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Chapter 1
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Patterns are a tool that enables the collective knowledge of a particular
community to be recorded and transmitted in an efficient manner. Ini-
tially developed in the field of architecture and later developed by software
engineers [6], they have now been adopted by the complex systems mod-
elling community [15]. It can be argued that, while most complex systems
models are idiosyncratic and highly specific to the task for which they are
constructed, certain tools and methodologies may be abstracted to a level
at which they are more generally applicable. This paper presents one such
pattern, Perturbation Analysis, which describes the underlying framework
used by several analytical and visualisation tools to quantify and explore
the stability of dynamic systems. The format of this paper follows the
outline specified in [15].

Pattern name Perturbation Analysis
Classification Dynamics, State Space
Intent The Perturbation Analysis pattern provides a quantifiable measure

of the stability of a dynamic system.
Also known as None

Motivation

A complex dynamic system is one consisting of multiple elements, where
the future state of the system is determined by a function f of its current
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state,

s(t + 1) = f(s(t))

where s(t) is the state of the system at time t.
The typical feature of interest of complex dynamic systems is their

asymptotic behaviour as t →∞. The set of states towards which a system
converges under these conditions is known as an attractor. Attractors may
be fixed points, limit cycles, or non-repeating ‘chaotic’ attractors. Systems
may contain single or multiple attractors. The set of initial states of a sys-
tem that converge to a given attractor forms the basin of attraction of that
attractor.

Complex dynamic systems are widespread: genetic networks, economies
and ecosystems are all examples. One of the emergent features of these
types of distributed systems is their robustness or stability. Systems in the
real world operate in noisy environments and are subject to perturbations
from a wide variety of internal and external sources. In many cases, de-
spite short term fluctuations, the long term behaviour of these systems is
remarkably stable.

When modelling such systems, it is useful to be able to quantify this
level of stability. For example, in a genetic regulatory system, where basins
of attraction have been equated to cell behaviours [10], the stability of a
system may reflect the phenomena of cell differentiation during develop-
ment. Early in the developmental process, cells are sensitive to signals
from their environment: transplantation experiments have demonstrated
how embryonic cells can adopt the fate of their new neighbours rather than
their original fate. As development progresses, the stability of cell types
increases, and almost all fully differentiated cells will retain their original
fate when transplanted [17]. The differentiation process itself is robust to
fluctuations in external factors, such as temperature variation and nutrient
levels, as well as internal factors, such as the stochastic nature of many
genetic and cellular processes [11]

The Perturbation Analysis pattern provides a general framework for
measuring the effect of changes to a system’s current state on its long-term
behaviour. These measurements may then be used as the basis for calculat-
ing more specific quantities, such as the rate of convergence or divergence
of two nearby trajectories, or the probability of a perturbation causing a
system to switch between different attractors.
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Applicability

The Perturbation Analysis pattern requires a dynamic system, consisting
of:

• a finite set of elements, each of which may take a discrete or con-
tinuous value; and

• a deterministic updating function.

The Perturbation Analysis pattern is useful in the following situations:

(1) A dynamic system is subject to some intrinsic or extrinsic perturba-
tion, and it is desirable to stochastically or systematically explore and
quantify the effects of these perturbations.

(2) A dynamic system can settle down into one of several possible be-
haviours and it is desirable to know either the likelihood of a system
reaching a specific stable behaviour, or the probability of a system
switching from one stable behaviour to another.

(3) A dynamic system is being used for prediction and it is desirable to
know how far into the future its behaviour can be confidently predicted
if there is some uncertainty as to its initial state.

Structure

The relationships between the classes involved in the Perturbation Analysis
pattern are detailed in Figure 1.1.

Participants

State stores a state of the system s, represented as a vector the values of
each of the n elements,

s = (s0, . . . , sn−1)

System applies an update function f to update the values of each element
of a state,

s(t + 1) = f(s(t))

Perturber applies a perturbation function p to create a new state from
an old state in a systematic fashion,

s′ = p(s)
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System
-updateFn: function

+Update(s:State): State

State
-state: vector< values >

+Get(): State
+Set(s:State): void

Measurer
-compareFn: function

+Compare(s:State,s’:State): Distance

Perturber
-perturbFn: function

+Perturb(s:State): State

Set()

Get() Get()

Set()

Get()

Fig. 1.1 A class diagram describing the types of objects involved in the Perturbation
Analysis pattern and the relationships that exist between them. Each object lists the
private data variables it contains (indicated by a minus), and the public functions it
provides (indicated by a plus), together with their arguments and return values.

Measurer quantifies the distance d between two states according to some
metric m,

d = m(s, s′)

Concrete examples of the update and perturbation functions, and of the
distance metric, are provided below, in the Implementation Section.

Collaborations

A dynamic view of the interactions between objects in the Perturbation
Analysis pattern is shown in Figure 1.2.

