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New trends in optimization in electromagnetics 
 
 

Abstract. This paper reviews recent advances in optimisation of electromagnetic problems. CAD assisted optimal design often necessitates 
repetitive usage of numerically intensive field computation where cost-effective approaches are required. Modern algorithms increasingly rely on 
surrogate modelling, kriging-assisted methods, pareto-optimality and design sensitivity.  
 
Streszczenie. Nowoczesne metody projektowania oparte na wspomaganiu komputerowym z wykorzystaniem numerycznego oblicznia pól 
elektromagnetycznych wymagają skutecznych, a przede wszystkim szybkich i efektywnych metod optymalizacyjnych. Ostatnie lata przyniosły 
eksplozję nowych podejść i algorytmów. Artykuł jest próbą uogólnienia efektów ostatnich badań – w tym również dorobku autora – ze szczególnym 
uwzględnieniem najnowszych osiągnięć i spodziewanych nowych rozwiązań. (Nowe tendencje optymalizacji w elektrodynamice technicznej). 
 
Keywords: optimization, kriging, surrogate modelling, pareto-optimality, design sensitivity, electromagnetics, finite elements. 
Słowa kluczowe: optymalizacja, elektromagnetyzm, elektrodynamika techniczna, komputerowe wspomaganie projektowania. 
 
 
Introduction 
 Electromagnetic solutions may be categorised as direct 
problems, in which the design is specified and the effects 
are investigated, and inverse problems, in which a design is 
sought producing a desired effect. If the effect is measured, 
we have an identification problem, if the effect is assumed, 
a synthesis problem is posed, to which a solution may not 
exist. With the advent of CAD and availability of powerful 
software for electromagnetic field analysis, design offices 
increasingly rely on powerful commercial packages offering 
high accuracy of solutions [1]. Static, quasi-static, transient, 
2D or 3D, non-linear, anisotropic field systems can be 
solved, which are often connected to the driving circuitry 
and/or coupled to the associated mechanical or thermal 
fields. The optimal design problem expresses the desired 
effects as objectives to be minimized or maximized, thus 
posing a synthesis problem. In general, this can only be 
achieved by solving the direct problem multiple times, which 
is inherently more time-consuming than the direct problem. 
 Optimal electromagnetic design has recently become an 
area of very vigorous research involving mathematics, 
numerical analysis, software development and engineering 
design. A peculiarity of electromagnetic design, as argued 
above, is that the solutions are ‘expensive’ and thus ‘cost-
effective algorithms’ have to be used. This paper is an 
attempt to provide a brief review of the most recent 
developments and highlights some new approaches. 
 
‘No free lunch’ theorem 
 The ‘no free lunch’ (NFL) theorem [2] prohibits the 
existence of an algorithm which would outperform all other 
optimization algorithms, when averaged over all possible 
optimization problems. It argues that, averaged over all 
types of problems, every algorithm performs the same. 
However, design engineers are only interested in a subset 
of problems, thus – consistent with the NFL theorem – it is 
possible to identify a set of algorithms which outperform 
others over a particular domain of interest [3]. 
 The spectrum of methods for solving optimization 
problems is vast. They may be categorized as single- or 
multi-objective, global or local, deterministic or stochastic, 
greedy or cost-effective, etc. Electromagnetic design does 
not fall neatly into one particular category, the objective 
function landscapes may be simple or complex, a single 
function evaluation may take anything from a few seconds 
to several days, problems are constrained or unconstrained, 
etc. Problems with computationally expensive objective 
functions need particular attention as they present the most 
common challenge in modern electromagnetic design; such 
problems are explored in this review. 
 Several methods exist for achieving cost-effectiveness 
in multi-objective optimization, including small population 

genetic algorithms, hybrid algorithms, reduction of design 
variables and fitness inheritance. In this paper we focus on 
surrogate modelling and kriging-assisted methods [4, 5]. 
  
