
Developing a Cluster Based Parallel Ray Tracer

Chris Lovell

May 16, 2007

Abstract

Parallel ray tracing is an important concept in computer graphics, as it allows for high quality
ray traced images to be produced at a faster rate than is possible in single processor ray tracing.
Presented in this paper is the conversion of a previously created single processor ray tracer to a
parallel ray tracer that is capable of running on a cluster of computers. This paper presents the
technical aspects of designing a parallel ray tracer by looking at the theory of transforming ray
tracing into a parallel process and by comparing the Condor and Linux based cluster computing
technologies. This paper then highlights how the methods available for turning ray tracing into a
parallel process can be dependent on the cluster computing technology going to be used.

Keywords: Parallel Ray Tracing, Cluster computing

1 Introduction

Parallel ray tracing is important in computer
graphics because it is the only way to signi�c-
antly speed up the rendering time of ray tracing.
Parallel ray tracing generally takes place using
cluster computing, where the power and number
of processors being used increase the speed of the
ray tracing. The key area of research in paral-
lel ray tracing is to develop parallel ray tracing
algorithms that run more e�ciently as a parallel
process, in order to speed up the o�ine rendering
time of ray tracing, but also to try and make real
time ray tracing possible.

This paper looks at the ray tracing problem in
Section 2 along with its conversion to a parallel
process and the reasons why ray tracing is still
an important research issue. The possible tech-
niques for parallel ray tracing are investigated fur-
ther in Section 3. The paper ends with a discus-
sion about the practical conversion of a previously

created single processor ray tracer [12], to a par-
allel ray tracer in Section 4. This �nal discussion
also compares two di�erent methods for distrib-
uted computing, the Condor system and Linux
based cluster computing.

Overall, this paper describes several methods for
parallel ray tracing as well as investigating the
practical considerations. This paper looks at why
ray tracing needs to become a parallel process in
order for it to be more usable, how cluster com-
puting aids parallel ray tracing and the problems
in using cluster computing.

2 Ray Tracing

Ray tracing is a computationally expensive ren-
dering algorithm that produces high quality, phys-
ically accurate images. First described in 1968 [1]
through the idea of ray casting, where an image is
produced by calculating the rays of light passing
through the image into the scene to see if they

1

mailto:cjl203@ecs.soton.ac.uk


Developing a Cluster Based Parallel Ray Tracer 2

hit an object or not, ray tracing was developed
further to allow full lighting calculations to be de-
termined [29]. Ray tracing is an advancement over
other commonly used rendering techniques such as
rasterisation, as ray tracing accurately produces
physical e�ects such as shadowing and reections.
The disadvantage of ray tracing is the amount of
time that it takes to render an image.

Ray tracing works by tracing \rays of light from
the eye back through the image plane into the
scene" [15]. This means that ray traced images are
built in a similar way to how the human eye will
build images, where the retina is where the �nal
image is built and the lens is equivalent to the im-
age plane. To achieve this in ray tracing, a camera
position is de�ned for each image and the view-
ing plane is positioned a short distance away from
this camera along the viewing direction, which is
where each ray passes. The rays that go directly
from the camera position into the scene are called
the primary rays. When a primary ray hits an
object, secondary rays will be generated to allow
lighting and reections to be calculated.

In its implementation, a ray tracer is generally
given a scene as input, that contains many ob-
jects and lights. The objects will have a physical
shape and position, described in some manner for
example by a mathematical equation, or by a col-
lection of triangles. The objects will also have
some material and possibly a texture, which will
determine the basic colour of the object. Lights
also have a position within the scene, along with
properties such as colour and brightness.

