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Abstract

We obtain new fermionic sum representations for the Virasoro characters of the
confromal field theory describing the ferromagnetic three-state Potts spin chain.
These arise from the fermionic quasi-particle excitations derived from the Bethe
equations for the eigenvalues of the hamiltonian. In the conformal scaling limit,
the Bethe equations provide a description of the spectrum in terms of one genuine
quasi-particle, and two “ghost” excitations with a limited microscopic momentum
range. This description is reflected in the structure of the character formulas, and
suggests a connection with the integrable perturbation of dimensions (2/3,2/3)+

which breaks the S3 symmetry of the conformal field theory down to Z2.
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1 Introduction

The critical three-state Potts model was found to be integrable over 20 years ago [1, 2], and

since these initial investigations it has been the subject of many studies [3]. Recently [4], it

was shown that the order one excitations of the anti-ferromagnetic three-state Potts spin chain

[5], computed from the formalism of functional and Bethe equations [6]-[12], can be used to

construct expressions for the characters of the conformal field theory of Z4-parafermions. Since

these equations yield excitations which obey a fermionic exclusion rule, we call these fermionic

sum representations. These character formulas were previously obtained by Lepowsky and

Primc [13] from considerations of the representation theory of the affine Lie algebra A
(1)
1 . The

characters, which in this case are branching functions of (A
(1)
1 )4/U(1), are the building blocks

of the modular invariant partition function of the conformal field theory.

Here we provide a parallel discussion for the ferromagnetic chain, leading to fermionic sum

representations for the Virasoro characters [14] of the Z3-parafermionic conformal field theory

which is associated with this model [15, 16, 17]. These representations, which we will now

summarize, are quite different from the ones of [13].

The normalized Virasoro characters χ̂∆ ≡ q
1
30

−∆χ∆ of the Z3-parafermionic conformal

field theory, with central charge c = 4
5

and conformal dimensions ∆ = ∆r,s = (6r−5s)2−1
120

(r = 1, 2, 3, 4, s = 1, 3, 5), are given by [14]

χ̂∆r,s
(q) = χ̂∆5−r,6−s

(q) =
1

(q)∞

∞∑

k=−∞

[
qk(30k+6r−5s) − q(5k+r)(6k+s)

]
. (1.1)

Our result here is that these characters can be written in the form

χ̂∆(q) =
∞∑

m1,m2,m3=0
restrictions

q
1
4
mCA3

m
t− 1

2
L(m) 1

(q)m1

[
1
2
(m1 + m3 + u2)

m2

]

q

[
1
2
(m2 + u3)

m3

]

q

, (1.2)

where (q)0 = 1, (q)m =
∏m

a=1(1 − qa), the q-binomial coefficient is defined for integer m, n as

[
n
m

]

q

=

{
(q)n

(q)n−m(q)m
if n ≥ m ≥ 0

0 otherwise,
(1.3)
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∆ m1 m2 m3 u2 u3 L(m)

(1) 0 e e e 0 0 0

(2) 2
5 o e e 1 0 1

(3) o o o 0 1 1

(4) 7
5 e e o 1 0 3

(5) e o e 0 1 3

(6) 3 o e o 0 0 6

(7) 1
15 o e o 2 0 m2

(8) e e e 2 0 m2

(9) e o o 1 1 m2

(10) o o e 1 1 m2

(11) {e o o
+o o e} 1 −1 m1 − m3

(12) 2
3 e e o 1 0 m2 + 1

(13) o e e 1 0 m2 + 1
(14) {e o e

+o o o} 0 −1 m1 − m3 + 1

Table 1: Restrictions and linear translation terms for the characters χ̂∆ in equation (1.2). Here
e ≡ even and o ≡ odd. Note that the characters χ̂1/15 and χ̂2/3 have a two-term expression
as well as one-term expressions.

m = (m1, m2, m3), and CA3 is the Cartan matrix of the Lie algebra A3:

CA3 =




2 −1 0

−1 2 −1
0 −1 2



 . (1.4)

The restrictions on the integers ma in equation (1.2) depend on the character in question, and

are such that ma are either even (e) or odd (o). These restrictions are listed, together with

the ua and the linear translation terms L(m), in table 1. We note that for characters other

than χ̂0 and χ̂3 there is more than one representation of the form (1.2), and that the formulas

corresponding to lines (1)–(7),(9),(12)–(13) in the table are special cases of the fermionic sum

representations for Virasoro characters presented already in [18].

The modular invariant partition function of the conformal field theory associated with the

three-state Potts model is written in a factorized form in terms of these characters [17]:

(qq̄)−
1
30 Ẑ = [χ0(q) + χ3(q)][χ0(q̄) + χ3(q̄)] + [χ 2

5
(q) + χ 7

5
(q)][χ 2

5
(q̄) + χ 7

5
(q̄)]

+2χ 1
15

(q) χ 1
15

(q̄) + 2χ 2
3
(q) χ 2

3
(q̄) . (1.5)
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Here the variable q (=q̄) is associated with contributions coming from right- (left-) moving

excitations, as discussed in sect. 2.

In this paper we construct a direct connection between the low-lying spectrum of the spin

chain hamiltonian and the conformal field theory. We do so by computing the partition func-

tion of the spin chain in an appropriate scaling limit (see (1.12) below), obtaining expressions

of the form (1.2) for the Virasoro characters. Our starting point is the quasi-particle nature

of the spectrum.

A many-body system is said to have a quasi-particle spectrum if in the infinite-size limit

the energy E and momentum P of the low-lying excitations above the ground state are of the

form

E − EGS =
∑

α, rules

mα∑

j=1

eα(P α
j ) , P − PGS ≡

∑

α, rules

mα∑

j=1

P α
j (mod 2π) , (1.6)

where mα is the number of excitations of type α in a given state. The rules of composition in

(1.6) depend on the model in question, and commonly include a fermionic exclusion rule

P α
j 6= P α

k if j 6= k , (1.7)

in which case the spectrum is said to be fermionic.

There are many cases where the excitation spectrum is gapless, i.e. one or more of the

eα(P α) vanish at some value of the momentum, say at P α = 0, and

eα(P α) ∼ vα|P α| for P α ∼ 0 , (1.8)

where vα > 0 is the fermi velocity of the excitation of type α.

The partition function of the quantum spin chain at temperature T is the sum over all

states,

Z =
∑

{states}

e−E/kBT = e−EGS/kBT
∑

{states}

e−(E−EGS)/kBT , (1.9)

and the specific heat in the thermodynamic limit is defined by

C(T ) = − T
∂2f

∂T 2
, where f = −kBT lim

M→∞

1

M
ln Z . (1.10)
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Here M is the size of the system and the temperature T has some fixed positive value. When

the spectrum is of the form (1.8), at low temperature the specific heat is dominated by quasi-

particle states (1.6) with vanishing single-particle energies and exhibits a linear T behavior.

Therefore, in order to extract this behavior it is necessary to consider only excitations of this

type in the sum over states (1.9). We refer to the resulting partition function, in the limit

M → ∞ and with the ground state energy factored out, as the conformal partition function.

More explicitly, the conformal field theory partition function (1.5) is obtained from

Ẑ = lim eEGS/kBT Z (1.11)

in the limit

T → 0 and M → ∞, with MT fixed. (1.12)

Using (1.6) and (1.8) we see that Ẑ is a function of the variable

q ≡ exp
(
− 2πv

MkBT

)
. (1.13)

If there are no additional length scales in the problem, the q → 1 behavior of Ẑ and the

T → 0 limit of the partition function in the thermodynamic limit (1.10) should match. Indeed,

the leading q → 1 behavior of Ẑ was computed in [18] from the expression for the characters

(1.2), where it was shown that the linear behavior of the specific heat obtained in this way is

the same as that obtained in the thermodynamic limit at low temperature [7, 19].

We also remark that the connection between these two different computations goes beyond

giving just the same final result for the value of the specific heat coefficient. In the analysis

of the q → 1 behavior of sums generalizing (1.2) for characters of a large class of conformal

field theories, one encounters [18] the same equations (involving dilogarithms) which appear

in thermodynamic Bethe Ansatz analyses of the corresponding spin chains, as well as of

factorizable scattering theories that are associated with certain integrable perturbations of

the conformal field theory in question. We will say more about the relation between fermionic

character sums and integrable perturbations in sect. 5.
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In [4] it was shown for the anti-ferromagnetic three-state Potts chain that the sum over

low-lying excitations with a massless dispersion relation (1.8) gives rise to the D4 [20] modular-

invariant partition functions of the Z4-parafermionic conformal field theory. In that model

there are three different excitations, all having the same linear dispersion relation. In contrast,

the spectrum of the ferromagnetic three-state Potts chain has a different structure. While

there is only one type of quasi-particle excitation of the kind found for the anti-ferromagnetic

case [5], there are two more excitations, which do not contribute to the energies at order one

(= M0) but rather determine the degeneracy of states of the order one excitation spectrum

[21], thus affecting the thermodynamics through entropy considerations. In the calculation of

the partition function, where we take the energy of all excitations to have a linear dispersion

relation, this can be viewed as a statement that the momentum range of these latter two

excitations is microscopic (of order M−1), instead of being macroscopic (order M0) as it is for

the quasi-particle excitation.

