCESS 1 MESSAGE
 ¶ mtype e MESSAGE ß MTYPE
 ¶ messcontrol e MESSAGE 4 MESSAGE ¶ causalorder e MESSAGE 1 MESSAGE
 ¶ totalorder e MESSAGE 1 MESSAGE ¶ cdelorder e PROCESSß (MESSAGE 1 MESSAGE) ¶ tdelorder e PROCESSß (MESSAGE 1 MESSAGE)

 INITIALISATION
 sender := 0 || cdeliver := 0 || tdeliver := 0 ||
 mtype := 0 || messcontrol := 0 || causalorder :=0 ||
 totalorder :=0 || cdelorder := PROCESS * {0} ||
 tdelorder := PROCESS * {0}

Figure 28: TotalCausalOrder: Initial Part

BroadCast (pp e PROCESS , mm e MESSAGE) Å
 WHEN mm ‰ dom(sender)
 THEN sender := sender U {mm å pp}
 || causalorder := causalorder U((sender -1[{pp}] * {mm})
 U (cdeliver[{pp}] * {mm}))
 || mtype(mm) := Computation
 END;

CausalDeliver(pp e PROCESS , mm e MESSAGE) Å
 WHEN mm e dom(sender)
 ¶ (pp å mm) ‰ cdeliver
 ¶ Am.(m e MESSAGE ¶ (m å mm) e causalorder
 fi (pp å m) e cdeliver)
 THEN cdeliver := cdeliver U {pp å mm}
 || cdelorder(pp) :=cdeloder(pp) U (cdeliver[{pp}] * {mm})
 END;

Figure 29: TotalCausalOrder: Events-I

∈ tdelorder(p) indicate that the process p has todelivered m1 before m2. It may be
noted that a message may have been codelivered at a process but still waiting for
it to be todelivered.

32

SendControl (pp e PROCESS ,mm e MESSAGE, mc e MESSAGE) Å
 WHEN pp = sequencer
 ¶ mc ‰ dom(sender)
 ¶ mm ‰ ran(messcontrol)
 ¶ mtype(mm)= Computation
 ¶ (pp å mm) e cdeliver
 ¶ Am. (m e MESSAGE ¶ (m å mm) e causalorder
 fi m e ran (messcontrol))
 THEN causalorder := causalorder U ((sender -1[{sequencer}] * {mc})
 U (cdeliver[{sequencer}] * {mc}))
 || sender := sender U {mc å sequencer}
 || mtype(mc) := Control
 || messcontrol := messcontrol U {mc å mm}
 || LET m BE m = ran(messcontrol)
 IN totalorder := totalorder U (m * {mm}) END
 END;

TODeliver (pp e PROCESS ,mc e MESSAGE) Å
 WHEN mc e dom(sender)
 ¶ mtype(mc)=Control
 ¶ (pp å mc) e cdeliver
 ¶ (pp å messcontrol(mc)) e cdeliver
 ¶ (pp å messcontrol(mc)) ‰ tdeliver
 ¶ Am.(m e MESSAGE ¶ (m å messcontrol(mc)) e totalorder
 fi (pp å m) e tdeliver)
 THEN tdeliver := tdeliver U {pp å messcontrol(mc)}
 || tdelorder(pp) := tdeloder(pp) U (tdeliver[{pp}] *{messcontrol(mc)})
 END

Figure 30: TotalCausalOrder: Event-II

The Broadcast event given in the Fig. 29 models the broadcast of a computation
message. It can be noticed that a causal order is built by the sender process while
broadcasting a computation message. The event CausalDeliver models the event of
causally ordered delivery of message to a process. The guards of the CausalDeliver
also ensures that a message is codelivered only once. The following guards of the
CausalDeliver event ensure that a process pp causally codelivers a message mm
only if it has codelivered all messages which causally precedes mm.

∀m.((m 7→ mm) ∈ causalorder ⇒ (pp 7→ m) ∈ cdeliver)

Upon delivery of a message mm in causal order the variable cdelorder is also
updated so that all messages codelivered to process pp are ordered before mm.