(1) Note that two States are maintained at all times: one (s) corresponding
to the original system trajectory and another (s′) to the perturbed
trajectory.

(2) Perturber sets the value of the perturbed State according to the appli-
cation of the Perturb function to the original State.

(3) Measurer uses the Distance metric to calculate the distance between
the original and perturbed trajectories.

(4) System uses the Update function to advance each of the states by one
iteration (or time step).
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Fig. 1.2 A sequence diagram of the interactions between objects in the Perturbation
Analysis pattern. Time runs vertically from top to bottom. The activation bars in the
lifeline of each object indicate when that object is active in the interaction. Horizontal
arrows indicate interactions – in this case function calls.

Consequences

The Perturbation Analysis pattern has the following benefits and limita-
tions:

(1) The pattern facilitates perturbation of a system and collation of dis-
tance measurements which can then be analysed using other methods.
Two examples of the type of context in which the Perturbation Analysis
pattern can be applied are provided below in the Sample Code Section.

(2) The pattern allows for a range of perturbation functions, distance met-
rics and system updating functions, each of which can be varied inde-
pendently. Examples of these functions and metrics are provided below
in the Implementation Section.

(3) Because the pattern only specifies a single iteration of the perturb
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and measure cycle, it supports the investigation of both annealed and
quenched systems. In a quenched system, the structure of the system
and the update function are static through time: measurements of a
quenched system are specific to that particular instance of the system.
In an annealed system, the basic parameters of the system (level of
connectivity and type of updating function) are static, but the specific
pattern of connectivity and set of updating functions are generated
anew at each time step: measurements of an annealed system reflect
basic properties of an entire class of systems.

(4) One limitation of the pattern as described here is that it requires a de-
terministic system updating function. While there is no reason that the
pattern could not be applied to a stochastic system, doing so raises sev-
eral issues that have not been addressed here relating to the structure
of state spaces and the nature of attractors (see, e.g., [8]).

Implementation

The Perturbation Analysis pattern is generally applied as an iterative pro-
cedure. That is, a large number of perturbations and measurements are
carried out in order to provide an estimation of the stability of a partic-
ular system or class of systems. A single iteration of perturbation and
measurement may be described (in pseudocode) as follows:

# Set the initial state of the system.
State s = initialState

# Perturb the current state.
State s’ = Perturber.Perturb (s)

# Measure the distance between the original and perturbed states.
startDist = Measurer.Distance (s, s’)

# Update both the original and perturbed states.
s = System.Update (s)
s’ = System.Update (s’)

# Measure the distance between the updated states.
endDist = Measurer.Distance (s, s’)

The main variables in this procedure are the nature of the update and
perturbation functions and the distance metric. Each of these aspects may
be varied independently.
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(1) Defining an update function. The update function is defined by the
dynamic system to which the Perturbation Analysis pattern is being
applied. An example of an updating function in a discrete dynamic
system is provided by Kauffman’s Random Boolean Network model
[10]. In this model, the value of a state element, σn, at time t + 1 is
some random Boolean function, fn, of its K inputs at time t,

fn(t + 1) = fn(σn1(t), . . . , σnK
(t))

An example of a continuous update function is the sigmoid function
used in many neural network applications,

f(x) =
1

1 + e−x

where x is a weighted sum of the inputs to a particular element.
(2) Defining a perturbation function. Perturbation functions on discrete

states can be either systematic or stochastic. A systematic perturbation
function varies state elements systematically (e.g., by incrementing or
decrementing an integer value, or by negating a Boolean value). A
stochastic perturbation function varies state elements without regard
for the sequential nature of the element values (e.g., randomly assigning
a new integer value within the allowable range). A single application
of either type of perturbation function will involve the alteration of
one or more elements. The properties of the perturbation function are
therefore:

• the number of elements being varied; and
• the mechanism (i.e., systematic or stochastic) used in their varia-

tion.

Several possibilities exist for perturbing continuous state element val-
ues. Unlike the discrete case, it is not possible to systematically explore
the set of all possible perturbations. Therefore perturbations are gen-
erally applied in a stochastic fashion, by the addition of noise generated
according to some distribution (e.g., Uniform or Gaussian) to some or
all of the elements. The properties of the perturbation function that
can be modified are:

• the number of elements modified by the addition of noise; and
• the parameters of the distribution used to generate the noise, for

example, the mean and standard deviation of a Gaussian distri-
bution.

Another possibility for perturbing continuous state elements is to define
a discrete-valued structure embedded within the continuous state space
and then systematically perturb the system within the bounds defined
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by this structure. For example, consider a system with three elements,
in which the values of each element are constrained to the range [0, 1].
It is possible to define a three-dimensional cube within this space and
constrain the initial states and perturbations to the vertices of the
cube. If greater resolution is desired, the cube may be subdivided to
introduce the midpoints of the edges and the centre of the cube. This
method enables a continuous space to be explored and perturbed in a
systematic fashion.