To perform the ray tracing, a single primary ray
will be generated for each pixel in the output im-
age. The position of the camera determines where
each ray will start from and the camera's look at
vector is used to calculate the rays direction vec-
tor. This primary ray is then cast into the scene to
try and �nd any objects that may intersect the ray,
where the closest of any intersecting object will be
selected as the object seen from that pixel. The
next stage is to generate secondary rays to calcu-
late lighting, and reections if the object is reect-
ive. Any lighting rays generated start at the inter-
section point between the object and the primary
ray and have a direction vector pointing to a light
source. To ensure accurate lighting, there will be

a secondary ray generated for every light source in
the scene. The Phong illumination model [16] is
used to determine how the objects are lit in terms
of ambient, di�use and specular lighting compon-
ents of each light source. To generate shadows in
the scene, the lighting rays are cast into the scene
to see if there is a clear path from the object to
the light source. If a lighting ray has a clear path
from the object to the light source then there is
no shadow cast upon the object. If however the
path is not clear, then the obstructing object must
be casting a shadow over the point on the object
being tested and so the lighting calculation will
only use the ambient lighting component from the
light being tested. The reection rays are calcu-
lated by reecting the incoming ray against the
intersection position to determine a new direction
vector. Reective rays will return their calculated
colour value back to the parent ray that generated
them. The values returned by reective rays are
combined with the parent rays colour to determ-
ine the �nal colour of the parent ray.

2.1 Parallel Ray Tracing

Parallel ray tracing is the process of rendering an
image using multiple ray tracers at the same time,
with each processor rendering one part of the im-
age. Parallel ray tracing most commonly takes
place across a distributed computer network, how-
ever some research into real time ray tracing relies
less on distributed computer networks. Parallel
ray tracing should not be confused with the term
distributed ray tracing, which is a method of ray
tracing where by each pixel is the average of sev-
eral rays running close to each other and is used to
create e�ects such as soft shadowing, blurring and
depth of �eld [6]. To further confuse the naming
conventions, the term distributed interactive ray
tracing is used to describe ray tracing across a
distributed computing system, in real time [27, 7].

Parallel ray tracing has been a key research area
in computer graphics in order to try and speed up
the process of producing ray traced images. Ini-
tially this was to allow o�ine rendering to take
place quicker, but now real time ray tracing has
become an area of increased research interest. The
focus of research in parallel ray tracing is now
moving towards real time ray tracing, however



Developing a Cluster Based Parallel Ray Tracer 3

due to the speed of current hardware not being
fast enough, there is still an interest in optimising
o�ine ray tracing.

2.2 O�ine Rendering

O�ine rendering is the process of generating im-
ages that are not required to be shown imme-
diately and is mostly used in video production,
where many millions of images are produced to
form a �nal �lm. An example of such a system is
Pixar's RenderMan [17], where the scene �les can
be distributed to many machines, called a render
farm, and the scene is then built up by using the
multiple machines on the render farm [18]. The
work carried out and described in Section 4 con-
centrates on o�ine ray tracing, sped up by using
multiple distributed processors.

2.3 Real Time Rendering

Real time rendering requires images to be pro-
duced and then displayed at a rate such that there
is no noticeable lag in the frame rate. Frame rates
around 25 frames per second (FPS) can be used
to achieve a real time video frame rate, however
higher frame rates in the region of 50-60 FPS are
normally preferred in computer animation to al-
low for more uid movement.

The problem in ray tracing is to achieve such a
high frame rate. On a standalone machine run-
ning a ray tracer it is very di�cult to achieve
frame rates above 10 FPS [28, 2], even for a very
basic scene. The problem is of course scalability,
and to achieve even standard de�nition television
quality images of 640x480 pixels, requires 307200
separate primary rays to be calculated and then
any additional secondary rays, where lighting rays
alone will at least double this value.

2.3.1 Alternatives to Cluster Computing

Real time ray tracing has become of interest in the
last few years as the power of processors has in-
creased and multiple processor computing devices

are becoming more readily available. One key de-
velopment in this area is the Cell Broadband En-
gine Architecture [11] and research is being car-
ried out into how the Cell processor can be used
to speed up ray tracing [2]. The Cell Broadband
Engine architecture is a combination of several
processors, where there is a central processor that
controls eight other sub processors and determines
the jobs that each sub processor will carry out [10].
A processor using an architecture similar to that
of the Cell, will be in a better position to carry out
real time ray tracing in a commercial market than
more traditional cluster computing methods, be-
cause the Cell architecture allows for parallel pro-
cessing to take place in a single, cheaper machine.
However in the work by Benthin et al. [2] we see
that the current Cell processor is not in viable a
position to be used in real time ray tracing and
that at least double the computing power is still
required before it will begin to be.

