
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Trusted Collaboration in

Distributed Software

Development

by

Ellis Rowland Watkins

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

June 2007

http://www.soton.ac.uk
mailto:erw@it-innovation.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Ellis Rowland Watkins

Distributed systems have moved from application-specific, bespoke and mutually

incompatible network protocols to open standards based on TCP/IP, HTTP, and

SGML - the foundations of the World Wide Web (WWW). The emergence of

the WWW has brought about a revolution in computer resource discovery and

exploitation across organisational boundaries. Examples of this can be seen with

recent advances in Security and Service Orientated Architectures such as Web

Services and Grid middleware. Expansion of the WWW has seen the development

of the Semantic Web, a layer on top of the WWW where content is enriched and

made interoperable through standards such as RDF and OWL.

Our work in these fields has brought together different ideas to further the ad-

vancement of version control; the Semantic Web, Service Orientated Architectures,

strong cryptography and the highly dynamic and collaborative WikiWikiWeb. Our

online collaborative tool takes advantage of Description Logics, Named Graphs,

digital signatures and Grids technologies, to improve collaboration for software

engineers working in distributed software development, using semantic knowledge

federation and inference rules. Such a system goes well beyond any current version

control technology and demonstrates the value and future potential of Semantic

Web technologies over traditional Relational Database Management Systems and

overly expressive logics such as Prolog.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:erw@it-innovation.soton.ac.uk

