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The generation of pattern and form in a developing organism results
from a combination of interacting processes, guided by a programme en-
coded in its genome. The unfolding of this programme involves a complex
interplay of gene regulation and intercellular signalling, as well as the me-
chanical processes of cell growth, division and movement.

In this study we present an integrated modeling framework for simu-
lating multicellular morphogenesis that includes plausible models of both
genetic and cellular processes, using leaf morphogenesis as an example. We
present results of an experiment designed to investigate the contribution
that genetic control of cell growth and division makes to the performance
of a developing system.

1.1 Introduction

The generation of pattern and form in a developing organism results from
a combination of interacting processes, guided by a programme encoded
in its genome. The unfolding of this programme involves a complex in-
terplay of gene regulation and intercellular signalling, as well as the mor-
phogenetic processes of cell growth, division and movement [20]. Recently,
computers have enabled these multi-scale developmental systems to be sim-
ulated, revealing new insights into the emergence of pattern and form [9;
15].
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In this study we present an integrated modeling framework for simu-
lating multicellular morphogenesis that includes plausible models of both
genetic and cellular processes, using leaf morphogenesis as an example. Leaf
forms display a wide variety of morphological features, the development of
which provide excellent examples of robust control of shape formation. We
focus here on the role played by genetic control of cell growth and division
orientation in the generation of specific shapes, and how this interacts with
the physical constraints on cell shape.

The format of this report is as follows: Section 1.2 presents background
material on leaf morphogenesis and previous computational models of gene
regulation and development. Section 1.3 describes our simulation frame-
work, which consists of a gene network model, a physical cell model, a
procedure for coupling these two components, and an evolutionary search
algorithm for investigating model parameters. Section 1.4 presents initial
results obtained using this simulation framework and Section 1.5 concludes
with a discussion of future directions for this research.

1.2 Background

1.2.1 Leaf Morphogenesis

Morphogenesis, the formation of shapes and structures in plants and ani-
mals, occurs by three processes: 1. Tissue growth; 2. Cell movement; 3.
Cell death (apoptosis) [2]. Active cell movement does not occur in plants
and so morphogenesis is coordinated by tissue growth – determined by
cell shape, growth, and proliferation – and cell death. Variation in these
behaviours across tissues and over developmental time causes the develop-
ment of specific forms. The term patterning is applied to the coordinated
differential expression of genes over space and time. It is these gene expres-
sion patterns that give rise to the variation in cell behaviour that drives
morphogenesis.

Patterning provides positional information that guides cell behaviour
and although cell lineage also plays some role, it seems this positional in-
formation is of primary importance in plant development [3; 7]. The rela-
tionship between patterns of gene expression and the specification of tissue
and organ shape is not well characterised. [2] cite the difficulty in measur-
ing morphogenetic effects and the need for quantitative analysis as possible
reasons for this gap. Another difficulty is understanding the tight coupling
of morphogenesis and patterning: the patterns develop along with, and are
embedded in the forms to which they give rise.

Formation of leaf shape is tightly regulated, and evidence exists for
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both cell-division dependent and cell-division independent regulatory mech-
anisms [7]. That is, final leaf form and size is to some extent independent
of both cell number and cell size. There is also evidence that overall leaf
shape is unaffected by cell division orientation [7]. This suggests regula-
tion of cell behaviour depends on feedback of organ-level information [19].
The nature of this regulation is at present unknown. However, hormone
(e.g. auxin) transport has been implicated in organ shape regulation [7;
12], and [11] suggest that hormones may also regulate organ shape by af-
fecting cell expansion and/or by modulating the cell cycle. Noting that leaf
size is dependent on whole-plant physiology, [19] suggests that a source-sink
relationship within the plant (e.g. of nutrients) might limit leaf size.

[21] and [11] present results of experiments in which cell division rates,
cell division orientation, and cell growth rates were perturbed both locally
and across the leaf. These results provide evidence for the involvement of
the above mentioned processes in regulating leaf morphogenesis, but how
these multiple mechanisms interact and their relative importance are still
unknown.