Another alternative to using cluster computing in
real time ray tracing, is through the development
of dedicated ray tracing hardware [23, 24, 30].
The dedicated ray tracing hardware approach is
to produce hardware that is similar to the ded-
icated graphics cards that the majority of com-
puters use for speeding up vector graphics, but
instead is optimised for the calculations required
in ray tracing. The argument made by Woop et
al. [30] for using dedicated ray tracing hardware
is that having a cluster of processors is expensive
and that ray tracing calculations do not require
the full complexity of calculations possible on a
CPU. Therefore, Woop et al. argue that devel-
oping and using smaller, cheaper processors that
meet the requirements of ray tracing is a more
promising approach than using computer clusters,
in trying to develop real time ray tracing systems
for widespread use.

A key use for real time ray tracing would be in the
development of interactive simulations and inter-
active entertainment systems. Recently there has
been an interest and success in producing interact-
ive entertainment systems that use ray tracing as
the rendering technique [22, 8]. The work carried
out by Schmittler et al. [22] found that a cluster
of computers with a combined processor speed of
30 GHz was required to achieve a resolution of
640x480 pixels running at a speed of 5-20 FPS.



Developing a Cluster Based Parallel Ray Tracer 4

Although there are areas of research into �nding
alternative methods to cluster computing for use
in parallel ray tracing, the current hardware avail-
able is not able to provide a real alternative. Re-
search into turning ray tracing into a parallel pro-
cess is largely una�ected by the intended target
hardware architecture, due to computer clusters
and microprocessors like the Cell with multiple
cores, having a very similar basic architecture.

3 Techniques

In parallel ray tracing there are two principal
methods of implementation as described by Re-
inhard [19]. Firstly the demand driven approach,
where the rendering task is split up so that each
processor is given the full scene and a set of rays to
render. Secondly a data parallel approach, where
the rendering task is split so that each processor
handles a subset of the scene and only traces the
rays that pass through that processors part of the
scene. Both of these methods have bene�ts and
drawbacks, which leads to research trying to �nd
a hybrid of these methods.

3.1 Demand Driven Ray Tracing

The most obvious way of applying a ray tracer to
a distributed computer network, is to split the re-
quired image up into smaller sections and to run
each section as a separate job on di�erent pro-
cessors [14, 9, 19]. The scene is duplicated on each
processor, where each processor is assigned a set
of pixels to be calculated and the results returned.
This method of parallel ray tracing is called the
demand driven approach.

One way of performing demand driven ray tra-
cing is to create a number of jobs that each con-
tain a di�erent subset of pixels to be rendered,
each processor then takes a job and calculates the
required pixel values independently. Processors
then return the results of the pixels that have been
calculated to the required location and then take
another job if there are any remaining jobs, thus
ensuring that all processors are kept busy. While
this approach does manage to solve the problem
of turning ray tracing into a parallel process, it is

essentially just a brute force approach of adding
more computers to standard ray tracing.

The bene�ts of using the demand driven approach
are the ease of: implementation of the ray tra-
cing algorithm, the distribution of jobs, and con-
trolling the parallel computation. Using the de-
mand driven approach does not require the gen-
eral ray tracing algorithm to change, as each pro-
cessor is just running a set of rays through a scene
�le, acting as it would if it were a single processor
system. The distribution of jobs is also simple,
due to splitting the problem up into smaller, equal
sized problems, usually based on the number of
rays each processor will trace. Finally the control
of the parallel computation is kept simple due to
all rays being traced independently of each other
and so there being no dependencies between jobs.

The main draw back to using the demand driven
approach is the problem that all processors must
have su�cient memory to be able to store all of
the scene �le. In cases where the scene is very
large this may not be possible and so the use of
the demand driven approach may be limited.

3.2 Data Parallel Ray Tracing

Data parallel ray tracing is an alternative ap-
proach, which splits the scene up so that each pro-
cessor in the cluster owns an area of the scene and
will process the rays that go through that part of
the scene [20, 19, 4, 25, 7].

Before the rendering takes place, the scene is split
up into several sections, with each section having a
set of neighbouring objects. The sections are then
distributed to the processors in the cluster to be
used, so that each processor owns one section of
the scene. When the ray tracing takes place, the
processors �rst determine whether a ray passes
through its section of the scene. If the ray passes
through the section of the scene, the ray is traced
to see if it collides with any of the objects in the
scene and if a collision occurs, secondary rays are
calculated as appropriate and the value of the ray
is returned to the master controller. If the ray
does not pass through the section of the scene
owned by the processor, the ray is not traced.



