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ABSTRACT

Wireless sensor networks are being deployed in an increas-
ing number and variety of applications. Currently, most of
these systems adopt a centralised control mechanism, but
this has issues associated with scalability, robustness, and
dynamism that often exist in such networks. Given this, de-
centralised approaches are appealing. However, the design
of an efficient decentralised control regime is difficult as it
introduces additional control issues related to the interac-
tions between the network’s interconnected nodes given the
absence of a central coordinator. Within this context, we
consider how such approaches can be applied to the prob-
lem of ada ptive sampling in energy-constrained networks.
In particular, we represent each sensor as an autonomous
agent and develop a decentralised algorithm for a deployed
sensor network in the domain of flood monitoring. This al-
gorithm is then empirically shown to perform significantly
better than a non-adaptive benchmark.

1. INTRODUCTION

A wireless sensor network (WSN) is an array of small, lo-
cally battery-powered sensor nodes that communicate infor-
mation sampled from events in a surrounding environment,
to a base-station (a.k.a. sink or gateway) wirelessly. Within
these WSNs, energy management is of critical importance
since it dictates the amount of useful information that can
be gathered over the lifetime of each node. Now, one of
the main actions that such sensor nodes can vary in or-
der to improve their energy management is to adapt their
sensing (a.k.a. sampling) capabilities. Thus, a number of
researchers have attempted to design effective and efficient
sampling policies. These include sets of rules that adapt a
node’s sampling rate (i.e. how often a node is required to
sample during a particular time interval) and schedule (i.e.
when a node is required to sample) based on its past set
of observed data and the set of data that it believes it will
observe, so as to achieve the network’s goals (e.g. monitor-
ing the environment [4, 8], tracking object targets [13], and
observing structural health [2]), while using the minimum
energy resources possible.

Within this context, the challenge is to achieve these ob-
jectives given the distinguishing characteristics of WSNs,
including: (i) large scale, nodes tend to be deployed in large
numbers to produce high data rates, (ii) dynamism, the en-
vironment being monitored is typically highly dynamic and
the network topology often varies during operation, (iii) hos-
tile environments, nodes are likely to fail and their com-

munication links are subject to noise and interference, and
(iv) limited communicational and computational resources
[3]. In particular, this has led to two main types of control
regime (i.e. a protocol dictating the actions of the sensor
nodes): centralised and decentralised. In the former, a sin-
gle coordinator node, usually the base station, receives data
from all the nodes, computes the actions to be taken by these
nodes, and then issues commands to all the nodes indicat-
ing how and when they should sample data. In contrast, in
the latter case such a central node does not exist. Instead,
the nodes are autonomous and each decides its individual
actions based on its own local state and observations [6].
In this paper, we focus on a decentralised control regime
for controlling the nodes’ sampling behaviours in such net-
works. We do so because it increases the system’s robust-
ness compared to its centralised counterpart [3]. However,
the downside is that the design of an efficient decentralised
control regime is difficult. By removing the centre, the de-
centralised approach introduces an additional control issue
related to the dynamic interactions between the intercon-
nected nodes in the network. Given this, it is often far
from obvious how the individual node processes need to be
designed such that their interactions can meet the overall
design objectives that should ensue from their interactions.
Now, apart from the energy management issue, another
substantial challenge in a WSN deployment, and also a fo-
cus in our work, is to maximise the information value of
the data collected at a base-station. In our case, the basic
principle behind the information valuation is that the less
uncertainty there is associated with a particular piece of in-
formation, the more valuable and important it is. Against
this background, we develop and evaluate a novel decen-
tralised adaptive sampling algorithm that varies each sen-
sor’s sampling rate to ensure it focuses its limited energy
resources on maximising the value of the information it pro-
duces. We then empirically evaluate our algorithm and show
that it provides information that has approximately 44.5%
less uncertainty error than a uniform non-adaptive approach
in which each node divides the total number of samplings
it can perform equally. Our algorithm is effective because
it provides the flexibility for each node to make effective lo-
cal decisions, which are influenced by its own local circum-
stances, concerning the schedule of its sampling (including
its sampling rate adjustment). In the broadest sense, this
algorithm operates in such a way that the nodes which ex-
perience much more dynamic events will have high initial
demands and values, hence requiring them to sample more
frequently compared to those situated in a more static en-



vironment and having less information value.

