
AnnAnn and AnnAnn.Net : Tools for Teaching
Programming

Clare J Hooper, Leslie A Carr, Hugh C Davis, David E Millard, Su A White, and Gary B Wills
University of Southampton, Southampton, UK

Email: (lac, hcd, dem, saw, gbw} @ ecs.soton.ac.uk

Abstract— It is difficult for a student to learn about
programs and to understand the rational that went into the
development of the parts that led to the whole. Tools for
explaining this essentially dynamic process are limited and
typically static in nature, making it difficult for students to
understand how it was developed, or where to start. This
paper presents AnnAnn.Net, an animated code annotator
which makes it possible to present the incremental
development of code to large groups or for self study. The
tool is designed for ease of use by both lecturers and
students. The implementation and the ration for which are
described in detail. The design of the system is underpinned
by a sound pedagogical approach and these are discussed,
along with the educational benefits of this approach are
examined.

Index Terms— Learning to Program, literate programming,
cognitive apprenticeship, scaffolding, constructivist learning

I.

II.

INTRODUCTION
In helping students learn to program we often need to

show them programs. A constructivist view of learning
suggests that effective learning is enabled by the
“iterative refinement of understanding” [1]. Achieving
this refinement involves the study of programs produced
by experts [2]. In the ideal world we would have one-to-
one tutorials with each student [3], where we could walk
through the intricacies of designing a solution to a
problem, and the students would gain instant feedback on
their nascent understanding as it developed [4]. In
practice we must either take a didactic approach of
talking formally to large groups of students in lecture
halls, or we must ask them to conduct their studies alone.

Presenting programs to large groups is difficult. The
problem with working alone is that example program
study materials are usually static in nature so that it is
difficult for the student to see how the final program was
developed, and programs often contain so much
information that it is hard for a beginner to understand
where to start.

One solution to this problem is the use of animations.
First suggested by Baecker [16], animations can reflect
the temporal nature of code; show the sequence of
changing events; demonstrate alternative views; and
simplify the introduction of structure.

This paper starts by reviewing the existing
technologies used for presenting and annotating program

evolution, and then presents AnnAnn and AnnAnn.Net –
successive versions of an animated code annotator. It
concludes by examining the benefits of using this tool
from the point of view of both the teacher and the learner.

 LANGUAGE
Learning to program is a difficult task, requiring

engagement with a significant number of abstract
concepts. Understanding is tested and reinforced by the
embodiment and realization of these concepts in sample
programs, utilizing specific languages and programming
constructs through the solving of particular problems. In
teaching programming, a lecturer is frequently required to
explain the workings of a number of non-trivial programs
so that the students can build up an understanding of the
simultaneous threads of:

(a) exploiting the language syntax
(b) using language constructs situated in context
(c) designing a program that solves a real problem
(d) constructing a complete program

A presentation that shows a program and explain show
it works must concurrently deal with hundreds of lines of
code, many methods and possibly multiple classes
together with an explanation that addresses each of the
above issues as they emerge.

A. Photocopied Acetates
The most direct way to lecture about a program is to

photocopy the listing onto acetates. This is cheap to do
and requires minimal resources, but puts an enormous
burden on the lecturer for remembering the ‘script’ for
what needs explaining in what order. E.g. to show:

(i) the class outline including constructor
(ii) how main method creates an instance of this class
(iii) how events are delegated to the event handler

A typical explanation may involve the elaboration of
several dozen individual points.

B. PowerPoint Programming
Figure 1 shows an example from a typical Deitel and
Deitel Java How To Program lecturers’ slide set [5].The
restricted screen size means that only 24 (of the almost
200) lines can be displayed at a time. The blocks of
explanatory text are displayed one at a time in the
running slideshow; they variously explain variable

declarations, named constants, method invocations, flow
of control, and overall effects.