Contents

Acknowledgements xv

1 Introduction 1

1.1 Distributed Systems and the Birth of the Web 1

1.1.1 The Semantic Web . 2

1.2 Research Motivation . 2

1.2.1 Server Integrity . 3

1.2.2 Audit Logs . 3

1.2.3 Management . 4

1.3 Research Statement . 5

1.4 Thesis Structure . 9

1.5 Declaration . 10

2 Background 11

2.1 The WikiWikiWeb: Lightweight Collaboration 11

2.2 Technology . 13

2.2.1 Relational Database Management Systems (RDBMS) 13

2.2.2 Version Control Systems . 14

2.2.2.1 Concurrent Versioning System 14

2.2.2.2 Subversion . 14

2.2.2.3 Git . 15

2.2.2.4 GNU Arch . 15

2.2.2.5 Darcs . 16

2.2.3 Service Orientated Architecture and Web Services 16

2.2.4 The Grid . 18

2.2.4.1 Globus Toolkit . 18

2.2.4.2 Grid Services . 19

WSRF.net . 19

MS.NETGrid Project 19

Globus Toolkit 4.x 19

2.2.4.3 Sun Microsystems’ Grid Engine 20

2.2.4.4 Legion . 20

2.2.5 EC IST Framework Grids 20

2.2.5.1 GRIA . 20

2.2.5.2 gLite . 21

v

vi CONTENTS

2.2.6 China Grid . 21

2.2.7 UK e-Science Projects . 22

2.2.8 Public Key Infrastructure 22

2.2.8.1 Digital Signatures 23

2.3 Provenance Frameworks . 23

2.3.1 Data Provenance . 24

2.3.2 Provenance in Service Oriented Architectures 24

2.3.3 Knowledge Provenance . 25

2.3.4 Provenance Mechanisms . 26

2.3.4.1 RDF Reification 26

2.3.4.2 Quads . 27

2.3.4.3 Contexts . 27

2.3.4.4 RDFX . 28

2.3.4.5 Named Graphs . 28

2.3.4.6 RDF Molecules . 29

2.4 Logic Frameworks . 29

2.4.1 Description Logics . 29

2.4.1.1 Class Expression Language 29

2.4.1.2 The TBox . 31

2.4.1.3 The ABox . 31

2.4.1.4 The RBox . 31

2.4.1.5 Concrete Datatypes 32

2.4.2 Semantic Inferences . 32

2.4.2.1 Types of Inferences 33

Backward Chaining 33

Forward Chaining . 34

2.4.2.2 Popular Inference Engines 34

2.4.3 Frame Logics . 34

2.4.4 Open and Closed World Semantics 35

2.4.5 Monotonicity . 36

2.5 World Wide Web Technologies . 37

2.5.1 URIs . 37

2.5.2 Description Frameworks . 37

2.5.2.1 Resource Description Framework 37

2.5.2.2 Topic Maps . 38

2.5.3 Ontologies . 39

2.5.3.1 RDFS . 39

Class/SubClass declaration 39

Instances . 39

Properties (relations) 40

Multiple Inheritance 40

2.5.3.2 OWL . 40

2.5.3.3 OWL DL . 40

2.5.3.4 OWL Lite . 41

CONTENTS vii

2.6 Summary . 41

3 Analysis 43

3.1 Distributed Collaborative Software Development Case Studies . . . 43

3.1.1 FLOSS . 43

3.1.2 EC IST Grid Collaboration 45

3.1.3 EC IST Collaboration with FLOSS 46

3.2 RDBMS Approach . 47

3.2.1 Benefits . 48

3.2.1.1 Interoperability . 48

3.2.1.2 Performance and Scalability 48

3.2.2 Issues . 49

3.2.2.1 Federation . 49

3.2.2.2 Trust Management 50

3.2.2.3 Interoperability . 51

3.3 Semantic Web Approach . 52

3.3.1 Benefits . 52

3.3.1.1 Federation . 52

3.3.1.2 Trust Management 53

3.3.2 Issues . 53

3.3.2.1 Performance and Scalability 54

3.3.2.2 Provenance Mechanisms 54

RDF Reification Issues 54

MSG and RDF Molecule Issues 55

Semantic Interoperability Issues 56

The Two Towers of the Semantic Web 56

3.4 Digital Signatures . 58

3.4.1 Digital Signatures and the Semantic Web 59

3.4.1.1 Canonicalisation Issues 59

Blank Nodes . 59

3.4.1.2 Semantic Issues . 62

3.4.1.3 Serialisation Issues 62

3.5 Querying Semantic Version Control 62

3.5.1 FLOSS Questions . 63

3.5.2 IST Project Questions . 64

3.6 Summary . 66

4 Design and Implementation 67

4.1 Ontology Design Overview . 67

4.1.1 Requirements . 68

4.1.2 Document Provenance . 68

4.1.2.1 Document Class 70

4.1.2.2 Wikipage Class . 70

4.1.2.3 Person Class . 71

viii CONTENTS

4.1.3 Other Ontologies . 71

4.1.3.1 Friend of a Friend 72

4.1.3.2 Description of a Project 74

4.1.3.3 Dublin Core Metadata Initiative 74

4.1.3.4 Simple Java Ontology 75

4.1.4 Construction . 76

4.2 Provenance Mechanism . 77

4.2.1 Named Graphs . 77

4.3 Modelling Version Control with DP 78

4.4 Security . 79

4.4.1 Signing RDF Graphs . 79

4.4.1.1 Carroll’s algorithm vs. nauty 81

4.4.1.2 Conservative Canonicalisation 82

4.5 Open Issues . 83

4.5.1 NG Management . 83

4.5.1.1 Signature Management 83

4.5.2 Ontology Decomposition . 84

4.6 Implementation - An Online Collaborative Tool 85

4.6.1 Motivation . 85

4.6.2 Architecture . 86

4.6.2.1 Client Side . 87

4.6.2.2 Server Side . 88

Commit Process . 88

Wikipages . 88

4.6.3 Named Graphs for Jena (NG4J) API 89

4.6.4 Semantic Web Publishing Framework 89

4.7 Federation Scenarios . 91

4.7.1 FLOSS Federation . 92

4.7.2 EC IST Federation . 92

4.7.3 FLOSS Signature Recovery 93

4.7.4 EC IST Signature Recovery 95

4.8 Summary . 97

5 Evaluation 99

5.1 Semantic Web Evaluation . 99

5.1.1 Semantic Web Performance 100

5.1.1.1 Data Models . 100

5.1.1.2 Storage . 101

5.1.1.3 Querying . 102

5.1.1.4 Query Performance 105

5.1.2 Federation . 106

5.1.2.1 Federated Scenario Performance 109

5.1.3 Security . 112

5.1.3.1 SWP Performance 112

CONTENTS ix

5.1.3.2 DP Instances . 113

5.2 Logic Evaluation . 114

5.2.1 Differences . 114

5.2.2 Application Domains . 116

5.2.3 Inference Performance . 117

5.2.3.1 DL . 117

5.2.4 Rule Language Standardisation 121

5.3 Document Provenance Evaluation 122

5.3.1 Ontology Design . 122

5.3.2 Expressiveness and Complexity 123

5.3.2.1 Ontology Interaction 124

5.3.3 Temporal Restrictions . 126

5.3.4 Provenance Mechanism . 126

5.4 Research Evaluation . 127

5.4.1 Trusted Metadata . 128

5.4.2 Federated Collaboration . 128

5.4.3 Semantic Inferencing . 129

5.5 Summary . 130

6 Summary 131

6.1 Self Evaluation . 133

6.1.1 RDF Canonicalisation . 134

6.1.2 Trust . 135

6.1.3 Performance . 135

6.1.4 Achievements . 136

6.2 Related Work . 137

6.2.1 Provenance Frameworks . 137

6.2.2 RDF Digital Signatures . 138

6.2.3 Semantic Knowledge Federation 139

6.3 Future Work . 139

6.3.1 Architectural Improvements 139

6.3.1.1 GRIA . 139

6.3.1.2 Maven 2 . 140

6.3.2 RDF Digital Signature Improvements 140

6.3.3 Ontology Extensions . 141

6.3.3.1 Advanced Software Project Management 141

6.3.3.2 Intellectual Property Rights Management 141

6.3.4 Logic Extensions . 141

6.3.4.1 Non-monotonic Reasoning 141

6.3.5 Federation Extensions . 142

6.3.5.1 Process-based Workflow 142

6.3.5.2 SPARQL Query Protocol 142

6.3.5.3 Natural Language Processing 143

6.3.6 Performance Enhancements 143

x CONTENTS

6.4 Conclusions . 143

A 145

A.1 Document Provenance Ontology . 145

B 163

B.1 Instance Examples . 163

B.2 DP . 163

B.3 DOAP . 167

B.4 Simple Java Ontology . 170

C 173

C.1 Canonicalisation Examples . 173

C.1.1 The WordNet Ontology . 173

C.1.1.1 TriG-Serialised RDF Graphs 174

C.1.1.2 Comparison to nauty 177

C.1.1.3 Summary . 180

C.1.2 The Petersen Graph . 180

C.1.2.1 Carroll’s Algorithm 181

TriG-Serialised RDF Graphs 181

C.1.3 Nauty . 188

C.1.3.1 Setup . 188

D 193

D.1 Federation Scenario Inference Rules 193

D.1.1 FLOSS Signature Recovery 193

D.1.1.1 FLOSS Recovery Report 196

D.1.2 EC IST Signature Recovery 197

D.1.2.1 IST Recovery Report 198

Bibliography 201

List of Figures

2.1 Example reified statement, taken from RDF Semantics Recommen-
dation . 27

2.2 Reified Statement with Additional Arbitrary Triples 27

2.3 RDFStore Contexts . 28

2.4 Example TRIPLE Syntax with Dublin Core 28

2.5 Example functional property, taken from the OWL Guide 30

2.6 An RDF Graph . 38

2.7 An RDF Triple . 38

3.1 Semantic Web Stack by Tim Berners-Lee. 55

3.2 Latest Version of the Semantic Web Stack. 57

3.3 A Fully Labelled RDF Graph . 60

3.4 Partially Labelled RDF Graph . 61

3.5 A Petersen Graph . 61

4.1 Document Provenance Ontology - OWL sub-language OWL DL,
expressivity SHIOF (D) . 69

4.2 Expanded Document Provenance Ontology 73

4.3 Friend of a Friend Ontology . 73

4.4 Description of a Project . 74

4.5 Simple Java Ontology . 75

4.6 Self-Referencing and Cross-Referencing Named Graphs 77

4.7 Version Control using DP . 78

4.8 DP with Digital Signatures . 80

4.9 Comprehensive Canonical RDF Workflow 81

4.10 Document Provenance Ontology Decomposition 85

4.11 Online Collaborative Tool Architecture 86

4.12 Online Collaboration Tool Interface 87

4.13 Semantic Web Publishing Ontology 90

4.14 Warrant Graph Including Digital Signature 91

4.15 FLOSS Federation Scenario . 93

4.16 EC IST Federation Scenario . 94

4.17 IST Warrant Graph that includes source project 95

4.18 FLOSS Signature Recovery Scenario 96

4.19 EC IST Signature Recovery Scenario 97

xi

xii LIST OF FIGURES

5.1 NG4J Commit Performance using HSQLDB 101

5.2 Commit Performance using HSQLDB Native 102

5.3 Simple SQL Query . 103

5.4 Simple SPARQL SELECT Query, taken from latest SPARQL Work-
ing Draft, March 2007 . 103

5.5 Example SPARQL CONSTRUCT Query 104

5.6 Example SPARQL ASK Query . 104

5.7 SQL Select * . 105

5.8 SQL Select DP Instance . 105

5.9 SPARQL Select . 105

5.10 HSQLDB Native SQL Query Performance 106

5.11 NG4J HSQLDB SPARQL Query Performance 106

5.12 SPARQL query on DOAP description 107

5.13 SPARQL ASK query used in federation scenarios 108

5.14 SPARQL DISTINCT query used in federation scenarios 109

5.15 Federated Retrieve Document Metadata Performance 109

5.16 Federated Retrieve Document History Metadata Performance . . . 110

5.17 FLOSS Signature Recovery Performance 111

5.18 IST Signature Recovery Performance 111

5.19 Carroll’s Algorithm Performance . 113

5.20 SWP SHA1WithRSA Performance 114

5.21 Logic Expressivity . 115

5.22 Pellet OWL DL Performance . 118

5.23 Jena 2 OWL Micro Performance . 119

5.24 Jena 2 OWL Mini Performance . 120

5.25 Jena 2 OWL DL Performance . 120

5.26 OWL Memory Performance . 121

C.1 WordNet NounWordSense Class Labelled Graph. 174

C.2 WordNet NounWordSense Class Graph A 177

C.3 WordNet NounWordSense Class Graph B 179

C.4 Common Petersen Graph Representation 180

C.5 Petersen Graph with Two Crossings 181

D.1 FLOSS DOAP inference . 194

D.2 FLOSS check author inference . 195

D.3 FLOSS list local author commits 195

D.4 Example FLOSS Recovery Report 196

D.5 IST DOAP inferences . 198

D.6 IST check author inferences . 199

D.7 IST recommendation inferences . 199

D.8 Example IST Recovery Report . 200

List of Tables

2.1 Comparison of Rule Language Approaches 33

4.1 dp:Document Constructs . 71

4.2 dp:Wikipage Constructs . 72

4.3 dp:Person Constructs . 72

5.1 Imported Ontology Complexity without Modification 125

5.2 Imported Ontology Complexity after Modification 125

xiii

Acknowledgements

I owe considerable thanks to Dr. Denis Nicole for his enthusiasm, thoughts, opin-

ions and supervision during my research as well as feedback on my thesis. I would

like to thank Dr. Jeremy Carroll for inspiring me to develop an RDF digital sig-

nature mechanism based on Named Graphs. Chris Bizer and Richard Cyganiak

also deserve special thanks for their encouragement and support as well as for

accepting my RDF digital signature implementation into NG4J.