Single-objective optimization 
 A single-objective optimization problem (SOOP) may be 
formulated as: minimize f(x) subject to gj(x)≥0 (j=1,2,…,J); 
hk(x)=0 (k=1,2,…,K); xiL≤xi≤xiU (i=1,2,…,M). The problem 
is unconstrained if J=K=0 and each variable has bounds 
(some may vary discretely [6]). With the J inequality and K 
equality constraints, a feasible region S exists as a subset 
of the decision variable space, giving rise to the feasible 
objective space Z as a subset of the objective space. The 
aim of single-objective optimisation is to locate the design 
vector(s) in S which give the global minimum value fmin. 
 There are features of an objective function which make 
locating a global minimum a particular difficulty: degree of 
modality, size of basins of attraction of local minima, size of 
improving regions, degree of randomness in the positions of 
the minima and dimension of the search space [7]. The last 
one, known as the ‘curse of dimensionality’, is best 
approached through reduction of design variables. 
 Performance criteria used for comparison of algorithms 
include: best function value found, CPU time, number of 
function evaluations, accuracy, success rate and stopping 
criteria [8]. Some less obvious, but equally important, refer, 
for example, to the number of necessary tuning parameters, 
such as a mutation rate in genetic algorithms or cooling 
schemes in simulated annealing. 
 
Multi-objective optimization 
 In a multi-objective optimization problem (MOOP) we 
seek a minimum of fm(x) (m=1,2,…,M) subject to similar 
constraints as for SOOP. The aim is to try to simultaneously 
minimize the M different objectives fm, giving rise to an ideal 
objective vector and an utopian objective vector, something 
which in general is not possible, leading to the necessity of 
defining exactly what constitutes a solution to the MOOP. 
The M objectives are almost always in competition making 
the concept of the ideal objective useless. Nash Equilibrium 
[9] is one possible answer, but the definition usually 
adopted is that of Pareto-Optimality [10]. 
 
Pareto-optimality 
 Central to this idea is the notion of dominance and a 
non-dominated set. For any two solutions x1 and x2 ∈ S, x1 
is said to dominate x2 if fi(x1)≤ fi(x2) for all i=1,2,...,M and  
fi(x1)< fi(x2) for at least one i∈{1,2,...,M}, so it is better in 
at least one of the objectives and no worse in all the others. 
We say that x1 is non-dominated by x2. Among a set of 
solutions P∈S, the non-dominated set P’ are those that are 
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not dominated by any member of the set P. The non-
dominated set of the entire feasible space S is the global 
Pareto-optimal set, and its image in the feasible objective 
space is the global Pareto-optimal front (POF). Local sets 
and fronts can also be defined, as well as weak and proper 
Pareto-optimality [10]. A simple demonstration of these 
concepts is provided in Fig. 1 for two objectives. 

 
Fig. 1. Global and Local Pareto-optimal Fronts 
 
 In the absence of other criteria, all POF solutions are 
equally important and as many should be found as possible. 
The simultaneous two goals are to find a set of solutions as 
close as possible to the Pareto-optimal front and a set of 
solutions as diverse as possible. The former is simply 
stating that the solutions found are to be as close to the true 
optimal solutions as possible. The latter is specific to multi-
objective optimization and is important because a diverse 
set of solutions assures us that no single objective is being 
favoured. Achieving a good balance between convergence 
to and diversity along the Pareto-optimal front is important 
to all multi-objective optimization algorithms. 
 The difficulties with locating the Pareto-optimal front are 
usually due to multi-modality, isolated optimum, convexity, 
discontinuity and non-uniformity [10]. Algorithms are verified 
and compared using special test functions with parameters 
allowing their difficulty to be fine-tuned [11]. At the same 
time new heuristic algorithms are developed inspired by all 
aspects of nature, like particle swarms [12] or artificial 
immune systems [13]. 
 
Surrogate modelling 
 The simplest to visualise and construct are polynomial 
models; however, they have several inherent drawbacks: 
low-order polynomials are unable to model complex 
functions, whilst high-order ones often lead to ill-conditioned 
matrices; they can only be constructed after a certain 
number of observations, furthermore, it is only for this 
minimum number of observations that they are (necessarily) 
interpolating. In order for a surrogate model to be 
interpolating, it is necessary to use some additional basis 
functions, each centred around one of the n sampled points. 
Then the prediction made by the model may be written as 
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where values of βk are determined by least squares fitting, 
and there are several choices for φ, the most popular being: 
φ(r)=r (linear), r3 (cubic), (r2+γ2)½ (multiquadric), r2logr 
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p∈(0,2] (kriging). The first four belong to a class known as 
radial basis functions, and various comparisons may be 
found in [14, 15]. The surrogate model which stands out, 
due to its solid statistical foundations, is kriging. 
 