Developing a Cluster Based Parallel Ray Tracer 5

The way that a scene is divided up will determine
how e�ciently a data parallel ray tracer will run.
A scene that is split up with the amount of objects
stored in each section being highly imbalanced,
will most likely lead to some processors having to
trace far more rays than other processors. The
hardest problem to overcome is trying to determ-
ine the number of rays, especially secondary rays,
that will pass through a section of the scene in
order to determine how many calculations must
be performed for each section and so to estimate
the sections that will require the most processing.
One approach for splitting a scene into sections
is to divide the scene using a cost function. Rein-
hard [19] describes a cost criteria presented by Sal-
mon and Goldsmith [21], which states that each
section should make up roughly the same com-
putational load, each section should have similar
memory requirements, and that the communica-
tion cost of having to pass rays through multiple
processors should be minimised. Ful�lling this re-
quirement is a complex problem, which still does
not fully address the problem of load imbalance
and is the drawback of using the data parallel
method of ray tracing.

3.3 Hybrid Methods

Hybrid methods for achieving parallel ray tra-
cing have been developed to try and avoid the
problems of the demand driven and data paral-
lel techniques. The demand driven technique has
the problem that the processors act independently
of each other and so this leads to a more brute
force approach to ray tracing, whilst data parallel
techniques have problems with load imbalance of
jobs, where one section of the scene may have far
more rays passing through it than other sections
of the scene. The ideal outcome for the hybrid
approach is to have a data parallel system, so as
to use the idea of object coherence, but to ensure
all processors are kept equally busy at all times,
as achieved in the demand driven approach.

To develop hybrid methods, �rstly improvements
are needed to be made to the demand driven ap-
proach of ray tracing, in order to be able to join
it to data parallel techniques. Methods have been
developed for making demand driven ray tracing

more e�cient and a common approach is to group
and trace coherent rays together to reduce the
number of calculations required [20]. In certain
circumstances, the rays used in a ray tracer are
inherently coherent, meaning that groups of rays
will most likely pass through the same objects and
have the same intersections. The �rst set of rays
that are coherent are the primary rays that are
projected from the camera and are easy to group.
Further coherent rays can be the set of rays com-
ing out of a light source, but these rays are more
complex to calculate as ray tracing traces rays into
light sources and not out of light sources.

In Reinhard and Jansen's work [20], the primary
rays are bundled into groups and then enclosed
into a bounding cone. The cone for each bundle
of rays is then used to �nd intersecting objects
in the scene. The rays in the bundle are then
individually traced and compared to only the ob-
jects that the cone intersected. The use of an in-
tersecting cone in a complex scene will signi�c-
antly improve the tracing time as the number of
intersection tests required for each ray will be re-
duced to only the objects the ray is likely to pass
through. This method of ray tracing lends itself
to demand driven ray tracing, as the scene is ini-
tially preprocessed to produce the bundles of rays
and their intersecting objects using the cone inter-
section. These bundles of rays can then be passed
to the individual processors for them to render in
a demand driven manner.

The coherent rays approach is able to be added to
the data parallel idea of splitting the scene across
several processors, as the coherent rays approach
described above only works for tracing bundled
rays. Once the bundled rays have been traced
and found to intersect an object, secondary rays
will be produced that will also need to be traced.
However, the processor handling the tracing of the
bundled rays will mostly likely be unable to fully
trace the secondary rays, due to the processor only
having a subset of the scene �le. Reinhard and
Jansen [20] use the coherent ray method to �rst
trace the primary rays and then pass the inter-
section points of each of the rays to the processor
that owns the object the rays intersect. The sec-
ondary rays are then calculated by the intersect-
ing objects owner and are traced using the data



Developing a Cluster Based Parallel Ray Tracer 6

parallel technique. By using this approach, Rein-
hard and Jansen showed that the hybrid approach
performs better than the data parallel approach.
In terms of achieving the goal of keeping all pro-
cessors equally busy, Reinhard and Jansen state
that this hybrid approach works well while there
are still coherent rays that can be processed using
the updated demand driven approach. However,
once the demand driven jobs are complete, the
system reverts back to an entirely data parallel
system and so has the same load imbalance prob-
lems found in a purely data parallel system.