(3) Defining a distance function. In the case of discrete states, a distance
function applies some transformation to the set of distances between
individual elements of the state. The most common transformation
performed in discrete systems is summation (e.g., Hamming distance),
though other transformations such as the average or the sum of squares
may be used.
When the values of the state elements are continuous, the standard
distance metric is the Euclidean distance between the original and per-
turbed states. For a system with N elements, the Euclidean distance
m between states s and s′ is given by,

m(s, s′) =
[ N∑

i=1

(s′i − si)2
] 1

2

where si is the value of the ith element of state s.
(4) Alternative distance measures. Some methods for measuring the effects

of perturbations do not require the initial distance measurement indi-
cated above. An example method is the standard basin of attraction
stability measurement commonly used in Random Boolean Network
models [12; 2] – in this analysis the distance comparison is based solely
on the final basins of attraction of the perturbed and unperturbed
states.

Sample code

Boolean network attractor stability

A common application of the Perturbation Analysis pattern is to estimate
the stability of an attractor in a Boolean network through either stochastic
or systematic perturbation of attractor states. The typical unit of mea-
surement in this usage case is whether or not the perturbed state reaches
the same basin of attraction as the unperturbed state. Repeated trials are
used to provide an estimation of the stability of a given basin of attraction,
where stability is defined as the probability that a perturbation to a state



September 1, 2005 10:52 WSPC/Book Trim Size for 9in x 6in main

Perturbation Analysis: A Complex Systems Pattern 9

Network Connectivity (K)
0 2 4 6 8 10 12

Ba
sin

 S
wi

tc
h 

Pr
ob

ab
ilit

y

 0%

20%

40%

60%

80%

100%

Fig. 1.3 Variation of attractor stability with increasing degree of connectivity in an
N = 12 random Boolean network.

does not change the basin of attraction.
One standard approach to obtaining such a stability measurement is

to look only at the states in the attractor [8; 12; 2]. In this situation,
the resulting measurement is the probability that the perturbation of an
attractor state will move the system to a different basin of attraction.

(1) Choose a state s in attractor a.
(2) Perturb s to obtain s′. This step is generally performed by flipping n

elements of the Boolean state, where n is a small integer (frequently
one).

(3) Iterate the trajectory starting at s′ until it reaches an attractor a′.
(4) Store the value a = a′.
(5) Repeat steps 1 to 4 some number of times and calculate the average of

the values stored in step 4.

An interesting characteristic of Boolean networks is the change in their
behaviour as the degree of connectivity of the network (K) varies.

By repeated application of the above procedure, an approximation of
the stability of the attractor states can be obtained for a range of connectiv-
ity values. Figure 1.3 shows the results of measuring stability in the above
manner on a Random Boolean Network model with N = 12, by iterating
through N perturbations of all 2N system states and recording the prob-
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ability of the target attractors of the original and perturbed states being
different. This observed decrease in system stability is consistent with gen-
eral expectations of the behaviour of the Random Boolean Network model.

Lyapunov characteristic exponents

One purpose for which the Perturbation Analysis pattern may be applied
is estimating the largest Lyapunov exponent in order to determine the sta-
bility of an attractor. The Lyapunov exponents of a system measure the
exponential rate of convergence or divergence of two nearby trajectories.
If the largest Lyapunov is negative, the attractor is stable. If the largest
Lyapunov is positive, the attractor is chaotic, and the magnitude of the ex-
ponent gives an indication of the time scale on which the future behaviour
of the system becomes unpredictable.

The Lyapunov exponent λ is given by,

λ = lim
t→∞,δx0→0

1
t
log

|δxt|
|δx0|

where δxt is the separation of the original and perturbed trajectories at time
t. While methods do exist for determining the Lyapunov exponent directly
from the equations describing a system’s dynamics, it is also possible to
approximate the value from a series of data points. The procedure for
estimating the largest Lyapunov exponent is as follows [14]:

(1) Choose an initial system state.
(2) Iterate the state s until it is located on an attractor.
(3) Perturb s to obtain s′. This step is generally performed by adding a

small amount of Gaussian noise (mean 0, standard deviation 1× 10−9)
to each of the state elements.

(4) Calculate the Euclidean distance d0 between s and s′.
(5) Iterate both trajectories.
(6) Calculate the new Euclidean distance d1.
(7) Calculate and store the value log|d1

d0
|.