Figure 1 PowerPoint Slide
Deitel and Deitel: Java: How to Program [5]

Figure 2 Text Book Figure

Deitel and Deitel: Java: How to Program [5]

The sequential presentation of the program (through 8

slides) means that the explanation is constrained to be in
program order. The main difficulty for the lecturer is that
the explanatory texts must be placed at a particular
position on the screen real-estate. Any alteration to the
program, while developing or maintaining this resource,
invalidates the chunking of code, the position of the
explanations and of the arrows which tie them to the
program lines. It is this approach that renders the
PowerPoint solution infeasible for anything but small,
easily chunked codes samples.

C. Textbook Layout
A related approach is one commonly used in

textbooks, reproducing the listing as a figure (as in,
shown with numbered lines and highlighted regions).
Text in subsequent pages refers back to individual lines.
Increased freedom with this format comes from the
ability to give the explanation in any order in the main
text and to refer back to the code out-of-sequence. The
disadvantage with parallel texts is the reader’s need to
track backwards and forwards as reference is made to
different regions of code. By contrast, some textbooks
embed the code fragments into the text (as with Arnow
and Weiss, Java: An Object Oriented Approach, Addison

Wesley). This maintains the freedom to discuss the
program elements in the most appropriate order.

D. Literate Programming
Knuth developed Literate Programming [6] as a way of

mixing documentation and code. It allows the
programmer to develop very sophisticated explanations
which break up the standard program ordering and
interleave it with TeX or troff documentation commands
(the source program and document are derived by
programs called ‘tangle’ and ‘weave’). Although it has
been used in a teaching context [[7]], it is too complex for
introductory programming courses as it adds an extra
layer of complexity in the programming task.

III. ANNANN
AnnAnn is a simple documentation system that

embodies a constructive explanation paradigm. The
lecturer may work from a familiar starting point, and
show (and explain) a small change to take the code one
step closer to the final solution [8]. The AnnAnn
compiler takes an original file, and a list of changes to be
applied and produces a Web presentation in Dynamic
HTML. The rather terse syntax (similar to the UNIX
patch command) allowed the author to create blocks of
micro-explanation.

The AnnAnn compiler takes an original file and a list
of changes to be applied over time, and produces a Web
presentation in Dynamic HTML. An extract from an
AnnAnn presentation is shown in Figure 3.

Figure 3: The Original AnnAnn in use

The aim of an AnnAnn explanation is to start with a
familiar program (typically a Hello World style program,
applet or JFrame) and by applying successive small
changes (adding and initializing an array, fleshing out a
for loop, creating a user interface object, etc.) to turn it
into a different program for a different purpose. A Hello
World program can be turned into a character-by-
character file reading program in a dozen steps; three
more steps will enable line-by-line reading, four more

create a program which reads from pages on the Web,
and so on.

Each block in an AnnAnn file identifies a region of the
program that needs to be altered, the altered text and a
paragraph of explanation indicating to the students why
the change needed to occur and how it achieves its goals.

Figure 3 shows AnnAnn in use. A code fragment is on
display, and explanation of the next change to make is on
display, and the highlighted lines are about to be
replaced. The user can step backwards and forwards
through all the steps between the initial code and the final
code till they properly understand the reason for each
addition. AnnAnn takes a base program and a file of
annotated changes and produces a family of HTML files

1. A simple set of HTML files that are backwards
compatible with all browsers that support style
sheets.

2. A compact, frames-based Dynamic HTML for
modern browsers

3. A printable version that combines all the changes
for each step onto a single slide.

Since AnnAnn displays through standard web
browsers it is suitable for use in lectures are for students
to study alone.

IV. ANNANN.NET
AnnAnn proved an excellent tool and an intelligent

approach to the difficult task of educating students in
complex technical theory. However, its uptake was
somewhat mired by its complexities: it helped students
learn, but hindered lecturers preparing the learning
material.

It was for these reasons that a new version was
proposed, to keep the motivation of the original system,
but otherwise be a complete redesign. This project
became known as AnnAnn.Net, due to the network-
centric nature that the redevelopment took.