Kriging 
 First introduced in the 1960s, kriging has formed the 
basis of geostatistics, but has also found applications in 
fields of research remote from geology. A version for 
predicting computer experiments with deterministic output, 
known as Design and Analysis of Computer Experiments 
(DACE), was developed in the late 1980s [16]. 
 The second term in (1) may be treated as a functional 
departure from the polynomial terms. The theory of kriging 
models this functional departure as a stochastic process, or 
more specifically, as a Gaussian process characterized by 
its mean and its covariance function. In the DACE models 
this process is assumed to have mean zero and covariance 
σ2R(xi,xj) where σ2 is the variance of the process and R is a 
correlation function. Many different correlation functions 

exist, the one used in DACE is ∏
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where θk determines how fast the correlation between 
design vectors drops away and pk determines the 
smoothness of the function in the kth coordinate direction. It 
should be noted that, as R(x,x)=1, the DACE predictor is an 
interpolator. Finally, a n×n correlation matrix R may be 
defined which represents the correlation between each pair 
of evaluated design vectors and whose i-jth entry is R(xi,xj). 
Several possibilities then exist, one leads to the so-called 
‘concentrated log-likelihood function’ 
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which is maximized over θ and p. An expression for the 
mean squared error in the prediction may then found and 
having an estimate of such error can be very beneficial in 
deciding where to evaluate in the design variable space. 
 

Kriging-assisted SOOPs 
 Jones’ taxonomy [4] uses two criteria: the kind of 
surrogate model used and the method of selecting search 
points. The former is further subdivided into those which 
interpolate the observed points and those which do not; the 
latter into two-stage and one-stage varieties. In two-stage 
algorithms first the surrogate model is fitted to the observed 
points and then a utility function is constructed to determine 
the next search point. In one-stage methods a design vector 
is determined which would yield the most credible response 
surface. Almost all existing algorithms are two-stage; 
however one-stage algorithms have been successfully 
constructed using both kriging [4] and radial basis function 
surrogate models [17]. 
 An alternative taxonomy for kriging assisted methods 
classifies the methods according to the number of design 
vectors to be evaluated in each iteration and how ‘tunable’ 
each method is to the balance between exploration and 
exploitation. Non-tunable utility functions have no 
parameters to be defined in order to select a point to 
evaluate. One approach, which has been used by 
practitioners for many years, interprets the surrogate model 
as an accurate representation of the true function and 
evaluates the minimum of the surface. This often leads to a 
false minimum – a point which is a minimum of the 
surrogate model but not of the true function. Moreover, if 
the false minimum is actually an observed design vector, 
that is, one which has been used to construct the kriging 
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model, then the algorithm will chose to evaluate a design 
vector which has already been evaluated. Using the same 
solution twice in the construction of a surrogate model leads 
to the inversion of a singular matrix and the approach fails. 
If the minimum of the kriging model is close to an observed 
point, the resulting change in the kriging model during 
reconstruction in the subsequent iteration may be 
insignificant, thus many iterations are wasted sampling 
around a false optimum. This ‘strawman approach’ (as 
dubbed by Jones in [4]) does not take into account how 
unexplored a region of design variable space is when 
deciding where to evaluate: it simply exploits the most 
promising region of design variable space. 
 The Efficient Global Optimisation (EGO) algorithm [18] 
uses the concept of expected improvement, which may be 
viewed as a fixed compromise between exploration and 
exploitation. It is currently acknowledged as one of the best 
performing methods for SOOP. 
 Non-target based tunable utility functions allow the 
balance between exploration and exploitation to be 
controlled by a parameter, which is not an estimate of the 
global minimum. Two simple utility functions exist which are 
of this type (both based on the expected improvement utility 
function): the Generalized Expected Improvement (GEI), 
and the Weighted Expected Improvement (WEI) [19]. 
 Target based tunable utility functions are characterized 
by allowing the balance between exploration and 
exploitation to be controlled by a parameter which is an 
estimate of the global minimum, while the concept of 
improvement is also used. Two methods have been 
recognised as most promising: the probability of 
improvement with multiple targets, and the one-stage 
credibility of hypotheses method (with either single or 
multiple targets each iteration) [4]. 
 