The drafting of this thesis was made possible by the Ecletex LATEX2ε Eclipse plu-

gin by Ian Hartney. I have found this plugin extremely useful and thank Ian for

taking the time to write it. I also thank Dr. Steve Gunn for his ECS LATEX2ε Post-

graduate Thesis style class and BibTEX style.

Family members have been a significant source of morale during both my research

and write up. I would like that thank both my mum, Rae Watkins and my sister,

Rebekah Watkins for not only checking my thesis for hideous split infinitives which

I am rather fond of, but also the odd hyperbole.

Last but not least I would also like to thank my wife, Junjie Watkins, for her

constant support.

xv

To my wife, who is the sunshine in my life.

xvii

Chapter 1

Introduction

1.1 Distributed Systems and the Birth of the

Web

Over the past twenty years, distributed systems have matured from government

and university-run research projects over bespoke and incompatible communica-

tion protocols to interoperable, open standard (TCP/IP)1 and scalable archi-

tectures used in heterogeneous environments [Foster (2002)]. Much of this has

been due to the emergence of the World Wide Web (WWW), a global network

of servers connected using the HyperText Transport Protocol (HTTP) [Fielding

et al. (1999)].

Started as a way for scientists and researchers to access information efficiently

at the European Organisation for Nuclear Research (CERN), Professor Sir Tim

Berners-Lee [Berners-Lee (1989)]2 and contributors have developed the WWW

[Berners-Lee (2000)] from a small project into a global communication system

used for everything from online web logs, so-called blogs [Fujiki (2005)] and secure

e-commerce websites3, to advanced distributed systems based on the eXtensible

Markup Language (XML) [Bray et al. (2004)]. Current research on the WWW

has been expanded to investigate the use of knowledge representation languages

in the form of the Semantic Web.

1http://faqs.org/rfcs/rfc793.html.
2Professor of Computer Science, Intelligent Agents and Multimedia Group, School of Elec-

tronics and Computer Science, University of Southampton.
3For example, http://ebay.co.uk and http://www.amazon.co.uk, two of the few companies to

survive the dot-com bubble [Chapman (2003)].

1

2 Chapter 1 Introduction

1.1.1 The Semantic Web

The Semantic Web [Berners-Lee et al. (2001)] is an attempt to enrich the cur-

rent and future content of the WWW with standards-based semantic markup

where resources can be aggregated and reasoned about using languages such as

the Resource Description Framework (RDF) [Klyne and Carroll (2004)] and ex-

pressive Description Logic (DL) [Nardi and Brachman (2002); Calvanese and Gi-

acomo (2003)] languages, for example, sub-languages of the Web Ontology Lan-

guage (OWL) [Bechhofer et al. (2004)]. The Semantic Web is designed to be

layered on top of the existing WWW and not as a replacement. The advantage

of ontology-based semantic markup is seen as a way to achieve interoperability

between different problem domains, in a machine readable manner. Different soft-

ware agents are able to aggregate information from various sources, then use DL

tools to increase their own knowledge-base [Berners-Lee et al. (2001)]. OWL-

S [Martin et al. (2005)] is a good example of semantic annotation increasing in-

teroperability with some users even developing methods for additional web service

descriptions using domain ontologies [Sabou et al. (2005)]. We envisage that as

semantic information increases on the WWW, so will interoperability and inter-

domain understanding.

There are doubts, however, as to the suitability and potential benefits of the

Semantic Web to developers and users. Unlike Relational Database Management

Systems (RDBMS), which are fairly mature and widely deployed, the use of DL

in any real application is severely limited beyond academia. Some researchers

believe the Semantic Web and DL to be no better than Prolog and other past-

generation Artificial Intelligence (AI) approaches. A thorough investigation of DL,

its comparative advantages in a real world problem domain would be advantageous

for future research.

1.2 Research Motivation

Current Open Source version control repositories, such as Subversion (SVN) [Collins-

Sussman et al. (2004)], Git4 and GNU Arch [Moffitt (2004)], provide frameworks

that track the evolution of documents, managing them in logical structures such as

projects and releases. Such systems have matured over the past decades to include

management techniques such as branching and merging, versioning of metadata,

4http://git.or.cz/.

Chapter 1 Introduction 3

and even limited cryptographic validation. While older systems relied on custom

protocols, the vast majority of newer repositories are accessible with standardised

protocols such as HTTP or WebDAV, and use relational databases to optimise

performance. Despite all this, these frameworks lack critical features necessary for

effective auditing and management in distributed software development.

1.2.1 Server Integrity

SVN, which claims to be more advanced and reliable than its predecessor, CVS,

still maintains a trusted server model. Developers will generally trust the server to

adequately protect the underlying files and metadata from modification, malicious

or otherwise. While this is relatively safe in within a single trusted domain (cor-

porate Intranet), it is inherently problematic when considering an inter-domain

deployment across insecure networks (Internet).

In an inter-domain deployment it is inadequate to rely on the provenance of the

server itself; once an attacker has access to the machine hosting the repository,

the repository as a whole is no longer reliable. Server logs, metadata, and files

can easily be modified since integrity is not part of the underlying system. Free

Open Source software repositories such as Source Forge5 act as centralised hubs

for software development to a point where trust in the hoster and thus server is

implicit rather than explicit.

1.2.2 Audit Logs

Audit logs are an important component in maintaining computer security, espe-

cially in a truster server model. Audit logs can be used in several ways, including6:

• Accountability

• Reconstruction

• Intrusion Detection

• Problem Detection

5http://www.sourceforge.net/.
6http://itmanagement.earthweb.com/columns/article.php/3578916/.

4 Chapter 1 Introduction

Care must be taken with what is recorded to support the above business processes

as well as the measures taken to maintain the security and integrity of audit

logs. Schneier and Kelsey (1999a,b) also note the importance of audit log security,

suggesting the use of a Public Key Infrastructure (PKI) [Rivest et al. (1978)] for

maintaining the confidentiality and integrity of audit logs.

The vast majority of version control systems keep log files as records in the event

something goes wrong during operation. SVN keeps log messages in repositories

as properties of a revision which can be modified (by an administrator) at a later

date. Such properties are known as unversioned properties ; modifications overwrite

previous values permanently.

If it is possible for an administrator to modify unversioned properties in a trusted

server environment, then SVN logs cannot be used to audit repositories for mali-

cious behaviour after the server has been compromised. It is possible for authorship

information to be manipulated, leading to a loss of accountability, while the modi-

fication of timestamps make reconstruction and intrusion detection more difficult.

This means that users cannot rely on the provenance of the server since there is

no way to verify the integrity of the metadata recorded by the server.

1.2.3 Management

Management in version control can take many forms; developers can perform sim-

ple functions such as branching, merging, expunging deprecated or refactored files

from a repository. Administrators typically perform backups, manage access and

fix faults in the event of repository failure. The tools that support this function-

ality are, at best, version control system dependent (command line tools), and at

worst data storage dependent (database or files). Data storage is a particular con-

cern since in the event a repository’s metadata becomes corrupted. SVN amongst

others use a proprietary metadata format that cannot be easily copied without

special tools to read a database (Berkeley DB) or a set of files (SVN FSFS).

Along with metadata portability issues, there are issues that relate to useful statis-

tics that can be curated from a software repository. Project managers should be

able to get an overview of the repository and have facilities that warn when pat-

terns of behaviour in commits reveal problems in the software development team.

Source Forge, a popular Open Source Software project host provides trivial statis-

tics of hosted projects based on CVS and SVN commit activity; however, these

Chapter 1 Introduction 5

features are part of Source Forge software system, not the underlying version con-

trol systems and therefore host dependent. The RDBMS-level provides a certain

amount of functionality for queries using SQL, however, such queries cannot infer

new knowledge based on existing information. More complex pattern recognition

is only possible with algorithms used in rule-based systems and neural networks.