The specifications of the events SendControl and TOdeliver are given in Fig. 30.
The SendControl is an event of sending a control message once a computation
message is codelivered at the sequencer. The following guard of this event ensure
that a control message(mc) for a computation message(mm) is broadcasted only
when it has already broadcasted control messages for the computation messages
which causally precedes mm.

∀m.((m 7→ mm) ∈ causalorder ⇒ m ∈ ran(messcontrol))

33

The set ran(messcontrol) contains the computation messages for which control mes-
sages has been sent by the sequencer. In the operations of event SendControl, it can
be noticed that the sequencer also builds the causal order on the control messages
and the variable messcontrol is updated by adding a corresponding mapping. A
total order for the computation messages mm is also build by the sequencer by
updating abstract variable totaloder as :

totalorder := totalorder ∪ (m× {mm})

where m = ran(messcontrol). This implies that all computation messages, for which
sequencer has already sent out control messages, are now totally ordered before mm.

The event TOdeliver event models of totally ordered delivery of a computation
message to a process. This event is activated when a process pp codelivers a control
message mc. The guard of the event ensures that on codelivery of a control message
mc by a process pp, it delivers a computation message in total order corresponding
to the control message mc if it has already delivered all computation messages which
are totally ordered before computation message defined as messcontrol(mc). It may
be noted that messcontrol(mc) represents a computation message corresponding to
the control message mc. Upon todelivery of a message mm the variable tdelorder is
also updated so that all messages todelivered to the process pp are ordered before
mm.

6.2 Invariant Properties of Total Causal Order

Some of the important invariant properties of our model of total causal order are
given in Fig. 31 as first order predicates. The codes for the events are given in the
Table 3. A brief description of these properties is given below.

– If message m1 causally precedes m2 and a process p has codelivered m2 then
delivery order at the process p must have been m1 followed by m2 (Inv-1).

– For two messages m1 and m2 where m1 is todelivered before m2 at a process
p (m1 7→ m2 ∈ delorder(p)) then m1 precedes m2 in abstract total order
(Inv-2).

– A message is first codelivered to a process then it is todelivered to the process.
This invariant state that a message delivered in a total order is also in a causal
order (Inv-3).

– The transitivity property on causal precedence relationship on the messages
holds on our model of causally and totally ordered broadcast(Inv-4).

– For two messages m1 and m2, if m1 causally precedes m2 and process p
has codelivered the message m2 then p has also codelivered the message m1
(Inv-5).

– The transitivity property on Total Order relationship on the messages also
holds on our model of causally and totally ordered broadcast(Inv-6) .

– For two messages m1 and m2, if m1 precedes m2 in total order and process
p has todelivered the message m2 then p has also todelivered m1 (Inv-7).

– For any two messages m1 and m2 whose control message has been sent out
i.e., m1,m2 ∈ ran(messcontrol) and that m1 causally precedes m2 then a total
order also exist among them i.e. m1 is totally ordered before m2. It can be
noticed that that message type of each message in the set ran(messcontrol) is
computation (Inv-8) .

34

Invariants Required By

/*Inv-1*/ (m1 å m2) e causalorder & (p å m2) e cdeliver BC,CD,SC
 fi (m1 å m2)e cdeloder(p)

/*Inv-2*/ (m1 å m2) e tdelorder(p) fi (m1 å m2)e totalorder SC,TOD

/*Inv-3*/ (p å m) e tdeliver fi (p å m)e cdeliver

/*Inv-4*/ (m1 å m2) e causalorder & (m2 å m3) e causalorder BC,CD,SC
 fi (m1 å m3)e causalorder

/*Inv-5*/ (m1 å m2) e causalorder & (p å m2) e cdeliver BC,CD,
 fi (p å m1) e cdeliver SC,TOD

/*Inv-6*/ (m1 å m2) e totalorder & (m2 å m3) e totalorder SC,TOD
 fi (m1 å m3)e totalorder

/*Inv-7*/ (m1 å m2) e totalorder & (p å m2) e tdeliver SC,TOD
 fi (p å m1) e tdeliver

/*Inv-8*/ m1 = ran(messcontrol) & m2 = ran(messcontrol) BC,SC, TOD & (m1 å m2) e causalorder
 fi (m1 å m2) e totalorder

/*Inv-9*/ mtype(m1)=Computation & mtype(m2)=Computation BC,SC, TOD & (m1 å m2) e causalorder & m2 e ran(messcontrol)
 fi m1 e ran(messcontrol)

/*Inv-10*/ m e ran(messcontrol) fi (sequencer åm)e cdeliver CD,SC

Figure 31: Invariants-I

– For any two computation messages m1 and m2 where m1 causally precedes
m2 and the control messages for m2 have been sent out implies that the
control message for m1 have also been sent(Inv-9).