Kriging-assisted MOOPs 
 Multi-objective methods using surrogate models may be 
divided into scalarizing and non-scalarizing. Scalarizing 
methods combine the multiple objectives of the MOOP 
using some function, and then use one of the methods for 
single-objective optimization. By varying the parameters 
which control how the multiple objectives are combined, an 
approximation to the Pareto-optimal front can be built up. 
The main purpose of a scalarizing function is to combine 
the multiple objectives of a MOOP in such a way that the 
contours of the resulting function are able to capture every 
point on the Pareto-optimal front. The most popular 
methods here include: ε-constraint (which considers only 
one of the objectives for minimization, whilst treating the 
other objectives as constraints to be satisfied), weighting 
(each objective is simply associated with a weighting 
coefficient), weighted and augmented weighted Lp, and 
weighted and modified weighted Tchebycheff metric (using 
different metrics to define the distance of a solution from the 
Utopian point) [10]. After transforming a MOOP to a SOOP, 
any method may then be used to solve the resulting SOOP. 
By varying the weights used in the scalarizing method, 
approximations of the Pareto-optimal front can then be built 
up. This gives rise to a huge number of possible cost-
effective MOOP algorithms. Surprisingly few (other than the 
simplest, such as the weighting method combined with the 
‘strawman’ approach) have been pursued in the literature, 
with two notable exceptions: EGO [18] and ParEGO [20]. 
 Non-scalarizing methods consider each objective 
function individually, the simplest of which is just to evaluate 
the Pareto points predicted by the multiple surrogate 
models (equivalent to the strawman approach in SOOP); a 
good example is an optimisation of a switched reluctance 
motor reported in [21]. Many ‘greedy’ MOOP algorithms 

exist which are non-scalarizing, in particular Multi-Objective 
Evolutionary Algorithms; however, non-scalarizing methods 
for cost-effective multi-objective optimization have only 
appeared fairly recently. In [5] and [22] the notion of 
‘equivalent’ and ‘dominating’ designs is used to establish 
the probability of improvement utility function; unfortunately, 
this has a certain weakness of not favouring large 
improvements. Instead the expected improvement criteria 
can be employed for selecting design vectors – this leads to 
a more aggressive search and thus higher efficiency. 
 

Some practical issues 
 Surrogate models cannot be used to select every design 
vector to evaluate during the search: a certain minimum 
number of vectors need to be sampled before a kriging 
model can even be constructed. This initial set is called an 
experimental design and the theory behind selecting 
suitable points is known as Design of Experiments [23]. 
Classical experimental designs involved measurements, 
and had to account for features such as randomness and 
non-repeatability. Experimental designs for computer 
experiments do not have to take into account such features 
and are commonly referred to as modern experimental 
designs. The two most common modern experimental 
designs are the Latin Hypercube [18] and the Hammersley 
sequence [24].  
 Evaluating objective functions and constraints using 
CAD software – unlike validating algorithms using test 
functions – involves building a model, generating a mesh, 
creating a database and then running a solver. Any one of 
these stages is prone to failure, but this should not 
subsequently mean that the algorithm has failed. Instead 
mechanisms should be built into the algorithm to deal with 
such failed iterations. Although very important, this topic is 
almost entirely overlooked in the literature. Recently, 
however, methods were proposed in [25] to deal with 
missing data, which involved imputing values for failed 
iterations which consequently penalized that region of 
design variable space. 
 Constraints are a crucial part of any problem, as they 
dictate whether a solution is feasible or not; in many cases, 
finding a solution which is infeasible (no matter by how 
little), is as bad as finding no solution at all. Inequality 
constraints are usually handled using probability methods, 
penalty functions, expected violation technique or 
constrained utility function approach. Equality constraints 
are normally approximated by transforming the equality 
constraint into two inequality constraints or transforming the 
equality constraint into an objective. 
 