1.2.2 Previous Models

[13] identifies three categories of plant development models, focusing on
plant architecture, individual organs, and the underlying mechanics of gene
regulation, respectively. The first of these is well established, with L-
systems being the dominant modelling framework; the latter two areas
are still active areas of research – [13] and [2] provide an overview of re-
cent developments. These categories occupy very different temporal and
spatial scale ranges, and a full understanding of development requires the
integration of multiple scales.

Developmental issues have been addressed by the Artificial Life research
community [18]. An early attempt to integrate multiple scales of develop-
mental mechanism into a single model included cells with complex internal
dynamics that communicated with each other via chemical and electrical
signals as well as physical interactions [6]. One of the findings of this study
was that, while the multiple mechanisms enabled the robust production
of interesting phenotypes, it also made the design of specific phenotypes
more difficult. Later research demonstrated that this difficulty could be
addressed by using a representation of the regulatory network that could
be artificially evolved [4].

[9] also used a model that combined mechanisms at multiple scales
of description – gene regulation, development and evolution – to investi-
gate the interactions between evolutionary dynamics and morphology. Her
evolutionary process was aimed at maximising cell type diversity, rather
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than achieving a specific morphological shape. However, she found that
some features of morphology, such as engulfing, budding and elongation,
were relatively ‘generic’, that is, they appeared ‘for free’ in systems that
satisfied certain prerequisites.

The formation of patterns across a fixed field of autonomous cells has
also been studied in some detail [16; 17]. Here too, it was found that
patterns were a common emergent feature of interacting gene networks, al-
though again, selection was for ‘pattern complexity’ rather than a specific
phenotypic target. Later research [15] focused on the issue of how pat-
tern formation processes interact with growth processes, specifically with
reference to the evolution of tooth development.

In general, the models mentioned above do not include individual cell
morphology: Cells are represented as circles or squares, of equal or varying
size. The model used by [9] does support anisotropic cell shapes; however,
these result from the algorithm used to calculate cell boundaries, rather
than reflecting anisotropy in the underlying growth process. In plants, cell
behaviour is frequently anisotropic, with the axes of both growth and di-
vision under a degree of cellular and genetic control. As described above,
control of cell morphology is intimately connected with the production of
leaf form, therefore a detailed and flexible model of cell shape is of funda-
mental importance in any approach to modeling leaf morphogenesis.

1.3 The Simulation Framework

Our integrated model of plant morphogenesis brings together plausible rep-
resentations of cell shape, genetic regulation, and cell-cell signalling. Cell
shape is determined by growth and division activity as well as external
physical forces, and the combination of the shapes of all cells determines
the overall phenotypic form. Each cell is autonomous and its behaviour
is regulated by its own copy of the organism’s gene network, which also
responds to signals received from neighbouring cells. The genetic network
thus indirectly specifies phenotypic morphology.

As noted earlier, due to the complexity of cellular developmental sys-
tems, a search and optimisation approach is favoured when examining their
properties in silico. We have chosen to use an evolutionary algorithm to
search for systems with particular shape formation capabilities. Our ap-
proach is to decide on a target phenotypic shape, specify initial conditions,
and then artificially evolve gene networks which come close to producing
the desired shape.

In the following we describe the primary components of the model: the
genetic component, consisting of a network embedded within each cell, and
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the spatial model, consisting of an arrangement of cells that constitutes
the phenotype. Following that, the coupling between these two compo-
nents is described. Finally, the evolutionary algorithm used to explore the
parameter space of these networks is outlined.

1.3.1 The Genetic Component

In this study, we used a dynamic recurrent gene network (DRGN) model
for the genetic component of the framework [8]. The DRGN model is based
on a widely studied class of artificial neural network models known as re-
current neural networks [5], and has previously been used to investigate
the generation of developmental cell lineages [8]. An advantage of a re-
current network representation is that it enables the model to express a
complex range of gene interactions while abstracting away from the specific
biological processes that underly those interactions.