– Each message whose control message have been sent, have also been codelivered
at the sequencer(Inv-10).

BC BroadCast CD CausalDeliver
SC SendControl TOD TODeliver

Table 3: Events Code

6.3 First Refinement : Introducing Vector Clocks

The first refinement of the machine TotalCausalOrder through vector clocks and
sequence numbers is shown in the Fig. 32, 33 and Fig. 34. The variables VTP,

35

VTM and seqno are introduced in this refinement representing vector clock of a
process, vector timestamp of a message and the sequence numbers respectively.

It can be noticed that operation of events (Broadcast, CausalDeliver and Send-
Control) involving abstract variable causalorder are replaced by the vector rules.
The operations of events SendControl and TOdeliver involving abstract variable
totalorder are replaced by sequence numbers(seqno).

REFINEMENT Vector
REFINES TotalCausalOrder

VARIABLES sender, cdeliver, mtype, messcontrol,
 tdeliver, seqno, counter, VTP,VTM

INVARIANT VTP e PROCESS f (PROCESS f NAT)
 ¶ VTM e MESSAGE f(PROCESS f NAT)
 ¶ seqno e MESSAGE ß NATURAL
 ¶ counter e NATURAL

INITIALISATION VTP := PROCESS * {PROCESS * {0}}
 || VTM := MESSAGE * {PROCESS * {0}}
 || sender :=0 || cdeliver :=0 || seqno := 0
 || counter := 0 || mtype := 0
 || messcontrol := 0 || tdeliver := 0

 Figure 32: First Refinement- Part I

 Broadcast(pp e PROCESS , mm e MESSAGE) Å
 WHEN mm ‰dom(sender)
 THEN LET nVTP BE nVTP = VTP(pp) + { pp å VTP(pp)(pp)+1}

 IN VTM(mm) := nVTP || VTP(pp) := nVTP END
 || sender := sender U {mm å pp}
 || mtype(mm) := Computation
 END ;

 CausalDeliver (pp e PROCESS , mm e MESSAGE) Å
 WHEN mm e dom(sender)
 ¶ (pp å mm) ‰ cdeliver
 ¶ Ap.(p e PROCESS ¶ p ≠ sender(mm)
 fi VTP(pp)(p) ≥ VTM(mm)(p))
 ¶ VTP(pp)(sender(mm)) = VTM (mm)(sender(mm))-1
 THEN
 cdeliver := cdeliver U {pp å mm}
 || VTP(pp) := VTP(pp) +
 ({q | q e PROCESS ¶ VTP(pp)(q) < VTM(mm)(q)} r VTM(mm))

 END;

Figure 33: First Refinement- Part II

The vector time of a process is represented by a variable VTP. The timestamp

36

SendControl (pp e PROCESS , mm e MESSAGE, mc e MESSAGE) Å
 WHEN pp = sequencer
 ¶ mc ‰ dom(sender)
 ¶ mm ‰ ran(messcontrol)
 ¶ mtype(mm)= Computation
 ¶ (pp å mm) e cdeliver
 ¶ A(m,p)•(p e PROCESS ¶ m e MESSAGE ¶ mtype(m)=Computation
 ¶ VTM (m)(p) ≤ VTM(mm)(p) fi m e ran(messcontrol))
THEN mtype(mc) := Control
 || messcontrol := messcontrol U {mc å mm}
 || LET nVTP BE nVTP = VTP(pp) + { pp å VTP(pp)(pp)+1}
 IN VTM(mc) := nVTP || VTP(pp) := nVTP END
 || sender := sender U {mc å pp}
 || LET ncount BE ncount = counter +1
 IN counter := ncount || seqno(mc) := ncount END
 END;

