
Towards Robust CNF Encodings

of Cardinality Constraints

Joao Marques-Silva1 and Inês Lynce2

1 School of Electronics and Computer Science, University of Southampton, UK
jpms@ecs.soton.ac.uk

2 IST/INESC-ID, Technical University of Lisbon, Portugal
ines@sat.inesc-id.pt

Abstract. Motivated by the performance improvements made to SAT
solvers in recent years, a number of different encodings of constraints into
SAT have been proposed. Concrete examples are the different SAT en-
codings for ≤ 1 (x1, . . . , xn) constraints. The most widely used encoding
is known as the pairwise encoding, which is quadratic in the number of
variables in the constraint. Alternative encodings are in general linear,
and require using additional auxiliary variables. In most settings, the
pairwise encoding performs acceptably well, but can require unaccept-
ably large Boolean formulas. In contrast, linear encodings yield much
smaller Boolean formulas, but in practice SAT solvers often perform un-
predictably. This lack of predictability is mostly due to the large number
of auxiliary variables that need to be added to the resulting Boolean for-
mula. This paper studies one specific encoding for ≤ 1 (x1, . . . , xn) con-
straints, and shows how a state-of-the-art SAT solver can be adapted to
overcome the problem of adding additional auxiliary variables. Moreover,
the paper shows that a SAT solver may essentially ignore the existence of
auxiliary variables. Experimental results indicate that the modified SAT
solver becomes significantly more robust on SAT encodings involving
≤ 1 (x1, . . . , xn) constraints.

1 Introduction

In recent years SAT solvers have increasingly been used in practical applica-
tions, including planning, hardware and software model checking, among many
others. The encoding of an increasing number of computational problems into
SAT raises the challenge of encoding different constraints into SAT. Among the
constraints for which dedicated CNF encodings have been proposed, a special
emphasis has been given to cardinality constraints [2, 3]. In addition, past work
addressed special forms of cardinality constraints, including ≤ 1 (x1, . . . , xn)
constraints [11, 13, 1]. Observe that, given the straightforward CNF encoding of
≥ 1 (x1, . . . , xn) constraints, the encoding of ≤ 1 (x1, . . . , xn) constraints also
serves for encoding = 1 (x1, . . . , xn) constraints. In practice, the constraints
≥ 1 (x1, . . . , xn), ≤ 1 (x1, . . . , xn) and = 1 (x1, . . . , xn) find a large number of
applications.

A number of alternative encodings have been proposed for ≤ 1 (x1, . . . , xn)
constraints. Encodings can be linear, logarithmic or quadratic, in the number

of variables, and may or may not guarantee arc-consistency. The most widely
used encoding, that is often referred to as the pairwise encoding, is quadratic
in the number of variables in the constraint and guarantees arc-consistency.
Interestingly, most available benchmarks containing ≤ 1 (x1, . . . , xn) constraints
use the pairwise encoding.

In most settings, the pairwise encoding performs acceptably well, but can
require unacceptably large Boolean formulas. In contrast, linear encodings yield
much smaller Boolean formulas, but in practice SAT solvers often perform un-
predictably. This lack of predictability is mostly due to the large number of
auxiliary variables that need to be added to the resulting Boolean formula.

This paper addresses one concrete linear encoding for ≤ 1 (x1, . . . , xn) con-
straints which guarantees arc-consistency [21], and identifies several properties
associated with the auxiliary variables used. One consequence is that a SAT
solver may essentially ignore the existence of auxiliary variables, and so this in-
directly overcomes the problem of adding additional auxiliary variables. Experi-
mental results indicate that a SAT solver that filters auxiliary variables becomes
significantly more robust.

The paper is organized as follows. The next section surveys encodings for
≤ 1 (x1, . . . , xn) constraints. Section 3 provides a brief perspective of recent
backtracking SAT solvers, referred to as conflict-driven clause-learning (CDCL)
SAT solvers. Section 4 outlines some of the properties of the sequential counter
encoding of [21]. Experimental results are analyzed in section 5. The paper con-
cludes in section 6, by analyzing how some of the results proposed in the paper
can be extended to other cardinality constraints and encodings, and by outlining
directions for future research.

2 Related Work

A large body of research exists on encoding constraints into CNF [16, 23, 22,
11, 13, 12, 6, 1, 10, 4]. In addition, dedicated encodings have been proposed for
specific types of constraints, including cardinality constraints [2, 3].