A simulator is necessary in order to analyse, evaluate, and
benchmark the newly developed algorithm. In our case, we
developed such a simulator that is built upon high-fidelity
models of a deployed WSN for real-time accurate flood fore-
casting (called FloodNET).

The rest of this paper is structured as follows. Section
2 describes previous work in this area and section 3 details
the FloodNET domain and our simulator. Section 4 presents
the formal model of the adaptive sampling problem. Section
5 details our algorithm and shows how we find the optimal
sampling frequency and schedule of each sensor node by uti-
lizing a binary integer programming technique. Section 6
empirically evaluates the algorithm and section 7 concludes.

2. RELATED WORK

In most environmental WSNs, there are high spatial den-
sities of nodes in order to achieve high resolution and ac-
curate estimates of the environmental conditions. However,
these high densities place heavy demands on energy con-
sumption for sampling. In our case, the key intuition is that
the adaptive sampling mechanism needs to be able to de-
tect samples’ correlations in the environment; meaning that
many nodes may not need to sample at a given moment
in order to achieve a desired level of accuracy. To date,
three of the main adaptive sampling mechanisms that have
been proposed are: (i) Backcasting, (ii) Self Organising Re-
source Allocation (SORA), and (iii) Utility Based Sensing
and Communication (USAC).

The backcasting adaptive sampling method [14] operates
by first activating only a small subset of the wireless sensor
nodes that communicate their information to a base-station.
This provides an initial estimate of the sensed environment
and guides the allocation of additional network resources.
The base-station then selectively activates additional sensor
nodes in order to achieve a target error level (based upon this
information). However, in a decentralised control regime,
such a coordinator base-station does not exist, therefore this
approach is unsuitable for our work.

SORA is an approach for determining efficient node re-
source allocations in WSN by using a market-based ap-
proach [7]. Rather than manually tuning node resource
usage, SORA defines a virtual market in which nodes sell
goods (such as data sampling, data relaying, data listening,
and data aggregation) in response to global price informa-
tion that is established by the end-user. With SORA, nodes
independently determine their ideal behaviours by taking
actions to maximize their own utilities, subject to energy
constraints. However, prices are determined and set by an
external coordinator agent to induce a desired network’s
global behaviour. The best approach to selecting optimal
price settings is also still an open problem.

On the other hand, researchers in the Glacsweb project
[8](a deployed WSN to monitor the Briksdalsbreen glacier
movement and behaviour in Norway, to understand climate
change involving sea-level change due to global warming,
and, eventually, to act as a vital environmental hazard warn-
ing system) have recently proposed a decentralised control
mechanism for adaptive sampling called USAC [10]. This
mechanism consists of two components: (i) a sensing pro-
tocol and (ii) a communication protocol. Under the sens-
ing protocol, each node locally adjusts its sampling rate de-
pending on the rate of change of its observations. Specifi-
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cally, the sensing algorithm uses a linear regression method
which is run to determine the next predicted data with some
bounded error (termed its confidence interval, CI). If the
next observed data falls outside this CI, the node sets its
sampling rate to the maximum rate in order to incorporate
this phase change. However, if data falls within the CI, it im-
plies that the node is allowed to reduce its sampling rate for
energy efficiency due to the presence of information that has
a low value. The requirements, assumptions, and goals of
this sensing mechanism are similar to that of ours, however,
their CI value remains static throughout the system’s oper-
ation. Now, in many WSNs, there is a necessity to transmit
the sensor’s readings as soon as possible because the infor-
mation value of the readings decreases the more delayed it
becomes. Therefore, a static CI value makes it difficult to
decide whether it is better to transmit the current readings
at a particular point of time or to wait for more samplings
before doing so in order to ensure good global outcomes.