(8) Perturb s to obtain s′ such that distance between them is d0 in the
direction of d1. This step can be carried out by adjusting each element
i of state s′ such that,

s′i = si +
d0(s′i − si)

d1

(9) Repeat steps 5 to 8 some number of times and calculate the average of
the values stored in step 7.
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The number of iterations required to reach an attractor in step 2 and the
number of iterations of steps 5 to 8 required for the value of λ to converge
may vary. Similarly, it can be useful to repeat the calculation process using
different initial states (step 1) and different initial perturbations (step 3).
It is important to note that if a system contains more than one attractor,
then the value of λ will be specific to the particular basin of attraction that
contains the initial state.

One way to analyse the behaviour of a dynamical system is to explore
the behaviour of a family of parameterised functions. For example a family
of linear systems may be described by the function fm(x) = mx where
m is varied over the real numbers. It is then possible to observe how
the dynamics of the system change as the function is changed. The same
technique may be applied to investigate the behaviour of more complex
systems, such as neural networks, by the inclusion of a gain parameter g
that scales the net input into the update function f ,

fg(x) =
1

1 + e−gx

As g affects the slope of the sigmoid function, modifying g from very small
to very large results in a sweep from the linear range, through the nonlinear
range to the Boolean range when the function is saturated.

By calculating the value of the Lyapunov exponent (using the same ini-
tial state each time) for each value of g, the range of dynamic behaviours of
a particular system can be visualised. Figure 1.4 shows how perturbation
analysis may be used to visualise the dynamics of a recurrent neural net-
work [5]. The network used in this example consisted of 20 fully-connected
nodes, with weights drawn from a Gaussian distribution with mean 0 and
standard deviation 1. The gain parameter g was varied from 0.2 and 40
with increments of 0.2. An initial system state I was generated by setting
the activation of each node to a value in the range [0, 1]. For each value
of g the system was initialised to I and the procedure described above was
used to estimate the Lyapunov exponent (Figure 1.4, top). In addition,
the average activation of the network was recorded for each iteration of
the calculation, providing an alternative visualisation of network dynamics
(Figure 1.4, bottom). These two complementary views provide a compre-
hensive picture of the dyanmics of a system across a range of weight scales,
revealing such features as bifurcations, fixed point and cyclic attractors,
and chaotic behaviour.
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Known uses

The concept of perturbation analysis as an exploratory tool was first for-
malised in the realm of Discrete Event Dynamic Systems, where it was
developed to estimate the gradient of performance measures with respect
to variation in system control parameters (see [9] for a history and overview
of perturbation analysis in this context).

Within the field of complex systems, perturbation analysis has been
used on an ad hoc basis by numerous researchers as a means of explor-
ing the stability of genetic regulatory systems (e.g., [12]). Perturbation
analysis has also been employed in a more principled fashion, to generate
theoretical results about system stability: Derrida’s annealed approxima-
tion method [4] illustrates the use of the Perturbation Analysis pattern on
an annealed version of the Random Boolean Network model. This ana-
lytic tool uses an annealed random Boolean updating function, a stochastic
perturbation process involving all N state elements and a state distance
metric based on the normalised overlap of the states’ values. The annealed
approximation method was used to show that K = 2 connectivity in the
Random Boolean Network model described a phase transition between the
ordered and chaotic behaviour of the system. The annealed approxima-
tion method has since been used in different situations to identify phase
transitions in the behaviour of networks of multi-state automata [13], and
Boolean networks with scale-free topologies [2].

Lyapunov exponents have been used by mathematicians as an indicator
of chaotic systems for some time. During the 1980s, several approaches were
developed to allow the Lyapunov exponent to be determined from time se-
ries data [16], allowing the recognition of chaos in systems whose generating
equations were unknown. Subsequent studies introduced the use of neural
networks as general models of dynamic systems, typically for econometric
and financial time series prediction tasks (e.g., [3]). More recently, simula-
tions of high dimensional neural networks and systematic measurement of
Lyapunov exponents has been used to investigate routes to chaos in high
dimensional nonlinear systems [1]. Finally, the techniques described here
have been extended and used to develop intuitions about the formation and
stability of attractors in network models of gene regulation [7].

Summary

This paper has used the formal framework of patterns to describe a standard
technique for analysing the stability of complex dynamical systems. The
Perturbation Analysis pattern can be applied to a variety of discrete and
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continuous systems, as demonstrated by the random Boolean network and
neural network examples detailed above. This form of stability analysis
allows the effects of intrinsic and extrinsic perturbations on the dynamics
of a system to be quantified. This paper also serves as an example of
how the software engineering concept of patterns can be used to formalise
modelling techniques and strategies for effective communication within a
research community.
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Fig. 1.4 Lyapunov exponent (top) and activation diagram (bottom) for a fully con-
nected 20 node network as g is scaled from 0 to 40. Note the correlation between fixed
point and cyclic attractors, indicated by single or multiple discrete points on the bot-
tom chart, with negative Lyapunov values. In contrast chaotic attractors, with positive
Lyapunov, values appear as as ‘smears’ of points.
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