A special case of cardinality constraints are those of the form ≤ 1 (x1, . . . , xn),
which are widely used in practice. The most often used CNF encoding for
≤ 1 (x1, . . . , xn) constraints is referred to as the pairwise encoding. Given a
≤ 1 (x1, . . . , xn) constraint, the pairwise encoding is formulated as follows:

∧

S ⊆ {1, ..., n}
|S| = 2

∨

j∈S

¬xj

 (1)

This encoding introduces no additional auxiliary variables, but grows quadrati-
cally with the number of variables in the constraint.

An alternative is to use additional variables, thus obtaining asymptotically
more efficient encodings. A number of linear encodings has been proposed over

the years [11, 13, 12, 1, 21, 23]. Some of these encodings do not guarantee arc-
consistency (e.g. [23]) whereas others do [11, 21].

One recent CNF encoding for cardinality constraints≤ k (x1, . . . , xn) is based

on sequential counters [21]. The resulting CNF encoding is denoted by LT
n,k
SEQ.

A special case of cardinality constraints is considered, namely ≤ 1 (x1, . . . , xn)
constraints. The associated encoding will be denoted by LT

n,1
SEQ.

An arbitrary number of ≤ 1 (x1, . . . , xn) constraints is assumed, each being
represented by an index k. Hence, each constraint is of the form:

nk
∑

i=1

xk
i ≤ 1 (2)

Where nk is the number of variables in the constraint. From [21], the CNF
encoding for the above constraint becomes:

(¬xk
1 ∨ sk

1) ∧ (¬xk
n ∨ ¬sk

n−1)
∧

1<i<nk

(

(¬xk
i ∨ sk

i) ∧ (¬sk
i−1 ∨ sk

i) ∧ (¬xk
i ∨ ¬sk

i−1)
)

(3)
Where sk

i , 1 ≤ k ≤ n − 1, are auxiliary variables. When clear from context, the
index k is dropped, and so the LT

n,1
SEQ encoding becomes:

(¬x1∨s1)∧(¬xn∨¬sn−1)
∧

1<i<n

((¬xi ∨ si) ∧ (¬si−1 ∨ si) ∧ (¬xi ∨ ¬si−1)) (4)

The remainder of the paper focus on the sequential counter CNF encoding
and shows that this encoding has a number of interesting properties that can be
exploited by a clause learning SAT solver. Before, however, the organization of
backtracking SAT solvers is briefly overviewed.

3 CDCL SAT Solvers

This section provides a necessarily brief perspective of modern CDCL SAT
solvers. CDCL SAT solvers follow the organization of the DPLL algorithm [8,
7], but integrate a number of effective techniques, including clause learning [17,
5], lazy data structures [18] and search restarts [15]. CDCL SAT solvers have
evolved from the original solvers [17, 5, 24], which essentially proposed clause
learning, to the more recent CDCL SAT solvers, that also integrate lazy data
structures and search restarts [18, 14, 9].

In the following sections, a number of concepts associated with CDCL SAT
solvers will be used. These concepts are briefly reviewed below (see [17, 18, 14, 9]
for additional detail).

A CDCL SAT solver is usually organized into three main engines [17, 18, 9]:
the decision engine, used for branching; the deduction engine, used for unit prop-
agation and identification of unsatisfied clauses (or conflicts); and the diagnosis
engine, used for clause learning.

A decision level is associated with each assigned variable. Decision levels
measure the depth of the search tree in terms of the number of variables the
SAT algorithm has branched on. Variables can be assigned a Boolean value,
either resulting from a decision (or branching step), or as the result of unit
propagation [8]. Variables assigned as the result of unit propagation are said
to be implied. With each implied variable the SAT algorithm also associates a
reason or antecedent, representing the clause that explains why the variable is
implied. The set of assigned variables and associated reasons implicitly represent
the implication graph [17].

The process of clause learning consists of traversing the implication graph
from a given unsatisfied clause by using the reasons of implied variable assign-
ments, and recording unsatisfied literals assigned at decision levels less than the
current one. The resulting set of recorded literals is then used to create a new
clause, which serves for backtracking non-chronologically, and for preventing the
same conflict from occurring again during the search process.