3. THE FLOODNET WSN

Within this work, we focus on environmental applications
in particular. We do this because the environment is a key
application area for sensor networks and because there is
access to deployed systems and previous work in our depart-
ment in this area. Specifically, we consider the FloodNET
WSN [4]. Like many other similar applications, FloodNET
currently adopts a centralised control mechanism (see fig-
ure 1). This manifests itself via the existence of the central
“outer loop” control. This loop enables the flood predic-
tion models (i.e. the “central controller” node) to influence
the sampling and transmission rates of the individual nodes
so that closer monitoring can be achieved in anticipation of
a possible flooding event. Now, there are occasions when
the centralised control paradigm is appropriate (e.g. when
the domain problem is reasonably static or when there are
relatively few nodes in the network), but when the prob-
lem is dynamic then decentralised control systems are bet-
ter. In these circumstances (including the FloodNET do-
main), decentralised strategies become attractive because
they increase both the speed of the network’s deployment
and its robustness (as communications no longer have to
pass through a single point).

3.1 TheDomain
To date, the FloodNET project has developed and deployed



Figure 3: FloodNET sensor nodes.

several wireless sensor nodes to form a WSN system that
monitors the water level in the River Crouch, East Essex
in Eastern England [9]. The principle aim of FloodNET is
to give at least two hours warning before flooding occurs,
such that actions can be taken to alleviate risks to people
and property. This early and precise prediction is crucial as
there is a clear correlation between the cost of damage and
both the time in advance any warnings are given and the
depth of the flooding.

At present, FloodNET consists of twelve nodes, each of
which (shown in figures 2 and 3) includes a BitsyX Single
Board Computer and Intel’s 400MHz PXA255 RISC micro-
processor. This processor is in sleep mode most of the time
since it consumes a significant amount of power (1000mW)
when providing field processing capabilities. The board pro-
vides support for PCMCIA where a wireless LAN PC card
is installed to transfer or receive data wirelessly from the
neighbourhood (requires an additional 910mW and 640mW
of power respectively). The node’s sensor module contains
two analog-to-digital converters and a water-depth trans-
ducer sensor. The converters are always turned on (requires
20mW power), while the sensor itself operates with another
additional 50mW. Each node is installed with a solar panel
in conjunction with a 12V 12Ah/20hr battery as a power
source.

Thus, FloodNET nodes take measurements and store them
locally on the memory with very little power (around 70mW)
relative to that of activating the single board computer and
transmitting data (around 1910mW). Moreover, nodes are

capable of communicating over a range of around 600 to 800
metres. A combination of this and the presence of obstruc-
tions such as sea walls, trees, and buildings at the Flood-
NET field site, means that most nodes do not have a direct
link with the base-station. Therefore a node communicates
with its neighbours and passes data using a wireless IEEE
802.11 Ethernet Network with the objective of transmitting
the data back to the base-station.

3.2 The Smulator

In order to evaluate our work, before we deploy it for real, we
built a wireless sensor network simulator (DC-WSNS). This
provides a virtual environment in which sensor nodes can ei-
ther be scattered randomly or situated at specific locations.
The domain models upon which DC-WSNS are built include
the node, the battery, and the energy harvesting capabili-
ties (specifically a solar panel model in combination with
a cloud cover model). The network stack model (including
the routing table and the message queue) are adapted from
those in the ARA simulator [16]. At the current stage of
our simulator, nodes can fail due to their battery depletion,
but they can not be added or removed during the course of
a simulation run.