TODeliver (pp e PROCESS , mc e MESSAGE) Å
 WHEN mc e dom(sender)
 ¶ mtype(mc)=Control
 ¶ (pp å messcontrol(mc)) ‰ tdeliver
 ¶ Am.(me MESSAGE ¶ (seqno(messcontrol -1(m)) < seqno(mc))
 fi (pp å m) e tdeliver
 THEN tdeliver := tdeliver U {pp å messcontrol(mc)}
 END

Figure 34: First Refinement - Part III

of a message is represented by a variable VTM. VTP and VTM are defined as
functions. These functions maps the processes and messages to a vector of integers.
Vector timestamp of each process is initialized with value ’0’. Two new variables
seqno and counter are also introduced in this refinement. The function seqno maps a
message to a number called sequence number. The counter is a variable maintained
by the sequencer processes and it is updated each time a control message is sent by
the sequencer.

The events Broadcast(Fig. 33) and SendControl(Fig. 34) are events of sending
a message. In both of the events, sender process pp increments its own clock value
VTP(pp)(pp) by one. Recall that VTP(pp)(pp) represents the number of messages
sent by process pp. The modified vector timestamp of process is also assigned to
message mm giving vector timestamp of message mm.

The CausalDeliver(Fig. 33) events models causally ordered delivery of a message
mm at process pp. The following guard of the event involving abstract order,

∀m.((m 7→ mm) ∈ causalorder ⇒ (pp 7→ m ∈ cdeliver)

is replaced by following vector rules in the refinement.

(1) ∀p.(p ∈ PROCESS ∧ p 6= sender(mm) ⇒ VTP(pp)(p) ≥ VTM(mm)(p))
(2) VTP(pp)(sender(mm)) = VTM(mm)(sender(mm))− 1

The first condition state that the vector timestamp of a recipient process pp
and message mm are compared to ensure that all messages received by sender of

37

message before sending it, are also received at the recipient process. The second
condition state that process pp has received all but one message from the sender
of the message mm . An operation updating vector clock of recipient process pp is
also shown in the specification of CausalDeliver event.

The variable seqno is used for building a total order on the computation mes-
sages. In the refined specification of event SendControl, it can be noticed that
operation involving abstract totalorder is replaced by an operation containing vari-
able seqno and counter. The counter is incremented each time a control message
is sent and it is assigned to the control messages.

The guards of the event TOdeliver are strengthened in this refinement. It can
be noticed that following guard of the event TOdeliver involving abstract totalorder

∀m.((m 7→ messcontrol(mc) ∈ totalorder ⇒ (pp 7→ m) ∈ tdeliver)

is replaced by a following guard involving sequence numbers. It state that the
process has todelivered all computation messages m where the sequence number of
corresponding control message is less than the sequence number of mc.

∀m.(seqno(messcontrol−1(m)) < seqno(mc) ⇒ (pp 7→ m) ∈ tdeliver)

6.4 Gluing Invariants(Refinement-1)

The invariant showing the relationship of abstract order and totalorder with the
vector rules and sequence numbers is given in the Fig. 35. The code for the events
are given in Table 3. A process of construction of gluing invariant is given in
section 6.5. A brief description of these properties are given below.

- If the vector time of process P is equal or more than vector time stamp of
any sent message M then P must have codelivered the message M (Inv-11).

- For any two messages m1 and m2 where m1 causally precedes m2, the vector
time stamp of m1 is less than vector time stamp of m2 (Inv-12)

- Since VTP(p)(p) represent total number of message sent by process p and
VTM(m)(p) represent number of message received by sender of m from pro-
cess p before sending m , the number of messages sent by process p will be

Invariants Required By

/*Inv-11*/ me dom(sender) ¶ VTP(p1)(p2) ≥ VTM(m)(p2) BC,CD,SC

 fi (p1 å m) e cdeliver)

/*Inv-12*/ (m1 å m2) e causalorder fi VTM (m1)(p) ≤ VTM(m2)(p)) BC,CD

/*Inv-13*/ m e dom(sender) fi VTM(m)(p) ≤ VTP(p)(p)) BC,CD

/*Inv-14*/ VTM (m)(p)=0 fi m ‰ (dom(causalorder) U ran(causalorder)) BC,CD

/*Inv-15*/ messcontrol(m1) å messcontrol(m2) e totalorder SC,TOD
 fi seqno(m1) < seqno(m2))

Figure 35: Gluing Invariants-IV

38

greater than or equal to the number of messages received by sender(m) from
p (Inv-13).