Moreover, all effective CDCL solvers use unique implication points (UIPs) [17,
25]. UIPs represent dominators in the implication graph of unsatisfied clauses
with respect to the most recent decision variable. Whereas some of the early
CDCL SAT solvers would use UIPs to learn more clauses [17], more recent
CDCL SAT solvers stop clause learning at the first UIP [25]. Albeit stopping
at the first UIP usually yields a larger number of decision steps, it is also an
observed fact that a smaller number of learnt clauses results in faster execution,
and most often this results in smaller run times [25].

Finally, and besides the hallmarks of all CDCL SAT solvers, a number of
additional techniques have been quite successfully used in recent solvers. These
include deletion policies for learnt clauses [14, 9, 20], techniques for organization
of literals in learnt clauses [19], and the representation of binary clauses as direct
implications [20].

4 Filtering Auxiliary Variables

This section revisits the LT
n,1
SEQ CNF encoding (see section 2), and introduces

a number of its properties. Some of these properties allow eliminating most (or
even all) of the auxiliary variables for branching purposes. Moreover, this section
also outlines how to adapt a SAT solver for filtering auxiliary variables.

4.1 Analysis of the ≤ 1 (x1, . . . , xn) Encoding

This section identifies a number of properties of the LT
n,1
SEQ encoding. These

properties essentially allow a SAT solver to ignore all (or at least most) of the
auxiliary variables.

The first property is used throughout this section, for proving additional
properties of the LT

n,1
SEQ encoding.

Proposition 1. Consider the CNF encoding LT
n,1
SEQ of constraint ≤ 1 (x1, . . . , xn).

Furthermore, assume that all x and s variables are unassigned, and that a given
variable xi is assigned value 1. Then, the following holds:

1. All sj variables, with 1 ≤ j < i, are implied to value 0.

2. All sj variables, with i ≤ j ≤ n − 1, are implied to value 1.

3. All xj variables, with j 6= i, are implied to value 0;

Proof. The result follows from the analysis of (4). The third clause guarantees
that si is implied value 1. Subsequently, the fourth clause implies that every sj ,
with n − 1 ≥ j > i, is implied value 1. The fifth clause guarantees that si−1 is
implied value 0. Subsequently, the fourth clause implies that every sj , with i >

j ≥ 1, is implied value 0. Analysis of the first and last case is also straightforward.
Finally, the third and fourth clauses ensure that every xj , with j 6= i, is implied
value 0. Again, analysis of the first and last case is straightforward. 2

The next step is to evaluate the role of the auxiliary variables used in the
LT

n,1
SEQ encoding.

Proposition 2. For any complete satisfying assignment to the variables x1, . . . , xn

of (2), the following holds:

1. All clauses of (4) containing literals of x variables are satisfied.

2. There exist assignments to the auxiliary variables s1, . . . sn that satisfy the
clauses of (4) containing no literals of x variables.

Proof. If (2) is satisfied, then at most one of the xi variables is assigned value 1.
Hence, two cases need to be considered: either all xi variables are assigned value
0, or exactly one variable xi is assigned value 1 and the remaining x variables are
assigned value 0. Now consider the LT

n,1
SEQ (4) encoding of (2). For the first case,

the xi variables satisfy all clauses that contain a literal in an x variable. Hence,
only the clauses (¬si−1 ∨ si) need to be satisfied, and this can be achieved by
assigning value 0 to all si variables. For the second case, exactly one variable xi

is assigned value 1. (4) ensures that all auxiliary variables are assigned a given
value. This is immediate from proposition 1. 2

The previous result guarantees that by branching only of non-auxiliary vari-
ables, either a satisfying assignment exists, in which case it is simple to find
consistent assignments to the auxiliary variables, or no satisfying assignment
exists, in which case it is unnecessary to branch on the auxiliary variables.

It is possible to extend the previous result further, by analyzing the clause
learning process of a SAT solver, when branching is restricted to the non-
auxiliary variables. As a result, in what follows, the SAT solver is assumed to
branch only on non-auxiliary variables.

The following results assert that, when branching is restricted only to non-
auxiliary variables, the participation of auxiliary variables in conflicts is fairly
constrained. This allows effectively discarding auxiliary variables from learnt
clauses.

Proposition 3. For the CNF encoding LT
n,1
SEQ of constraint ≤ 1 (x1, . . . , xn),

if the value of an auxiliary variable si is implied at decision level l, then all other
auxiliary variables associated with the same constraint are implied at the same
decision level, or a conflict is identified.