Rule-based logic languages such as Prolog and Logic Programming [Nilsson and

Mabarluszyǹski (2000)] offer one approach to the curation of new knowledge. Such

logics are, however, known in general to be undecidable. Description Logics, on

the other hand, are decidable [Smith et al. (2004)] and are thus uniquely placed

between relational databases and Prolog in terms of expressivity and computa-

tional completeness. Decidability is held by Tim Berners-Lee [Berners-Lee (2001)]

to be an important feature of the Semantic Web.

When software development is distributed between organisations, curation of statis-

tics becomes more difficult. Repository federation would allow project managers

to discover new knowledge across organisation boundaries. This information could

be used to help improve the performance of the software development lifecycle by

removing inefficient business processes discovered during federation. While many

RDBMSs can be accessed remotely, most version control systems do not permit

remote access to repository metadata; the result of this is that it is not possible

to federated multiple repository sources.

1.3 Research Statement

The purpose of this thesis is to investigate new and novel strategies to improve

version control in distributed software development. Firstly, we consider the use of

Semantic Web technology as an alternative to the traditional relational database

used in Subversion. The merits of using Semantic Web technology as a viable

substitute to Subversion should be based on the ability to federate knowledge, the

need to explicitly not implicitly trust servers, interoperability with other Semantic

Web data structures, and new facilities that are beneficial to developers.

Secondly, we want to discover whether we can reliably bind provenance to source

knowledge contained within a semantic version control repository and use it to

infer new knowledge. While Description Logic is in principle a stronger reasoning

logic than SQL, there is a need to clarify exactly how useful it is in practical

applications that go beyond type classification and consistency validation.

6 Chapter 1 Introduction

As realistic examples of the types of use of version control systems we have con-

sidered two distinct approaches of distributed software development: Free, Li-

bre, Open Source Software (FLOSS) [DiBona et al. (1999, 2005)] development

and European Community (EC) Information Society Technology (IST) Frame-

work projects [EC-IST (2006b,a)]. Both types of software project development

are useful as case studies since they differ in their philosophy, motivation, fund-

ing, management, organisation, and involvement of industry amongst other con-

siderations. These differences are reflected in the way developers develop soft-

ware and use version control systems. IST projects invariably include industrial

partners keen to gain early access to experimental technology and are, therefore,

concerned with Intellectual Property Rights (IPR) [Gowers (2006); Miller and

Davis (2000)] and licencing issues; project partners are likely to restrict access to

version control repositories without Non-Disclosure Agreements (NDA) between

third-parties [UKPO]. FLOSS projects take a more liberal philosophy, relying on

the community to supply developers to improve software. FLOSS projects unless

sponsored by industry tend to progress sporadically on a best effort basis, with

core developers committing to a common repository; the general public can, in

general, have read access to the repository. A common example where the FLOSS

approach has succeeded is the GNU7/Linux Kernel8 and X.org X Window Sys-

tem9 [Scheifler and Gettys (1996)]. A recent report by the European Commission

has also shown the FLOSS approach to save businesses money over time [Aigrain

et al. (2006)].

The premise behind using the Semantic Web in version control is that although it is

an emerging technology, it is based on well established logics, including Description

Logic, that provides a suitable semantic foundation. Its semi-structured design,

based firmly around RDF syntax [Klyne and Carroll (2004)] and semantics [Hayes

(2004)], means that Semantic Web data structures are extremely flexible, and

more importantly, can be easily merged with other RDF data sources. Graph

merging becomes important when we consider the potential of federating the data

sources of multiple software repositories, something not currently possible with an

RDBMS.

Knowledge federation and ontology reuse are crucial aspects of Semantic Web

development, both being considered best practice. Ontology reuse is important

because to define a new ontology does not help in shared understanding across

7GNU is not UNIX R©.
8http://kernel.org/.
9http://x.org/.

Chapter 1 Introduction 7

problem domains; by leveraging existing work, the semantic content of a system is

immediately accessible to tools built for pre-existing ontologies. It then becomes

straightforward to federate knowledge scattered over the Semantic Grid [Roure

et al. (2003)]. Ontologies including Dublin Core [Watanabe (2001)], Friend of a

Friend (FOAF) [Miller and Brickley (2004)], and Description of a Project (DOAP)

[Dumbill (2004)] are popular ontologies that can be trivially extended.

Our ontology work has leverages existing, popular OWL-based ontologies to in-

troduce a minimal set of extensions to track the provenance of documents. This

Document Provenance (DP) ontology forms part of our approach to recording

provenance. The ontology acts as a flexible version control model, based on Delta-

V [Whitehead (2001); Hunt and Reuter (2001)]. Rather than taking a typical

logging approach found in most version control systems where logs are separate

from version metadata, accessible only on the server, and only side-effects of the

commit process, DP takes a more open approach, representing version and log

information in a single RDF graph that can be remotely queried using RDF query

languages such as RDQL [Seaborne (2004)] or SPARQL [Prud’hommeaux and

Seaborne (2007)]. The information contained in the DP graph includes readily ex-

tractable from the source code document being placed under version control. It is

important that the information represented in the DP graph is sufficient to recon-

struct the commit event, e.g., include the who, when, what, where, why provenance

of the commit.

The second part of our approach to recording provenance is the ability to create

relationships between RDF graphs which becomes necessary to facilitate intrusion

detection and enforce accountability. We have used Named Graphs [Carroll et al.

(2005)] to label RDF graphs, create relationships between graphs, and hence make

provenance statements. While simple statements using this provenance mechanism

might include the assertion of authorship, such assertions can be modified quite

easily due to the flexible nature of RDF [Watkins and Nicole (2006)]. A more

robust method of assertion of authorship should include a digital signature [NIST

(1993)] that signs over all RDF in a commit. A digital signature guarantees

the integrity of the signed data; any modification of the data would break the

signature and thus show intrusion in the repository server. Developers are made

accountable for their actions during commits, because digital signatures support

non-repudiation [McCullagh and Caelli (2000)]. A developer cannot deny creating

the digital signature since each signature is uniquely linked to the private key that

made it; as such it is impossible to fake a digital signature with a different private

key. Authorship of a digital signature also provides IPR attribution; coupled with

8 Chapter 1 Introduction

non-repudiation, a developer can prove that they hold the IPR on a particular

document.

Digital signatures are an important component in our approach to provenance and

version control. Digital signatures and non-repudiation are the first steps to trust

on the Semantic Web10. By making developers sign metadata that enforces ac-

countability, the developer becomes a stakeholder in the integrity of the software

repository. The fact the developer is an active participant in the generation of

metadata for the commit process means the information recorded by the server

cannot be considered logging as is the case with SVN. While confidentiality of

metadata is an important issue, encryption will hamper the federation of reposi-

tories; digital signatures pose a unique challenge on the Semantic Web since RDF

does not have a canonical form (see Section 3.4).

It is important to note that our approach to trusted collaboration does not rely

on any form of trust metrics [Golbeck and Hendler (2004a); Bizer et al. (2005b)],

which we consider beyond the scope of our research. Instead, our use of PKI is

based upon well established business-to-business (B2B) trust relationships through

the use of standards such as SSL/TLS and WS-Security.

As a practical example of how our research improves version control in software

development, we developed a client/server-based Web application that acts as an

online collaborative tool. Our tool takes advantage of a WikiWikiWeb [Leuf and

Cunningham (2001)] interface that makes for simple annotation of developer cre-

ativity. Our system automatically generates a single wikipage per file (Class); these

can easily link to and from pages devoted to more generic ideas. Each wikipage

provides hyperlinks between packages and classes to support routine navigation.