A. Simplification
In order to help the AnnAnn format reach its full

potential, the development of AnnAnn.Net took the
approach of capturing the strengths of the original
system, and incorporating them into a completely
different solution. The criticisms of the AnnAnn system
were drawn upon to shape the new platform, helping
motivate and shape its development.

The first important decision was to relieve the user of a
technical burden. Lecturers simply don’t have the time, or
necessarily the technical skill, to learn a new scripting
language to create slides. Tools such as PowerPoint are
successful due to the simplicity and speed by which
material can be constructed. Although an experienced
user can rapidly assemble AnnAnn animations, the
learning curve is very steep, and even at the summit the
cognitive load for creating an animation is considerable.
Therefore the scripting language was abstracted away
from the user, being replaced by a more intuitive and
higher level method of interaction and input.

A further lesson drawn from the evaluation of the
AnnAnn system was about the tool’s operation. The
AnnAnn system requires an original text file, a ‘changes’

script file and a compiler. This then generates a large
series of HTML documents (more than 100 for a simple
for loop), in the same directory as the AnnAnn compiler.
It also has to be run from the command line, with a
varying range of parameters and flags, which can
complicate matters. Given the wide, and expanding,
range of presentation formats AnnAnn needs to be
extensible, but it also has to be more streamlined
(generating fewer files) and easier to use.

B. Web orientated Structure
AnnAnn.Net was designed to alleviate criticisms of the

original AnnAnn system, by being designed with the user
as principle concern. In order to achieve this, the system
had to become widely accessible, easy to use, fast, and
customizable. The logical solution to accessibility was a
web based solution. To make it simple for the user, as
well as customizable, the functionality had to be server
side, and ideally modular.

Figure 4: Layered Design of AnnAnn.Net

Thus the AnnAnn.Net system is well defined via a web

service API, offering authoring, security and rendering of
animations, in addition to handling the document
differencing which was originally performed by the
changes script. As shown in Figure 4, AnnAnn.Net is
structured around the principle of extensible server side
components (especially the rendering engine and
exporting technology), and the customizable nature of the
clients, made possible due to limited functional
requirements.

The rendering engine currently supports XHTML and
RSS output formats. The system was designed such that it
can rapidly be extended with new rendering components.
Minimal development would be required to develop
renders for Flash, PowerPoint or any other popular or
future presentation format.

The change script was rewritten into a server-side
differencing algorithm, loosely based on the UNIX ‘diff’
algorithm; this moved traditionally client-based
functionality to the server, facilitating the concept of a
lightweight thin client structure

Figure 5 Example client, developed in PHP

C. A Client for Every Purpose
AnnAnn is designed not just for teaching

programming, but rather any subject matter that is well
illustrated when broken into small steps. For this reason
AnnAnn.Net is designed to fully support the lightweight
client, offering all the complicated processing as server
side functionality, such that client design may be fully
focused on HCI issues for the target group.

Figure 6 The first slide of the animation

Figure 7 Slide three: the inserted text is highlighted

Figure 8 The final slide of the animation

This means that, by using the AnnAnn.Net ‘webservice’
API, any developer can rapidly construct a front end
client for the system, with layout, format and platform
functionality tailored to the exact target group.

Figure 5 shows one such example, developed for the
original testing of the AnnAnn.Net system.

The client supports creation, editing and viewing of
animations. Figure 6Figure 8 show a simple animation in
the client that demonstrates how a link can be added to a
HTML page.

D. LOM and Reuse
A feature being built into AnnAnn.Net is the Learning

Object Metadata (LOM) standard [17]. This annotates
animations, allowing sharing in a global learning resource
pool, with accurate information on applicability,
difficulty and required skills as well as ownership,
authoring and usage.

 It is of note that LOs are particularly appropriate for
the teaching of IT [18], as the field is both dynamic and
young; as such, suitable textbooks are not always
available. Online, accessible materials compete well.

Mark-up will provide accurate guidelines as to
applicability, difficulty and required skills as well as
ownership, authoring and usage.