In sect. 2 we define the model and introduce the relevant Bethe equations, as well as the

order one spectrum. In sect. 3 we use the finite-size studies of [21, 22] to extend the order one

analysis of the spectrum [5] to order 1/M , and study the sectors of the partition function which

give rise to the representations (1), (2), (4) and (6) in table 1 for the characters χ̂0, χ̂3, χ̂2/5

and χ̂7/5. The sector of the partition function which corresponds to the character χ̂1/15 is

analyzed in sect. 4. This gives a representation for χ̂1/15 in terms of five sums of the form

(1.2). In sect. 5 we contrast the form (1.2) with the result of [13], and discuss the relation of

these different fermionic representations for the conformal field theory characters to certain

integrable massive extensions.
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2 The gapless three-state Potts chain

The gapless three-state Potts quantum spin chain of M sites with periodic boundary conditions

is defined by the hamiltonian

H = ± 2√
3

M∑

j=1

{
Xj + X†

j + ZjZ
†
j+1 + Z†

jZj+1

}
, (2.1)

where ZM+1 = Z1 and for j = 1, . . . , M the matrices Xj and Zj are written as a direct product

of M 3 × 3 matrices:

Xj = I ⊗ I ⊗ · · · ⊗ X︸︷︷︸
jth

⊗ · · · ⊗ I, Zj = I ⊗ I ⊗ · · · ⊗ Z︸︷︷︸
jth

⊗ · · · ⊗ I . (2.2)

Here I is the identity matrix and

X =




0 0 1
1 0 0
0 1 0



 , Z =




1 0 0
0 ω 0
0 0 ω2



 , ω = e2πi/3. (2.3)

The hamiltonian with the (+) − sign is referred to as the (anti-) ferromagnetic spin chain.

The hamiltonian has a Z3 spin-rotation invariance and thus the Z3 charges Q = 0,±1 are

good quantum numbers. In addition (2.1) is invariant under complex conjugation and hence

the sectors Q = ±1 have equal eigenvalues and in Q = 0 the eigenvalue C = ±1 of the charge

conjugation operator is a good quantum number.

The hamiltonian (2.1) is derived from the two-dimensional critical three-state Potts model

of classical statistical mechanics. The eigenvalues of the transfer matrix of the latter model

satisfy functional equations [11], which, when specialized to the hamiltonian point [21], yield

equations for the eigenvalues of the hamiltonian. These eigenvalues are given by

E =
L∑

j=1

cot (iλj +
π

12
) − 2M√

3
, L = 2(M − |Q|), Q = 0,±1, (2.4)

where the rapidities λj satisfy a set of equations of the form of Bethe equations:

[
sinh(iπ/12 − λj)

sinh(iπ/12 + λj)

]2M

= (−1)M+1
L∏

k=1

sinh(iπ/3 − (λj − λk))

sinh(iπ/3 + (λj − λk))
, j = 1, . . . , L. (2.5)
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The corresponding momentum, which is defined as the eigenvalue of the translation operator,

is given by

eiP =
L∏

k=1

sinh(λk − iπ/12)

sinh(λk + iπ/12)
. (2.6)

The solutions of the Bethe equations are sets of (possibly complex) roots {λj}, and in the

large lattice limit each root belongs to one of five different classes [21], the roots in each class

having a fixed value of the imaginary part of λj
2:

λj is called






λ+
j

λ−
j

λ2s
j

λ−2s
j

λns
j






if ℑm(λj) =






0
π/2
±π/6
±π/3
±π/4






. (2.7)

The last three classes of roots occur in complex conjugate pairs, and are referred to as complex

pairs. We define mα (where α = +,−, 2s,−2s, ns) to be the number of roots in each class,

complex pairs being counted once. A detailed analysis of the equations (2.5) was performed

in [21]. We summarize those results of that paper which we will use here in the appendix.

The order one excitation spectrum obtained from (2.4)–(2.5) in the limit M → ∞ was

found in [5]. It was shown there that for the ferromagnetic case, the order one energy gaps

can all be written in the quasi-particle form

E − EGS =
m+∑

j=1

e+(P+
j ) , (2.8)

where m+ = 2mns + 3m− + 4m−2s and the single-particle energy is

e+(P+
j ) = 6 sin(|P+

j |/2) 0 ≤ P+
j ≤ 2π , (2.9)

so that the fermi velocity is v=3. The momentum of a single-particle state is expressed in

terms of its rapidity λ+ as

P (λ+) ≡ π + 4 tan−1(tanh 3λ+) (mod 2π). (2.10)

2Note that the definition of λ here has a factor of −1/2 relative to the definition in [21].
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The number of states characterized by the same set {P+
j } (and thus by the corresponding

set of single-particle energies {e+(P+
j )}) is, in the sector Q = 0, [21]

(
m− + m−2s

m−

)(
2m− + 2m−2s + mns

mns

)

, (2.11)

where
(

a
b

)
is the binomial coefficient and m+ = 2mns +3m−+4m−2s. This stems from the fact

that the other excitations (ns,−2s) carry no energy, yet states differing only in their content

of {λα
j }α=ns,−2s have to be counted individually.

In order to construct the scaled partition function (1.11) of the model, we extend the order

one spectrum to momenta near zero. At such momenta, the energy is

e+(P+) =

{
vP+ for P+ ∼ 0
v(2π − P+) for P+ ∼ 2π.

(2.12)

Note that there are no absolute value signs, and the momentum is no longer defined mod 2π.

This amounts to extending the order one result (2.9) to order 1/M ; however, at this order we

must consider two additional contributions to the energy:

1. To order one, the excitations ns and −2s contribute zero energy. However to order 1/M

they may carry energy, and indeed we find that eα(P α) = vP α for α = ns,−2s, but

with P α restricted to only a microscopic range, of order 1/M . Here v is the same as in

equation (2.12).

2. Constant (independent of momentum or the number of excitations) contributions of

order 1/M to the energy must be accounted for. These contributions, which give the

conformal dimensions ∆r,s, have been computed from functional equations for the trans-

fer matrix by Klümper and Pearce [22].

From equation (2.6) and equations (A.18), (A.23) and (A.26) of the appendix, we see that

the total momentum of any state can be written as

P =
2π

M






m+∑

j=1

Ī+
j +

m−2s∑

j=1

I−2s
j +

mns∑

j=1

Ins
j + L(mα)




 , (2.13)
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where L(mα) is some linear shift which depends on the sector under consideration. In equation

(2.12) the energy depends linearly on the P α
j , which are quantized in units of 2π/M and are

directly related to the (half-) integers of the logarithmic Bethe equations (A.1) as:

P+
j =

2π

M
I+
j + π ≡ 2π

M
Ī+
j , P−2s

j =
2π

M
I−2s
j , P ns

j =
2π

M
Ins
j . (2.14)

The energy can thus be expressed in terms of the Iα
j .

The spectrum (and so the partition function) splits into different sectors of definite Z3

charge Q = 0,±1, and furthermore the sector Q = 0 splits into subsectors of parity number

C = ±1, corresponding to m− being even (C = 1) or odd (C = −1). Hence we can discuss

separately each sector, which give rise to different characters, as in the anti-ferromagnetic

case [4].

3 The characters in the sector Q = 0

The (half-) integers in this sector are chosen from the ranges (A.8)–(A.9), and hence we see

from (2.14) that the P α
j are chosen from the ranges of spacing 2π/M with the following limits:

− 2π

M

[
1

2
(m− + m−2s − 1)

]
≤ P+

j ≤ 2π +
2π

M

[
1

2
(m− + m−2s − 1)

]
(3.1)

− 2π

M

[
1

2
(m− + m−2s − 1)

]
≤ P−2s

j ≤ 2π

M

[
1

2
(m− + m−2s − 1)

]
(3.2)

− 2π

M

[
1

2
(2m− + 2m−2s + mns − 1)

]
≤ P ns

j ≤ 2π

M

[
1

2
(2m− + 2m−2s + mns − 1)

]
. (3.3)

As is the case for the excitations of the anti-ferromagnetic chain [4], the range of single-particle

momenta for the ‘+’-excitations is macroscopic: it is of order 2π for any finite mα in the limit

M → ∞. In contrast, the ranges for P ns
j and P−2s

j are of order 1/M and allow only a finite

number of states in the limit M → ∞, for given mα. We refer to excitations with such

microscopic momentum ranges as “ghost” excitations.

One expects that the partition function factorizes into right- and left-moving contributions,

as in the anti-ferromagnetic case, so that the characters of the model are obtained by consid-

ering these contributions separately. However, in the ferromagnetic case only the P+
j can be

considered to be right- or left-moving, where right- (left-) movers indicates P+
j ∼ 0 (P+

j ∼ 2π).
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When taking the limit M → ∞, right- (left-) movers can be considered to lie on a semi-

infinite range, since the range for P+ is macroscopic, allowing for an infinite number of mo-

mentum states. Therefore, we rewrite the momentum range for right-movers in this limit

as

− 2π

M

[
1

2
(m− + m−2s − 1)

]
≤ P+

j < ∞ for right-movers, (3.4)

replacing equation (3.1) above. For the left-movers it is convenient to replace P+ by P+−2π,

so that the momentum range in the M → ∞ limit is

−∞ < P+
j ≤ 2π

M

[
1

2
(m− + m−2s − 1)

]
for left-movers, (3.5)

and the dispersion relation (2.12) now reads

e+(P+) =
{

vP + for right-movers,
−vP + for left-movers.

(3.6)

There are four characters corresponding to the Q = 0 sector (since there is a symmetry

between right- and left-movers, below we restrict our attention to the right-movers):

1. The vacuum character χ̂0, which corresponds to the sector of the partition function with

only right-movers and positive parity, C = +1;

2. The character χ̂3, which corresponds to the sector with only right-movers and negative

parity, C = −1;

3. The character χ̂2/5, which has one left-mover and the rest right-movers, with C = +1,

and

4. χ̂7/5, which has only one left-mover and C = −1.