INPUT GENES REGULATORY GENES OUTPUT GENES

Fig. 1.1 The structure of the DRGN model. The network is partitioned into three
categories: input genes that detect the presence of morphogens produced by other cells

or the environment; regulatory genes that interact with one another to perform the
computational tasks of the cell; and output genes producing morphogens that can be
transmitted to other cells or that trigger events such as growth and division.

In the DRGN model, a genetic system is defined as a network of N

interacting nodes (see Figure 1.1). Depending on the level of abstraction,
each node can be considered to represent either a single gene, or a cluster
of co-regulated genes. In this study we generally consider a node to be a
equivalent to a single gene. The activation state of each node is a continuous
variable in the range [0, 1], where 0 represented a completely inactive gene
and 1 a fully expressed gene. Nodes can be divided into three classes:
input genes that detect the presence of morphogens; regulatory genes that
interact with each other to carry out the computational task of the network;
and output genes that produce morphogen signals.
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The network is updated synchronously in discrete time steps. To capture
the potential complexity of the interacting factors involved in gene expres-
sion, we have used a network in which each input gene is connected to each
regulatory gene, all regulatory genes are connected to each other and them-
selves, and each regulatory gene is connected to each output gene. Thus
an individual link in the network does not necessarily represent a direct
physical interaction, but rather the degree of influence that the expression
of the source gene at time t has on the expression of the target gene at time
t + 1.

These interactions can be summarised in a weight matrix, in which the
entry at row i, column j specifies the influence that gene j has on gene
i. These entries may be positive or negative, depending on whether the
product of gene j is an activator or a repressor in the regulatory context of
gene i. A zero entry indicates that there is no interaction between the two
genes. The inclusion of self-connections (i.e. from node i to node i) allows
for the possibility of genes influencing their own regulation.

The state of the network is updated synchronously, with the activation
of node i at time t + 1, ai(t + 1), given by

ai(t + 1) = σ
(

Nr
∑

j=1

wijaj(t) − θi

)

(1.1)

where Nr is the number of regulatory nodes, wij is the level of the inter-
action from node j to node i, θi is the activation threshold of node i, and
σ(.) is the sigmoid function, given by

σ(x) =
1

1 + e−x
(1.2)

1.3.2 The Cellular Component

We use a 2-dimensional spatial model of the cellular arrangement. This is
based on linear cell boundary elements (walls), which are modelled as elastic
springs. The approach is similar to that of [10], however we also consider
some more complex cell dynamics such as anisotropic growth. Cell-cell
signalling is considered in the form of chemical diffusion, as in [6]. This
approach has previously been used to examine rule-based control of plant
morphogenesis [14].

Cell: The genome of our artificial organism is represented as a DRGN.
Each cell is defined by its DRGN, a set of dynamic state parameters and a
closed boundary. The DRGNs contained by each cell in a phenotype have
identical structure and weights, reflecting the genetic homogeneity of an
individual organism. The activation levels of the DRGN nodes in each cell,
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however, are independent and represent the variation in gene expression
across the phenotype.

The cell state parameters include passively received information such
as morphogen levels and cell volume, and behavioural states like growth
rate and morphogen production rates. As part of their state, the cells also
maintain polarity vectors that are used to direct anisotropic growth, to
orient the division plane, and to asymmetrically divide the cells morphogens
between its daughters, according to the behavioural state parameters.

The state of the cell determines its behaviour at any point in time. Cell
dynamics are expressed as the transformation of cell state parameters to
proceed to a new state. Behavioural states are transformed by the DRGN,
with the inputs and outputs of the DRGN defined by a fixed mapping onto
the cell state parameters. The passive state parameters are transformed by
physical simulation of the cells’ environment, including its own boundary
shape and interactions with neighbours.