It is a goal to automate collection of this metadata: for
example, the author and creation date of a LO can be
elicited by examining the logged in user and system
timestamp. Fixed categories will be used, drawn from the
IEEE LOM Standard [17]: these include 'description'
tags, granting authors some flexibility in their mark-up. It
is essential to ensure that these packaged LOs are
optimized for reuse and repurposing [18]. A related task
is to build an AnnAnn.Net client which allows access to
and editing of this metadata.

By building such standards into AnnAnn, replication
of teaching materials can be reduced, whilst shared
knowledge will promote a higher quality of teaching
objects and reference materials. Eventually users may, in

addition to contributing material, search for and
customize animations (building sequences to create a
program of study).

AnnAnn.Net is a step towards a more open, yet still
secure, teaching domain designed to encourage utilization
of the best features of web based communication to allow
students to benefit from a global wealth of knowledge in
their instruction.

V. AnnAnn AND AnnAnn.NET COMPARISON
The AnnAnn.Net tool aimed to bring the advantages of

AnnAnn style animations to a much wider range of users,
through a simpler and more accessible design than the
original. To evaluate the tool, it was decided to compare
it with AnnAnn in a controlled experiment, where the
only independent variable was the tool being used.

Twenty students from various disciplines and year
groups were evenly split into two random groups. Each
user was given a set of ten animations to later develop,
each taking up to one A4 side of paper. After an initial
five minute familiarization for subjects to look through
the animations and ask questions, ten minutes were given
for each group to get acquainted with their first
development tool. Over twenty minutes, subjects worked
on completing as many animations as possible using the
first tool. Next, the order of the animations was changed,
and the groups swapped tools, with a second ten minute
familiarization session, and a second test. Finally, a
questionnaire was given out. The results are summarized
in Table 1.

Clearly, the AnnAnn.Net tool was found to be easier to
use, with usage compared to simple data entry, as
opposed to usage of AnnAnn, which was compared to
programming (as one participant remarked, ‘typing
speeding had a lot to do with how fast you could do the
tasks with AnnAnn.Net’). Only six AnnAnn animations
were completed over the two 20-minute sessions. Given
this, it is unsurprising that all users selected AnnAnn.Net
as the preferred system; its simpler nature appealed to the
whole domain of technical expertise.

Number

animations
created in…

AnnAnn AnnAnn.Net

<= 10 minutes 1 33
> 10 minutes 5 9

Table 1 Time taken to complete the tasks

We found that 25% of users expressed frustration with
the AnnAnn system. Our concern was that the
documentation for that system was so poor as to bias the
experiment towards AnnAnn.Net (one suggested the
AnnAnn tutorial was aimed at those with ‘prior
knowledge and experience in programming’). In terms of
a real world context, however, the data is valid, as the
two tutorials in question gave very similar instruction to
the relevant help available online for each tool. The fact
that so many users struggled with AnnAnn reflects the
low uptake, probably due to the technology being

difficult to use and poorly documented for people who
aren’t highly technical.

During the experiment the AnnAnn.Net system was
subject to ten users constantly developing at any one
time; no comments were made about speed in any
questionnaire, or indeed during the experiment at all: this
shows that the system scales effectively to this level,
paving the way for a full scalability test.

VI. THE EDUCATIONAL PERSPECTIVE
Taking an educational perspective on the pedagogic

appropriateness of various approaches to programming
we find some examples of approaches which map to
educational theory. However, in the most part Lemos’
1979 observation that “most of the literature consists of
subjective opinions on the most effective methods of
instruction for a given programming language” [9] still
holds true.

We have shown that AnnAnn provides teachers with a
way to explain the development of a program from some
known and previously understood situation to a more
complex program possibly using features a student may
not have previously understood.

The end goal of designing good programs has always
been that the student will learn how to decompose
problems into appropriate classes with appropriate
methods (or to make some other top down structured
design). But some thought shows that it is unreasonable
on teachers’ parts to assume that this is a skill that
students can be expected to pick up easily before they
have learned about programming “in the small” and the
whole paradigm of programming and state machines.
Failed attempts at teaching object first programming have
led some, for example Callear [10], to observe that this is
an inappropriate way to learn programming.