Novel algorithms 
 As already indicated, optimisation in electromagnetics 
appears to be having its ‘second honeymoon’ and as an 
active area of research could almost be considered as a 
‘born again’ subject. A similar review of the state of the art 
published only three years ago [26] seems to be of 
historical value now in the context of the most recent 
developments. Several papers are in the pipeline and new 
ideas emerge faster than they can be published. 
 As an example, let us consider the credibility of 
hypothesis utility function which was recognized as a 
promising utility function for single-objective optimization [4]. 
Its most attractive feature is that it can perform well with 
deceiving experimental designs, but at a price that 
evaluating the credibility of a hypothesis itself becomes 
computationally expensive when the number of sampled 
points grows large. Expected improvement and its 
generalizations, on the other hand, remain computationally 
cheap to evaluate throughout the optimization process. 
Thus it should make sense to switch to using the expected 

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 83 NR 6/2007 15



improvement utility function when the computational cost of 
using the credibility of hypothesis utility function becomes 
large, which is the main idea behind an algorithm which has 
only very recently appeared in press [27].  
 The proposed algorithm for locating the global minimum 
in d-dimensional design variable space consists of three 
steps: initialization, one-stage experimental design, and 
two-stage optimization search. The only purpose of the 
initialization is to sample enough points to allow a nontrivial 
kriging model to be constructed. The space-filling 
Hammersley Sequence experimental design, of size 4d, is 
used to select the points. The experimental design size of 
4d is much smaller than is normally used (10d is suggested 
in [18] for example), as the philosophy of this algorithm is to 
use information about objective function space to search for 
the minimum at the earliest possible opportunity. The one-
stage experimental design stage that follows is to 
strategically choose where to sample next. Let the minimum 
objective function value of the 4d sampled points be fmin, 
and the maximum fmax. A design vector x* is then 
hypothesized to exist in design variable space which has an 
objective function value given by f*=smin−α(fmax−fmin) where 
s(x) is the root mean squared error in the prediction, and 
the value of α is varied using a cyclic scheme. The design 
vector chosen for evaluation at each iteration is the one 
which maximizes the credibility of the hypothesis of it 
having objective function value f*. This step is repeated for 
6d iterations until 10d points in total have been evaluated. 
In the final two-stage optimisation search, a kriging model is 
constructed using the 10d sampled points. The generalized 
expected improvement (GEI) utility function is then used 
(with a cooling scheme) to select points for evaluation. 
Finally the weighted expected improvement (WEI) utility 
function is used to select points for evaluation: a cyclic 
scheme is used for varying the weighting parameter. Using 
WEI to finish the search allows more exploitative iterations 
to be used than is possible with the GEI utility function. 
 The algorithm was first tested on a “Humps” test 
function, taken from Matlab [28]: 
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where x∈[−5,5]. The number of evaluations taken to locate 
the minimum within 1% tolerance was 8, which was during 
step 2 of the algorithm. An interesting observation was that 
the kriging prediction when the optimum was found was not 
very accurate; however this should be of no concern. The 
purpose of optimization is simply to locate the optimal point, 
not to accurately predict the function being optimized as 
well. This is related to Vapnik’s principle from machine 
learning [29]: “When solving a problem of interest, do not 
solve a more general problem as an intermediate step. Try 
to get the answer that you really need but not a more 
general one.” During optimization the aim is to locate the 
minimum of an unknown function, while we are not 
concerned with the more general problem of approximating 
the unknown function as accurately as possible. If the 
kriging approximation is not very accurate, this is not an 
issue: the optimum point has been located regardless. 
 In this test case the optimum has been found at the 8th 
evaluation, and so the algorithm can terminate. However, in 
general it is not known if the optimum has been found, and 
so the algorithm will proceed to step 3. This happened in 
the next example: the optimal design of an electron gun.   
 The voltage on, and position of, the focus electrode of 
an electron gun was varied so as to focus the beam of 

Thus, denoting the voltage on the focus electrode by V and 
its perpendicular distance from the emitting surface by d, 
the objective function was: 
 

electrons on the centre of the anode as much as possible. 