4 Implementation

To experiment with the techniques researched, a
ten second video sequence to be used to pub-
licise the Open Middleware Infrastructure Insti-
tute (OMII) [13] was produced using a distributed
computing version of the ray tracer developed pre-
viously [12].

The initial stage was to convert the previously de-
veloped standalone ray tracer into a form that can
be used across a distributed system. To do this
the ray tracer was developed using the demand
driven ray tracer technique talked about in Sec-
tion 3.1. The demand driven ray tracer technique
was chosen as the scene �les being produced were
known to be small enough so that they could be
run on each processor. This meant that the ray
tracer now had to accept as input, the set of pixels
it should calculate, along with the scene inform-
ation and had to output the RGB values of the
pixels generated. A separate application would
then collect all of the RGB values from all of the
processors rendering the same image and convert
them into a PNG image �le.

4.1 Distributed Technologies

Two ways of handling the distributed comput-
ing were looked at, �rstly the Windows version
of the Condor [5] distributed computing manage-
ment system and secondly looking at having mul-
tiple Linux machines running in parallel. The
modi�ed ray tracer works across both platforms,
the implementations are discussed below.

4.1.1 Condor

Condor is a High-Throughput Computing (HTC)
environment and is designed to run across a pool
of networked computers that allow themselves to
run submitted jobs when they have been idle for
an amount of time [26]. To use a Condor system,
jobs are submitted that contain the executable re-
quired to run, the input data and the output data
requirements, along with the number of tasks to
split the job into. The Condor server then holds
this data and distributes it to the computers in the
pool that are currently open to running Condor
jobs.

In implementing the parallel ray tracer, the input
data was the entire scene �le followed by the set
of pixels to be rendered by each job. The output
from each job was a list containing all of the pixel
locations and the RGB values calculated for each
pixel.

The Condor system has some drawbacks, the main
one being that the computers in the pool are gen-
erally workstations that could be used at any time,
which can cause a job to be suspended or in some
cases terminated with the results lost. This means
that the jobs running on a Condor system have to
be designed to be fail safe and one job must not
rely on other jobs to complete its execution. All
jobs should be small enough so that any job that
is aborted half way through is not overly costly
in terms of any data lost and the processing time
already carried out. In ray tracing this is not a
problem if the demand driven approach is used, as
the jobs are entirely independent of one another
as well as being processor independent. Using a
data parallel approach would not be viable in a
Condor system as there would be no guarantees
that the processor for an area of the scene would
be currently running. Although the Condor sys-
tem allows for idle computers to be utilised, that
very technique limits the ways that a parallel ray
tracer can operate on the cluster.

Another draw back is that the jobs running on
a Condor system will only use a portion of the
available processor. When tested using the ray
tracer, Condor was found to use around one third



Developing a Cluster Based Parallel Ray Tracer 7

of the available processor of the machine running a
job on. This means that the jobs being executed
will not be running as fast as they could be, so
again meaning that only o�ine parallel ray tra-
cing, where a quick response rate is not required
would be suited to a Condor cluster.

A further signi�cant draw back of the Condor sys-
tem is that a required time frame for execution
can not be set when submitting a job and so jobs
will complete when they are able to be completed.
Again this means that real time rendering would
not be possible, but also has a disadvantage for
o�ine rendering, as only estimates of rendering
times could be calculated and not precise times.

Overall, the Condor system would work well only
for o�ine rendering as the reliability of the cluster
is not su�cient for real time rendering. The speed
at which the Condor client runs the ray tracer
is also an issue and so even for o�ine rendering
the number cluster of computers would have to be
large in order to achieve a signi�cant performance
increase over a single machine running the entire
process.