The authors are firm supporters of the “object first”
approach to learning programming, but after some years
of taking this approach have come to understand, as have
many others (e.g. [11],[12]) the enormous cognitive leaps
that we are asking our students to take. In the past when
students were presented with a Basic Interpreter and
experimented initially at the command line they slowly
built up a model of what the computer was doing,
whereas when we teach programming in Java, they have
an enormous number of new concepts to understand
within typically a few weeks. We have observed that
while students who have some previous understanding of
programming can cope with our approach, students who
have no previous experience of programming often
struggle [13].

Anecdotally we are familiar with the student who turns
up asking for help half way through the course saying
they have just realized that “they just don’t know where
to start – they don’t understand anything”. This is
typically at the point in the course when we ask the
students to complete their first non-trivial assignment,
and on investigation the problem turns out to be that
while they have succeeded in getting a tenuous grasp of
the concepts of class and methods, they do not yet have

enough practice or confidence to design a program on
their own.

From an educational point of view the thing to do
when you ask students to make large cognitive leaps is to
provide scaffolding– artifacts that hide some of the
complexities of a problem so that the students may keep
their eye on the big picture and achieve the major goal of
the exercise [14]. Ideally such artifacts should be
“fadeable”, so that they may be incrementally removed as
the student learns to work without the scaffolding.

A simple example of a scaffolding tool that we are
familiar with in program development is the input line
completion and formatting feature in many IDEs which,
for example, give us hints as to the number and purpose
of the parameters to a method as we are typing.

AnnAnn is a scaffolding tool in that it provides a way
to explain to students the design process by dynamically
presenting each part of the solution as it is needed. This
feature may be used by a teacher in-class to demonstrate
to students how a program is designed, or how a
particular programming principle may be applied, or it
may be used by students wishing to study the problem in
their own time (and possibly at a distance).

Another education perspective is to view AnnAnn as a
tool to aid cognitive apprenticeship [15]. The structure of
the tool is such that it easily supports the skilled
practitioner demonstrating to the novice the methods they
choose to use when building a program. As such it sits
between the place where the ‘master’ builds the program
in front of the novice using totally authentic tools; and
where the novice is provided with an overly complex
completed product. It may also be that the use of the tool
directs the master into making explicit ‘tacit knowledge’
which they routinely draw upon to build a program.

VII. VIII. COMPARISON: ANNANN.NET AND ALTERNATIVES
University professors are continuing seeking ways to

make teaching programming easier; this is usually
involving a graphical approach [26]. It is commonly
acknowledged that it is difficult to learn how to program
[25] [29]: an approach is required that is flexible to the
students needs. AnnAnn.Net, like AnnAnn embodies a
constructivist explanation paradigm. Both are built as
scaffolding tools: artifacts to hide some of the problem
complexities, so that students may be aware of the big
picture and achieve the major goal of the exercise [24].
This is done by allowing lecturers to present each section
of the solution only as it is needed. Chalk observed that
scaffolding would appear to be necessary when teaching
programming, due to the complexity of the task [21].

There are similar tools used to teach programming.
One example is JEWL [23]: however, this tool is used to
help students actively build code (by providing a GUI
library), rather than to help students follow a particular
explanation of a concept. Codewitz [20]] is another
example of software which allows the sharing of learning
objects. It differs from AnnAnn.Net in that it is used to
create worksheets and exercises, more than to create
explanatory animations.

By contrast, the work of Culwin, Campbell and
Adeboye [23] developed a tool which teaches Java
programming through 'scaffolding'. However, as the
student cannot work without the tool, it may be
considered a 'skeleton' and not a 'scaffold', as
AnnAnn.Net is. Additionally, Culwin's tool is limited to
teaching the Java language only. There's no agreement on
how to best teach any specific coding language [[30]],
and AnnAnn.Net leaves the specifics of language and
program type to the lecturer.