- A message whose time stamp is a vector of zero’s implies that it is not
causally ordered(Inv-14). It may be noted that due to invariants dom(order)
⊆ dom(sender) and ran(order) ⊆ dom(sender) (given in Fig. ??), it is also
implied that these massages have not been sent.

- If computation messages corresponding to the control messages m1 and m2
are in totalorder then sequence number of m1 is less then the sequence number
of m2 (Inv-15).

6.5 Constructing Gluing Invariants

In this section we briefly outline how the gluing invariants given in Fig 35 are
constructed.

Relationship of abstract causal order and vector clock rules

The replacement of the guards and operations involving variable causalorder in
the abstract model by the equivalent rules of vector clock generate several proof
obligations due to refinement checking. Initially, the only proof obligation that can
not be proved is given below. It involve relationship between causalorder and vector
timestamp of message generated by the event CausalDeliver.

CausalDeliver(pp,mm)PO1


mm ∈ dom(sender) ∧
(pp 7→ mm) /∈ cdeliver ∧
∀p.(p ∈ PROCESS ⇒ V TM(mm)(p) ≥ V TP (pp)(p) ∧
V TP (pp)(sender(mm)) = V TM(mm)(sender(mm))− 1 ∧
m ∈ MESSAGE
m 7→ mm ∈ causalorder
⇒
(pp 7→ m) ∈ cdeliver




In this proof obligation it can be noticed that a message m causally precedes mm
i.e.,(m 7→ mm) ∈ causalorder and process pp has not codelivered mm. According to
vector clock rules, pp can codeliver mm only when it has codelivered all messages
inclusive of m which causally precedes mm. If a process pp has codelivered all but
one message from sender of mm then following must be hold,

V TP (pp)(sender(mm)) = V TM(mm)(sender(mm))− 1

Similarly, if a process pp has codelivered all messages sent by sender of mm before
sending mm and it has also codelivered mm then following must hold ,

V TP (pp)(sender(mm)) ≥ V TM(mm)(sender(mm))

Thus we add an invariant given at Inv 11 in Fig. 35 which state that if the vector
time of process p1 is equal or more than vector time stamp of any sent message
m then p1 must have codelivered the message m. Adding Inv 11 to the model
generates proof obligations associated with other events. Discharging these proof
obligations required other invariants given as Inv 12,13 and 14. Therefore, after
three iteration of invariant strengthening we arrive at a set of invariants which is
sufficient to discharge all proof obligations relating abstract causalorder and vector
clock rules.

39

Relationship of abstract total order and sequence number

Replacing abstract variable totalorder by sequence number in the operations of
SendControl and guards of TOdeliver event generate proof obligations. The first
proof obligation which can not be discharged automatically requires us to prove
following for TOdeliver event.

TOdeliver(pp,mc)PO2


mc ∈ dom(sender) ∧
mtype(mc) = Control ∧
(pp 7→ messcontrol(mc)) /∈ tdeliver ∧
∀m.(seqno(messcontrol−1(m)) < seqno(mc) ⇒ (pp 7→ m) ∈ tdeliver) ∧
m 7→ messcontrol(mc) ∈ totalorder
⇒
(pp 7→ m) ∈ tdeliver




It may also be noted that this proof obligation appears due to replacement of
following guard of TOdeliver involving abstract variable totalorder,

∀m.((m 7→ messcontrol(mc) ∈ totalorder ⇒ (pp 7→ m) ∈ tdeliver)

by the guard involving variable seqno,

∀m.((seqno(messcontrol−1(m)) < seqno(mc) ⇒ (pp 7→ m) ∈ tdeliver)

Therefore, in order to discharge this proof obligation we add the invariant Inv
15 to our model which relates abstract variable totalorder with the concrete seqno.
This invariant state that if corresponding computation messages of control messages
m1 and m2 are in totalorder then sequence number of m1 is less then sequence
number of m2. We notice that this invariant is sufficient to discharge all proof
obligations generated by SendControl and TOdeliver events.