Spatio-Mechanical Model: The boundary of the cell describes its
shape, and is decomposed into a set of walls. Each wall is the interface
between two cells. Morphogens diffuse from one cell to the other via the
wall, providing a cell-cell signalling mechanism. The walls are considered to
be two linearly elastic elements (springs), one for each adjacent cell, bound
together at the end points (vertices). Each of the adjacent cells influences
the properties of only one of these springs. Each spring has stiffness K and
natural length Ln determined from the state parameters of the appropriate
cell [14].

Each cell exerts a turgor force perpendicular to each of its walls in an
outward direction with respect to the cell, extending the springs, which then
exert an opposing tension force. At each time-step these simulated forces
are accumulated at the vertices, and the vertex positions are adjusted to
find the equilibrium configuration.

Cell growth is achieved by increasing the natural lengths of each cells’
springs to varying degrees (see [14] for details). Division consists of inserting
a dividing wall across the centre of the cell, and redefining the daughter
cell boundaries. When a cell divides, its DRGN (including current node
activation levels) is copied into the two daughter cells.

1.3.3 Genotype-Phenotype Coupling

The system integrates multiple scales of model into a single framework.
Figure 1.2 shows an overview of the way in which the levels of the model
interact. Starting at the micro level, the DRGN transforms the cell state.
The cell state is expressed as local behaviours such as growth, which then
affect the entire phenotype via simulated mechanical forces and diffusion
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processes. This global effect is then transduced back into local informa-
tion to each cell, and from there transformed into micro level input to the
DRGN.

Fig. 1.2 Scheme of interactions between different levels in the model, from microscopic
(left) to macroscopic (right). Circular arrows indicate faster time scale processes running

multiple time steps between cell state updates.

The flow of control is therefore from micro to macro level, and the flow of
information or feedback is from macro to micro. The nature of the coupling
between information feedback and phenotypic output is ultimately deter-
mined by the structure and weights of the DRGN, as well as the mapping
from DRGN to cell state – i.e. the genotype.

The dynamics of cell behaviour, such as growth and division, gene ex-
pression, and transmission of mechanical forces, occur on very different
time scales. In general, variation in cell behaviour occurs most slowly and
equilibration of forces occurs most quickly. We assume that mechanical
equilibrium is reached instantaneously when relevant parameters such as
growth rate change.

The DRGN can be used to model genetic regulation on several levels.
Each node may represent a single gene or a cluster of genes, and each node
update may represent one or many regulatory events. In order to incor-
porate this flexibility we allow the DRGN to update multiple times before
affecting the cell state. The procedure that produces a cellular phenotype
from the DRGN genotype is thus:

(1) Determine cell states from initial conditions
(2) Map DRGN inputs from cell states
(3) Update DRGN by some number of time steps
(4) Map cell states from DRGN outputs
(5) Compute cell shapes and morphogen diffusion
(6) Repeat from 2 until stopping condition met

The stopping condition may be chosen arbitrarily according to the ex-
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periment. We used a maximum number of time steps of 250 in our experi-
ments.

1.3.4 The Evolutionary Component

The evolutionary component, which enables a population of DRGNs to be
artificially “evolved” towards some particular target, serves two purposes.
At a methodological level, it provides a useful machine learning technique
for searching the parameter space of networks. At a theoretical level, it
facilitates questions about the evolutionary dynamics of morphogenesis [9].

A simple evolutionary search strategy called the 1+1 ES was used [1].
Initially, a single DRGN was generated with weights randomly drawn from
a Gaussian distribution with mean 0 and standard deviation 4. This DRGN
was used to develop a phenotype, as described in Section 1.3.3. A fitness
value for this phenotype was calculated as described in Section 1.4.1 below
and stored. A new DRGN was derived from the existing DRGN by adding
Gaussian noise (mean 0, standard deviation 0.01) to each of the node in-
teractions. A new phenotype was developed and evaluated and the fitness
value for the modified DRGN was compared to that of the original DRGN.
The DRGN producing the phenotype with the greatest fitness was retained
and used as the basis for the creation of a further new DRGN. This process
was repeated until the stopping conditions were met. We used a maximum
number of generations of 15, 000 in our experiments.