Specifically, in our case, the nodes in the network deplete
their energy resources at different rates (as the nodes have
different sampling, transmitting, and receiving rates). More-
over, a model of battery charging needs to be incorporated,
in addition to that of a static battery model, because Flood-
NET’s nodes have solar panels as one of their energy pro-
ducing components. For such solar powered systems, a key
issue is that of the amount of sunlight available; this is given
by the time of day (i.e. there is no sunlight at night) and
the cloud cover (i.e. if it is very cloudy then the panels will
receive little sunlight). In modelling the clouds, we consider
their shape, their thickness, their speed, and their move-
ments in variable directions (see figure 4). With the cloud
model, one form of energy recharging (using a solar panel)
is to assume that if a solar panel does not lie under a cloud,
it will gain a preset energy increase each day. However, this
energy will be reduced depending on the number of layers
or the thickness of the cloud above the solar panel. The
thicker or the more layers the cloud has, the more of the
sun’s energy is trapped inside, hence, the less energy is re-
gained. However, during night time, due to the absence of
sunlight, which is the main resource for the solar panel to
convert, its energy power, a node’s energy supply recharges
at a small rate per hour due to stored energy in the solar
cells. This rate is chosen arbitrarily and remains constant
during the night time. Whilst during day time, the energy
recharging rate is modelled as a quadratic function which
peaks (i.e. recharges the most) at midday. With all these
models, DC-WSNS provides a platform in which objective
observations can be made at any time.

However, DC-WSNS, is not currently designed to accu-
rately model the wireless communication channel. Rather,
we assume that we have unlimited bandwidth and that a
node has a single transmission level such that only neigh-
bourhood nodes within its transmission range can hear, re-
ceive, and process its broadcasted messages. Messages have
a fixed size, and, hence, require the same amount of time
to transmit, given the unlimited bandwidth. Moreover, we
assume that every propagated message is received by the
receiving node without any failures and that there is no dif-
ference between overhearing and receiving in term of power



1106114 00,0500 85T 2005,

EDacumens and Settngs a5 DesKiopopaow_89..| Animation Toms Frams: Notnal T Sinwtation bat 2005 1014 T e 053047 |

Figure 4: DC-WSNS simulation. FloodNET’s nodes
(represented by the filled dots) transmit their col-
lected samples back to the base-station (using multi-
hop routing).

consumption. However, the nodes are programmed to ig-
nore and drop packets that are not destined to them for
the purpose of energy savings. Incorporating a more real-
istic network communication model into our simulator will
be part of our future work.

4. PROBLEM REPRESENTATION

Before we detail our decentralised control algorithm, we first
formalize the problem we are addressing in this work. Let
n be the number of sensors in the system and the set of all
sensors be I = {i1,...,in}. Each sensor ¢ € I has s actions
it can perform and they are denoted as C* = {c},...c.}. In
our adaptive sampling context, these actions represent the
hourly sampling rate that a sensor can opt to perform at any
particular point of time during its lifetime. For instance, by
setting its sampling action to ¢, sensor i chooses to sense
the environment ¢, times per hour. Thus, a sensor can only
elect one action at any particular point of time, however it
can then choose a different ¢, at subsequent decision points.
This means a sensor is allowed to adjust its action (by de-
creasing or increasing its sampling rate) based on its past
set of observed data and the set of data that it believes it
will observe.

At this time, FloodNET’s system consists of twelve sen-
sors (n = 12). For the sake of simplicity and in order to
exploit all the possible changes in the system, there are four
different actions (s = 4) describing the sensor’s sampling
rate. A sensor can either sample one, three, six, or twelve
times in every hour (i.e. C* = {1, 3,6, 12}, Vi). Moreover, as
FloodNET’s raw-data shows a similar pattern between days,
with two tides coming in and out (with &+ one hour delay),
we set the sampling schedules of each sensor based upon
its previous day’s data values. For this purpose, we have a
fixed window size of h = 1..24 (such that each element rep-
resents a one hour slot, for instance 1 represents the slot be-
tween 00:00am and 01.00am). Each sensor, thus, has its own
hourly-based schedule per day, denoted as A® = {a}, ..., abs}
where a!, € C*. Additionally, there is a resource cost as-
sociated with sampling data. This resource is provided by

the limited battery power installed on each sensor and the
solar energy panel that is capable of recharging the battery
state. Assuming that the remaining battery power left for
sensor 4 at the beginning of a day is EZ, and it requires a
certain amount of energy es to sample an event, then the
sum of all the energy required to do the sampling actions on
that day must not exceed the remaining battery power (i.e.
Zi4:1 a;es < E;)

