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Abstract

Genetic regulation is often viewed as a complex system whose properties emerge
from the interaction of regulatory genes. One major paradigm for studying the
complex dynamics of gene regulation uses directed graphs to explore structure,
behaviour and evolvability. Mutation operators used in such studies typically involve
the insertion and deletion of nodes, and the insertion, deletion and rewiring of links
at the network level. These network-level mutational operators are sufficient to
allow the statistical analysis of network structure, but impose limitations on the
way networks are evolved. There are a wide variety of mutations in DNA sequences
that have yet to be analysed for their network-level effects.

By modelling an artificial genome at the level of nucleotide sequences and mapping
it to a regulatory network, biologically grounded mutation operators can be mapped
to network level mutations. This paper analyses five such sequence level mutations
(single-point mutation, transposition, inversion, deletion and gene duplication) for
their effects at the network level. Using analytic and simulation techniques, we show
that it is rarely the case that nodes and links are cleanly added or deleted, with even
the simplest point mutation causing a wide variety of network-level modifications. As
expected, the vast majority of simple (single-point) mutations are neutral, resulting
in a neutral plateau from which a range of functional behaviours can be reached.

By analysing the effects of sequence-level mutations at the network level of gene
regulation, we aim to stimulate more careful consideration of mutation operators in
gene regulation models than has previously been given.
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1 Evolutionary modelling of genetic regulatory networks

Evolution is a process of change and selection. Most spontaneous changes to
the genome are corrected by DNA repair mechanisms, however these occa-
sionally fail and result in a permanent mutation. A variety of different types
of mutation are possible, ranging from point mutations of individual bases to
rearrangements such as deletion and duplication and the movement of trans-
posons. One view of the evolution of the genome holds that point mutations
enable ‘fine tuning’, but that more radical changes, such as gene duplication,
are necessary for its long term development (Alberts et al., 1994).

It has become increasingly common to view the genome as a complex sys-
tem, whose properties emerge from the behaviour of networks of interacting
genes (Kauffman, 1993). While a large part of molecular biology is dedicated
to understanding the genome at the level of individual genes and the mecha-
nisms by which they operate, there is a growing awareness that there are many
emergent properties of the genome that are not reducible to the properties of
its constituent elements (Solé and Goodwin, 2000). As the network view of the
genome becomes more accepted, new abstract models have been developed to
investigate its structure, dynamics and evolution.

Almost all of these models use a network level description of the genome.
While this approach is sufficient to allow statistical analysis of network struc-
ture (Jeong et al., 2000; Wagner and Fell, 2001) and investigation of global
patterns of behaviour (Kauffman, 1971, 1993), it imposes limitations on the
way networks are evolved. Changes that can be made to networks are con-
strained to the addition and deletion of nodes, and the addition, deletion and
rewiring of links.

When using artificial evolution to model a biological system, the choice of mu-
tation operators should reflect the constraints of the problem being modelled.
Biological mutations act upon the underlying nucleotide sequence; changes at
this level do not necessarily have a one-to-one correspondence with network
changes. Therefore, the mutation operators currently used to evolve artificial
genetic regulatory networks (GRNs) represent only a subset of the types of
mutations that occur in nature.

Recently, a new approach to modelling GRNs was developed in which a genome
is represented as a sequence, analogous to the string of nucleotides forming a
real genome. A GRN can then be extracted from this sequence using a simple
set of rules based on biological mechanisms (Reil, 1999). An important, but
currently unexplored, advantage of this approach is that it allows a range of
mutation operators to be applied to the genome sequence whose effect can then
be observed at the level of the regulatory network. The aim of this study was



to explore and analyse the effect that various types of sequence-level mutation
operators have on the resulting genetic regulatory networks.

Sections 2 reviews current approaches to evolving GRNs via mutation and se-
lection. Section 3 outlines the types of mutation possible in biological systems.
Section 4 then describes Reil’s Artificial Genome model. Section 5 is an anal-
ysis of the network-level effects of five types of sequence-level change: single-
point mutation, duplication, inversion, deletion and transposition. Section 6
describes the cumulative effects of applying duplications and single-point mu-
tations over evolutionary time. Finally, the implications of these results for
GRN modelling are discussed.

2 Current approaches to evolving gene regulatory networks

A number of different approaches have been taken to the abstract modelling
of GRNs (Bornholdt, 2001). This section reviews several typical approaches in
which the models have been subjected to some form of artificial evolution and
focuses on the types of mutation operators that have been used to generate
genotypic novelty.