This and other information is automatically parsed from JavaTM source codes. We

have enhanced the JSPWiki11 implementation to track online resources kept in a

WebDAV [Whitehead, Jr. and Goland (1999); Goland et al. (1999)] repository

and, more importantly, added a SPARQL interface for distributed data federation

based on the GRIA grid middleware. We have developed federation scenarios that

show how our online collaborative tool goes beyond the capabilities of the RDBMS,

and includes an inference mechanism to help in metadata integrity recovery.

To maintain compatibility with browser-based clients, we have built a small JavaTM

applet to facilitate secure signing of the metadata in a browser environment, in-

cluding secure hashes of source files [Watkins and Nicole (2005a)]. This applet

10Available at http://www.w3.org/2000/10/swap/doc/Trust.html.
11http://www.jspwiki.org/

Chapter 1 Introduction 9

digitally signs RDF [Carroll (2003)] and stores the result in a Named Graph, and

thus validates inputs and detects corruption in the knowledge-base. Our work on

RDF digital signatures is now a core component of the Semantic Web Publishing

framework (SWP), which is an extension to the Named Graphs for Jena (NG4J)

[Bizer et al. (2005a)] project12.

As part of the evaluation of our implementation we created several federation

scenarios that explore trusted data federation to show the value of the Semantic

Web beyond OWL entailment. Performance experiments were also conducted

to determine the extent to which Semantic Web technology lags behind native

RDBMSs. Results from these experiments show that the performance of Semantic

Web technology is considerably less than a modern RDBMS (HSQLDB). This

is in part due to the immaturity of available tools, and crucially, support from

commercial companies. Despite this, the fact that our federation scenarios have

been implemented using Semantic Web technology is important since it opens up

access to the software repository for more complex analysis, something not possible

in RDBMS-based systems.

The original contributions of this thesis lie in three main areas. Firstly, our inves-

tigation to determine the viability of using DL as the basis for a version control

system rather than an RDBMS. Secondly, the successful binding of trusted prove-

nance to source knowledge using Named Graphs that can be subsequently reasoned

over, published in Watkins and Nicole (2006). Thirdly, the development of an on-

line collaborative tool that enables distributed collaborative software development,

published in Watkins and Nicole (2005a) and Watkins and Nicole (2005b). This

tool further supports two different case studies with a set of federation and digital

signature recovery scenarios.

1.4 Thesis Structure

Chapter 2 provides a background review of important topics and technologies

used in this thesis, including relational database management systems, current

grid technology, public key cryptography, Semantic Web technologies, and the

concept of the WikiWikiWeb. Chapter 3 describes our case studies and goes on to

analyse the potential benefits of using Semantic Web technology as an alternative

to the RDBMS, based on our case studies, and our motivation for RDF digital

12http://ng4j.sourceforge.net/.

10 Chapter 1 Introduction

signatures. Chapter 4 details our design choices for our online collaborative tool

and its implementation. Chapter 5 evaluates our research based on quantitative

and qualitative results. We conclude in Chapter 6 with a self-evaluation and list

our key achievements.

1.5 Declaration

This thesis is based on work done by the author within a collaborative research

environment. It is all original work by the author unless explicitly stated otherwise.

Chapter 2

Background

This chapter gives a brief overview of research topics that are relevant to this the-

sis. These topics cover a broad range of disciplines in Computer Science, including

version control, database technologies, grid middleware, cryptography, web tech-

nologies and formal logics.

2.1 The WikiWikiWeb: Lightweight Collabora-

tion

In the past, online collaboration was either via email or static web pages that had

to be updated manually. Dynamic webpage generation with the PHP Hypertext

Preprocessor1 and Common Gateway Interface technologies not only improved

webpage design, but also allowed for content that could be stored in a backend

database. As a result we now have weblogs, online forums and the WikiWiki-

Web [Leuf and Cunningham (2001)].

The term “Wiki-wiki” is derived from the Hawaiian word for ‘quick’ [Taylor

(2003)]. The WikiWikiWeb’s creator, Ward Cunningham2 describes it as “the

simplest online database that can possibly work”. Modern relational database

management systems (RDBMS) for example, PostgreSQL3, provide recoverabil-

ity, transactions, and referential integrity. Perhaps it might be wiser to use an

RDBMS to store a Wiki’s content? We can describe the WikiWikiWeb as, “an

1http://www.php.net/.
2http://c2.com/cgi/wiki?WardCunningham.
3http://www.postgresql.org/.

11

12 Chapter 2 Background

interconnected collection of webpages that can be edited by anyone, at any time,

from anywhere”4. While Tim Berners-Lee argues web logs to be the realisation of

the read-write Web5, it can also be argued that Wikis are part of this future.

The WikiWikiWeb has become popular as a collaborative hypermedium due to

its simplicity. It is this collaborative [Gillmoor (2004)] philosophy that allows

multiple users to efficiently publish document-based material online. This means

user authentication is relatively rare; Ward’s original WikiWikiWeb does not im-

pose authentication restrictions. Frequently asked questions (FAQ), installation

instructions and other documentation are increasingly hosted on WikiWikiWebs.

Examples include the Free Desktop Project6, Wordpress7 to name but a few. May-

field (2003) has argued the case for commercial organisations to use WikiWikiWebs

for content management.

Because anyone can edit pages and add their own content, people gain a sense

of responsibility and a voice, which they might not have elsewhere8. This can

be a disadvantage when we consider malicious users9. The WikiWikiWeb, on the

whole, trusts its user base, allowing them to shape the way the WikiWikiWeb de-

velops. If we consider the free community built encyclopedia, Wikipedia10, we find

numerous definitions and articles from contributors all over the world, although

it lacks adequate mechanisms to control accountability and content quality. This

problem has been noted and argued over in recent years and is summarised in

Mayfield (2004b). Indeed, librarians and reporters such as Fasoldt (2004), and

online commentators like Ito (2004) have discussed the trustworthiness and va-

lidity of Wikipedia’s contents. They all agree that it is not a source to use with

confidence; even Wikipedia acknowledges that it is not an authoritative source

of information11. Confidence in the source of a definition or article is what most

people want. Commercial encyclopedias, like Encyclopedia Britannica, provide

this assurance; Wikipedia does not.

Lack of trust and accountability in the WikiWikiWeb context can be alleviated by

registering users who contribute content. In the case of Wikipedia, users are

encouraged to register for reasons of intellectual property management. This

4Wiki Getting Started FAQ, http://c2.com/cgi-bin/wiki?WikiGettingStartedFaq.
5http://news.bbc.co.uk/1/hi/technology/4132752.stm.
6http://www.freedsktop.org/.
7http://www.wordpress.org/.
8http://c2.com/cgi/wiki?WhyWikiWorks.
9http://c2.com/cgi/wiki?WhyWikiWorksNot.

10http://www.wikipedia.org/.
11http://en.wikipedia.org/wiki/Wikipedia:General disclaimer.

Chapter 2 Background 13

does not necessarily improve the quality of content; users can, however, be made

more accountable by other users who might review their contribution. Neither

does it completely inhibit those determined enough to undermine the purpose of

Wikipedia [Davis (2006); Frommer (2006)]. Moves by the Wikimedia Foundation

as reported by Mayfield (2004a) towards a printed edition of Wikipedia have had

to consider the introduction of a formal editorial process prior to publication.

Despite criticisms of high profile examples of the WikiWikiWeb it is clearly a

powerful tool that is causing much debate. Its collaborative capabilities, while

informal in nature, nonetheless show promise in both the public domain and

business.