Each FloodNET node is capable of measuring its battery
voltage at any particular point of time. However, under real
life conditions, voltage measurements alone can be very mis-
leading to estimate the remaining battery capacity. This is
due to the chemical reactions within the cells such that the
capacity of a battery is dependent on the discharge condi-
tions including the magnitude of the current, the duration
of the current, the allowable terminal voltage of the bat-
tery, the temperature, the condition (whether it is new or
old), and the historical usage (whether it has been over-
discharged). At this point, our simulator just assumes that
the deployed agents have access to the true value of the
remaining energy left in the batteries. More realistic calcu-
lation in which the relationship between current, discharge
time, and capacity for a lead acid battery is expressed by
Peukert’s law [11] will be considered as a future work for
real deployment purposes.

41 Thelnformation Metric

To operate effectively, our system needs a means of valuing
the various observations that the sensors may make. Specif-
ically, we use a valuation function which defines the value of
an outcome for an action. In short, it is this function that
the system is trying to maximise and which describes the
properties that we would like the overall system’s outcomes
to possess. Now, there are many methods by which the value
of information can be determined, including simple linear
regression [10] and the Kalman Filter [5, 12]. However, we
chose the former, which is based on the uncertainty values
of the regression line, as most of the time the relationship
between the time and water-level raw-data can be graphed
as a straight line. In FloodNET’s data model, by sampling
more, a sensor will necessarily get a lower uncertainty er-
ror. Now, this uncertainty is expressed in confidence bands
about the linear regression line that we perform with our
water-level raw-data. In fact, the uncertainty error has the
same interpretation as the standard deviation of the residu-
als (termed s. in equation 2, where p represents the number
of data points, g is the new value of y calculated from the
newly found slope and intercept variables), except that it
varies according to the location along the regression line.
The distance of the confidence bands from the regression
line (o) is:
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where s. is the standard error of the estimate, z* is the

location along the x-axis data points where the distance is
being calculated, and Z is the mean value of X.
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In order to perform this simple linear regression properly,
the input must consist of at least three data points. This is



because if there are only two data points they will produce
a smooth linear regression line (with no uncertainty error),
while anything less than that will result in invalid inputs.
For these reasons, we assume that a sensor must at least
sample once in an hour slot (defined as the minimum sam-
pling rate, therefore EX > 24e,, where i € I). In this way,
given the uncertainty error, we are able to tell whether one
set of observations is more valuable than another, therefore,
it can help us to define a value associated to every action.
Here, we derive the values as the reduction in uncertainty
error that a sensor can achieve by taking more samples than
the minimum sampling rate. This minimum sampling rate
is applied as a basis where a sensor gains zero value/profit.
The data values for each sensor are often best represented in
a table format, as shown in table 1 (values are arbitrary, for
illustrative purpose). In this table, the columns represent
the hour slot, for instance where column = 3, if this partic-
ular sensor chooses to sense three, six, or twelve times, in
return it will gain a corresponding reduction in uncertainty
error of 27.59, 43.79 and 55.23 compared to if it had only
taken one sample during the same period.

As described later in section 5, during the first day of a
simulation, every sensor is designed to sample at its maxi-
mum rate. Now, by taking subsets of samples (correspond-
ing to the set of actions specified in the table’s row header)
from the full set and performing the linear regression on
these subsets, we obtain a new value of uncertainty error
for each subset. The values that will be assigned to the ta-
ble are the uncertainty error difference between sampling at
the minimum rate and at other rates. For instance where
column = 3, if the uncertainty error that is produced with
a subset of samples c2 with three samples taken between
02:00am and 03.00am has a value of 128.66, while that of
a minimum sampling rate ¢; with only one sample taken
between the same period is 156.25, then the value inside
column = 3 and row = 2, will be 27.59.