OOP-Anim [27] is a system designed to support the
teaching of basic object oriented (OO) programming
concepts; again, an e-learning tool, but different from
AnnAnn.Net in two ways. Firstly, it is specific to OO
programming, and secondly, it is not a lecture-based tool,
but rather a tool for students to use directly.

As shown by Price, Baecker and Small’s taxonomy
[28], there exist many approaches to the problem of
software visualization, and many problems remain,
including scope and scalability: AnnAnn.Net has not
been tested with large (hundreds-of-lines) programs,
because it's intended usage as a lecturer's tool: a 45
minute lecture cannot cover a program of such
magnitude. Future uses of AnnAnn.Net may be larger
scale, but for the immediate future, efforts were best
expended elsewhere.

AnnAnn.Net makes use of XML and Web Services.
The power and ease of use of XML have been noted by
Coyle, as has the importance of Web Services [22]: use of
XML allows the Web Services to be utilized, and also
provides future compatibility with semantic applications.
Web services provide services to software, and thus
AnnAnn.Net can be used by anyone with an internet
connection.

CONCLUDING REMARKS
We have described the AnnAnn tools, which assist

students in understanding programs, and we have
described their use. We have explained why we
developed the tools, and justified the educational
frameworks within which we believe they sit.

In practice we have found two distinct modes in which
we use these tools. The first is to explain the application
of new programming principles, constructs and patterns
as the focus of a teaching event. We have also found
them to be useful as tools to document and explain some
complicated template code prior to students being
required to make alterations and additions as the basis of
some coursework, saving contact time. A visit to the
AnnAnn website [8] will provide the reader with
numerous examples of its use, and the first author can
provide the tools to others on request.

ACKNOWLEDGMENTS
Our thanks go to Ben Dowling, Timothy Griffith,

Andrew Lewis and Gavin Willingham for researching,
designing, developing and testing the AnnAnn.Net
platform, upon which one of the latter sections of this
document is based.

REFERENCES
[1] J.T. Mayes, “Learning Technology and Groundhog Day”,

In W. Strang, V. Simpson, & D. Slater (Eds) Hypermedia
at work: Practice and Theory in Higher Education,
Canterbury, University of Kent Press. 1995.

[2] S. Hadjerrouit, “A constructivist approach to object
oriented programming”, In The Proceedings of the 4th
annual SIGCSE/SIGCUE ITiCSE conference on
Innovation and technology in computer science education
pp171—174. ACM Press 1999.

[3] B.S. Bloom, "The 2 sigma problem: The search for
methods of group instruction as effective as one-to-one
tutoring." Educational Researcher 13: 3-16. 1984.

[4] M. Ben-Ari. “Constructivism in computer science
education”. In The Proceedings of the twenty-ninth
SIGCSE technical symposium on Computer science
education, Atlanta, Georgia, pp 257-261, ACM Press,
1998.

[5] H.M. Deitel and P.J. Deitel, Java How to Program.
Prentice Hall. 1997.

[6] D. E. Knuth, Literate Programming (CSLI Lecture Notes,
no. 27.) Stanford, California: Center for the Study of
Language and Information, 1992, xvi+368pp.ISBN 0-
93707380-6.

[7] S. Shum and C. Cook, “Using literate programming to
teach good programming practices”, ACM SIGCSE
Bulletin, v.26 n.1, pp.66-70, March 1994.

[8] AnnAnn Web Site http://www.annann.org/ last accessed
May 2007.

[9] R.S. Lemos, “Teaching programming languages: A
survey of approaches”, ACM SIGCSE Bulletin,
Proceedings of the tenth SIGCSE technical symposium on
Computer science education, Volume 11 Issue 1, Jan
1979.

[10] D. Callear, “Teaching Programming: Some Lessons from
Prolog”, In The Proceedings of the LTSN-ICS 1st Annual
Conference, Heriot Watt, 2000.

[11] H. Zhu & M. Zhou, “Methodology First and Language
Second: A Way to Teach Object Oriented Programming”,
ACM OOPSLA ’03, Anaheim Ca. 2003.