Proof. From (4), the value of an auxiliary variable s is implied by the value
of an x variable only when the x variable is assigned value 1. Without loss of
generality, let xi be the variable that is assigned value 1. Then, all s variables
with index no less than i are assigned value 1, and all s variables with index less
than i are assigned value 0 (see proposition 1). If more than one x variable is
assigned value 1, then a conflict is identified. 2

Proposition 4. For the CNF encoding LT
n,1
SEQ of constraint ≤ 1 (x1, . . . , xn),

auxiliary variables can only be implied by single implication paths from non-
auxiliary variables.

Proof. For any CNF encoding LT
n,1
SEQ of constraint 1 (x1, . . . , xn), all auxiliary

variables are assigned by unit propagation on binary clauses. Hence, the result
follows. 2

Proposition 5. For the CNF encoding LT
n,1
SEQ of constraint ≤ 1 (x1, . . . , xn),

learnt clauses can contain a single auxiliary variable si, which is a UIP variable.

Proof. (Sketch)3 The clause learning algorithm used by most SAT solvers [17, 18,
14, 9] records literals from clauses traced during the conflict analysis procedure.
These literals must be assigned at decision levels less than the current decision
level, or otherwise the literal corresponds to the UIP variable.
Since all auxiliary variables are assigned by unit propagation on binary clauses,
and all must be assigned at the most recent decision level, then the conflict anal-
ysis procedure cannot record literals associated with auxiliary variables, unless
variable tracing stops at a UIP corresponding to an auxiliary variable. 2

Proposition 6. For the CNF encoding LT
n,1
SEQ of constraint ≤ 1 (x1, . . . , xn),

and during clause learning, if a si variable is a UIP, then it can be replaced by
a single non-auxiliary variable xk.

Proof. (Sketch) Proposition 4 guarantees that auxiliary variables are implied
as the result of a single implication path. Hence, it suffices to trace this single
implication path to eventually reach a single non-auxiliary variable. 2

Proposition 7. For the CNF encoding LT
n,1
SEQ of constraint ≤ 1 (x1, . . . , xn),

any learnt clause ω can be replaced by a learnt clause of the same size that only
contains non-auxiliary variables.

Proof. From proposition 5, auxiliary variables can occur in learnt clauses only if
they are traced as a UIP. From proposition 6 this traced variable can be replaced
by a single non-auxiliary variable. Hence the result follows. 2

3 A detailed proof would require a more formal definition of the organization of a
CDCL SAT solver.

As a result, the main conclusion is that by branching only on non-auxiliary
variables, then a satisfying assignment can be identified, if it exists. Otherwise,
by branching only on non-auxiliary variables, unsatisfiability can be proved.

Moreover, by analyzing the clause learning process of a CDCL SAT solver, it
is possible to conclude that learnt clauses need not contain auxiliary variables.
Hence, the SAT solver can effectively only consider non-auxiliary variables for
branching and clause learning purposes.

In practice, branching only on non-auxiliary variables may not be the most
effective strategy. As a result, one challenge is to evaluate which auxiliary vari-
ables can be deemed more effective for branching purposes.

Proposition 8. For the CNF encoding LT
n,1
SEQ of constraint ≤ 1 (x1, . . . , xn),

and such that all auxiliary variables are unassigned, then the assignments s0 = 1
and the assignment sn−1 = 0 originate the largest number of implied assign-
ments, or a conflict is identified.

Proof. Assume a conflict is not identified. A simple inductive argument suffices.
s1 = 1 implies s2 = 1, and the same holds true for all i, 1 ≤ i ≤ n − 2, si = 1
implies si+1 = 1. In addition, all variables xi, 1 < i ≤ n, are assigned value 0.
Similarly, sn−1 = 0 implies sn−2 = 0, and the same holds true for all i, 2 ≤ i ≤

n − 1, si = 0 implies si−1 = 0. In contrast with the previous case, all variables
xi, 1 ≤ i < n, are assigned value 0.
Clearly, all the other auxiliary variables yield no more implied assignments than
these auxiliary variables. 2

Hence, a possible approach for deciding which auxiliary variables to consider
for branching purposes is to select the first and last auxiliary variables of each
LT

n,1
SEQ encoding, the first variable is preferred to be assigned value 1, and the

last is preferred to be assigned value 0.
Motivated by the previous results, a number of possible variable branching

heuristics can thus be devised:

1. Branch on all variables, both non-auxiliary and auxiliary. This branching
heuristic will be implemented by any existing CDCL SAT solver.