5. THE DECENTRALISED ALGORITHM

Having described our representation, we now focus on how
to search for sets of sensor’s schedules that maximise the
data values, which in turn, will reduce the total uncertainty
error of information collected at the base-station. For these
purposes, we introduce V as a s X t matrix with s number
of actions and t number of hours:

Vi1 V12 ... Uit dy, diz ... 1t
vi=| : - D' = ‘

Us1t Us2 ... Vg sl s2 e st

v;y now represents the value that a sensor i will get if it
chooses to perform action ¢ in hour slot y. D is a matrix
of binary values and each of the elements corresponds to a
decision variable (a “1” and a “0” respectively represent the
agreement and the refusal to carry out the corresponding ¢,
action). For instance, when di; = 1 then the sensor agrees
to perform action ¢! in hour slot 1. This also means that
diy =0,Vz € C'\cl.

Given that, at the beginning of each day, a sensor knows
the maximum number of samples N5 (Ns > 24) it can take
on that particular day, a sensor is designed to select those
actions that reduce the uncertainty the most (i.e. maximise
the value gained, as defined in equation 3) subject to some

1 2 3 24
1 Sample (c¢1) || 0 0 0 0
3 Samples (¢2) || 0.29 | 1.21 | 27.59 3.88
6 Samples (c3) || 0.31 | 1.51 | 43.79 | ....... 8.92
12 Samples (c4) || 0.33 | 1.55 | 55.23 | ........ 13.45

Table 1: Action-Value Table.

system constraints. Specifically, the constraint in equation 4
states that a sensor can only elect one action at any particu-
lar point of time, whereas that in equation 5 states that the
total number of samples taken by a sensor must not exceed
the maximum number of samples it can take on that day:

7 = arg max z v;yd;y,w (3)
zeC,yeh
subject to:
S .
=1
> cidi, + chdhy, + ... + codyy, < N, Vi (5)
y=1

The problem we face in this adaptive sampling context is
a linear programming problem, in general, and the person-
task assignment problem in particular [15]. In the assign-
ment problem, the aim is to assign a set of people to do a set
of tasks. Each person takes a certain number of minutes to
do a certain task, or cannot do a particular task at all, and
each person can be assigned to exactly one task. The aim is
to minimize the total time taken to do all of the tasks. In
general, where there are n persons and tasks, there are n!
possible assignments. This may seem a small space to search
for, but for instance if there are 20 persons for 20 tasks in a
medium-sized company, then there are 10%¢ possible assign-
ments (which is intractable in a reasonable amount of time).
Our problem can, thus, be cast as the person-task assign-
ment problem as they are strongly similar in nature. Given
this insight, our problem can be solved using binary integer
programming (BIP) [1], which is a subset of linear program-
ming, with a search space of 3%* possible assignments. Now,
a popular method to solve our problem numerically is the
simplex algorithm, and in this case we exploit the GNU Lin-
ear Programing Kit (GLPK)".

Having described the technique that we use, we now seek
to present the rest of our decentralised algorithm (see algo-
rithm 1). Specifically, the algorithm, which is distributed
and installed on each sensor in the network, provides a
means for the individual nodes to make local decisions (to
alter its own sampling rate based upon its observations, both
on its past sets and on the future sets it believes it will ob-
serve). Now, at the beginning of a simulation, some required
variables are initialized. These include the updSSched boo-
lean variable which is given the value TRUEFE. It represents
the mode that a sensor is currently in at any particular point
of time. In our simulation, there are two possibilities; (i)
normal mode and (ii) sampling schedule updating mode. In
the former case, a sensor sets its hourly sampling rate based
upon its current schedule that it has already computed and

"http://www.gnu.org/software/glpk/



Algorithm 1 Schedule-Based Adaptive Sampling.