We will discuss in detail the construction of the partition function in the sector corresponding

to χ̂0, item 1 above, and then outline the computation of the other characters.
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3.1 Construction of the character χ̂0

The sector of the partition function (1.9) which has only right-movers and Q = 0, C = +1 is

computed as follows. The excitation energy is simply the sum over the individual excitations

near P α ∼ 0

E − EGS = v






m+∑

j=1

P+
j +

m−2s∑

j=1

P−2s
j +

mns∑

j=1

P ns
j




 . (3.7)

The partition function is the sum over all right-moving excitations with momentum ranges

(3.2)–(3.4), subject to the fermionic exclusion rule (1.7), and the restriction that m− be even.

In table 2 we show the lowest energy states of in this sector. The general expression for the

partition function in this sector is

Ẑ0 =
∑

{states}

e−vP/kBT =
∑

{Iα
j
}

q

(∑
j
Ī+
j

+
∑

j
I−2s
j

+
∑

j
Ins
j

)

, (3.8)

with q defined as in equation (1.13). Here the Iα
j are restricted as in equation (A.8) in the

appendix with m− even. As in (3.4), in the limit M → ∞ we have for right-moving ‘+’-

excitations

− 1

2
(m− + m−2s − 1) ≤ Ī+

j < ∞ . (3.9)

The restrictions on the integers are implemented by using two integer partitions, Qm(N ; n)

and Qm(N) ≡ Qm(N ;∞), where Qm(N ; n) is the number of partitions of N ≥ 0 into m distinct

non-negative integers each less than or equal to n. The partition function (3.8) subject to the

restrictions (3.4),(3.2),(3.3) then becomes:

Ẑ0 =
∞∑

m−,m−2s,mns=0
m− even

m+=2mns+3m−+4m−2s

∞∑

N+,N−2s,Nns=0

Qm+(N+) qN+− 1
2
m+(m−2s+m−−1)

× Qm−2s
(N−2s; m−2s + m− − 1) qN−2s−

1
2
m−2s(m−2s+m−−1)

× Qmns
(Nns; mns + 2m−2s + 2m− − 1) qNns−

1
2
mns(mns+2m−2s+2m−−1) .

(3.10)

The exponents of q above are essentially the total momenta of each type of excitation, i.e.

the sums over the integers Nα =
∑

j Iα
j . The partitions count the number of times q

∑
α

Nα
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occurs in the partition function, which is the number of ways Nα can be divided between mα

fermionic excitations.

The sum (3.10) can be re-expressed using the identity [23, 24]

∞∑

N=0

Qm(N ; n)qN = qm(m−1)/2

[
n + 1

m

]

q

, (3.11)

which, when n → ∞, reduces to

∞∑

N=0

Qm(N)qN =
qm(m−1)/2

(q)m
. (3.12)

Using these identities, (3.10) becomes

Ẑ0 =
∞∑

m−,m−2s,mns=0

m+=2mns+3m−+4m−2s
m− even

q−
1
2
(m++m−2s)(m−2s+m−−1)− 1

2
mns(mns+2m−2s+2m−−1)

× q
1
2
m+(m+−1)+ 1

2
m−2s(m−2s−1)+ 1

2
mns(mns−1)

× 1

(q)m+

[
m−2s + m−

m−2s

]

q

[
mns + 2m−2s + 2m−

mns

]

q

. (3.13)

The form of the sum may be further simplified by changing variables to

m1 = m+ , m2 = 2m− + 2m−2s , m3 = m− , (3.14)

which results in the expression (1.2) with the restriction that all ma are even and L(m) =

0, ua = 0. This is the expression listed on line (1) of table 1.

This expression is quite different in form from the one given in (1.1). Nevertheless we find

that

Ẑ0 = χ̂0 . (3.15)

This has been verified as an equality between the series expansions of the two expressions to

order q200, using Mathematica.

3.2 Construction of χ̂3

In table 3 we present the lowest energy states of the sector C = −1, where all m+ are right-

movers. The calculation of the partition function Ẑ3 is identical to that of the last section,
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except that now m− is odd in equations (3.10) and (3.13). Using series expansions, we verify

that the resulting expression Ẑ3 is equal to q3χ̂3 to order q200. With the change of variables

(3.14), this results in the expression on line (6) of table 1.

3.3 Construction of χ̂2/5 and χ̂7/5

The characters χ̂2/5 and χ̂7/5 occur when one of the m+ is a left-mover, and all the rest are

right-movers. This amounts to setting m+ = 2mns+3m−+4m−2s−1 in the partition sum (3.10)

and (3.13). Also, there is an additive term to the momentum of the form πv
M

(m− + mns − 1),

which is the lowest energy state of the single left-moving ‘+’-excitation allowed by equation

(3.5). The character χ̂2/5 occurs for C = +1, i.e. m− even, and the character χ̂7/5 occurs for

C = −1, m− odd. We tabulate the lowest energy states for these two sectors in tables 4 and

5. The expression for the resulting partition functions is

Ẑ2/5 (7/5) =
∞∑

m+,m−2s,mns=0

m+=2mns+3m−+4m−2s−1

m− even (odd)

∞∑

Nα=0

q
1
2
(m−+m−2s−1)Qm+(N+) qN+− 1

2
m+(m−2s+m−−1)

× Qm−2s
(N−2s; m−2s + m− − 1) qN−2s−

1
2
m−2s(m−2s+m−−1)

× Qmns
(Nns; mns + 2m−2s + 2m− − 1) qNns−

1
2
mns(mns+2m−2s+2m−−1) .

(3.16)

Using the identities (3.11)–(3.12) and the change of variables (3.14), Ẑ2/5 and q−1Ẑ7/5 are

brought to the form (1.2) with the restrictions listed on lines (2) and (4) of table 1, i.e. we

find that

Ẑ2/5 = χ̂2/5 , Ẑ7/5 = qχ̂7/5 . (3.17)

The other expressions for the two characters χ̂2/5 and χ̂7/5, corresponding to lines (3) and

(5) of that table, are conjectured forms. Using a power series expansion, all these forms were

shown to be equal to the corresponding expressions (1.1) for χ̂2/5 and χ̂7/5, to order q200.
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4 The Sector Q = 1

The analysis of this sector is more involved than for the Q = 0 sector, since (see appendix)

there are five different sub-sectors to be considered, where the integers range over different

intervals. Each of these sub-sectors gives rise to a separate sum in the sector of the partition

function corresponding to right-moving excitations. The resulting five sums add together to

form the Virasoro character χ̂1/15, as we now describe in more detail.

The momentum ranges are given by the integer ranges (A.8) and (A.10)–(A.14) in the

appendix, and the relations (A.18), (A.23) and (A.26) of the total momentum to the integers.

We will present the computation for each sub-sector separately, where for each sub-sector all

‘+’-excitations are right-movers.

1. m−−m++ = +1: Here we see from equation (A.6) that m+ = 2mns +3m− +4m−2s −2,

and the lowest energy states are shown in table 6, where the integer range is that of

equation (A.10). The partition sum starts with m− = 1, since m− > m++ ≥ 0:

Ẑ
(1)
1/15 =

∞∑

m−=1

∞∑

mns,m−2s=0

m+=2mns+3m−+4m−2s−2

q
1
2
m+(m+−1)+ 1

2
m+(3−m−−m−2s) 1

(q)m+

× q
1
2
m−2s(m−2s−1)+ 1

2
m−2s(3−m−−m−2s)

[
m−2s + m− − 2

m−2s

]

q

× q
1
2
mns(mns−1)+ 1

2
mns(3−2m−−2m−2s−mns)

[
mns + 2m−2s + 2m− − 2

mns

]

q

.

(4.1)

2. m− −m++ = −1: From the sum rule (A.6) we see that m+ = 2mns + 3m− + 4m−2s + 2,

and the integer range is given by (A.11). The lowest energy states are shown in table 7,

and the general expression for the partition function is:

Ẑ
(2)
1/15 =

∞∑

m−,mns,m−2s=0

m+=2mns+3m−+4m−2s+2

q
1
2
m+(m+−1)+ 1

2
m+(1−m−−m−2s) 1

(q)m+

× q
1
2
m−2s(m−2s−1)+ 1

2
m−2s(1−m−−m−2s)

[
m−2s + m−

m−2s

]

q
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× q
1
2
mns(mns−1)+ 1

2
mns(−1−2m−−2m−2s−mns)

[
mns + 2m−2s + 2m− + 2

mns

]

q

.

(4.2)

3. m− = m++ = 0: Since m− = 0, there are no −2s excitations. The relevant momentum

range is obtained from the integer range (A.12), and the lowest energy states are listed

in table 8. The general expression for the partition function is a simple sum over ns

excitations, with m+ = 2mns:

Ẑ
(3)
1/15 =

∞∑

mns=0
m+=2mns

qm+(m++1)/2

(q)m+

=
∞∑

mns=0

qmns(2mns+1)

(q)2mns

. (4.3)

4. m− = m++ 6= 0: There are two sub-sectors with this characteristic, corresponding to

the integer ranges (A.13) and (A.14). These integer ranges are asymmetric, so there

is a shift term in the total momentum, as shown in (A.23) and (A.26), of the form

∓2πv
M

(1
2
mns + m− + m−2s). For both of these sectors m+ = 2mns + 3m− + 4m−2s. The

lowest energy states are listed in tables 9 and 10. The sums take the forms, for the

integer range (A.13):

Ẑ
(4)
1/15 =

∞∑

m−=1

∞∑

mns,m−2s=0

m+=2mns+3m−+4m−2s

q−(m−+m−2s+ 1
2
mns)q

1
2
m+(m+−1)+ 1

2
m+(3−m−−m−2s) 1

(q)m+

× q
1
2
m−2s(m−2s−1)+ 1

2
m−2s(1−m−−m−2s)

[
m−2s + m−

m−2s

]

q

× q
1
2
mns(mns−1)+ 1

2
mns(2m−−2m−2s−mns)

[
mns + 2m−2s + 2m−

mns

]

q

,

(4.4)

and for the integer range (A.14):

Ẑ
(5)
1/15 =

∞∑

m−=1

∞∑

mns,m−2s=0

m+=2mns+3m−+4m−2s

q(m−+m−2s+ 1
2
mns)q

1
2
m+(m+−1)+ 1

2
m+(1−m−−m−2s) 1

(q)m+

× q
1
2
m−2s(m−2s−1)+ 1

2
m−2s(3−m−−m−2s)

[
m−2s + m−

m−2s

]

q

× q
1
2
mns(mns−1)+ 1

2
mns(2−2m−−2m−2s−mns)

[
mns + 2m−2s + 2m−

mns

]

q

.