4.1.2 Linux Based Cluster

Linux based clusters are the most common form
of clusters, with a well known Linux based cluster
design being the Beowulf cluster [3]. The ad-
vantage of using a Linux based cluster is that a
better level of control over how the jobs run can
be achieved and a High-Performance Computing
(HPC) environment can be produced. The pro-
cess of using a Linux based cluster is �rstly to
have a compiled application that is able to accept
arguments that will dictate the input the applica-
tion receives. The application, along with the re-
quired inputs can then be transferred to a central
�le store. The cluster of computers is then told to
execute the application with a speci�ed set of in-
puts. In implementing the parallel ray tracer, the
jobs were again split up into sets of pixels that
each processor would calculate.

The main advantage of using a Linux based cluster
over the Condor system, is that the processors in-
volved will be dedicated to the job being run. In
such cluster computing, a time frame along with

a number of processors can be booked and pro-
cessing will take place and during this time on the
submitted job only.

A Linux cluster would be able to perform both o�-
line and real time ray tracing due to the hardware
being more dedicated and so meaning that the
jobs will execute quicker, more reliably and can
allow for hybrid parallel ray tracing techniques to
be used.

4.2 Findings

The images produced to form the frames of the
video sequence were created by using 16 Linux
based computers that dedicated the majority of
their processing capability to the ray tracer ap-
plication. Each image was split up so that each of
the 16 computers had the same number of pixels
per image to render. The video sequence was then
made up of 500 frames running at 50 FPS to pro-
duce 10 seconds of video footage.

The image shown in Figure 1 is a frame from the
video produced, and took 115 computing seconds
to render. By splitting the job across 16 Linux
machines running in parallel, the total rendering
time was only 7.2 seconds. In terms of the en-
tire video, the rendering time was reduced from
16 hours to 1 hour rendering time by using 16
di�erent machines. This has shown that a Linux
based cluster using the demand driven approach
for parallel ray tracing has been able to reduce
the rendering time proportionally to the number
of extra processors used in the single ray tracer
implementation.

4.3 Increased File Size Requirement

By making the ray tracer work on a distributed
computing system, the rendering time was signi-
�cantly reduced, however the amount of �le space
required was signi�cantly increased. In the stan-
dalone version of the ray tracer, the only �le space
required was for the scene �le and for the output
images. In the conversion to the distributed com-
puting version, there were now more and larger
�les required to do the same job. Firstly each
processor requires its own copy of the scene �le,



Developing a Cluster Based Parallel Ray Tracer 8

Figure 1: A scaled 1000x1000 pixel frame from the produced video of coloured balls sitting on a
reective surface. The rendering time for this image was 7.2 seconds across 16 parallel processors.

however this requirement is still only a very min-
imal amount of disk space. The main disk space
requirement now comes from having to specify the
pixels to render and the RGB output of each pixel
in a �le. Previously the single processor ray tracer
would render all of the pixels in an image, so there
was no need to specify each pixel to render, in-
stead a loop could be used in the code, whilst
the output was built up and handled entirely in
memory. In the distributed ray tracer, these addi-
tional �le requirements meant that for each second
of video produced, on average just under 2 GB of
data was required for input and output in total.

5 Discussion

This paper has looked at parallel ray tracing, the
algorithms that are used and the possible hard-
ware solutions. Whilst the majority of research
into parallel ray tracing uses cluster computing,
there is research into �nding ways for parallel ray

tracing to take place on a single machine. Find-
ing a way to make parallel ray tracing work on a
single machine would lead to ability for real time
ray tracing to be developed, which could then take
over from rasterisation rendering as the primary
rendering method used in computer graphics.

The algorithms for parallel ray tracing can be
de�ned as being demand driven, data parallel or
a hybrid of demand driven and data parallel. As
both demand driven and data parallel approaches
have signi�cant drawbacks, hybrid approaches are
being developed to try and merge the concepts
and to minimise the disadvantages of the demand
driven and data parallel approaches.

This paper has also looked at the ways in which
parallel ray tracing can be implemented using a
cluster of computers. Having looked at two cluster
computing technologies, this paper has found that
whilst a HTC cluster will utilise computers not be-
ing used in a dedicated pool, so removing the re-
quirement for building a dedicated cluster, HTC



REFERENCES 9

clusters will only work with parallel ray tracing
algorithms using the demand driven approach.
Where as HPC clusters provide a much greater
level of freedom in algorithm design and in con-
trolling the processors, but has the disadvantage
that a dedicated cluster must be built.