: updSSched «— TRUE
sRate «— MAX_S_RATE
readings «— {}
loop
if sTime = NOW then
readings «— PERFORMSAMPLING(NOW)
if —updSSched then
hour « HOUR(NOW)
sRate < GETSRATE(hour)
end if
SETSTIME(sTime + sRate)
end if
if tTime = NOW then
uError « CALCUERROR(readings)
if dateChanged then
daysCount <« daysCount + 1
if updSSched then
CaLcUREDUCTION(uError)

e g e el e e

FINDSSCHEDULE(uError) > BIP
updSSched <+ FALSE

21 end if

22: end if

23: if —updSSched A HASENOUGHENERGY() A

(daysCount > CONST) then

24: updSSched «+— TRUE > Schedule updated
25: daysCount < 0

26: sRate — MAX_S_RATE

27: end if

28: readings <« {}

29: end if

30: end loop

stored in its memory. In the latter case, the sensor will up-
date its schedule because the current one is out-of-date. On
the first day of a simulation, all sensors are assigned to act
in this mode, hence, each sensor’s sampling rate variable,
sRate, is initialized to its maximum (i.e. MAX_S_RATE
in line 2). This is done such that the maximum number of
samples can be utilized to evaluate the data values (which
corresponds to the maximum reduction in uncertainty er-
ror) a sensor will gain compared to if it had only taken
fewer samples than the maximum sampling rate. On the
other hand, the readings vector variable, that records all
the taken samples, is initialized to the null set.

After the initialization phase, sensors follow an infinite
loop state. On each iteration, each sensor checks its sam-
pling and transmitting time. Whenever the current loop
represents the time that a sensor needs to sample (line 5),
the PerformReading function instantiates a new reading
and attaches it to the end of the readings variable. Subse-
quently, if the sensor is not in updating mode, its sRate is
assigned a value equal to the sampling rate in its schedule,
corresponding to the appropriate hour (line 9). The sensor
then sets its next sTime sampling time variable. Inside the
same loop iteration, whenever the sensor is also required to
transmit its current readings (line 13), it firstly calculates
the uncertainty error in this set of readings by using the sim-
ple linear regression method described in section 4.1. Later,
if the sensor detects that it has entered the following day,
it will call the CalcU Reduction function to compute the
reduction in uncertainty error that the sensor can achieve
by taking more samples than the minimum sampling rate.
For this purpose, we use the BIP GLPK solver to evaluate
the optimal sets of sensor schedules that maximise the un-
certainty error reduction, given the sensors’ current energy
constraints (line 19).

Now, due to the fact that we partition the simulation time
into hour slots, and while the FloodNET tides in and out
actually differ in a range of half an hour to an hour between
days, there is a necessity to update the sensors’ schedules pe-
riodically. Otherwise, the schedule will be out of sync and
the algorithm will perform poorly. In the schedule updating
mode, a sensor is again required to perform sampling at its
maximum rate (line 26). Therefore, the HasEnoughEnergy
procedure basically checks the sufficiency of the sensor’s re-
maining battery to perform this task. And whenever all the
other requirements have been met (line 23), the sensor en-
ters this mode once again. At the end of the transmitting
phase, the readings variable is cleared.

6. EMPIRICAL EVALUATION

Having described our algorithm, we now seek to evaluate
its effectiveness by comparing it against a standard non-
adaptive approach in which each sensor in the network di-
vides the total number of samples it can perform in a day
equally into its hour slots. Specifically, we are interested
in comparing the cumulative uncertainty error of informa-
tion gathered at the base-station and the uncertainty error
of information collected hourly. We chose these two mea-
sures because they enable us to determine whether by using
the same amount of battery energy, our adaptive sampling
algorithm permits the sensors to collect more valuable infor-
mation that has lower uncertainty error compared to that
of the non-adaptive one.

In our experiments, we use the actual FloodNET data
for batteries, tides readings, and cloud cover. We do this
because we want to mimic the FloodNET scenario as re-
alistically as possible. All the cloud parameters (including
the cloud coverage, wind speed, and cloud thickness) are
initialized with realistic data (at FloodNET'’s site) available
in Meteorological Aviation Routine Report (METAR) for-
mat2. The experiments are also run using FloodNET’s ac-
tual topology with a fixed number of nodes (twelve) at fixed
locations (i.e. the nodes are immobile). The remaining bat-
tery energy of each sensor and its recharging rate are set to
be so low that it is not capable of sampling at its maximum
rate. Now, given these constraints, sensors must therefore
schedule themselves to determine how often and when to
sample efficiently in order to minimise their uncertainty er-
ror.