One of the first attempts to treat GRNs as an instance of a complex system was
made by Kauffman, using the Random Boolean Network abstraction (Kauff-
man, 1971). In this framework, genes were viewed as Boolean switches whose
state was either on or off depending on whether or not they were being tran-
scribed. Each gene in a system took as its input the states of a subset of other
genes in the network and used a Boolean function to determine its output
on the basis of these inputs (see Figure 1). The structural features of interest
in these systems were the number of genes (N) and the average number of
inputs to a gene (K). The dynamic feature of interest was the global pattern
of behaviour, which could be quantified by such properties as the time taken
to reach a stable pattern of expression, the length of cyclic expression patterns
and the number of such patterns that could coexist in a given system.

For the purposes of artificial evolution, these networks are frequently repre-
sented by two data structures:

(1) A connection matrix specifying the structure of the network, where a ‘41’
in the cell (i, j) specifies a positive regulatory interaction between node i
and j, -1 specifies a negative interaction, and ‘0’ indicates no connection
exists.

(2) A set of Boolean functions, one for each node, determining the dynamics
of the network.
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Fig. 1. Random Boolean Networks. An RBN represents genes as Boolean nodes,
connected into a network structure by regulatory interactions. In the network above,
node C is regulated by nodes A and B, and it in turn regulates node D. A node
is updated according to a Boolean function. An example function is shown on the
right. The bottom line encodes the rule that, if nodes A and B are both on (i.e.,
being expressed), node C will be off (i.e., not expressed) in the next time step.
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It is obvious that there are two types of mutation that can be made to such a
system: (a) structural mutations, resulting in the addition or deletion of a node
or link; and (b) mutations to the Boolean function determining the output of
a node, resulting in a change in the dynamics of the network. These forms of
mutation have been used in a wide variety of different gene network studies
investigating evolvability (Kauffman and Smith, 1986; Kauffman, 1990; Frank,
1999), robustness to perturbation (Bornholdt and Sneppen, 2000), robustness
to noise (Stern, 1999), evolutionary dynamics (Bornholdt and Sneppen, 1998;
Bornholdt and Rohlf, 2000) and the structure of attractors (Wuensche, 1998).

A common methodology used to evolve these networks is to apply a genetic
algorithm (GA) (Mitchell, 1996). Using this method, the connection matrix
and Boolean functions are unfolded into a binary string, to which standard
GA operators (such as point mutation and crossover) can be applied. A major
problem with this approach is its lack of biological realism. In biology, net-
work connectivity and function are not necessarily found in specific loci in the
sequence, but rather derived from multiple sources spread across the genome.
Hence, although inspired by biological events, the mutation operators applied
to this representation have limited biological significance in this context.

A second paradigm for investigating genetic systems utilises tools and tech-
niques developed to investigate the class of complex networks initially termed
small-world networks (Watts, 1999; Strogatz, 2001). A recent surge of inter-
est in complex networks led to the realisation that food webs, genetic and
metabolic networks, neural networks, electrical power grids and the World
Wide Web all share similar topological features (Strogatz, 2001). Rather than
being completely ordered lattices, or chaotic random graphs, these networks
seem to fall into a category somewhere in between, characterised by a short
average path length (the number of links between any two nodes) and a high



clustering coefficient (i.e., if A is linked to B and B is linked to C, it is likely
that A is also linked to C).

A further characteristic possessed by many of these networks is that the num-
ber of links connecting each node follows a power law. These were termed
scale-free networks due to the fact that their statistical properties remain con-
stant as their size increases, and they possess several additional properties such
as being tolerant to error (random removal of nodes) but vulnerable to attack
by targeted removal of highly connected nodes (Albert et al., 2000). Analy-
ses of experimental data gathered on the metabolic networks of a number of
organisms revealed a high degree of correspondence between these theoretical
models and the real world (Jeong et al., 2000; Wagner and Fell, 2001; Wolf
et al., 2002). In particular it was found that the way in which the networks
in these abstract models “grow” by the addition of new nodes and links could
cast light on how biological networks may have evolved.