Overall this paper has looked at a range of par-
allel ray tracing techniques, issues and research
areas. With the development of faster, smaller
and cheaper processors, the advancement of par-
allel ray tracing will most likely now focus on the
development of real time ray tracing systems, that
do not require large clusters of computers, but in-
stead can run in parallel across a multi-processor
computer.

6 Conclusion

The work carried out for this paper has suc-
cessfully converted a single processor capable ray
tracer into a parallel ray tracer. In doing so, a
demand driven approach for handling the parallel
processing was taken so that the ray tracer worked
on both the Condor and Linux based cluster tech-
nologies. This paper has also identi�ed that the
ways in which the rendering jobs are split up and
processed in parallel is where the performance of
parallel ray tracing can be further improved, and
that developing hybrids of data parallel and de-
mand driven ray tracing is the key area of research
for �nding this performance improvement.

Remarks

Videos and images discussed in this paper can be
viewed at www.ecs.soton.ac.uk/�cjl203/comp6009.
Source code and executable �les for running the
ray tracer on the Windows Condor system and
Linux based cluster can be obtained on request
by emailing cjl203@ecs.soton.ac.uk.

Acknowledgements

Thanks to Professor Peter Henderson for super-
vising this project.

References

[1] A. Appel. Some Techniques for Shading
Machine Renderings of Solids. In SJCC,
volume 32, pages 27{45, 1968.

[2] C. Benthin, I. Wald, M. Scherbaum, and
H. Friedrich. Ray Tracing on the CELL Pro-
cessor. In Proceedings of the 2006 IEEE Sym-
posium on Interactive Ray Tracing, pages 15{
23, 2006.

[3] Beowulf.org: The Beowulf Cluster Site.
http://www.beowulf.org/.

[4] A. Chalmers and E. Reinhard. Parallel
and Distributed Photo-Realistic Rendering.
In ACM SIGGRAPH '98 Course Notes -
Course, 1998.

[5] Condor Project Homepage. http://www.cs.
wisc.edu/condor/.

[6] R. L. Cook, T. Porter, and L. Carpenter.
Distributed ray tracing. In SIGGRAPH '84:
Proceedings of the 11th annual conference
on Computer graphics and interactive tech-
niques, pages 137{145, New York, NY, USA,
1984. ACM Press.

[7] D. Demarle, S. Parker, M. Hartner,
C. Gribble, and C. Hansen. Distrib-
uted Interactive Ray Tracing for Large
Volume Visualization. In Proceedings of
the Symposium on Parallel and Large-Data
Visualization and Graphics, pages 87{94.
ACM Press, 2003.

[8] H. Friedrich, J. G�unther, A. Dietrich,
M. Scherbaum, H.-P. Seidel, and P. Slus-
allek. Exploring the use of Ray Tracing for
Future Games. In sandbox '06: Proceedings
of the 2006 ACM SIGGRAPH symposium on
Videogames, pages 41{50, New York, NY,
USA, 2006. ACM Press.

[9] S. A. Green and D. J. Paddon. Exploit-
ing Coherence for Multiprocessor Ray Tra-
cing. IEEE Comput. Graph. Appl., 9(6):12{
26, 1989.

[10] M. Gschwind. Chip Multiprocessing and the
Cell Broadband Engine. Technical report,
IBM Corporation, February 2006.

http://www.ecs.soton.ac.uk/%7Ecjl203/comp6009/
http://www.beowulf.org/
http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/


REFERENCES 10

[11] H. P. Hofstee. Introduction to the Cell Broad-
band Engine. Technical report, IBM Corpor-
ation, 2005.

[12] C. Lovell. Construction of a Ray Tra-
cing Renderer that Implements Displace-
ment Mapping. Technical Report ELEC6025-
2006/07, School of Electronics and Computer
Science, University of Southampton, 2007.

[13] OMII: Open Middleware Infrastructure Insti-
tute UK. http://www.omii.ac.uk/.

[14] D. E. Orcutt. Implementation of Ray tra-
cing on the hypercube. In Proceedings of
the third conference on Hypercube concur-
rent computers and applications, pages 1207{
1210, New York, NY, USA, 1988. ACM Press.