2. Branch only on non-auxiliary variables. This branching heuristic attempts
to replicate the branching steps in the pairwise encoding.

3. Branch only on non-auxiliary variables, and on the auxiliary variables for
which one of the value assignments guarantees the largest number of implied
assignments. The rationale is that if branching on some auxiliary variables
is useful, then these should be the preferred variables to branch on.

In order to implement the last two branching heuristics, a CDCL SAT solver
needs to be adapted to accept branching directives from the CNF formula de-
scription. This can be achieved by specifying these directives as comments in
the standard input format for SAT solvers. Section 5 evaluates these branching
heuristics.

4.2 Modifications to a CDCL SAT Solver

This section focus on CDCL SAT solvers, and shows how the SAT solver can
be modified to allow filtering auxiliary variables for branching purposes, as out-
lined in the previous section. The MiniSat [9] SAT solver is assumed, since the
proposed modifications are straightforward to implement in MiniSat. Regard-
ing the three main engines of a CDCL SAT solver, the deduction engines re-
quires no modification, the decision engine needs to filter variables not used for
branching purposes, and the diagnosis engine needs to exchange learnt literals
on non-branching variables by literals on branching variables. A more detailed
description of the modifications to the CDCL SAT solver is given below.

Internal Data Structures. When creating new variables, the SAT solver is
informed of whether a variable is non-auxiliary, and so needs to be considered
for variable branching purposes, or whether it is auxiliary, and so needs not
be considered for variable branching purposes. For the auxiliary variables, the
first and last auxiliary variables of each LT

n,1
SEQ encoding can also be optionally

considered for branching purposes. In addition to specifying the variables that
can serve for branching purposes, with each such variable the preferred value
can also be specified. In these cases, the preferred value is always used when the
SAT solver branches on that variable.

The Decision Engine. When selecting a variable for branching, the SAT solver
is modified to only consider variables that can serve as branching variables.
Hence, the decision engine only branches on variables that were initially declared
to be eligible as branching variables. Moreover, if a preferred value is associated
with a given variable, then the decision engine uses the preferred value when
branching on that variable.

The Diagnosis Engine. When learning a conflict clause, if the UIP condition
holds and if the current variable is auxiliary, then the clause learning process
continues. The results of the previous section (see Propositions 6 and 7) guaran-
tee that the UIP condition will remain valid until a non-auxiliary UIP variable is
identified or until a auxiliary branching variable is identified. As shown earlier,
the size of learnt clauses is unchanged by filtering auxiliary variables.

5 Experimental Results

The ideas described above have been implemented in the most recent version
of the MiniSat SAT solver [9] - MiniSat2, a cleaned up version of the winning
entry of SAT-Race 2006. MiniSat is a CDCL solver, containing all the features of
the current state-of-the-art solvers: conflict-clause learning, conflict-driven back-
jumping, dynamic variable ordering heuristic and two watched-literal scheme.

We have considered two different encodings:

1. The pairwise encoding (pw), which has a quadratic number of clauses but no
additional variables.

2. The sequential counter encoding (sc), representing LT
n,1
SEQ, which has a linear

number of clauses and also a linear number of auxiliary variables.

The sequential counter encoding has been evaluated for two additional con-
figurations of the MiniSat SAT solver:

1. sc-d: for this configuration the decision variables are selected from the
non-auxiliary variables only (and therefore auxiliary variables cannot be se-
lected).

2. sc-dh: for this configuration the decision variables are selected from the non-
auxiliary variables and also from two auxiliary variables: s1 and sn−1 (again
the remaining auxiliary variables cannot be selected). In case any of these
two auxiliary variables are selected, hints are given for the value to assign
to these variables: if variable s1 is selected then it is assigned value 1, and
if variable sn−1 is selected then it is assigned value 0. These assignments
originate the largest number of implied assignments.

For the results given below, the main goal is to evaluate (1) the performance of
the pairwise encoding against the sequential encoding in terms of the CPU time
and the memory required and (2) the improvements achieved by the filtering of
auxiliary variables. All the results were obtained on an Intel Xeon 5160 (3.0GHz
with 4GB of RAM) and a timeout (TO) of 1000s.