1.4 Initial Experiments

To investigate the role of genetic control of growth and development in mor-
phogenesis, we ran three sets of comparative evolutionary trials: random
growth and division orientation, regular growth and division orientation and
genetically controlled growth and division orientation. We set the DRGN
the task of generating a circular shaped final phenotypic form.

(1) Random orientation In the first set of trials, there was no control
of growth and division orientation – they were each chosen randomly
at each time step. Only one output node was utilised, the morphogen
controlling the decision to grow and divide.

(2) Regular orientation In the second set of trials, the orientation of
growth and division of each cell was chosen to be opposite to that of its
parent cell – giving alternating axial and lateral growth and division
each generation. The DRGN was not able to change this sequence of
orientations; however, it was able to make use of the regularity of the
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predetermined sequence.
(3) Controlled orientation In the final set of trials, two additional output

nodes were used, producing morphogens that controlled the orientation
of growth and division respectively. Therefore the DRGNs had the
capability to coordinate the two processes.

1.4.1 Method

DRGN Coupling: Three inputs were provided to the network. The first
input responded to the concentration of a morphogen that was initialised to
a concentration of 1.0 in the initial cell, and was not produced after that.
Therefore, as the volume of the phenotype increased due to growth and
division, the concentration of this morphogen decreased. The second and
third inputs responded to morphogens related to the position of the cell.
These were externally supplied as the (x, y) position of the cell centre. This
may be considered as incorporating information supplied by underlying cell
layers.

The phenotypes were initialised as a single unit square cell with unit
morphogen concentration, and DRGN outputs pj mapped to cell behaviour
as follows:

• If p0 > 0.5 then set growth rate to 0.2, and divide if volume > 2.
• If p0 ≤ 0.5 then set growth rate to 0 and do not divide.
• If p1 > 0.5 set division orientation to axial otherwise set to lateral.
• If p2 > 0.5 set growth orientation to axial otherwise set to lateral.

Fitness function: The task used for this study was to evolve a DRGN
capable of generating a circular arrangement of cells of a given radius.
Fitness was calculated for each phenotype at each time step based on the
current cell arrangement – specifically, the absolute distance of each exterior
(marginal) cell from the centre of mass of the phenotype, given by:

ri = |xi − c| (1.3)

for cell i, where xi is the cell’s centre of mass, and c is the centre of mass
of the whole phenotype. The error of the phenotype from a circle radius
R at any time point, is calculated from the distance of each cell from the
circle dri = |ri − R|:

ε(t) = d̄r(t) +

√

√

√

√

1

N(t)

N(t)
∑

i=1

(

dri(t) − d̄r(t)
)2

(1.4)
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where the sum is over the N exterior cells. The first term is the mean
distance error, and the second is the standard deviation in the distance
error. We used a target radius of 5 units in our experiments. The overall
phenotypic fitness was calculated from the cumulative error over all time
steps {1, 2, 3...T} and scaled by a constant factor such that the maximum
possible fitness is approximately 1.0:

f =
625

1 +
∑T

t=1 ε(t)
(1.5)

Summary: In summary, three sets of evolutionary trials were run, each
corresponding to one of the control conditions described in Section 1.4.
Each evolutionary trial was run for up to 15, 000 generations, with snap-
shots of the best phenotype being recorded at 500 generation intervals. In
each generation, the DRGN was run for 250 developmental time steps, with
it’s fitness evaluated over this period as described above.

1.4.2 Results

The DRGNs that had explicit control of the growth and division orien-
tation were able to generate considerably more accurate phenotypes than
the those supplied with either a regular or random sequence of orientations
(Table 1.1).