One of the most straightforward methods of growing artificial networks with
small-world and scale-free properties is to add new nodes and preferentially
link them to existing nodes that already have a large number of links (Doro-
govtsev and Mendes, 2002). Genetic networks, by comparison, are thought
to have grown to their current size largely due to the repeated duplication of
genes and their subsequent diversification into new functional domains (Ohno,
1970; Lynch, 2002). Several models of how genetic networks may evolve via
gene duplication have been developed and found to produce networks matching
at least some of the properties of biological networks (Wagner, 1994; Vazquez
et al., 2001; Solé et al., 2002; Pastor-Satorras et al., 2003). In these models,
gene duplication is generally implemented by copying a node in the network
along with all its links. Diversification is modelled by probabilistically rewiring
these links, in some cases deriving the relevant parameter values from biolog-
ical data (Solé et al., 2002).

While this method of modelling captures one aspect of the biological process
in question, the exploration of new functional space via the diversification of
duplicate genes, it fails to capture other aspects, such as potential damage
to the target region of the genome, and the frequency with which particular
network changes are likely to occur. The following two sections briefly review
how mutation occurs in biology and describe how this process could more
meaningfully be implemented in an abstract model.

3 Mutation in biological systems

Mutations are spontaneous changes to chromosomes that are not corrected
by DNA repair mechanisms. These changes can arise in the DNA replication



process, as a result of recombination events and also as a result of the actions
of transposons. The rate at which mutations occur is generally very low (ap-
proximately 10~ to 107% mutations per gene per generation in humans) but
can be increased by environmental influences, such as chemicals, radiation and
transposable elements.

The simplest class of mutation is a point mutation, in which a single nucleotide
in a sequence is altered. This type of mutation generally has a localised effect
on the activity of a single gene. A second class of mutations involves more
radical restructuring of a chromosome:

e Duplication: an increase in the number of copies of a segment of a chromo-
some. Duplication events can be either tandem, in which case the copied
region adjoins the original region, or non-tandem, where the copied region
may be in another part of the chromosome or on another chromosome alto-
gether.

e Deletion: the removal of a segment of a chromosome. Deletion events can
be intragenic, affecting only one gene, or multigenic, affecting a number of
genes.

o Transposition: removing a segment from the end of one chromosome and
re-attaching it to another.

e [nversion: the reversal of a segment of a chromosome.

A final class of mutations results from the actions of transposable elements.
Transposons exist in large numbers in eukaryotic genomes and are capable of
leaving one site, multiplying and spreading to many other sites. Mutations can
result both from the insertion of a transposon into a gene and from modifica-
tions made to the gene sequence when it leaves. Even if a transposon does not
affect the coding region of a gene (and hence the structure of its RNA or pro-
tein product), it may affect the activation of a gene by altering its regulatory
region (which may contain promoters or enhancers).

It has been proposed that long non-coding regions combined with widespread
occurrence of transposons may have facilitated the increase in diversity of the
higher eukaryotic organisms (Alberts et al., 1994).

4 The Artificial Genome

Most of the GRN models mentioned in Section 3 use a network description as
their base level of representation. In some cases this representation is trans-
lated into a sequence before the biologically inspired genetic algorithm opera-
tors can be applied. However, in this context, such genetic operators bear little
if any real similarity to their biological counterparts. By starting with a se-
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Fig. 2. The Artificial Genome model. Fixed length genes are defined by a ‘promoter’
sequence (‘0101 in the example above). A gene is expressed by incrementing each
element by 1. The gene product then binds to matching sequences in the genome
to regulate the next gene downstream.

quence as the base level of representation, and then extracting a network from
this sequence, it becomes possible to incorporate a range of more meaningful
mutation operators.

The Artificial Genome model developed by Torsten Reil is one such sequence-
based model (Reil, 1999), which we have used to investigate the effects of
mutation operators on network structure. In this model, a random string of
bases is generated. This string is then searched for the promoter sequence
‘0101’ and the following 6 digits are defined to be the gene sequence. The
sequence between genes is defined to be the regulatory region for the following
gene. A gene is expressed by incrementing each digit by 1, modulo the number
of bases (4). The regulatory region of each gene is then searched for matches
to any of the gene products; each hit defines a regulatory link between the
gene that produced the product and the gene in whose regulatory region the
match was found (see Figure 2).

5 Effects of mutation operators on network architecture

In order to determine the influence of sequence-level alteration at the regu-
latory network level in the Artificial Genome, investigations were undertaken
into the effects of the following five sequence-level mutation operators:

e Single-Point: A single random nucleotide changed to a different value
e Duplication: A random segment of the genome sequence is duplicated, with
the copy being placed immediately after the original (i.e., a tandem dupli-
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Fig. 3. Single-point mutations at the sequence level can cause a variety of changes at
the network level. Although the vast majority of single-point mutations are neutral
in a standard-size genome sequence, a small number of single value changes can
have a significant impact on network composition.

cation). The size of the segment was 256, so that, on average, a single gene
is affected (the chance of a gene occurring depends on the probability of
‘0101” occurring).

e Transposition: A random 256 sized segment of the genome moved to another
random location.

e Deletion: A random 256 sized segment of the genome removed.

o [nversion: The values of a random 256 sized segment of the genome re-
written in reverse order.