(4.5)
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Finally, we find that
5∑

a=1

Ẑ
(a)
1/15 = χ̂1/15 . (4.6)

This is a five-sum expression for the character χ̂1/15, where each summand can be expressed

in the form (1.2). In addition to this form, one can find the forms listed in table 1 for the

character χ̂1/15. Again, although all these forms are quite different from that of (1.1), they

have been shown to be equal to order q200.

It remains to consider the character χ̂2/3. Here, however, no analysis corresponding to the

above five-term sum form is availible. The conjectured forms on lines (12)–(14) of table 1

have been verified to order q200.

5 Discussion

The forms of the expressions (1.1) and (1.2) for the characters of the ferromagnetic three-state

Potts conformal field theory deserve to be called “different”, even though the expressions are

equal. The question thus arises as to what is meant by the word different, how many different

forms there are, and what their significance is. We know of at least four different forms for

the characters of the three-state Potts. One is the Rocha-Caridi form (1.1), the second is the

form of Kac and Peterson [25] and Jimbo and Miwa [26], the third is that of Lepowsky and

Primc [13], and the fourth is the form (1.2). Each of these forms is sufficiently different to

warrant a separate discussion.

1. The expression (1.1) for the Virasoro characters, which are [27] branching functions of

the coset
(A

(1)
1 )3×(A

(1)
1 )1

(A
(1)
1 )4

, is what we refer to as a bosonic sum representation. This stems

from the presence of the factor (q)−1
∞ , which represents a bosonic partition function

and can be understood in terms of the Feigin-Fuchs-Felder construction [28, 29] of the

Virasoro minimal series [30] M(p, p′) to which the three-state Potts conformal field

theory belongs, being M(5, 6) in this notation.

2. The second form is also a bosonic expression which can be obtained by viewing this
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conformal field theory as that of Z3-parafermions [16], where the characters of the corre-

sponding Z3-parafermionic algebra are [20] the branching functions of the coset
(A

(1)
1 )3

U(1)
.

Another description of the same conformal field theory is as a minimal model with re-

spect to the W3 algebra [31], where the corresponding coset construction is
(A

(1)
2 )1×(A

(1)
2 )1

(A
(1)
2 )2

.

The latter construction is related by level-rank duality [32] to
(A

(1)
1 )3

U(1)
, and the branching

functions are in fact the same. They are given by the Hecke indefinite forms of [25, 26]

(or alternative but very similar sum representations of [33])

q
1
30 bl

m(q) =
qhl

m

(q)2
∞

[(
∑

s≥0

∑

n≥0

−
∑

s<0

∑

n<0

)

(−1)sqs(s+1)/2+(l+1)n+(l+m)s/2+5(n+s)n

+

(
∑

s>0

∑

n≥0

−
∑

s≤0

∑

n<0

)

(−1)sqs(s+1)/2+(l+1)n+(l−m)s/2+5(n+s)n

]

, (5.1)

where the hl
m are

hl
m =

l(l + 2)

20
− m2

12
. (5.2)

Here l = 0, 1, 2, l − m is even, and the formulas are valid for |m| ≤ l while for |m| > l

one uses the symmetries

bl
m = bl

−m = bl
m+6 = b3−l

3−m . (5.3)

The partition function (1.5) is expressed as a diagonal bilinear form in terms of the bl
m,

through

χ0 + χ3 = b0
0 , χ2/5 + χ7/5 = b2

0 , χ1/15 = b2
2 , χ2/3 = b0

2 . (5.4)

Note that two of the bl
m split into a sum of a pair of Virasoro characters, corresponding

to a more refined splitting of the spectrum of the hamiltonian into various sectors. Also,

the expressions (1.1) have only one factor of (q)−1
∞ while the ones in (5.1) have two. Thus

whereas (1.1) can be said to be based on one boson, (5.1) is based on two bosons.

3. The third form is a fermionic sum representation for the branching functions bl
m which

was obtained by Lepowsky and Primc [13]:

q1/30bl
2Q−l(q) = q

l(2−l)
16

∞∑

m1,m2=0
m1−m2≡Q (mod 3)

q
mC−1

A2
m

t+Ll(m)

(q)m1(q)m2

, (5.5)
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where CA2 =

(
2 −1

−1 2

)

is the Cartan matrix of the Lie algebra A2, and L0(m) = 0,

L1(m) = (2m1 + m2)/3, L2(m) = (m1 + 2m2)/3. This expression can be interpreted

[34] in terms of two C-conjugate fermionic quasi-particles carrying Z3 charges ±1, both

having macroscopic momentum ranges. For example, for l = 0 these ranges are

2π

M

[
1

2
+

1

2

(
m1 + 2m2

3

)]
≤ P 1

j < ∞ ,
2π

M

[
1

2
+

1

2

(
2m1 + m2

3

)]
≤ P 2

j < ∞ ,

(5.6)

where the P α
j (j = 1, . . . , mα) are chosen from a grid with spacing 2π/M .

4. The fourth form is the fermionic sum representation (1.2) which has one genuine quasi-

particle with a macroscopic momentum range and two “ghost” quasi-particles, whose

momenta are limited to a microscopic range, e.g. equations (3.1)–(3.3).

The existence of different fermionic sum representations for characters is closely related to

the fact that one conformal field theory may have several integrable perturbations, character-

ized by the conformal dimensions (∆, ∆) of certain perturbing relevant operators. In [34] this

observation was made in connection with the representations of the critical Ising characters as

related to either (i) the coset
(A

(1)
1 )1×(A

(1)
1 )1

(A
(1)
1 )2

where the character formulas are written in terms

of a single quasi-particle and the associated perturbation is by the (1/2, 1/2) operator, or (ii)

the coset
(E

(1)
8 )1×(E

(1)
8 )1

(E
(1)
8 )2

which has eight quasi-particles and is associated with the (1/16, 1/16)

perturbation [35]. In each case the perturbation can be thought of as giving masses to the

fermionic quasi-particles.

A similar discussion can be given for the two different fermionic representations (5.5)

and (1.2) of the critical three-state Potts model. Consider first (5.5), which was interpreted

as having two fermionic quasi-particles of Z3 charge ±1. This is to be compared with the

(2/5, 2/5) S3-symmetric perturbation of the three-state Potts conformal field theory, which

was argued in [36] to be integrable and to have a spectrum which consists of a Z3-doublet

of massive particles, whose scattering is described by the factorizible S-matrix found in [37].

Here the perturbation can again be thought of as giving mass to the two fermionic quasi-
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particles. This perturbation is also to be compared with the massive r = 5 RSOS model (or

hard squares with diagonal interactions) [38], whose spectrum on the lattice [6] in regime II

consists of two excitations with Z3 charge ±1.

In the same spirit it is natural to associate the fermionic sum representation (1.2) with the

C-even (2/3, 2/3)+ perturbation. This subleading magnetic perturbation breaks the S3 sym-

metry down to Z2. The related statistical mechanics system is the N=3 model of Kashiwara

and Miwa [39] (also given as the D4 model of Pasquier [40], obtained from the r=6 RSOS

model of Andrews, Baxter and Forrester [41] by an orbifold construction [42]). In the notation

of [40, 41] the lattice models are to be considered in the regimes III-IV. The perturbed con-

formal field theory is the p=5 case of the (∆1,3, ∆1,3)-perturbed minimal models M(p, p + 1),

which have been discussed in [35][43]-[52] where it is seen that the sign of the coupling to the

perturbing operator leads to qualitatively very different effects.

In the case of negative coupling constant (using the conventions of [35]) the perturbed

theory becomes massive. This is to be compared to the massive regime III of the models of

[39, 40, 41], where excitation energies have been computed in [53]. We interpret this direction

of the perturabtion as giving mass to the quasi-particle m1 of (1.2).

The more interesting case is the one where the coupling constant is positive. Now the inte-

grable perturbed conformal field theory remains massless [35, 48], even though scale invariance

is broken, and flows [49, 51, 52, 54] from the three-state Potts conformal field theory of central

charge 4/5 to the conformal field theory of the tricritical Ising model of central charge 7/10.

This suggests an interpretation in terms of the representation (1.2), where we note that under

the restriction to the sector where there are no “ghost” excitations of type m3 the fermionic

representations for the three-state Potts characters reduce to fermionic representations [18] for

the characters of the tricritical Ising model. Specifically, restricting the summation in (1.2) by

setting m3 = 0, the formulas corresponding to lines (1), (2), (5), (8), (10) and (13) of table 1

reduce to expressions for the c = 7/10 Virasoro characters χ̂∆ with ∆=0, 7/16, 3/2, 3/80, 1/10

and 3/5, respectively. The crucial point making this possible is the fact that (four times) the
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quadratic form in the fermionic sum representations of the c = 7/10 characters is the Cartan

matrix of A2, which is precisely the minor, obtained by omitting the last row and column, of

the quadratic form CA3 in (1.2). More generally, we find from [18] that the fermionic form of

the characters of the unitary minimal model M(p, p + 1) with one quasi-particle and p − 3

“ghosts” reduces to character formulas for M(p − 1, p) when the last ghost is omitted, the

corresponding massless flows being the ones discussed in [43, 44, 48].
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A Appendix: Logarithmic Bethe Equations

We recall here some results [21] concerning the classification of the solutions of the Bethe

equations corresponding to the eigenvalues of the hamiltonian (2.1).