[12] R. Duke, E. Salzman, J. Burmeister, J. Poon, L. Murray,
“Teaching programming to beginners – choosing the
language is just the first step”, Proceedings of the
Australasian conference on Computing Education,
December (2000).

[13] H.C. Davis, L.A. Carr, E.C. Cooke, & S.A. White,
“Managing Diversity: Experiences Teaching
Programming Principles”, in The proceedings of the 2nd
LTSN-ICS Annual Conference, London. 28 - 30 August
2001.

[14] Hogan and Pressley, Scaffolding student learning
instructional approaches and issues, Cambridge,
Brookline Books. 1997.

[15] A. Collins, J. S. Brown and S. Newman, “Cognitive
Apprenticeship: Teaching the Craft of Reading, Writing
and Mathematics. Knowing, Learning and Instruction:
Essays in Honor of Robert Glaser.” L. B. Resnick.
Hillsdale, NJ, Erlbaum.

[16] R. Baecker, “Two systems which produce animated
representations of the execution of computer programs”,
ACM SIGCSE Bulletin, 7 (1975), pp 158 - 167.

[17] IEEE Learning Technology Standards Committee,
Working Group 12 (Chair: Hodgins W.), Learning Object
Metadata, http://ltsc.ieee.org/wg12/

[18] K. Abernethy, K. Treu, G. Piegari, and H. Reichgelt.
2005. “A learning object repository in support of
introductory IT courses”. In Proceedings of the 6th
Conference on Information Technology Education
(Newark, NJ, USA, October 20 - 22, 2005). SIGITE '05.
ACM Press, New York, NY, 223-227.

[19] T. Boyle (2002). “Design principles for authoring
dynamic, reusable learning objects”. In A. Williamson, C.
Gunn, A. Young and T. Clear (Eds), Winds of Change in
the Sea of Learning: Proceedings of the 19th Annual
Conference of the Australasian Society for Computers in
Learning in Tertiary Education, pp57-64. Auckland, New
Zealand: UNITEC Institute of Technology.

[20] Kujansuu E., “Codewitz – An International Project for
Better Programming Skills”, Learning Objects for
Computing workshop, London Metropolitan University,
UK, Learning Technology Research Institute (2004)

[21] Chalk P., “Community of Practice: learning the craft of
programming”, in Proceedings of the 2nd LTSN-ICS one
day conference on the Teaching of Programming,
Wolverhampton, UK (2002)

[22] Coyle F., “Breathing Life into Legacy”, IT Professional,
Volume 3 Issue 5 (2001) pp 17 - 24

[23] Culwin F., Campbell P., Adeboye K., “A Bridging,
Scaffolding or Skeletal Initial OOSD Learning Object”,
LTSN-ICS 5th Annual Conference, Ulster, UK (2004)

[24] Hogan, P., Scaffolding student learning instructional
approaches and issues, Cambridge Brookline Books
(1997)

[25] Jenkins, T. “On the Difficulty of Learning to Program”, in
Proceedings of 3rd Annual Conference of the LTSN-ICS,
Loughborough, UK (2002)

[26] Jones, R., Boyle, T. and Pickard, P., “Object World:
Helping Novice Programmers to Succeed Through a
Graphical Object-First Approach”, in Proceedings for the
4th Annual Conference of the LTSN-ICS, Galway, Ireland
(2003)

[27] Esteves M., Mendes A., “OOP-Anim, a System to
Support Learning of Basic Object Oriented Programming
Concepts”, in Proceedings of the 4th International
Conference Conference on Computer Systems and
Technologies: e-Learning, Rousse, Bulgaria (2003) pp
573 - 579.