5.1 Problem Instances

A number of problems were evaluated, all containing many ≤ 1 (x1, . . . , xn)
constraints. These problems were the following: the n-queens problem, the pigeon
hole problem, the round-robin problem, the all-interval series problem, the graph
coloring problem and the Latin squares problem extended with constraints on
(broken) diagonals 4. The analysis of results is divided into two classes: instances
for the n-queens problem, which modern SAT solvers can tackle, and instances
from the other problems considered, since for these problems modern SAT solvers
can solve only a few instances.

5.2 Results for the N-Queens Problem

The n-queens problem is the problem of placing n chess queens on an n × n

chessboard such that no two queens share the same row, column, or diagonal,
i.e. there is at most one queen in each row, column or diagonal. We may represent
this problem with n × n Boolean variables, where each variable corresponds to

4 The quasigroup completion problem was also evaluated near the phase transition.
For this problem the number of literals in the sequential encoding is in general larger
than the number of literals in the pairwise encoding. Given that some entries in the
quasigroup are already defined, the number of entries to be distinct is reduced.

0.1

1

10

100

1000

100 150 200 250 300

pw
sc

sc-d
sc-dh

Fig. 1. Results on run times.

one entry in the chess board. We then require 2×n constraints ≤ 1 (x1, . . . , xn)
to guarantee that there is only one queen per row and one queen per column.
In addition, we require 4n − 6 constraints to guarantee that there is at most
one queen per diagonal. We have generated n-queens problems ranging from
n = 100 to n = 300 using both the pairwise (pw) and the sequential counter
(sc) encoding. CNF formulas generated by both encodings were solved using
the MiniSat SAT solver. In addition, two modified versions of MiniSat (sc-d
and sc-dh) were evaluated for the sequential encoding.

Figure 1 gives the CPU time (in seconds) for solving the n-queens problems
using the four different approaches. From this figure a few conclusions can be
drawn:

– The sequential encoding, when used with the plain MiniSat solver (sc) is
quite unstable and in general takes more time than any other approach.
Also, it is not able to solve 51 problem instances within the allowed CPU
time (1000s).

– The pairwise encoding (pw) although being stable requires in general up to
one order of magnitude more time than the two other approaches using the
sequential encoding (sc-d and sc-dh).

– Both sc-d and sc-dh are more competitive than the pw approach. This
contrasts with the sc approach. Not only the size of the search space in sc is
larger but also the search gets lost recording useless clauses and being unable
to find a solution.

10

100

1000

100 150 200 250 300

pw
sc

sc-d
sc-dh

Fig. 2. Results on memory used.

Figure 2 evaluates the memory consumed by MiniSat (in MB) for solving a
given problem instance following one of the four approaches. Again, from this
figure a few conclusions can be drawn:

– The pairwise encoding (pw) requires more memory than both the sc-d and
sc-dh approaches. The memory difference most often exceeds one order of
magnitude. This difference is significant in practice: the pw requires around
1600 MB for the larger problem instances, whereas 75 MB suffice for the
sc-d and sc-dh approaches.

– Although the CNF formula is exactly the same for sc, sc-d and sc-dh, the
amount of memory required by sc is significantly larger. This is due to the
clauses recorded during the search, resulting from the conflicts.

Figure 3 gives the number of decisions, corresponding to the number of nodes
in the search tree, required by each of the approaches for solving a given problem
instance.

– The sc approach explores by far the largest number of nodes. This is in part
due to the larger search space. Moreover, it is also clear that the heuristic
used is far from being accurate for this encoding.

– Both sc-d and pw approaches explore the smallest number of nodes. Given
that sc-d only branches on non-auxiliary variables, both approaches may
explore the same search space. This means that each one of the heuristics
used by each one of the approaches is very effective for that specific approach.

– The sc-dh approach explores more nodes than sc-d and pw. This comes as
no surprise given that the search space is larger. For each ≤ 1 (x1, . . . , xn)
constraint we may have two more decision variables. However, given the

100

1000

10000

100000

1e+06

100 150 200 250 300

pw
sc

sc-d
sc-dh

Fig. 3. Results for the number of decisions.

CPU times, these variables when taken as decisions are not as harmful as
the other auxiliary variables when taken as decisions in the sc approach. This
is probably due to the hints on the values to be assigned to the auxiliary
variables.