6.6 Second Refinement : Replacing Sequence Number by
Vector Clocks

In the second refinement we outline how the need for generating separate se-
quence numbers can be correctly be implemented by the vector clock. It can be
noticed that the total order on the messages in the first refinement is realized with
the sequence numbers. The events SendControl and TOdeliver in the first refine-
ment are further refined for the elimination of the need of the sequence numbers to
be generated by the sequencer.

The specifications of the Broadcast and CausalDeliver events of first refinement
remains unaltered as none of these events make use of sequence numbers. In the
second refinement, the variables seqno and counter are replaced by vector clock
rules. The specifications of the refined SendControl and TOdeliver events are given
in Fig. 36, 37.

As shown in Fig. 36, the operations assigning sequence number to the control
messages is removed in the refined SendControl event. We use the fact that the
vector time stamp of the control message contains enough information required for
todelivery of the messages. Also as shown in Fig. 37, the guard of the event TOde-
liver which contains sequencer numbers in abstract model are replaced by vector
rules. This replacement in the refinement generates proof obligations involving
seqno and vector time stamp of messages.

To prove these proof obligations we add Inv 18, shown in Fig. 38 to our refined
model. Adding Inv 18 to the refinement require us to add new invariants Inv 19,20
to the refinement. A brief description of these invariants is given below.

40

SendControl (pp e PROCESS , mm e MESSAGE, mc e MESSAGE) Å
 WHEN
 pp = sequencer
 ¶ mc ‰ dom(sender)
 ¶ mm ‰ ran(messcontrol)
 ¶ mtype(mm)= Computation
 ¶ (pp å mm) e receive
 ¶ A(m,p)•(p e PROCESS ¶ m e MESSAGE ¶ mtype(m)=Computation
 ¶ VTM (m)(p) ≤ VTM(mm)(p) fi m e ran(messcontrol))
THEN
 mtype(mc) := Control
 || messcontrol := messcontrol U {mc å mm}
 || LET nVTP BE nVTP = VTP(pp) + { pp å VTP(pp)(pp)+1}
 IN VTM(mc) := nVTP || VTP(pp) := nVTP END
 || sender := sender U {mc å pp}
 END

Figure 36: Second Refinement : SendControl

TODeliver (pp e PROCESS , mc e MESSAGE) Å
 WHEN
 mc e dom(sender)
 ¶ mtype(mc)=Control
 ¶ (pp å mc) e buffer
 ¶ (pp å messcontrol(mc)) ‰ deliver
 ¶ Am.(me MESSAGE ¶ (VTM(m)(sequencer) ≤VTM(mc)(sequencer))
 fi (pp å messcontrol(m)) e deliver)
 THEN
 buffer := buffer - {pp å mc}
 || deliver := deliver U {pp å messcontrol(mc)}
 END

Figure 37: Second Refinement : TODeliver

- The sequence number assigned to a control message is same as sequencer’s
own logical time at the time of sending this message(Inv-16).

- For the given two control messages m1 and m2, if the vector time stamp of
m1 is less than the vector time stamp of m2 then the sequence number given
to m1 is also less than sequence number of m2 (Inv-17).

- For the given two control messages m1 and m2, if the sequence number given
to m1 is less than sequence number of m2 then the vector time stamp of m1
is also less than the vector time stamp of m2 (Inv-18).

After discharging the proof obligations generated due to the addition of these invari-
ants associated with the events Broadcast, SendControl and TOdeliver, we ensure
that events in Fig. 36, 37 are valid refinement of events in Fig. 34.

The overall proof statistics for the development of a model of Total Causal Order
is given in Table 4.