Not all the roots λα
j (cf. equation (2.7)) in a given solution of the Bethe equations (2.5) are

independent of one another, and in order to discuss the relations between them we introduce

the logarithmic Bethe equations. By taking the logarithm of the Bethe equations (2.5), we can

classify the sets {λα
j } more easily. Doing this introduces integers or half-integers associated

with the choice of branch of the logarithm. The equations for the complex pairs are first

multiplied together. After taking the logarithm, we obtain five sets of equations, one for each

class of roots, referred to as the logarithmic Bethe equations:

fα
2π

M
Iα
j = tα(λα

j ) − 1

M

∑

β=±,±2s,ns

mβ∑

k=1

Θαβ(λα
j − λβ

k) , α ∈ {+,−, 2s,−2s, ns}, (A.1)

where fα = 2 for α = ns and is 1 otherwise 3, and where the functions Θαβ and tα are defined

as follows. Let sα(λ) ≡ sinh(iα − λ)/ sinh(iα + λ), then

tα(λα
j ) =

{
−2i ln(±sπ/12(λ

±
j )) α = ±

−2i ln(sπ/12(λ
α
j )sπ/12(λ

α∗
j )) α = ±2s, ns,

(A.2)

Θαβ(λα
j − λβ

k) =






−i ln(ǫα,β sπ/3(λ
α
j − λβ

k)) α, β = ±
−i ln(ǫα,β sπ/3(λ

α
j − λβ

k)sπ/3(λ
α
j − λβ∗

k )) α = ±, β = ±2s, ns

−i ln(ǫα,β sπ/3(λ
α
j − λβ

k)sπ/3(λ
α∗
j − λβ

k)) α = ±2s, ns, β = ±
−i ln(ǫα,β sπ/3(λ

α
j − λβ

k)sπ/3(λ
α
j − λβ∗

k )

× sπ/3(λ
α∗
j − λβ

k)sπ/3(λ
α∗
j − λβ∗

k )) α, β = ±2s, ns,

(A.3)

where the symmetric tensor ǫα,β is defined by ǫ+,− = ǫ−,2s = ǫ+,−2s = ǫ2s,2s = ǫ−2s,−2s = −1

and the other ǫα,β are 1. ǫα,β is chosen so that Θαβ(λα − λβ) = 0 when ℜeλα = ℜeλβ . All

logarithms in (A.2) and (A.3) are chosen such that −π < ℑm ln z < π. Each set of (half-)

integers {Iα
j } uniquely specifies a set of roots {λα

j }. Note that the sets contain either integers

or half-integers, depending on mα.
3Note that the factor fns was not present in the definitions of [21]. This amounts to a redefinition of the

integers Ins discussed there.
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For the sector Q = 0, there is a restriction on the number m+ of the form

m+ = 2nns + 3m− + 4m−2s . (A.4)

In addition, the total number of roots is 2M (see equation (2.4)), so that

M = m2s + 2mns + 3m−2s + 2m− . (A.5)

For the sector Q = ±1, we define the number m++ which has the property that m− −m++ =

0,±1. For this sector we have the sum rule

m+ = 2nns + m− + 2m++ + 4m−2s , (A.6)

and since the total number of roots is 2(M − 1) (see equation (2.4)), we have

M − 1 = m2s + 2mns + 3m−2s + m− + m++ . (A.7)

The (half-) integers in equation (A.1) are not all independent, as the set {I2s
j } and {I−

j }

are completely determined from the sets {I+
j } and {I−2s

j }, respectively. The ground state

of the ferromagnetic chain consists of a sea of 2s-excitations, that is the integers {I2s
j } fill

a symmetric interval about zero, and all other sets of integers are null sets. Therefore, for

convenience, we take the sets {I+
j }, {I−2s

j } and {Ins
j } to be the independent sets in discussing

the ferromagnetic case. Those (half-) integers are then freely chosen from the intervals

− 1

2

[
M + m− + m−2s − a

(1)
ℓ

]
≤ I+

j ≤ +
1

2

[
M + m− + m−2s − a(1)

r

]

−1

2

[
m− + m−2s − a(1)

r

]
≤ I−2s

j ≤ +
1

2

[
m− + m−2s − a

(1)
ℓ

]

−1

2

[
2m− + 2m−2s + mns − a

(2)
ℓ

]
≤ Ins

j ≤ +
1

2

[
2m− + 2m−2s + mns − a(2)

r

]
(A.8)

with a fermionic exclusion rule: Iα
j 6= Iα

k for j 6= k. The numbers aℓ and ar depend on the

sector in question. For the Q = 0 sector,

a
(1)
ℓ = a(1)

r = a
(2)
ℓ = a(2)

r = 1 for Q = 0 . (A.9)
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In the Q = ±1 sectors, there are five separate sub-sectors to be considered, depending on the

value of m++ introduced above:

For m− − m++ = +1 : a
(1)
ℓ = a(1)

r = 3, a
(2)
ℓ = a(2)

r = 3 (A.10)

For m− − m++ = −1 : a
(1)
ℓ = a(1)

r = 1, a
(2)
ℓ = a(2)

r = −1 (A.11)

For m− = m++ = 0 : a
(1)
ℓ = a(1)

r = 2, a
(2)
ℓ = a(2)

r = 1 (A.12)

For m− = m++ 6= 0 : a
(1)
ℓ = 3, a(1)

r = 1, a
(2)
ℓ = 0, a(2)

r = 2 (A.13)

For m− = m++ 6= 0 : a
(1)
ℓ = 1, a(1)

r = 3, a
(2)
ℓ = 2, a(2)

r = 0 . (A.14)

The last two sectors correspond to two degenerate sets of energy eigenvalues.

The total momentum of each state is determined from equation (2.6), and can be expressed

in terms of {Iα
j } using the logarithmic Bethe equations (A.1). Taking the logarithm of equation

(2.6) and using the definitions (A.2), the total momentum can be written as

P ≡ 1

2

m+∑

j=1

t+(λ+
j ) +

1

2

m−∑

j=1

(
t−(λ−

j ) + 2π
)

+
1

2

m2s∑

j=1

t2s(λ
2s
j )

+
1

2

m−2s∑

j=1

t−2s(λ
−2s
j ) +

1

2

mns∑

j=1

tns(λ
ns
j ) (mod 2π) . (A.15)

We sum the logarithmic Bethe equations (A.1) over j and α. The sum over the functions Θαβ

vanishes since they are odd functions. We are left with a sum over the integers:

P ≡ 2π

M



1

2

m+∑

j=1

I+
j +

1

2

m−∑

j=1

(
I−
j + M

)
+

1

2

m2s∑

j=1

I2s
j +

1

2

m−2s∑

j=1

I−2s
j +

mns∑

j=1

Ins
j



 (mod 2π) . (A.16)

In order to express the momentum in terms of three independent sets of integers, we note

that for the sector Q = 0, as well as for the sectors corresponding to equations (A.10)–(A.12),

where the (half-) integers are chosen from a symmetric interval about zero, the two sets of

(half-) integers {I+
j } and {−I2s

j } fill this interval, and similarly for the sets {I−
j } and {−I−2s

j }.

Therefore,
m±2s∑

j=1

I±2s
j −

m±∑

j=1

I±
j = 0 , (A.17)

and the total momentum of a state may be written (using m+ ≡ m− (mod 2)) as

P ≡ 2π

M




m+∑

j=1

Ī+
j +

m−2s∑

j=1

I−2s
j +

mns∑

j=1

Ins
j



 (mod 2π) , (A.18)
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where Ī+
j = I+

j + M/2.

However, for the sectors corresponding to equations (A.13)–(A.14) there is an additional

term involved, since the integer ranges are not symmetric about zero, and there is an offset

between the sets {I±
j } and {−I±2s

j }. In fact, for the sector (A.13) the following relation

between the integers holds [21]:

I2s h
j = −I+

j +
1

2
, I− h

j = −I−2s
j − 1

2
, (A.19)

where the superscript h refers to “holes”, namely the (half-) integers missing from the set

{Iα
j }. The number of 2s-holes is m+, and the number of ‘−’-holes is m−2s. The ranges of

integers are chosen such that:
m2s∑

j=1

I2s
j +

m+∑

j=1

I2s h
j = 0 , (A.20)

that is the I2s
j are chosen from a symmetric range. This is not the case for the I−

j , which are

chosen from the range:

− 1

2
(m− + m−2s) ≤ I−

j ≤ 1

2
(m− + m−2s − 2) , (A.21)

so that
m−∑

j=1

I−
j +

m−2s∑

j=1

I− h
j = −1

2
(m− + m−2s) . (A.22)

Putting equations (A.19)–(A.24) together, we find that for this sector

P ≡ 2π

M




m+∑

j=1

Ī+
j +

m−2s∑

j=1

I−2s
j +

mns∑

j=1

Ins
j −

(
1

2
mns + m− + m−2s

)

 (mod 2π) . (A.23)

For the sector corresponding to equation (A.14) we have

I2s h
j = −I+

j − 1

2
, I− h

j = −I−2s
j +

1

2
. (A.24)

Equation (A.20) still holds, but the range of I−
j is now such that

m−∑

j=1

I−
j +

m−2s∑

j=1

I− h
j =

1

2
(m− + m−2s) . (A.25)

Therefore the total momentum in this sector is found to be

P ≡ 2π

M




m+∑

j=1

Ī+
j +

m−2s∑

j=1

I−2s
j +

mns∑

j=1

Ins
j +

(
1

2
mns + m− + m−2s

)

 (mod 2π). (A.26)
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Table 2: The first terms of the partition function in the sector Q = 0 and C = 1, where
m− is even, and m+ = 2mns + 3m− + 4m−2s. The momentum ranges are given in equations
(3.2)–(3.4). The sum of the momenta in the square brackets gives the total momentum, and
thus the power of q, listed on the left. N is the number of states with given mα and fixed
total momentum, whose overall number is listed on the right. These are the coefficients of qn

in the power expansion of χ̂0.