[15] G. S. Owen. Ray tracing. ACM SIG-
GRAPH, http://www.siggraph.org/

education/materials/HyperGraph/

raytrace/rtrace0.htm, July 1999.

[16] B. T. Phong. Illumination for Computer Gen-
erated Pictures. Commun. ACM, 18(6):311{
317, 1975.

[17] Pixar's RenderMan, Pixar. https://

renderman.pixar.com/, last accessed April
2007.

[18] S. Raghavachary. A brief introduction to ren-
derman. In SIGGRAPH '06: ACM SIG-
GRAPH 2006 Courses, page 2, New York,
NY, USA, 2006. ACM Press.

[19] E. Reinhard. Scheduling and Data Manage-
ment for Parallel Ray Tracing. PhD thesis,
Department of Computer Science, University
of Bristol, October 1999.

[20] E. Reinhard and F. W. Jansen. Render-
ing Large Scenes Using Parallel Ray Tracing.
Parallel Comput., 23(7):873{885, 1997.

[21] J. Salmon and J. Goldsmith. A Hypercube
Ray-tracer. In Proceedings of the third confer-
ence on Hypercube concurrent computers and
applications, pages 1194{1206, New York,
NY, USA, 1988. ACM Press.

[22] J. Schmittler, D. Pohl, T. Dahmen, C. Vogel-
gesang, and P. Slusallek. Realtime ray Tra-
cing for Current and Future Games. In Pro-
ceedings of 34. Jahrestagung der Gesellschaft
f�ur Informatik, 2004.

[23] J. Schmittler, I. Wald, and P. Slusallek. Saar-
COR: A Hardware Architecture for Ray Tra-
cing. In HWWS '02: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS con-
ference on Graphics hardware, pages 27{36,
Aire-la-Ville, Switzerland, Switzerland, 2002.
Eurographics Association.

[24] J. Schmittler, S. Woop, D. Wagner, W. J.
Paul, and P. Slusallek. Realtime Ray Tra-
cing of Dynamic Scenes on an FPGA Chip.
In HWWS '04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on
Graphics hardware, pages 95{106, New York,
NY, USA, 2004. ACM Press.

[25] G. Simiakakis, T. Theoharis, and A. M. Day.
Parallel Ray Tracing with 5D Adaptive Sub-
division. In V. Skala, editor, WSCG 2001
Conference Proceedings, 2001.

[26] University of Wisconsin-Madison. Condor
Version 6.8.4 Manual, February 2007.

[27] I. Wald, C. Benthin, and P. Slusallek. Dis-
tributed Interactive Ray Tracing of Dynamic
Scenes. In PVG '03: Proceedings of the 2003
IEEE Symposium on Parallel and Large-Data
Visualization and Graphics, page 11, Wash-
ington, DC, USA, 2003. IEEE Computer So-
ciety.

[28] I. Wald, C. Benthin, M. Wagner, and P. Slus-
allek. Interactive Rendering with Coher-
ent Ray Tracing. In A. Chalmers and
T.-M. Rhyne, editors, Computer Graph-
ics Forum Proceedings of EUROGRAPHICS
2001, volume 20(3), pages 153{164. Blackwell
Publishers, Oxford, 2001.

[29] T. Whitted. An improved illumination
model for shaded display. Commun. ACM,
23(6):343{349, 1980.

[30] S. Woop, J. Schmittler, and P. Slusallek.
Rpu: a programmable ray processing unit for
realtime ray tracing. ACM Trans. Graph.,
24(3):434{444, 2005.

http://www.omii.ac.uk/
http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtrace0.htm
http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtrace0.htm
http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtrace0.htm
https://renderman.pixar.com/
https://renderman.pixar.com/

	1 Introduction
	2 Ray Tracing
	2.1 Parallel Ray Tracing
	2.2 Offline Rendering
	2.3 Real Time Rendering
	2.3.1 Alternatives to Cluster Computing


	3 Techniques
	3.1 Demand Driven Ray Tracing
	3.2 Data Parallel Ray Tracing
	3.3 Hybrid Methods

	4 Implementation
	4.1 Distributed Technologies
	4.1.1 Condor
	4.1.2 Linux Based Cluster

	4.2 Findings
	4.3 Increased File Size Requirement

	5 Discussion
	6 Conclusion
	References