Total number of network effects across 100 sequence mutations
Add Gene | Remove Gene | Add Link | Remove Link
Single-Point 3.64 3.68 22.88 22.52
Duplication 90.52 0.00 413.46 3.16
Transposition 9.08 8.90 410.24 408.16
Deletion 3.09 93.59 135.57 539.55
Inversion 93.70 93.09 573.92 568.79
Table 1

Effects of single-point mutations on network structure, averaged across 100 random
sequences.

A series of simulations were used to determine the likelihood of network-level
changes that could result from individual sequence-level mutations. Random
sequences comprised of 10,000 “nucleotides” were generated. Regulatory net-
works were extracted by the process described in Section 4 (see Figure 2).
In 100 random sequences, extracted networks had an average of 42.15 genes
(standard deviation of 4.39) and average connectivity of 2.27 (standard devi-
ation of 0.30).

For each of the five mutation operators, the number of times a network alter-
ation (i.e., gene addition, gene removal, link addition, link removal) occurred
was recorded for 100 mutation events averaged over 100 random sequences
(see Table 1). The number of times a network change occurred at least once
for each given mutation operator was also recorded (see Figure 4).

Note that genes are defined in this model by their value. So that if a gene’s
value is changed, this is recorded as being a gene removed and a gene added.
Similarly, links are defined by the genes they regulate. Thus, if a link from
gene A to gene B is altered to become a link from gene A to gene C, a link
deletion and addition are recorded.

For single-point mutation, gene additions and deletions were rare (less than 4%
of mutations), while links were added and removed just under 10% of the time.
The vast majority of sequence changes were neutral (86%). It is worth noting
that many non-neutral single-point mutations affect multiple components at
the network level, such as adding a node and rewiring, or deleting a node and
rewiring (see Figure 3).

Transposition events added and removed genes just under 10% of the time,
with links being influenced in 90% of the applications of this operator. Dele-
tion events removed genes and links 61% and 94% of the time respectively.
Interestingly, sequence deletions occasionally caused gene additions and of-
ten link additions. Note that most of these additions can be attributed to our
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Fig. 4. Effects of various sequence-level changes at the network level. Note that this
figure illustrates the number of times a given network operator occurs at least once.
Note also that two events occurring in the same mutation event are recorded (e.g.,
a single change may both add a gene and delete a link).

method of defining genes and links (see above). Also for this reason, inversions
are shown to have a significant impact on network structure.

Tandem duplication of a segment of the chromosome does not result in a ‘pure’
(in the network sense) gene duplication within the Artificial Genome model.
Approximately 60% of the time, a sequence duplication adds a gene. Links
are added nearly 94% of the time. Very occasionally, links are removed, and
no genes were removed in 100 applications of this operator. Due to the way
regulation is defined in the Artificial Genome model, both the original and
the duplicate gene will have the same functionality and hence will regulate
the same set of genes. Thus, in network terms, when a node is duplicated, its
directed links to other nodes will be duplicated also. However, the duplica-
tion event is not limited to the sequence for the gene itself, and part of the
regulatory regions both upstream and downstream of the gene are also likely
to be duplicated. Such a sequence duplication produces an interesting trans-
formation on the extracted network. Consider a hypothetical case in which
half of the regulatory regions both upstream and downstream of a gene are
duplicated. The new gene will share half of its regulatory region with its orig-
inal gene (and hence share half of its directed links from other nodes), and
the other half will be from the downstream gene, which could correspond to a
completely unrelated sub-component of the genetic regulatory network. Effec-
tively, the duplicated gene can be activated by two different contexts, that of
the original and the downstream (unrelated) gene (see Figure 5). As a conse-
quence, analysing possible changes due to gene duplication requires separating
the influences of a duplication event on directed links into and out-of a node.

10
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Fig. 5. Example network change after duplicating a portion of the nucleotide se-
quence. A typical duplication of a gene involves creating a copy of the gene and
changing the set of genes that regulate it.
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6 Accumulated change

Most important for the evolution of GRNs is the cumulative effects of muta-
tions over time. By studying cumulative mutations, we can see how charac-
teristics of the networks change independently of selection.