Finally, figure 4 reveals the number of conflicts that are found during the
search. This figure further clarifies the differences between the sc-d and the
sc-dh approaches. Interestingly, sc-dh has the smallest number of conflicts,
even though the number of decision nodes is significant, as shown in the previous
figure. Our interpretation is that many decisions are irrelevant, but a few are
extremely useful. This makes the conflict clauses in general shorter and therefore
able to prune more effectively the search space.

5.3 Results for Other Problems

This section presents results for a number of other instances which are also en-
coded with ≤ 1 (x1, . . . , xn) constraints. Example instances from the all-interval
series, pigeon-hole, Latin squares and round-robin problems are considered. For
these problems only a few instances are considered. Other instances are not con-
sidered, either because run times are negligible or because modern SAT solvers
exceed the allowed CPU time limit.

The results are summarized in Table 5.3. As observed for the n-queens prob-
lem, the approaches sc, sc-dh and sc-d tend to perform more robustly than the
pw approach, with a few outliers. In terms of memory used, no concrete pattern
was identified in the results, in part because of the small number of instances

10000

1e+06

1e+08

100 150 200 250 300

pw
sc

sc-d
sc-dh

Fig. 4. Results for the number of conflicts.

that can be considered. For instances with similar run times, the sc encodings
use significantly less memory than the pw encoding (e.g. rr10 and php10).

6 Conclusions

This paper studies techniques for improving the robustness of linear size encod-
ings of ≤ 1 (x1, . . . , xn) constraints. The sequential counter (LT

n,1
SEQ) encoding

of [21] is considered. For this encoding, the additional auxiliary variables used
for encoding ≤ 1 (x1, . . . , xn) constraints can essentially be ignored by the SAT
solver. A related result is that auxiliary variables can be discarded from learnt
clauses, without affecting the number of literals of each learnt clause. An addi-
tional result is that auxiliary variables are guaranteed to yield different numbers
of implied variables, and so this yields a natural ranking of auxiliary variables
for branching purposes.

A number of different strategies for selecting branching variables are outlined
and experimentally evaluated. Experimental results indicate that filtering most
of the auxiliary variables is an effective technique, yielding significantly more
robust CDCL SAT solvers, and may represent a valid alternative to the space-
consuming pairwise encoding.

A future line of research is to devise techniques for extending the work in
this paper, by being more precise at filtering auxiliary variables that are not
effective for branching purposes. The properties identified for the LT

n,1
SEQ encod-

ing also suggest a family of branching heuristics, besides the ones outlined in
the paper. These heuristics allow increasing number of decision variables ranked

Table 1. Results on additional instances.

Bench pw sc sc-d sc-h

mem time mem time mem time mem time

ais16 6.74 5.12 3.68 0 8.06 45.12 7.29 24.57
ais17 13.27 77.33 3.8 0 6.51 8.24 9.28 53.95
ais18 — TO 15.57 550.02 18.56 860.78 16.12 401.24

php9 3.54 2.4 3.54 1.6 3.54 4.76 3.54 4.18
php10 4.06 31.73 3.66 15.74 3.79 43.26 3.78 45.75
php11 5.45 526.03 4.41 189.51 4.52 652.91 4.53 741.6

ls8 7.45 40.51 7.31 64.58 6.71 33.51 6.61 34.56

rr10 17.28 1.03 13.11 1.83 12.91 1.74 8.77 0.39
rr12 41.23 4.28 90.85 50.26 20.21 3.71 106.79 50.79

gc-anna 9.93 18.87 10.71 39.98 9.98 27.56 10.52 42.05
gc-david 9.47 29.66 9.3 30.64 9.59 41.64 9.41 33.17
gc-huck 8.77 32.71 7.66 25.01 8.23 33.14 8.48 30.69

by the number of guaranteed implied assignments. One possible application of
these heuristics would be to instruct SAT solvers to switch between branching
heuristics after each search restart.

Finally, another line of research is to extend the results in the paper to
other cardinality constraints. Results equivalent to the ones proposed in this
paper, namely Proposition 2, are expected to exist for most linear encodings of
constraint ≤ 1 (x1, . . . , xn), and for encodings of general cardinality constraints
≤ k (x1, . . . , xn). A more challenging question is how some of the other results
proposed in the paper, namely the ones related with clause learning, can be
adapted either to other encodings of constraint ≤ 1 (x1, . . . , xn) or to general
cardinality constraints ≤ k (x1, . . . , xn).