2.2 Technology

2.2.1 Relational Database Management Systems (RDBMS)

The Relational Database Management System (RDBMS) is a class of database

management systems based on relational model theory by outlined by Codd (1970,

1990). An RDBMS presents data to the user as relations as well as providing a

set of operators to manipulate the data. More complex queries can be performed

on an RDBMS using standardised query languages such as the Structured Query

Language (SQL) [Chamberlin and Boyce (1974)].

One of the novel features of the RDBMS is the ability to be accessed remotely

with many Open Source and commercial RDBMS implementations follow the clien-

t/server model. While remote access is desirable in enterprise environments, there

are issues with security and concurrent access. The vast majority of RDBMS im-

plementations support some kind of discretionary and mandatory access control

mechanisms [Krause and Tipton (1998)], together with advanced transaction sup-

port [X/Open-Group (1992)]. MySQL12 and PostgreSQL13 are arguably the most

successful Open Source RDBMS products.

12http://www.mysql.com/.
13http://www.postgresql.org/.

14 Chapter 2 Background

Other RDBMSs are said to be embedded, i.e. the database is internal to the

application accessing it. Popular examples of embedded RDBMSs include Oracle

Berkeley DB14, SQLite15, HSQLDB16 and Apache Derby17.

2.2.2 Version Control Systems

Version control systems provide a formal and structured approach to handling

how documents change over time. Documents under version control each have

a history of all changes made. In the event something goes wrong in the build

process, developers can revert to previous versions in a version control repository

that are known to work. While designed by and for programmers, version control

systems are not limited simply to source code; it possible to place any files under

version control.

2.2.2.1 Concurrent Versioning System

The Concurrent Version Control System (CVS)18 is one of the most well known

source code management systems to date. Still used in hundreds of Open Source

projects, it is capable of simple, yet efficient version control. It replaces the con-

servative locking strategy of RCS with an optimistic strategy of merging clashes

and changes.

CVS supports basic operations such as version branching and merging in a local or

client/server environment. Both text and binary files can be placed under version

control; text files hold the changes between each version on the same file. The

repository does not use an RDBMS.

2.2.2.2 Subversion

Subversion (SVN) aims to be a “compelling replacement for CVS.”19 Subversion

improves on CVS by versioning not only files but also directories, meta-data, copy

and rename information. Commits to the repository are truly atomic so that the

14http://www.oracle.com/database/berkeley-db.html.
15http://www.sqlite.org/.
16http://hsqldb.org/.
17http://db.apache.org/derby/. Originally developed as IBM Cloudscape.
18http://www.nongnu.org/cvs/.
19http://subversion.tigris.org/.

Chapter 2 Background 15

entire commit must succeed for a commit to take effect. SVN supports two types of

repository data stores: Berkeley DB and FSFS20. Berkeley DB requires file locking

and should therefore not be used on file systems that do not support them, e.g.,

NFS.

FSFS is Subversion’s file-based data store. FSFS approach appears to be a step

back to CVS rather than something more revolutionary. Developers claim SVN

to be more scalable, however, it appears to be rather similar to CVS, the only

difference being the use of standardised interface. It might have been more suitable

for the developers of SVN to have used MySQL or similar as a robust and scalable

data store alternative.

Another important difference between CVS and Subversion is that Subversion

has taken some effort to support W3C standards such as WebDAV for access to

Subversion repositories.

2.2.2.3 Git

Git21 is a “directory content manager” design to handle very large projects like

the Linux kernel22 [Loeliger (2006b,a)]. Git falls into the category of distributed

source code management, similar to Arch and Darcs.

Git uses two different persistent storage formats based on bandwidth availability,

known as packed and unpacked storage. Version histories use an directed acyclic

graph (DAG) structure so that long-lived branches and repeated merging become

more simple to perform. Both GNU Arch and Darcs have taken some of the core

concepts from Git and integrated them for future releases.

2.2.2.4 GNU Arch

GNU Arch23 is a version control system for distributed source code management. It

claims to be easy to use and geared towards Open Source development, including

GNU/Linux Kernel development. GNU Arch and Git share similar aims, since

20http://web.mit.edu/ghudson/info/fsfs/. Not to be confused with the Fast Secure File Sys-
tem (FSFS), available at http://fsfs.sourceforge.net/.

21http://git.or.cz/.
22http://www.kernel.org/.
23http://www.gnu.org/software/gnu-arch/.

16 Chapter 2 Background

the public domain became aware that kernel developers were using BitKeeper24,

a proprietary version control system, for kernel development.

2.2.2.5 Darcs

Darcs25 takes a different approach to other version control systems, claiming to

base itself on the fundamentals of quantum mechanics. Instead of files being stored

and versioned on a remote server, patches similar to diff26 files are versioned and

re-applied to files contained on the local file system. This approach is known as

the theory of patches27 [Roundy (2006)]. Darcs theory of patches concept only

works at the syntactic level, it is not able to track semantic changes to code.

2.2.3 Service Orientated Architecture and Web Services

Service Orientated Architecture (SOA) [Erl (2005)] is an implementation-agnostic

distributed systems paradigm significantly different from earlier distributed object

systems such as Sun Microsystems’ Remote Procedure Call (RPC). SOA keeps

the client and service as loosely coupled as possible without impairing communi-

cation. Web services in particular exemplify this approach with Simple Object

Access Protocol (SOAP), an XML protocol. SOAP is one of the most widely

used standards adopted for Web Service interoperability and overcomes the class

dependency problem found in distributed object systems in several ways:

• Only supports interfaces taking published, possibly composite, datatypes

• Abstraction from underlying transport

• Provides a standard schema language (WSDL) for signatures of functions

• Extra wrapper information in SOAP envelope (for intermediaries)

While SOAP has been accepted as an industry standard, there are those who

believe it to be cumbersome and over-complicated and advocate a less abstract

and unlayered approach that is directly tied to HTTP, that restricts methods on

24http://kerneltrap.org/node/[4966, 444]/.
25http://darcs.net/.
26DiffUtils, http://www.gnu.org/software/diffutils/diffutils.html.
27http://darcs.net/DarcsWiki/WhyYouWantPatchTheory.

Chapter 2 Background 17

documents to those provided by HTTP implemented as CRUD (Create Retrieve

Update Delete) semantics. This is known as the ReST approach.

Representational State Transfer (ReST) is an alternative approach to web service

design that uses a small fixed set of untyped methods, found in HTTP [Fielding

(2000)]. ReST can be seen as a distributed object system, however, it avoids the

class dependency problem of RPC by having only one class, the Document. ReST

advocates resources represented by Universal Resource Identifiers (URI). Data is

commonly encoded as parameters in a URI, for example:

http://example.org/ReST/Shop?type=car&order=ascending

Typing the above URI in a browser would typically use the HTTP GET method,

whilst sending data in a web form would use POST. The server might then perform

a database lookup and return the contents of that URI back to the browser. The

importance of the ReST approach to web service design is that data is sent to a

URI, transformed, then returned.

More recently, Grid frameworks have begun to reap the benefits of advances in

SOA and Web Service technologies, including WS-Security, WS-Addressing, WS-

Policy, WS-SecurityPolicy, etc.. As web services do not pass objects a mechanism

has to be found to represent instances (conversations) if we wish to allow for

stateful services. WS-Addressing [Box et al. (2004)] is an attempt to identify

web service endpoints and conversations. The service passes an opaque object

reference (conversion identifier) to the client which can only be resolved by the

service. It is vital that the opaqueness of the reference is maintained.

Several Grid frameworks make use of several WS-* standards and drafts28. These

include the WSRF [Czajkowski et al. (2004b); Foster et al. (2005); Humphrey

et al. (2005)], as well as many DTI29 and EC projects30 such as the Open Mid-

dleware Infrastructure Institute (OMII)31 and Grid Resources for Industrial Ap-

plications (GRIA)32. Other researchers in this domain have begun enriching grid

and web service technology with the Semantic Web to develop semantic grid ser-

vices [Roure et al. (2005)]. All these systems are open source, and most conform

to published standards; interoperability is, nonetheless, problematic.