The sampled data model (worth approximately nine days
of measured data starting from Oct 14*" 2006 00.00AM)
for each node was fixed for each instance of the experi-
ment. The purpose of this is to get fair comparative results
and estimations. As can be seen in figure 5, our algorithm
performs well; compared to the benchmark, our algorithm
consistently reduces the information uncertainty by about
44.5% per day over the trial period. The plot shows the su-
periority of our adaptive sampling algorithm over the non-
adaptive one. The overall graphs of both algorithms are lin-
ear, however as expected, the gradient of the non-adaptive
algorithm is steeper than that of ours.

Additionally, figures 6 and 7 shows more clearly how our
adaptive sampling algorithm achieves this performance. Af-
ter leaving the schedule updating mode (i.e. the second day
of a simulation, as can be seen in figure 7), a sensor is able
to perform adaptive sampling by conserving its battery en-
ergy in order to take more samples during the most dynamic

http://weather.noaa.gov/weather/metar. shtml
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Figure 5: Cumulative uncertainty error of informa-

tion gathered over a 9-day period plotted against
time.
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Figure 6: Uncertainty error of information gathered
hourly over a 9-day period plotted against time.

events while taking fewer samples during the static ones. In
our case, the dynamic events of a tide occur at the time it
comes in (specifically when the sensor rises off mud, between
07.00 and 09.00 in figure 7), reaches the peak (between 10.00
and 11.00), and goes out (between 12.00 and 14.00). During
these events, sensors normally set their sampling rates to a
maximum value (i.e. in our case, at five minute intervals).
As aresult, from the second day onward, figure 6 shows a re-
duction in uncertainty error of information collected (partic-
ularly during the dynamic events), except when the sensors
are in updating mode (on Oct 17** and 20°").

Other benchmarks including the optimal adaptive sam-
pling that is given the knowledge about all the sample read-
ings and the greedy sampling in which each sensor samples
at its maximum rate whenever there is enough battery en-
ergy to do so, will be considered as future work.
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Figure 7: Water samples gathered on the second day

of the simulation. Graph only displays some selected
nodes for better visibility.

7. CONCLUSIONS

In this paper, we have focussed primarily on issues associ-
ated with energy management in WSNs. In particular, we
concentrated on the decentralised control of sampling strate-
gies in the FloodNET system. To this end, we tackled the
problem by developing a novel decentralised schedule-based
adaptive sampling algorithm. The empirical results are ob-
tained from the simulation run using DC-WSNS and these
show that the algorithm is effective in balancing the trade-
offs associated with wanting to gain as much information
as possible by sampling as often as possible, with the con-
straints imposed on these activities by the limited power
available for these actions.

Now, although the effectiveness of this work is evaluated

in terms of the FloodNET domain, the challenges that are
involved here are very similar to those that occur in the
design of many other WSNs. Specifically, many WSNs are
being deployed in the domain of environmental phenomena
monitoring (e.g. soil moisture and habitat monitoring) that
typically show a periodic pattern in their readings (as we
have with the tides). Thus, the algorithm can be used and
transferred simply by altering the time period over which
the readings are spread. The simple linear regression tool
for evaluating the value of information can also be applied
to those WSNs in which the relationship between the time
and reading (with associated noise and uncertainty) is lin-
ear or piecewise-linear. The linear programming technique,
together with the utility function and constraints, can be
adapted to meet the design objectives of other WSNs in
general. While the simulator can be utilized to simulate
different kinds of WSN scenarios (with the battery and so-
lar panel as the sensors’ energy-producing components) by
modifying the configuration topology file.

There are many possibilities for continued research in this
area, some related to extending the algorithm and others
related to actually deploying it in the real WSN. In the
former case, we need to work on the adaptive transmitting
algorithm (in the current implementation, the transmitting
rate and schedule are fixed) because this will enable the



FloodNET sensors to deliver readings as soon as possible
(whenever necessary) in the case of flooding. In the later,
we need to deploy our algorithm on the actual sensors and
ensure the data it needs to operate is provided in a timely
manner.
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