41

 Invariants Required By
__

/*Inv-16*/ mtype(m) = Control ¶ (m å sequencer) e sender SC,TOD
 fi seqno(m) = VTM(m)(sequencer))

/*Inv-17*/ mtype(m1) = Control ¶ mtype(m2) = Control BC,SC,TOD
 ¶ VTM(m1)(p) ≤ VTM(m2)(p)
 fi seqno (m1) ≤ seqno (m2))

/*Inv-18*/ mtype(m1) = Control ¶ mtype(m2) = Control SC,TOD
 ¶ seqno (m1) ≤ seqno (m2)
 fi VTM(m1)(p) ≤ VTM(m2)(p))

Figure 38: Second Refinement : Gluing Invariant

Machine Total POs Completely Automatic Required Interaction
Abstract Model 92 56 36
Refinement-I 51 32 19
Refinement-II 20 08 12

Overall 163 96 67

Table 4: Proof Statistics-Total Causal Order

7 Conclusions

The group communication primitives has been studied as a basic building block
for the development of fault tolerant distributed services. These primitives provide
higher guarantees on the delivery of the messages. In this paper we have outlined the
formal development of a distributed system in Event-B which provides a total and
a causal order on the messages. Firstly we have developed a model of a causal order
broadcast through incremental development. In this development we have outlined
how an abstract causal order on the message is constructed by the sender process.
In the refinements we have shown how an abstract causal order can correctly be
implemented by a system of vector clock. Subsequently, in the second development,
we develop a system of total order broadcast. In this development we outline how an
abstract total order is constructed by the sequencer and in the refinement steps we
present how the recipient processes delivers messages in the total order. Lastly, we
present development of system of total causal order broadcast which satisfies both
total and a causal order on the message delivery. In the refinements we outline how
the abstract total order and causal order can correctly be implemented by a vector
clock system. In the further refinement we also outline how the requirement of
generation of sequence numbers may be eliminated by employing vector clock rule.
In the development of these system we also discover interesting invariants which
provide a clear insight to the system.

The work reported in [13, 27] applies formal method to the group communication
system in order to verify the properties of algorithm. In [13] I/O automata is
used for formal modelling and a series of invariants relating state variables and
reachable states are proved by hand using the method of induction. Similarly,
in [27] the formal results for total and causal order are given which provide a proof of

42

correctness by theorem proving. Instead of theorem proving or proving correctness
of trace behavior, our approach is based on defining properties in abstract model
and proving that our model of algorithm is a correct refinement of abstract model.

The formal approach considered in this paper is based on Event-B which facil-
itates incremental development of systems. We have used Click’n’Prove B tool for
proof management. This tool generate the proof obligations due to refinement and
consistency checking and help discharge proof obligation by the use of automatic
and interactive prover. The majority of proofs are discharged by automatic prover
however some of the complex proofs require the use of the interactive prover. In
the development of a causal order broadcast 67 percent of the proofs are discharged
by the prover automatically. Similarly, in the development of total order broad-
cast and total causal order broadcast respectively 74 percent and 58 percent proofs
are discharged by the automatic prover. The proofs helps us to understand the
complexity of problem and the correctness of the solutions. They also helps us to
discover new system invariants providing a clear insight to the system.

References

[1] J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge Uni-
versity Press, 1996.

[2] J.-R. Abrial. Extending B without changing it (for developing distributed
systems). In H. Habrias, editor, First B Conference, November 1996.

[3] Jean-Raymond Abrial. Event based sequential program development: Appli-
cation to constructing a pointer program. In Keijiro Araki, Stefania Gnesi,
and Dino Mandrioli, editors, FME, volume 2805 of Lecture Notes in Computer
Science, pages 51–74. Springer, 2003.

[4] Jean-Raymond Abrial and Dominique Cansell. Click’n’ Prove: Interactive
proofs within set theory. In TPHOLs, pages 1–24, 2003.

[5] Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. A mechani-
cally proved and incremental development of ieee 1394 tree identify protocol.
Formal Asp. Comput., 14(3):215–227, 2003.

[6] Roberto Baldoni, Stefano Cimmino, and Carlo Marchetti. Total order commu-
nications: A practical analysis. In Mario Dal Cin, Mohamed Kaâniche, and
András Pataricza, editors, EDCC, volume 3463 of Lecture Notes in Computer
Science, pages 38–54. Springer, 2005.

[7] Roberto Baldoni and Michael Raynal. Fundamentals of distributed computing:
A practical tour of vector clock systems. IEEE Distributed Systems Online,
3(2), 2002.