28The vast majority of these specifications remain as drafts.
29http://www.dti.gov.uk/.
30http://www.cordis.lu/ist/.
31http://omii.soton.ac.uk/.
32http://www.gria.org/.

18 Chapter 2 Background

2.2.4 The Grid

The Grid is an emerging computing model for high throughput computing in het-

erogeneous networks. Using a set of open standards and protocols it enables access

to disparate resources whether they be processing power, data, or storage capac-

ity. In many ways the grid is a new type of parallel and distributed system that

can take advantage of commodity off-the-shelf components and uses middleware

to coordinate the allocation of resources.

2.2.4.1 Globus Toolkit

The Globus Toolkit [Foster and Kesselman (1997)] is the main product of this re-

search, a collection of software services and libraries which are supposed to allow

organisations around the world to build computational grids and develop applica-

tions that are described as “grid enabled”, that is to say, usable in a grid environ-

ment. Like UNICORE, it uses a Public Key Infrastructure (PKI) for security and

authentication, although in a less standard manner33.

Since there are many technical challenges with respect to the development and

deployment of computational grids the Globus Project has focused on the following

research areas to satisfy its aims:

• Resource Management

• Data Management and Access

• Application Development Environments

• Information Services

• Security

It is important to note here, that earlier versions of Globus (2.x) did not support

Business-to-business (B2B) applications. This was partly due to Globus’ architec-

ture that relied on conventional sockets and LDAP-based distributed computing,

coupled to an ad hoc job submission language and the novel use of “Proxy Certifi-

cates” to support personalisation in a modified X.509 environment. Modern grid

service architectures, based on web services are becoming popular to support B2B

applications as well as scientists and engineers.

33A non-standard Object Identifier (OID) is used to distinguish a Globus Proxy Certificate
from standard X.509v3.

Chapter 2 Background 19

2.2.4.2 Grid Services

The Open Grid Services Architecture (OGSA) defines the structure and standard

methods for a grid service as part of the Globus 3 development [Foster et al. (2002)].

Grid services, which build upon web services, can be advertised to applications and

users across the Internet and access through web browsers, enabling the processing

of data or problems remotely. Unlike regular web services, grid services have state.

The Open Grid Services Infrastructure (OGSI) [Tuecke et al. (2003)] is a specifi-

cation that implement OGSA capabilities with web services. It attempts to build

a distributed object model on top of web services and has now been abandoned.

It has since been superseded by the Web Service Resource Framework (WSRF) in

conjunction with WS-Notification [Czajkowski et al. (2004a)]. Three implemen-

tations of the WSRF exist, two written in Microsoft’s .NET Framework, using

C# [ECMA (2005)]; a third written in Java, intended to be the basis for future

releases of Globus (GT434).

WSRF.net A Microsoft .NET implementation of the WSRF, under active de-

velopment by University of Virginia Grid Computing Group [Wasson et al. (2003)].

It provides a container framework on which to do WSRF compliant grid computing

on the .NET Platform35.

MS.NETGrid Project Part of the UK eScience Initiative, the EPCC at Ed-

inburgh University have also developed an implementation of the OGSI as an

example of using .NET with Grid services [Byrne et al. (2003, 2004)]. Limited to

a single twelve month period (3rd March 2003 – 19 March 2004), the project has

released MS.NETGrid-OGSI Release 2.0 and made all deliverables available36.

Globus Toolkit 4.x As part of the on going development by its partners, the

Globus Alliance37 has released their latest version of the Globus Toolkit as an inde-

pendent implementation of the WSRF (previously OGSI) alongside a JavaTM im-

plementation of the still-popular 2.x GT.

34Globus Toolkit 4.0, http://www-unix.globus.org/toolkit/.
35OSGI.net, http://www.cs.virginia.edu/˜gsw2c/ogsi.net.html.
36Available at http://www.epcc.ed.ac.uk/˜ogsanet/.
37http://www.globus.org/alliance/.

20 Chapter 2 Background

2.2.4.3 Sun Microsystems’ Grid Engine

The Grid Engine is an open source community project aimed at increasing the

adoption of distributed computing solutions [Bulhoes et al. (2004)]. Based his-

torically on Genias’ Codine38 grid system, the Grid Engine’s purpose is to allow

uniform access to heterogeneous resources. While it describes itself as a Grid sys-

tem, it is not much more than an advanced batch processing system and has been

successfully used as a resource manager in GRIA.

2.2.4.4 Legion

Legion is a distributed system, developed at the University of Virginia, with the

view of being a massively disparate virtual computer. It is large scale system,

designed to tie together millions of hosts with high speed links. Users logged

into the system view this vast collection as a single computational entity, with

access to all kinds of data and physical resources connected to each participating

host. Users can work together as groups, with access to virtual “work spaces”.

Transparent access is achieved using Legion’s scheduling, data management, fault

tolerance, site autonomy, and several security options39.

2.2.5 EC IST Framework Grids

Several grid middlewares exist that have been funded under the EC IST Framework

Programme, Unit F240. Future grid projects in Framework 741 will be based upon

the recommendations of the Next Generation Grids Expert Group (NGG) [Group

(2006)].

2.2.5.1 GRIA

The Grid Resources for Industrial Applications (GRIA)42 was an EC IST FP5

project aimed at bringing grid middleware to business processes. Rather than con-

centrate on high-throughput computing, GRIA recognises the need for distributed

38http://cch.loria.fr/documentation/batch/GRD CODINE/.
39http://legion.virginia.edu/overview.html.
40Unit D3, Software & Service Architectures and Infrastructures in FP7.
41http://cordis.europa.eu/fp7/home en.html.
42http://www.gria.org/.

Chapter 2 Background 21

resource management, a distinct departure from the classic centrally managed

Virtual Organisation model in other grid middlewares. GRIA works on the basis

of bilateral Service Level Agreements (SLAs) between organisations and supports

federated access to resources meaning each organisation independently has control

over who is authorised access.

2.2.5.2 gLite

gLite43 is the Open Source grid middleware of the EC IST FP6 Enabling Grids

for E-sciencE project (EGEE)44. gLite follows the SOA approach that promotes

interoperability and aims to comply with emerging standards such as OGSA from

the Open Grid Forum (OGF)45. It is comprised of a set of core services that provide

basic functionality required by its users: security, information and monitoring, job

management and data services.

gLite has been extremely successful in EGEE-related projects (including EGEE-II)

to a point where there are an estimated 180 sites as part of the EGEE infrastruc-

ture46.

2.2.6 China Grid

China’s eScience programme has produced two significant grids: China Network

Grid (CNGrid)47 and China Resources Over Wide-Area Network (CROWNGrid)48.

European collaboration with China has seen the inclusion of CROWNGrid in the

OMII-Europe project, CROWNGrid and CNGrid in the OMII-China project, as

well as CNGrid in the EC IST FP6 Bilateral Research and Industrial Development

Enhancing and Integrating GRID Enabled Technologies (BRIDGE) project [Kalb

(2006)].

43http://www.glite.org/.
44http://eu-egee.org/.
45http://www.ogf.org/.
46http://en.wikipedia.org/wiki/Enabling Grids for E-sciencE.
47http://www.cngrid.org/.
48http://www.crowngrid.org/.

22 Chapter 2 Background

2.2.7 UK e-Science Projects

Many other national projects exist in the UK under the National e-Science Pro-

gramme49, sponsored by the Department of Trade and Industry (DTI)50. These

projects are supposed to be for the development of applications for a variety of

scientific disciplines using Grid technology. Several projects exist in Southamp-

ton (GEODISE51, myGrid52, CombeChem53, et al.). The Open Middleware Infras-

tructure Institute (OMII)54 [Atkinson et al. (2005)] builds on the work done on

GRIA (see Section 2.2.5.1) and various UK e-Science projects, including CombeChem.