[28] Price B., Baecker R., Small I., “A Principled Taxonomy
of Software Visualization”, Journal of Visual Languages
and Computing 4 (1993) pp 211 - 266

[29] Sayers H., Nicell M., Hagan S., “Teaching Java
Programming: Determining the Needs of First Year
Students”, in Proceedings for the 4th Annual Conference
of the LTSN-ICS, Galway, Ireland (2003)

[30] Lemos R., “Teaching programming languages: A survey
of approaches”, ACM SIGCSE Bulletin, Proceedings of
the 10th SIGCSE technical symposium on Computer
Science Education, Volume 11 Issue 1 (Jan. 1979)

http://ltsc.ieee.org/wg12/

Clare Hooper (UK, 1983) completed an MEng Computer
Science at the University of Southampton, UK, in 2006. She is
now pursuing an EngD, also at the University of Southampton,
looking at the pervasive technologies for learning and
accessibility.

Previous work includes roles as an Extreme Blue Intern and
as a Research Assistant. Publications cover undergraduate
work, including her third year dissertation (on narrative pace in
hyperfiction) and fourth year work on AnnAnn.Net, and
computer mediated augmentation of workplace ‘break’ spaces.

Ms. Hooper is a student member of the BCS. Details of her
publications may be found at http://eprints.ecs.soton.ac.uk/

Leslie A Carr is a Senior Lecturer in the Intelligence,

Agents, Multimedia at the University of Southampton. Since the
1980's he has experimented with multimedia information
systems, novel ways of constructing hypertexts, digital libraries
and knowledge management systems.

David E Millard (UK, 1976) obtained a Bachelor of Science

BSc (Hons) in Computer Science in 1997, and a PhD in
Contextual Information Systems in 2000, both from the School
of Electronics and Computer Science at the University of
Southampton. He is now a Lecturer in Computer Science within
the Learning Societies Lab at the University. His research
interests include adaptive, contextual and narrative information
systems, pervasive and mobile learning, social computing and
the human knowledge interface.

A full listing of his publications can be obtained from
http://eprints.ecs.soton.ac.uk/view/person/1615.html

Hugh C Davis is Director of e-Learning and Head of the

Learning Societies Lab at the University of Southampton. His

research interests lie in the ways in which technology can
improve the learning experience, particularly in a research-led
learning and teaching environment.

Su A White is Learning and Teaching Co-ordinator for The

Faculty of Engineering and Applied Science at the University of
Southampton. She is a graduate of the London School of
Economics, a qualified journalist, lecturer and computer
scientist. Her research interests concern the ways of using
technologies in learning and teaching and also in the inter-
relationship between organisational structures and change

Gary B Wills (UK, 1962) obtained a Bachelor of

Engineering BEng (Hons) from the University of Southampton,
UK in 1995 and a PhD also from Southampton in 2000 for his
research into the Design and Evaluation of Industrial
Hypermedia systems.

He is a Lecturer in Computer Science at the University of
Southampton. His main research interests are Personal
Information Environments (PIEs) and their application
(usability) in industry, medicine and education. PIE systems are
underpinned by distributed adaptive hypermedia, and advanced
knowledge technologies. Recent projects include a Virtual
Research Environments for Orthopaedics using a distributed
architecture to allow collaboration, discussion and
dissemination of results for surgeons conducting clinical trials
and who are not co-located. Also in the industrial domain, a
project allowing engineers to view the same federate knowledge
from different perspectives. This uses advance knowledge
technologies and ontologies to extract the knowledge and
appropriately present this to the users.

Dr Wills is a Chartered Engineer and a member of the IET. A
full listing of his publication can be obtained from
http://eprints.ecs.soton.ac.uk/

	I. Introduction
	II. Language
	A. Photocopied Acetates
	B. PowerPoint Programming
	C. Textbook Layout
	D. Literate Programming

	III. AnnAnn
	IV. AnnAnn.Net
	A. Simplification
	B. Web orientated Structure
	C. A Client for Every Purpose
	D. LOM and Reuse

	V. AnnAnn AND AnnAnn.Net COMPARISON
	VI. The Educational Perspective
	VII. Comparison: AnnAnn.Net and Alternatives
	VIII. Concluding Remarks
	ACKNOWLEDGMENTS
	REFERENCES