)        

ith V∈[0,1000] and d∈[5,10], where r is the radial 

ig. 2. Final configuration of the optimized electron gun [27] 
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w
distance from the centre of the anode surface, J(r) is the 
current density at r, and the integral is taken over the 
surface of the anode. Each analysis was carried out using 
commercial software OPERA, with the space charge solver 
SCALA.  A random search of 100 iterations was also 
carried out for comparison and the best solution obtained 
had a value of f=0.1493, whereas using the new algorithm 
and a stopping criterion of 30d (=60) evaluations in total, 
the final solution – found during the third step – had a better 
objective function value of f=0.0867. The algorithm was 
found to outperform a random search of 100 iterations in 
just 14 iterations. The configuration of the final design is 
shown in Fig. 2. 

 
 
F
 

 For kriging-assisted multi-objective optimisatio
generalized ParEGO algorithm, utilizing generalized 
expected improvement, weighted expected improvement 
and probability of improvement, is currently under 
development and will be reported very soon. The dynamic 
weight vector used is not changed at each iteration; instead 
it changes in cycles, in order to build up an approximation of 
the Pareto-optimal front. Two further algorithms are also 
being derived, a scalarized one-stage algorithm and a non-
scalarizing algorithm based on probability of specific 
improvement. 
 

ensitivity analS
 Special considerat
methods based on sensitivity analysis. Such approaches 
offer the advantage of having computation times 
independent of the number of design variables, thus making 
them particularly useful in topology optimisation, where the 
parameterization enables all feasible shapes of 
electromagnetic devices to be explored. These algorithms 
are still at early stages of development and not versatile 
enough to be considered as competitive against surrogate 
modelling, but their performance is very impressive. 
 From the point of view of accuracy and time-efficiency in 
finding the optimum solution in design space, the design 
sensitivity analysis (DSA) appears to be very competitive 
compared with other optimization methods. Depending on 
the technique used to compute the derivative of an 
objective function, the DSA can be categorized as the 
discrete DSA (DDSA) or the continuum DSA (CDSA). The 
former obtains gradient information from direct 
differentiation of the discretized algebraic system matrix, 
whereas the latter uses an analytically derived sensitivity 
formula by exploiting the material derivative-adjoint variable 
(MDAV) method. From the practical point of view, as a 
general-purpose approach, the DDSA has a critical 
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source code to perform sensitivity calculation. On the other 
hand, the CDSA can be incorporated into existing EM 
software packages without the need to modify the source 
code. In fact the approach is independent of the actual 
method used and is adaptable to finite elements, boundary 
elements, finite differences, etc. For example, when dealing 
with the optimization of magnetostatic devices, the 
objectives can be classified into the following three 
categories (see Fig. 3(a)):  
1. Control of the global quantities (i.e. energy, force or 

inductance) connected with the magnetic vector 

2. 
 Ω . 

rt of 

potential, A, inside the region of interest Ωf. 
Shaping of the local quantity distribution (i.e. magnetic 
flux density or field intensity) inside the region g

3. Adjustment of the surface field distribution (i.e. 
magnetic force density or tensile stress) on γ , pah

the interface γ. 

 
(a) Primary system 

 
(b) Adjoint system 

Fig. 3. Dual system of the CDSA [30] 
 

e derived for both the 
rimary system and the adjoint system (Fig. 3(b)) [30, 31]. 
y 

d efficient 
O

 The sensitivity formula can then b
p
B exploring the analogy between the two formulations the 
physical interpretation of various aspects of the adjoint 
system may be established. In particular, the geometric and 
material properties are found to be the same as those of the 
primary system and sources may be recognised as electric 
current or permanent magnet. In other words, the adjoint 
system – despite having been introduced as a mathematical 
derivation – is physically well based. Thus both the primary 
and the adjoint system can be solved using a standard EM 
package. Moreover, in cases where the objective function is 
associated with the system energy, the adjoint system does 
not actually need to be calculated [30], making the 
optimisation process even more straightforward. 
 To demonstrate the technique we will refer to a case in 
topology optimisation (TO). In [31] a very fast an
T  algorithm for optimizing source distribution in linear 
magnetostatic problems was put forward. A unified 
sensitivity formula has been derived as 
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where the three integrands are sensitivity coefficients with 
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Hzi is the z-component of the magnetic field tensity 
omputed over the objective regions and Hzo is the desired 