Order m+ m
−2s m

−
mns P+,−2s

min Pns
min [Pns; P−2s; P+] (Units of π

M
) N Tot

q0 0 0 0 0 − − [−; −; −] 1 1
q2 2 0 0 1 π/M 0 [0; −; 1,3] 1 1
q3 2 0 0 1 π/M 0 [0; −; 1,5] 1 1
q4 2 0 0 1 π/M 0 [0; −; 1,7],[0; −; 3,5] 2 2
q5 2 0 0 1 π/M 0 [0; −; 1,9],[0; −; 3,7] 2 2
q6 2 0 0 1 π/M 0 [0; −; 1,11],[0; −; 3,9], [0; −; 5,7] 3

4 1 0 0 0 − [−; 0; 0,2,4,6] 1 4
q7 2 0 0 1 π/M 0 [0; −; 1,13],[0; −; 3,11], [0; −; 5,9] 3

4 1 0 0 0 − [−; 0; 0,2,4,8] 1 4
q8 2 0 0 1 π/M 0 [0; −; 1,15],[0; −; 3,13]

[0; −; 5,11],[0; −; 7,9] 4
4 1 0 0 0 − [−; 0; 0,2,4,10],[−; 0; 0,2,6,8] 2
4 0 0 2 π/M −π/M [−1,1; −; 1,3,5,7] 1 7

q9 2 0 0 1 π/M 0 [0; −; 1,17],[0; −; 3,15]
[0; −; 5,13],[0; −; 7,11] 4

4 1 0 0 0 − [−; 0; 0,2,4,12],[−; 0; 0,2,6,10]
[−; 0; 0,4,6,8] 3

4 0 0 2 π/M −π/M [−1,1; −; 1,3,5,9] 1 8
q10 2 0 0 1 π/M 0 [0; −; 1,19],[0; −; 3,17]

[0; −; 5,15], [0; −; 7,13], [0; −; 9,11] 5
4 1 0 0 0 − [−; 0; 0,2,4,14],[−; 0; 0,2,6,12]

[−; 0; 0,4,6,10],[−; 0; 0,2,8,10]
[−; 0; 2,4,6,8] 5

4 0 0 2 π/M −π/M [−1,1; −; 1,3,5,11], [−1,1; −; 1,3,7,9] 2 12
q11 2 0 0 1 π/M 0 [0; −; 1,21],[0; −; 3,19]

[0; −; 5,17], [0; −; 7,15], [0; −; 9,13] 5
4 1 0 0 0 − [−; 0; 0,2,4,16],[−; 0; 0,2,6,14]

[−; 0; 0,2,8,12],[−; 0; 0,4,6,12]
[−; 0; 0,4,8,10],[−; 0; 2,4,6,10] 6

4 0 0 2 π/M −π/M [−1,1; −; 1,3,5,13], [−1,1; −; 1,3,7,11]
[−1,1; −; 1,5,7,9] 3 14

q12 2 0 0 1 π/M 0 [0; −; 1,23],[0; −; 3,21],[0; −; 5,19]
[0; −; 7,17], [0; −; 9,15], [0; −; 11,13] 6

4 1 0 0 0 − [−; 0; 0,2,4,18],[−; 0; 0,2,6,16]
[−; 0; 0,2,8,14],[−; 0; 0,2,10,12]
[−; 0; 0,4,6,14],[−; 0; 2,4,6,12]
[−; 0; 0,4,8,12],[−; 0; 2,4,8,10]
[−; 0; 0,6,8,10] 9

4 0 0 2 π/M −π/M [−1,1; −; 1,3,5,15], [−1,1; −; 1,3,7,13]
[−1,1; −; 1,5,7,11], [−1,1; −; 1,3,9,11]
[−1,1; −; 3,5,7,9] 5

6 0 2 0 −π/M − [−; −; −1,1,3,5,7,9] 1 21

28



Table 3: The first few terms in the partition function in the sector Q = 0 and C = −1,
corresponding to m− odd, and m+ = 2mns + 3m− + 4m−2s. The momentum ranges are the
same as in table 2. The total number of states on the right corresponds to the first few terms
in the expansion of q3χ̂3.

Order m+ m
−2s m

−
mns P+,−2s

min Pns
min [Pns; P−2s; P+] (Units of π

M
) N Tot

q3 3 0 1 0 0 − [−; −; 0+2+4] 1 1
q4 3 0 1 0 0 − [−; −; 0+2+6] 1 1
q5 3 0 1 0 0 − [−; −; 0+2+8], [−; −; 0+4+6] 2 2
q6 3 0 1 0 0 − [−; −; 0+2+10],[−; −; 0+4+8]

[−; −; 2+4+6] 3 3
q7 3 0 1 0 0 − [−; −; 0+2+12], [−; −; 0+4+10]

[−; −; 0+6+8], [−; −; 2+4+8] 4 4
q8 3 0 1 0 0 − [−; −; 0+2+14], [−; −; 0+4+12]

[−; −; 0+6+10], [−; −; 2+4+10]
[−; −; 2+6+8] 5 5

q9 3 0 1 0 0 − [−; −; 0+2+16], [−; −; 0+4+14]
[−; −; 2+4+12], [−; −; 0+6+12]
[−; −; 2+6+10], [−; −; 4+6+8]
[−; −; 0+8+10] 7

5 0 1 1 0 −2π/M [−2; −; 0+2+4+6+8] 1 8
q10 3 0 1 0 0 − [−; −; 0+2+18], [−; −; 0+4+16]

[−; −; 2+4+14], [−; −; 0+6+14]
[−; −; 2+6+12], [−; −; 4+6+10]
[−; −; 0+8+12], [−; −; 2+8+10] 8

5 0 1 1 0 −2π/M [−2; −; 0+2+4+6+10]
[0 ; −; 0+2+4+6+8] 2 10

q11 3 0 1 0 0 − [−; −; 0+2+20], [−; −; 0+4+18]
[−; −; 2+4+16], [−; −; 0+6+16]
[−; −; 2+6+14], [−; −; 4+6+12]
[−; −; 0+8+14], [−; −; 2+8+12]
[−; −; 4+8+10], [−; −; 0+10+12] 10

5 0 1 1 0 −2π/M [−2; −; 0+2+4+6+12]
[−2 ; −; 0+2+4+8+10]
[0 ; −; 0+2+4+6+10]
[2 ; −; 0+2+4+6+8] 4 14

q12 3 0 1 0 0 − [−; −; 0+2+22], [−; −; 0+4+20]
[−; −; 2+4+18], [−; −; 0+6+18]
[−; −; 2+6+16], [−; −; 4+6+14]
[−; −; 0+8+16], [−; −; 2+8+14]
[−; −; 4+8+12], [−; −; 0+10+14]
[−; −; 2+10+12], [−; −; 6+8+10] 12

5 0 1 1 0 −2π/M [−2; −; 0+2+4+6+14]
[−2 ; −; 0+2+4+8+12]
[−2 ; −; 0+2+6+8+10]
[0 ; −; 0+2+4+6+12]
[0 ; −; 0+2+4+8+10]
[2 ; −; 0+2+4+6+10] 6 18
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Table 4: The first few terms for the sector of the partition function corresponding to Q = 0
and C = 1, where one of the ‘+’-excitations is a left-mover, and the rest are right-movers.
This corresponds to m− even and m+ = 2mns + 3m− + 4m−2s − 1. The momentum ranges
are the same as in table 2, and there is an additional term (“shift”) in the momentum of
π
M

(m− + m−2s − 1) which is the momentum of the left-mover. The coefficients on the right
correspond to the expansion of χ̂2/5.

Order m+ m
−2s m

−
mns P+,−2s

min Pns
min [Pns; P−2s; P+] (Units of π

M
) Shift N Tot

q0 1 0 0 1 π/M 0 [0; −; 1] −π/M 1 1
q1 1 0 0 1 π/M 0 [0; −; 3] −π/M 1 1
q2 1 0 0 1 π/M 0 [0; −; 5] −π/M 1 1
q3 1 0 0 1 π/M 0 [0; −; 7] −π/M 1

3 1 0 0 0 − [−; 0; 0,2,4] 0 1 2
q4 1 0 0 1 π/M 0 [0; −; 9] −π/M 1

3 1 0 0 0 − [−; 0; 0,2,6] 0 1
3 0 0 2 π/M −π/M [−1,1; −; 1,3,5] −π/M 1 3

q5 1 0 0 1 π/M 0 [0; −; 11] −π/M 1
3 1 0 0 0 − [−; 0; 0,2,8],[−; 0; 0,4,6] 0 2
3 0 0 2 π/M −π/M [−1,1; −; 1,3,7] −π/M 1 4

q6 1 0 0 1 π/M 0 [0; −; 13] −π/M 1
3 1 0 0 0 − [−; 0; 0,2,10],[−; 0; 0,4,8]

[−; 0; 2,4,6] 0 3
3 0 0 2 π/M −π/M [−1,1; −; 1,3,9], [−1,1; −; 1,5,7] −π/M 2 6

q7 1 0 0 1 π/M 0 [0; −; 15] −π/M 1
3 1 0 0 0 − [−; 0; 0,2,12],[−; 0; 0,4,10]