Statistically, accumulated single-point, inversion and transposition events over
time are equivalent to creating new random networks. Accumulated deletions
whittle away the genome until it is non-existent. More interesting is the accu-
mulation of duplication events, since portions of the same sequence can occur
multiple times.

11
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Fig. 6. Average network properties after accumulated tandem duplications. Note
that as duplications are accumulated, the average out-degree linearly increases,
while the in-degree decreases. Also note the increase in the average clustering coef-
ficient. These results are averaged over 100 random sequences.

6.1 Multiple duplications

The effect of accumulated sequence duplications on network properties were
investigated via simulation using the sequences described in Section 5. As
above, segments of size 256 were randomly chosen for duplication. The results
of these studies are summarised in Figure 6. As expected, the average number
of genes and the average out-degree (the average number of genes regulated by
each gene in the network) increased linearly as tandem duplications were ac-
cumulated. Interestingly, the average in-degree (i.e., average number of genes
that regulate a gene in the network), decreases as duplications are accumu-
lated. In addition, the average clustering coefficient increases. The clustering
coefficient in this case is defined as the number of connections between neigh-
bourhood nodes divided by the total number of possible connections that could
exist between these neighbours. In our Boolean model, a neighbour of a gene
is defined as any gene that is regulated by that gene.

6.2 Multiple duplications with single-point mutations

Interactions between duplication and single-point mutation events are likely to
have been the most influential in generating the genetic regulatory networks of
complex organisms. Presented here are the results of a study identical to the
one described above in Section 6.1, with the addition of 10 random single-point
mutations at each duplication event. (The locations of the single-point muta-

12



Average Network Properties After Accumulated Duplication
and Single-Point Mutation
10 0.3
----- In Degree
—-—-Out Degree

8 — Clust. Coeff. "1 025 -
[=
2
e + 0.2 ;:_’
o 6 . @
[] P o]
a P +0.15 ©
5 o 2
o 4- £
£ T +01 %
T 3
RSP PORR R e R L (]

2 1005

0 T T T T T T T T T T 0
0 10 20 30 40 50 60 70 80 90 100
Number of Duplications

Fig. 7. Average network properties after accumulated tandem duplications, with 10
single-point mutations per duplication. Note the similarity with Figure 6, with the
exception of the average in-degree (which increases). These results are averaged over
100 random sequences.

tions were randomly chosen from locations across the entire genome). Adding
such single point mutations to sequence duplication events allows subsequent
rewiring of the regulatory genes. In this case, average number of genes, in-
degree and out-degree are all basically equivalent to those found in Section 6.1.
However, the average in-degree increased, rather than decreased, as shown in
Figure 7.

7 Discussion and conclusions

Using the Artificial Genome model as a framework for describing genetic reg-
ulatory networks, we have explored the mapping between sequence level mu-
tations and the effects they have on the resulting network structure. In par-
ticular, we have described how the frequency with which particular structural
changes occur varies depending on the type of mutation applied.

We have shown that even single nucleotide changes can cause a wide vari-
ety of network-level changes in the Artificial Genome model. Transpositions,
deletions and inversions caused interesting effects at the network level, it be-
ing rare that an isolated gene or link modification occurred. In particular,
an interesting finding in this model is that gene duplication at the sequence
level constrains the new gene to be regulated by a subset of existing regu-
lators, which causes an increase in the clustering coefficient of the network
over repeated duplications. This results in a very different network architec-
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ture to duplicating nodes and randomly rewiring at the network level. We
have also demonstrated how the repeated application of gene duplication and
single point mutation events can, over evolutionary time, result in significant
changes to the network architecture.

When using artificial evolution to model systems such as genetic regulatory
networks, it is critical that the mutation operators used capture the relevant
features of their biological counterparts. In the domain of genetic regulatory
networks, this means that the mutation operators chosen to evolve the net-
works should reflect the effects of biologically plausible mutations to the un-
derlying genome sequences.

By using the Artificial Genome framework to extract networks from a sequence
level representation, and implementing mutation operators at the sequence
level, rather than the network level, we have achieved two things. Firstly, we
have expanded the range of mutation operators that may be sensibly incorpo-
rated into evolutionary studies of genetic regulatory networks. Secondly, we
have demonstrated that the Artificial Genome framework represents a sys-
tematic and principled approach to mapping a set of sequence level mutation
operators onto their network level effects. The potential of this framework
to model the effects of other types of genetic change, such as recombination,
should be readily apparent.
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