[8] K P Birman and R Van Renesse. Reliable Distributed Computing with the Isis
Toolkit. IEEE Computer Society Press, 1994.

[9] Kenneth P. Birman, André Schiper, and Pat Stephenson. Lightweigt causal
and atomic group multicast. ACM Trans. Comput. Syst., 9(3):272–314, 1991.

[10] Michael Butler. An approach to the design of distributed systems with B AMN.
In Jonathan P. Bowen, Michael G. Hinchey, and David Till, editors, ZUM,
volume 1212 of Lecture Notes in Computer Science, pages 223–241. Springer,
1997.

43

[11] Michael Butler and Maria Walden. Distributed system development in B. Proc
Ist Conf. on B Method,Nantes,pp 155-168, 1996.

[12] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and
multicast algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–
421, 2004.

[13] Alan Fekete, Nancy A. Lynch, and Alexander A. Shvartsman. Specifying and
using a partitionable group communication service. ACM Trans. Comput.
Syst., 19(2):171–216, 2001.

[14] V. Hadzilacos and S.Toueg. A modular approach to fault-tolerant broadcasts
and related problems. Technical Report TR 94 -1425, Cornell University,NY,
1994.

[15] M. Frans Kaashoek and Andrew S. Tanenbaum. An evaluation of the amoeba
group communication system. In Proceedings of the 16th International Con-
ference on Distributed Computing Systems (ICDCS96), pages 436–448, IEEE
Computer Society,1996.

[16] Bettina Kemme and Gustavo Alonso. A suite of database replication protocols
based on group communication primitives. In Proc. Intl. Conf. Distributed
Computing System, Amsterdam, ICDCS, pages 156–163, 1998.

[17] Bettina Kemme, Fernando Pedone, Gustavo Alonso, and André Schiper. Pro-
cessing transactions over optimistic atomic broadcast protocols. In IEEE Com-
puter Society, ICDCS, pages 424–431, 1999.

[18] Bettina Kemme, Fernando Pedone, Gustavo Alonso, André Schiper, and
Matthias Wiesmann. Using optimistic atomic broadcast in transaction pro-
cessing systems. IEEE Trans. Knowl. Data Eng., 15(4):1018–1032, 2003.

[19] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[20] Leslie Lamport and Nancy A. Lynch. Distributed computing: Models and
methods. In Handbook of Theoretical Computer Science, Volume B: Formal
Models and Sematics (B), pages 1157–1199. 1990.

[21] Michael Leuschel and Michael J. Butler. Pro B : A model checker for B. In
FME, pages 855–874, 2003.

[22] C Metayer, J R Abrial, and L Voison. Event-B language. RODIN deliverables
3.2, http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, 2005.

[23] Michel Raynal, André Schiper, and Sam Toueg. The causal ordering abstraction
and a simple way to implement it. Information Processing Letters., 39(6):343–
350, 1991.

[24] Michel Raynal and Mukesh Singhal. Logical time: Capturing causality in
distributed systems. IEEE Computer, 29(2):49–56, 1996.

[25] Abdolbaghi Rezazadeh and Michael J. Butler. Some guidelines for formal
development of web-based applications in b-method. In Helen Treharne, Steve
King, Martin C. Henson, and Steve A. Schneider, editors, ZB, volume 3455 of
Lecture Notes in Computer Science, pages 472–492. Springer, 2005.

44

[26] Carlo Marchetti Stefano Cimmino and Roberto Baldoni. A classification of
total order specifications and its application to fixed sequencer-based imple-
mentations. Journal of Parallel and Distributed Computing, 66(1):108–127,
January 2006.

[27] C. Toinard, Gerard Florin, and C. Carrez. A formal method to prove ordering
properties of multicast systems. ACM Operating Systems Review, 33(4):75–89,
1999.

[28] Divakar Yadav and Michael Butler. Rigorous design of fault-tolerant transac-
tions for replicated database systems using event b. In Michael Butler, Cliff B.
Jones, Alexander Romanovsky, and Elena Troubitsyna, editors, RODIN Book,
volume 4157 of Lecture Notes in Computer Science, pages 343–363. Springer,
2006.

45