[−; 0; 2,4,8],[−; 0; 0,6,8] 0 4
3 0 0 2 π/M −π/M [−1,1; −; 1,3,11], [−1,1; −; 1,5,9]

[−1,1; −; 3,5,7] −π/M 3 8
q8 1 0 0 1 π/M 0 [0; −; 17] −π/M 1

3 1 0 0 0 − [−; 0; 0,2,14],[−; 0; 0,4,12]
[−; 0; 2,4,10],[−; 0; 0,6,10]
[−; 0; 2,6,8] 0 5

3 0 0 2 π/M −π/M [−1,1; −; 1,3,13], [−1,1; −; 1,5,11]
[−1,1; −; 3,5,9], [−1,1; −; 1,7,9] −π/M 4

5 0 2 0 −π/M − [−; −; −1,1,3,5,7] π/M 1 11
q9 1 0 0 1 π/M 0 [0; −; 19] −π/M 1

3 1 0 0 0 − [−; 0; 0,2,16],[−; 0; 0,4,14]
[−; 0; 2,4,12],[−; 0; 0,6,12]
[−; 0; 2,6,10],[−; 0; 4,6,8]
[−; 0; 0,8,10], 0 7

3 0 0 2 π/M −π/M [−1,1; −; 1,3,15], [−1,1; −; 1,5,13]
[−1,1; −; 3,5,11],[−1,1; −; 1,7,11]
[−1,1; −; 3,7,9] −π/M 5

5 0 2 0 −π/M − [−; −; −1,1,3,5,9] π/M 1
5 1 0 1 0 −2π/M [−2; 0; 0,2,4,6,8] 0 1 15
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Table 5: The first few terms in the partition function in the sector Q = 0, C = −1 where
one ‘+’-excitation is left-moving and all the rest are right-movers. The shift and m+ are as in
table 4, and the momentum ranges are as in table 2. The coefficients on the right correspond
to the expansion of qχ̂7/5.

Order m+ m
−2s m

−
mns P+,−2s

min Pns
min [Pns; P−2s; P+] (Units of π

M
) Shift N Tot

q1 2 0 1 0 0 − [−; −; 0,2] 0 1 1
q2 2 0 1 0 0 − [−; −; 0,4] 0 1 1
q3 2 0 1 0 0 − [−; −; 0,6],[−; −; 2,4] 0 2 2
q4 2 0 1 0 0 − [−; −; 0,8],[−; −; 2,6] 0 2 2
q5 2 0 1 0 0 − [−; −; 0,10],[−; −; 2,8], [−; −; 4,6] 0 3

4 0 1 1 0 −2π/M [−2; −; 0,2,4,6] 0 1 4
q6 2 0 1 0 0 − [−; −; 0,12],[−; −; 2,10], [−; −; 4,8] 0 3

4 0 1 1 0 −2π/M [−2; −; 0,2,4,8], [0; −; 0,2,4,6] 0 2 5
q7 2 0 1 0 0 − [−; −; 0,14],[−; −; 2,12], [−; −; 4,10]

[−; −; 6,8] 0 4
4 0 1 1 0 −2π/M [−2; −; 0,2,4,10], [−2; −; 0,2,6,8]

[0; −; 0,2,4,8], [2; −; 0,2,4,6] 0 4 8
q8 2 0 1 0 0 − [−; −; 0,16],[−; −; 2,14], [−; −; 4,12]

[−; −; 6,10] 0 4
4 0 1 1 0 −2π/M [−2; −; 0,2,4,12], [−2; −; 0,2,6,10]

[−2; −; 0,4,6,8], [0; −; 0,2,4,10]
[0; −; 0,2,6,8], [2; −; 0,2,4,8] 0 6 10

q9 2 0 1 0 0 − [−; −; 0,18],[−; −; 2,16], [−; −; 4,14]
[−; −; 6,12],[−; −; 8,10] 0 5

4 0 1 1 0 −2π/M [−2; −; 0,2,4,14], [−2; −; 0,2,6,12]
[−2; −; 0,4,6,10], [−2; −; 2,4,6,8]
[−2; −; 0,2,8,10], [0; −; 0,2,4,12]
[0; −; 0,2,6,10], [0; −; 0,4,6,8]
[2; −; 0,2,4,10], [2; −; 0,2,6,8] 0 10 15

q10 2 0 1 0 0 − [−; −; 0,20],[−; −; 2,18], [−; −; 4,16]
[−; −; 6,14],[−; −; 8,12] 0 5

4 0 1 1 0 −2π/M [−2; −; 0,2,4,16], [−2; −; 0,2,6,14]
[−2; −; 0,4,6,12], [−2; −; 2,4,6,10]
[−2; −; 0,2,8,12], [−2; −; 0,4,8,10]
[0; −; 0,2,4,14], [0; −; 0,2,6,12]
[0; −; 0,4,6,10], [0; −; 2,4,6,8]
[0; −; 0,2,8,10], [2; −; 0,2,4,12]
[2; −; 0,2,6,10], [2; −; 0,4,6,8] 0 14 19
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Table 6: The first terms in the partition function for the sector Q = 1 and m− − m++ = 1,
where m+ = 2mns +3m− +4m−2s−2, and the momentum ranges are: − π

M
(m−2s +m−−3) ≤

P+
j < ∞, − π

M
(m−2s +m−−3) ≤ P−2s

j ≤ π
M

(m−2s +m−−3), − π
M

(mns +2m−2s +2m−−3) ≤
P ns

j ≤ π
M

(mns + 2m−2s + 2m− − 3).

Order m+ m
−2s m

−
mns P+,−2s

min Pns
min [Pns; P−2s; P+] (Units of π

M
) N Tot

q1 1 0 1 0 2π/M − [−; −; 2] 1 1
q2 1 0 1 0 2π/M − [−; −; 4] 1 1
q3 1 0 1 0 2π/M − [−; −; 6] 1 1
q4 1 0 1 0 2π/M − [−; −; 8] 1 1
q5 1 0 1 0 2π/M − [−; −; 10] 1 1
q6 1 0 1 0 2π/M − [−; −; 12] 1

3 0 1 1 2π/M 0 [0; −; 2,4,6] 1 2
q7 1 0 1 0 2π/M − [−; −; 14] 1

3 0 1 1 2π/M 0 [0; −; 2,4,8] 1 2
q8 1 0 1 0 2π/M − [−; −; 16] 1

3 0 1 1 2π/M 0 [0; −; 2,4,10], [0; −; 2,6,8] 2
4 0 2 0 π/M − [−; −; 1,3,5,7] 1 4

q9 1 0 1 0 2π/M − [−; −; 18] 1
3 0 1 1 2π/M 0 [0; −; 2,4,12], [0; −; 2,6,10],[0; −; 4,6,8] 3
4 0 2 0 π/M − [−; −; 1,3,5,9] 1 5

q10 1 0 1 0 2π/M − [−; −; 20] 1
3 0 1 1 2π/M 0 [0; −; 2,4,14], [0; −; 2,6,12],[0; −; 4,6,10]

[0; −; 2,8,10] 4
4 0 2 0 π/M − [−; −; 1,3,5,11], [−; −; 1,3,7,9] 2 7

q11 1 0 1 0 2π/M − [−; −; 22] 1
3 0 1 1 2π/M 0 [0; −; 2,4,16], [0; −; 2,6,14],[0; −; 4,6,12]

[0; −; 2,8,12], [0; −; 4,8,10] 5
4 0 2 0 π/M − [−; −; 1,3,5,13], [−; −; 1,3,7,11]

[−; −; 1,5,7,9] 3 9
q12 1 0 1 0 2π/M − [−; −; 24] 1

3 0 1 1 2π/M 0 [0; −; 2,4,18], [0; −; 2,6,16],[0; −; 4,6,14]
[0; −; 2,8,14], [0; −; 4,8,12],[0; −; 2,10,12]
[0; −; 6,8,10] 7

4 0 2 0 π/M − [−; −; 1,3,5,15], [−; −; 1,3,7,13]
[−; −; 1,5,7,11],[−; −; 1,3,9,11]
[−; −; 3,5,7,9] 5 13
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Table 7: The first terms in the partition function for the sector Q = 1 and m− − m++ = −1,
where m+ = 2mns +3m− +4m−2s +2, and the momentum ranges are: − π

M
(m−2s +m−−1) ≤

P+
j < ∞, − π

M
(m−2s +m−−1) ≤ P−2s

j ≤ π
M

(m−2s +m−−1), − π
M

(mns +2m−2s +2m−−1) ≤
P ns

j ≤ π
M

(mns + 2m−2s + 2m− − 1).