Acknowledgments This work is partially supported by Fundação para a Ciência
e Tecnologia under research projects POSC/EIA/61852/2004 and POSI/SRI/
41926/01, EPSRC grant EP/E012973/1, and EU project IST/033709.

References

1. C. Ansótegui and F. Manyá. Mapping problems with finite-domain variables to
problems with boolean variables. In Proceedings of the International Conference

on Theory and Applications of Satisfiability Testing, pages 1–15, 2004.
2. O. Bailleux and Y. Boufkhad. Efficient CNF encoding of boolean cardinality con-

straints. In Proceedings of the International Conference on Principles and Practice

of Constraint Programming, pages 108–122, 2003.
3. O. Bailleux and Y. Boufkhad. Full CNF encoding: The counting constraints case.

In Proceedings of the International Conference on Theory and Applications of Sat-

isfiability Testing, 2004.
4. O. Bailleux, Y. Boufkhad, and O. Roussel. A translation of pseudo Boolean con-

straints to SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2,
March 2006.

5. R. Bayardo Jr. and R. Schrag. Using CSP look-back techniques to solve real-world
SAT instances. In Proceedings of the National Conference on Artificial Intelligence,
pages 203–208, July 1997.

6. R. Béjar, R. Hähnle, and F. Manyà. A modular reduction of regular logic to
classical logic. In Proceedings of the International Symposium on Multiple-Valued

Logics, pages 221–226, 2001.
7. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-

proving. Communications of the Association for Computing Machinery, 5:394–397,
July 1962.

8. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-

nal of the Association for Computing Machinery, 7:201–215, July 1960.
9. N. Eén and N. Sörensson. An extensible SAT solver. In Proceedings of the In-

ternational Conference on Theory and Applications of Satisfiability Testing, pages
502–518, May 2003.

10. N. Eén and N. Sörensson. Translating pseudo-Boolean constraints into SAT. Jour-

nal on Satisfiability, Boolean Modeling and Computation, 2, March 2006.
11. I. P. Gent. Arc consistency in SAT. In Proceedings of the European Conference on

Artificial Intelligence, pages 121–125, 2002.
12. I. P. Gent and P. Nightingale. A new encoding of AllDifferent into SAT. In Pro-

ceedings 3rd International Workshop on Modelling and Reformulating Constraint

Satisfaction Problems, pages 95–110, September 2004.
13. I. P. Gent and P. Prosser. An empirical study of the stable marriage problem with

ties and incomplete lists. In Proceedings of the European Conference on Artificial

Intelligence, pages 141–145, 2002.
14. E. Goldberg and Y. Novikov. BerkMin: a fast and robust SAT-solver. In Proceed-

ings of the Design and Test in Europe Conference, pages 142–149, March 2002.
15. C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through

randomization. In Proceedings of the National Conference on Artificial Intelligence,
pages 431–437, July 1998.

16. S. Kasif. On the parallel complexity of discrete relaxation in constraint satisfaction
networks. Artificial Intelligence, 45(3):275–286, 1990.

17. J. Marques-Silva and K. Sakallah. GRASP: A new search algorithm for satisfia-
bility. In Proceedings of the International Conference on Computer-Aided Design,
pages 220–227, November 1996.

18. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Engineering an
efficient SAT solver. In Design Automation Conference, pages 530–535, June 2001.

19. A. Nadel. Backtrack search algorithms for propositional logic satisfiability: Review
and innovations. Master’s thesis, Hebrew University of Jerusalem, November 2002.

20. L. Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s thesis,
Simon Fraser University, February 2004.

21. C. Sinz. Towards an optimal CNF encoding of boolean cardinality constraints.
In Proceedings of the International Conference on Principles and Practice of Con-

straint Programming, pages 827–831, October 2005.
22. T. Walsh. SAT v CSP. In Proceedings of the International Conference on Principles

and Practice of Constraint Programming, pages 441–456, September 2000.
23. J. P. Warners. A linear-time transformation of linear inequalities into conjunctive

normal form. Information Processing Letters, 68(2):63–69, 1998.
24. H. Zhang. SATO: An efficient propositional prover. In Proceedings of the Interna-

tional Conference on Automated Deduction, pages 272–275, July 1997.
25. L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict

driven learning in boolean satisfiability solver. In Proceedings of the International

Conference on Computer-Aided Design, pages 279–285, 2001.