Table 1.1

Orientation Maximum Fitness

Random 0.314
Regular 0.555

Controlled 0.642

The evolutionary history of the most successful evolutionary trial from
the Controlled set displays a level of continual innovation typical of highly
evolvable systems (Figure 1.3). By contrast, the most successful trials from
the Regular and Random sets (not shown), reached their peak fitness early
(around generation 4,000), and failed to improve any further. The pheno-
types produced at different stages of evolution provide some clues to explain
these differences (Figure 1.4).

(1) Random orientation (Figures 1.4(a)- 1.4(d)): Regulation of size
appears relatively early, and is consistent throughout the course of evo-
lution. However control of phenotypic shape has not evolved. The
randomness of the sequence of orientations prevents the DRGN from
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Fig. 1.3 The evolutionary history of the fittest system found in the Controlled set of
trials, in which the DRGN had explicit control of the orientation of growth and division.

being able to successfully coordinate the development of a stable shape.
The examples shown here represent only one instance of a set of possible
outcomes for a given DRGN.

(2) Regular orientation (Figures 1.4(e)- 1.4(h)): When the DRGN is
able to rely on a regular sequence of growth and division orientations,
greater control of phenotypic shape is achieved. Very early in this evo-
lutionary trial, a strategy emerged in which a group of growing cells
is surrounded by non-growing cells. However, while ensuring a reason-
ably circular phenotype, this approach proves too strong a constraint,
limiting any further improvement.

(3) Controlled orientation (Figures 1.4(i)- 1.4(l)): With full control
over division and growth orientations, the evolutionary algorithm was
able to explore a much broader range of developmental possibilities. In
the example shown, the DRGNs found early in the evolutionary history
developed by first growing and dividing laterally and then switching to
axial division, resulting in the phenotype fanning out. The largest
jump in fitness (Figure 1.3, around generation 11,000) occurred when a
DRGN was discovered in which the fanning out process was inhibited
by a cap of quiescent cells. The resulting “stem and bud” arrangement
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was refined in successive stages of evolution by increasing the roundness
of the bud, and reducing the length of the stem.

1.5 Discussion and Future Directions

In all three sets of trials, DRGN evolved that were capable of controlling
phenotype size. With full DRGN control over development a significant de-
gree of shape control evolved, using a variety of developmental approaches.
With regular cell growth and division, DRGNs were able to control the
phenotype shape to a similar extent, but the range of strategies for doing
this was more limited. With random growth and division, little control of
phenotypic shape emerged.

While preliminary, these results suggest that positional information only
provides sufficient information to enable generation of stable phenotypic
forms in the presence of predictable growth and division orientation. It
would appear that the claim by [7], that leaf shape is, to a degree, indepen-
dent of division orientation, requires the presence of more complex cell-cell
signalling than simple positional cues. One strong possibility is that cell-
cell communication plays a vital role in the robust development of form.
Future work will involve the investigation of inductive interactions between
cells and how this additional level of communication may facilitate more
robust development.
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(a) G = 0;
f = 6.25× 10−5

(b) G = 2000;
f = 0.302

(c) G = 3000;
f = 0.308

(d) G = 14000;
f = 0.314

(e) G = 2000;

f = 0.502

(f) G = 4000;

f = 0.534

(g) G = 6000;

f = 0.535

(h) G = 9000;

f = 0.555

(i) G = 2000;
f = 0.610

(j) G = 10000;
f = 0.616

(k) G = 11000;
f = 0.617

(l) G = 15000;
f = 0.641

Fig. 1.4 Fittest phenotypes at key stages (generation G) in artificial evolution,

where f is fitness: [1.4(a)-1.4(d)] Random growth/division, [1.4(e)-1.4(h)] Regular

growth/division, [1.4(i)-1.4(l)] DRGN control. Shading shows DRGN output on a grey
scale, white(0) to dark grey(1): [1.4(a)-1.4(h)] cell growth and division trigger, [1.4(i)-

1.4(l)] division orientation. Scale bar is 10 units.
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