Order m+ m
−2s m

−
mns P+,−2s

min Pns
min [Pns; P−2s; P+] (Units of π

M
) N Tot

q2 2 0 0 0 π/M − [−; −; 1,3] 1 1
q3 2 0 0 0 π/M − [−; −; 1,5] 1 1
q4 2 0 0 0 π/M − [−; −; 1,7],[−; −; 3,5] 2 2
q5 2 0 0 0 π/M − [−; −; 1,9],[−; −; 3,7] 2 2
q6 2 0 0 0 π/M − [−; −; 1,11],[−; −; 3,9], [−; −; 5,7] 3
q7 2 0 0 0 π/M − [−; −; 1,13],[−; −; 3,11], [−; −; 5,9] 3

4 0 0 1 π/M −2π/M [-2; −; 1,3,5,7] 1 4
q8 2 0 0 0 π/M − [−; −; 1,15],[−; −;3,13], [−; −; 5,11]

[−; −; 7,9] 4
4 0 0 1 π/M −2π/M [-2; −; 1,3,5,9], [0,−,1,3,5,7] 2 6

q9 2 0 0 0 π/M − [−; −; 1,17],[−; −;3,15], [−; −; 5,13]
[−; −; 7,11] 4

4 0 0 1 π/M −2π/M [-2; −; 1,3,5,11], [-2; −; 1,3,7,9]
[0; −; 1,3,5,9],[2; −; 1,3,5,7] 4 8

q10 2 0 0 0 π/M − [−; −; 1,19],[−; −;3,17], [−; −; 5,15]
[−; −; 7,13],[−; −; 9,11] 5

4 0 0 1 π/M −2π/M [-2; −; 1,3,5,13], [-2; −; 1,3,7,11]
[-2; −; 1,3,7,9],[0; −; 1,3,5,9]
[0; −; 1,3,7,9],[2; −; 1,3,5,9] 6

5 0 1 0 0 − [−; −; 0,2,4,6,8] 1 12
q11 2 0 0 0 π/M − [−; −; 1,21],[−; −;3,19], [−; −; 5,17]

[−; −; 7,15],[−; −; 9,13] 5
4 0 0 1 π/M −2π/M [-2; −; 1,3,5,15], [-2; −; 1,3,7,13]

[-2; −; 1,5,7,11],[-2; −; 3,5,7,9]
[-2; −; 1,3,9,11], [0; −; 1,3,5,13]
[0; −; 1,3,7,11],[0; −; 1,5,7,9]
[2; −; 1,3,5,11],[2; −; 1,3,7,9] 10

5 0 1 0 0 − [−; −; 0,2,4,6,10] 1 16
q12 2 0 0 0 π/M − [−; −; 1,23],[−; −;3,21], [−; −; 5,19]

[−; −; 7,17],[−; −; 9,15], [−; −; 11,13] 6
4 0 0 1 π/M −2π/M [-2; −; 1,3,5,17], [-2; −; 1,3,7,15]

[-2; −; 1,5,7,13],[-2; −; 3,5,7,11]
[-2; −; 1,3,9,13], [-2; −; 1,5,9,11]
[0; −; 1,3,5,15],[0; −; 1,3,7,13]
[0; −; 1,5,7,11 ],[0; −; 3,5,7,9]
[0; −; 1,3,9,11 ],[2; −; 1,3,5,13]
[2; −; 1,3,7,11],[2; −; 1,5,7,9] 14

5 0 1 0 0 − [−; −; 0,2,4,6,12], [−; −; 0,2,4,8,10] 2 22
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Table 8: The first few terms in the sector of the partition function for the sector Q = 1
and m− = m++ = 0, where m+ = 2mns + 3m− + 4m−2s, and the momentum ranges are:
− π

M
(m−2s+m−−2) ≤ P+

j < ∞, − π
M

(m−2s+m−−2) ≤ P−2s
j ≤ π

M
(m−2s+m−−2), − π

M
(mns+

2m−2s + 2m− − 1) ≤ P ns
j ≤ π

M
(mns + 2m−2s + 2m− − 1).

Order m+ m
−2s m

−
mns P+,−2s

min Pns
min [Pns; P−2s; P+] (Units of π

M
) N Tot

q0 0 0 0 0 − − [−; −; −] 1 1
q3 2 0 0 1 2π/M 0 [0; −; 2,4] 1 1
q4 2 0 0 1 2π/M 0 [0; −; 2,6] 1 1
q5 2 0 0 1 2π/M 0 [0; −; 2,8],[0; −; 4,6] 2 2
q6 2 0 0 1 2π/M 0 [0; −; 2,10],[0; −; 4,8] 2 2
q7 2 0 0 1 2π/M 0 [0; −; 2,12],[0; −; 4,10], [0; −; 6,8] 3 3
q8 2 0 0 1 2π/M 0 [0; −; 2,14],[0; −; 4,12], [0; −; 6,10] 3 3
q9 2 0 0 1 2π/M 0 [0; −; 2,16],[0; −; 4,14], [0; −; 6,12]

[0; −; 8,10] 4 4
q10 2 0 0 1 2π/M 0 [0; −; 2,18],[0; −; 4,16], [0; −; 6,14]

[0; −; 8,12] 4
4 0 0 2 2π/M −π/M [-1,1; −; 2,4,6,8] 1 5

q11 2 0 0 1 2π/M 0 [0; −; 2,20],[0; −; 4,18], [0; −; 6,16]
[0; −; 8,14],[0; −; 10,12] 5

4 0 0 2 2π/M −π/M [-1,1; −; 2,4,6,10] 1 6
q12 2 0 0 1 2π/M 0 [0; −; 2,22],[0; −; 4,20], [0; −; 6,18]

[0; −; 8,16],[0; −; 10,14] 5
4 0 0 2 2π/M −π/M [-1,1; −; 2,4,6,12], [-1,1; −; 2,4,8,10] 2 7
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Table 9: The first few terms for the sector of the partition function corresponding to Q = 1
and m− = m++ 6= 0, where m+ = 2mns + 3m− + 4m−2s, and the momentum ranges are:
− π

M
(m−2s + m− − 3) ≤ P+

j < ∞, − π
M

(m−2s + m− − 1) ≤ P−2s
j ≤ π

M
(m−2s + m− − 3),

− π
M

(mns + 2m−2s + 2m−) ≤ P ns
j ≤ π

M
(mns + 2m−2s + 2m− − 2), and there is a shift of

−2π
M

(1
2
mns + m−2s + m−).

Order m+ m
−2s m

−
mns P+,−2s

min Pns
min [Pns; P−2s; P+] (Units of π

M
) Shift N Tot

q5 3 0 1 0 2π/M − [−; −; 2,4,6] −2π/M 1 1
q6 3 0 1 0 2π/M − [−; −; 2,4,8] −2π/M 1 1
q7 3 0 1 0 2π/M − [−; −; 2,4,10], [−; −; 2,6,8] −2π/M 2 2
q8 3 0 1 0 2π/M − [−; −; 2,4,12], [−; −; 2,6,10]

[−; −; 4,6,8] −2π/M 3 3
q9 3 0 1 0 2π/M − [−; −; 2,4,14], [−; −; 2,6,12]

[−; −; 4,6,10],[−; −; 2,8,10] −2π/M 4 4
q10 3 0 1 0 2π/M − [−; −; 2,4,16], [−; −; 2,6,14]

[−; −; 4,6,12],[−; −; 2,8,12]
[−; −; 4,8,10] −2π/M 5 5

q11 3 0 1 0 2π/M − [−; −; 2,4,18], [−; −; 2,6,16]
[−; −; 4,6,14],[−; −; 2,8,14]
[−; −; 4,8,12],[−; −; 6,8,10]
[−; −; 2,10,12] −2π/M 7 7

q12 3 0 1 0 2π/M − [−; −; 2,4,20], [−; −; 2,6,18]
[−; −; 4,6,16],[−; −; 2,8,16]
[−; −; 4,8,14],[−; −; 6,8,12]
[−; −; 2,10,12],[−; −; 4,10,12] −2π/M 8

5 0 1 1 2π/M −3π/M [−3; −; 2,4,6,8,10] −3π/M 1 9
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Table 10: The first few terms for the sector of the partition function corresponding to Q = 1
and m− = m++ 6= 0, where m+ = 2mns + 3m− + 4m−2s, and the momentum ranges are:
− π

M
(m−2s+m−−1) ≤ P+

j < ∞, − π
M

(m−2s+m−−1) ≤ P−2s
j ≤ π

M
(m−2s+m−−3), − π

M
(mns+

2m−2s + 2m− − 2) ≤ P ns
j ≤ π

M
(mns + 2m−2s + 2m−). There is an additive shift in the total

momentum of 2π
M

(1
2
mns + m−2s + m−).

Order m+ m
−2s m

−
mns P+,−2s

min Pns
min [Pns; P−2s; P+] (Units of π

M
) Shift N Tot

q4 3 0 1 0 0 − [−; −; 0,2,4] 2π/M 1 1
q5 3 0 1 0 0 − [−; −; 0,2,6] 2π/M 1 1
q6 3 0 1 0 0 − [−; −; 0,2,8], [−; −; 0,4,6] 2π/M 2 2
q7 3 0 1 0 0 − [−; −; 0,2,10], [−; −; 0,4,8]

[−; −; 2,4,6] 2π/M 3 3
q8 3 0 1 0 0 − [−; −; 0,2,12], [−; −; 0,4,10]

[−; −; 2,4,8],[−; −; 0,6,8] 2π/M 4 4
q9 3 0 1 0 0 − [−; −; 0,2,14], [−; −; 0,4,12]

[−; −; 2,4,10],[−; −; 0,6,10]
[−; −; 2,6,8] 2π/M 5 5

q10 3 0 1 0 0 − [−; −; 0,2,16], [−; −; 0,4,14]
[−; −; 2,4,12],[−; −; 0,6,12]
[−; −; 2,6,10],[−; −; 4,6,8]
[−; −; 0,8,10] 2π/M 7 7

q11 3 0 0 0 − [−; −; 0,2,18], [−; −; 0,4,16]
[−; −; 2,4,14],[−; −; 0,6,14]
[−; −; 2,6,12],[−; −; 4,6,10]
[−; −; 0,8,12],[−; −; 2,8,10] 2π/M 8

5 0 1 1 0 −π/M [−1; −; 0,2,4,6,8] 3π/M 1 9
q12 3 0 1 0 0 − [−; −; 0,2,20], [−; −; 0,4,18]

[−; −; 2,4,16],[−; −; 0,6,16]
[−; −; 2,6,14],[−; −; 4,6,12]
[−; −; 0,8,14],[−; −; 2,8,12]
[−; −; 0,10,12],[−; −; 4,8,10] 2π/M 10

5 0 1 1 0 −π/M [−1; −; 0,2,4,6,10],
[1; −; 0,2,4,6,8] 3π/M 2 12
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