 

respect to system parameters ,  and , respectively,  is 
the reluctivity, λ means the Lagrange multiplier vector 
interpreted as the adjoint variable and p is the system 

parameter vector. After solving the dual formulation, 
consisting of the primary and the adjoint systems, the 
design sensitivity is thus easily obtained. However, a 
distinction should be made between finding the Optimized 
Material Distribution (OMD) and the Optimized Source 
Distribution (OSD) in electromagnetic systems. In the case 
of OMD, the permeability is still present in the adjoint 
system, as well as in the primary one, and thus the fields of 
both systems are strongly distorted. In this case, the 
magnitude of the objective function that indicates how far 
the current design is from the optimum is not exactly 
reflected in the design sensitivity. Thus an abrupt change of 
the permeability is liable to result in OMD being trapped in 
local minima. It is therefore essential that the material is 
forced to vary gradually from a void to solid state.  
 On the other hand, the current density and permanent 
magnetization of OSD are replaced in the adjoint system by 
air regions. Thus the adjoint field distribution depends not 
on the relative value of distributed materials but on the 
magnitude and location of the objective function evaluated. 
This means that OSD itself, unlike OMD, does not have lots 
of local minima in the design space. Moreover, even if there 
are abrupt changes of material values assigned to design 
cells, OSD can easily converge to an optimum solution. 
These properties form the basis of a novel material 
updating algorithm for OSD, which allows each design cell 
to have only one state, that of a void or a solid [31]. 
 Fig. 4 shows a quarter of an axi-symmetric model of a 
permanent magnet assembly for an MRI device. The design 

ago l is to find an optimized distribution of shimming 
magnets over the pole piece surface to obtain homogenous 
field distribution in a spherical volume in the centre. The 
shimming magnets have known residual flux density and 
thickness and the domain is subdivided into 120 separate 
regions. The objective function is defined as 
 

(6)      yxHHF ),()( ,
45 2 MM =∑ −= n

s
i

zozi pP
 

where  in
c
value. Ms(P) in each cell is forced to be ± Ms according to 
the sign of the accumulated design sensitivity. 

yoke

magnet

pole piece

design domain

objective regions

yoke

magnet

pole piece

design domain

objective regions

 
Fig. 4. A quarter model of a permanent-magnet type MRI [31] 

uring 
g. 6 

 Changes to the distribution of shimming magnets d
the optimization process are shown in Fig. 5, while Fi
compares the z-component of magnetic field over the 
surface of the central spherical volume before and after 
optimization. Despite the huge number of possibilities in 
terms of the shimming magnets distribution, the 
convergence was achieved in about 10 ietartions, while the 
uniformity of the field has been improved by nearly an order 
of magnitude compared with the initial design [31]. 
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 10th iteration

Fig. 5. Shimming magnet distribution (Black cell: +Ms, Grey: −Ms) 

 
Fig. 6. Field distributions before and after optimization 
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 Software for electromagnetic field computation is n
mature tool commonly e
sections of industry, mainly for analysis and performance 
prediction (virtual prototyping). Optimal design calls for new 
cost-effective algorithms to reduce the number of necessary 
function evaluations and thus avoid excessive computation 
times. Optimisation in electromagnetics has recently 
become fashionable again and an area of very active 
research, as demonstrated by a vast number of new 
publications and even existence of dedicated conferences 
[32]. This review reflects on the state of the art and 
highlights new trends. Surrogate modelling, kriging assisted 
methods and design sensitivity seem to dominate the 
current way of thinking of researchers around the world. 
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