2.2.8 Public Key Infrastructure

Authentication and general security are key problems to be addressed in Grid com-

puting. RSA-based55 [Rivest et al. (1978)] Public key cryptography is currently

an accepted method for standardising the behaviour and mechanisms that allow

Grid systems to authenticate users. While older systems like Kerberos [Neuman

and Ts’o (1994)] are still used on Windows and distributed file systems like AFS,

newer mechanisms that are now internationally standardised, like the Public Key

Infrastructure (PKI) and the SAML-based [Cantor et al. (2005)] Shibboleth56, are

being used for current projects.

A Public Key Infrastructure (PKI) describes the mechanisms and algorithms for

encryption, cryptography and digital signatures, based on public key cryptography

and how they maintain the following in terms of users and their data:

• Confidentiality.

• Authenticity.

• Integrity.

49http://www.rcuk.ac.uk/escience/.
50http://www.dti.gov.uk/.
51http://www.geodise.org/.
52http://mygrid.man.ac.uk/.
53http://www.combechem.org/.
54http://www.omii.ac.uk/.
55Rivest, Shamir and Adleman. In 1997 it came to light that GCHQ’s CESG Research

Group [Ellis (1987)] invented what is now know as the Diffie-Hellman key exchange protocol
and the RSA algorithm several years prior to their eventual re-discovery and publication in the
USA. Ellis (1970) only described the principle of non-secret cryptography, whilst Cocks (1973)
and Williamson (1974, 1976) described the practical aspects.

56http://internet2.edu/shibboleth/

Chapter 2 Background 23

• Non-repudiation (Inability to refute the creation of a message).

All the above features can be found within a public key infrastructure. Integrity

and confidentiality are especially important for secure Internet communication and

electronic commerce (e-Commerce).

Many PKI libraries are written in JavaTM, due to Java’s portability and acceptance

in the Grid community. There follows a list of popular implementations including

Sun Microsystems’ JavaTM Cryptography Extension (JCE)57.

2.2.8.1 Digital Signatures

Unlike digital encryption, digital signatures do not attempt to obfuscate the con-

tents of a message to maintain confidentiality; digital signatures are, in fact, used

to maintain the integrity of a message. In public key cryptography, the private

key is used to create the signature that can then be verified with the public key.

Verification signifies proof of ownership of the private key by the sender since only

the private key associated with the attached public key could have generated the

signature.

To make signing faster and cheaper no matter what size message, digital signa-

tures do not actually sign over the actual message, merely a representation of the

message, known as a digital digest. Digital digests are one-way operations that

produce a unique representation of a message. If the message is changed, so does

the digital digest. The success of a digital digest algorithm is based on its ability

to resist collisions ; instances where two different messages have the same digital

digest.

2.3 Provenance Frameworks

Traditionally, provenance charts the origin and history of an object, particularly in

the fine art world, and is key to associating value with an artwork. On its own, an

artwork may have intrinsic value rising from its beauty or utility; but with prove-

nance, intrinsic value can be increased by several orders of magnitude. Provenance

for an artwork is asserted by the owner each time it is sold. Asserting authenticity

is one of two uses of provenance, which is in the service of the buyer of an artwork

57http://java.sun.com/products/jce/.

24 Chapter 2 Background

or reader of a rare book. The other use of provenance can be used to the detriment

of the buyer, placing obligations and constraints on them. Common examples of

this can be seen in the current generation of Digital Rights Management (DRM)

systems such as Apple’s Fairplay58 and RealNetworks’ Helix DRM59. Provenance

is not limited to fine art, books and consumer content; substantial research has

been done on the use of data and knowledge provenance as well as provenance in

SOA [Chen et al. (2005)].

2.3.1 Data Provenance

Buneman et al. (2001b, 2000) have done substantial work on data provenance

with regard to relational databases. This research concentrates on where data has

come from and why is it in a database. They use query inversion to compute

where provenance, until recently an untouched topic. myGrid continues much of

the work done in this area.

The myGrid project60 has developed Grid middleware to meet the needs of bioin-

formatics. In this domain, it is essential to be able to capture and manipulate

provenance information. The project takes provenance records from sources such

as the Freefluo61 workflow orchestration tool and uses an ontology to annotate

these provenance records for future analysis [Zhao et al. (2003, 2004b,a)]. Szom-

szor and Moreau (2003) and PASOA (2005) extend this work, exploring the need

for a complete framework for data provenance in Service Orientated Architectures

(SOA) [Groth et al. (2004)] and Grid environments [Groth et al. (2005)].

2.3.2 Provenance in Service Oriented Architectures

The Provenance Aware Service Oriented Architecture (PASOA) Project continues

some of the work done by the myGrid project on data provenance. Its aim is to

investigate the nature of provenance and reason about the accuracy of data and

service in the e-Science domain. It has so far developed a provenance recording

service, called PReServ, an implementation of the Provenance Recording Protocol

(PReP) developed by the PASOA project [Groth et al. (2004)]. PReServ is cur-

rently being used by the European IST EU Provenance project. PReServ appears

58http://www.apple.com/lu/support/itunes/authorization.html.
59http://www.realnetworks.com/products/drm/index.html.
60http://www.mygrid.org.uk/.
61http://freefluo.sourceforge.net/.

Chapter 2 Background 25

to store provenance defined by an XML schema in a database, and not use any

semantic markup. Groth (2005) defines a formal definition of the P-Structure and

PReP (Provenance Recording Protocol) used in PReServ (Provenance Recording

for Services) modelled as an Abstract State Machine.

2.3.3 Knowledge Provenance

Fox and Huang have made interesting observations about the nature of knowledge

provenance [Fox and Huang (2003)]. They define Knowledge Provenance (KP) as

follows: “Knowledge Provenance is an approach to determining the origin and va-

lidity of knowledge/information on the web by means of modelling and maintaining

information sources and interdependence, as well as trust relations” [Huang and

Fox (2004)]. In addition, they identify four distinct levels of KP:

• Level 1 (Static KP) considers the provenance of static information (basic

webpages) that can be trivially verified.

• Level 2 (Dynamic KP) extends the static KP idea, introducing cases which

involve determining the validity of information over time.

• Level 3 (Uncertainty-orientated KP62) provides insight into information

whose validity is inherently uncertain.

• Level 4 (Judgement-based KP) intends to focus on the social processes

necessary to support KP.

Levels 1-3 are covered in three papers [Fox and Huang (2003); Huang and Fox

(2003, 2004)]. Nothing as yet has been published relating to Judgement-based

KP.

For Level 1 KP, Fox and Huang (2003) introduce the problem of KP relating to

the publishing of sometimes unreliable information that can potentially affect peo-

ple, such as changes in stock price [Painter (2001)]. They argue that since anyone

can publish information on the WWW, any such information may be true, false,

uncertain or outdated, noting that there are no suitable tools for discovering the

provenance of knowledge for any one resource. Identifying a ‘proposition’ as the

basic unit of KP, they go on to identify other concepts for relating propositions, in-

cluding “asserted propositions”, “derived propositions”, “equivalent propositions”,

62Previously referred to as Uncertain KP in Fox and Huang (2003).

26 Chapter 2 Background

and “composite propositions”. Developing an ontology using a semi-structured

method by Grüninger and Fox (1995), based on the idea of propositions, Fox and

Huang provide an approach to describing KP, and axioms for future rule-based

reasoning on the meta-data. Predicates in the metadata allow for the annotation

of information and the propositions they contain, including marking information

with a “truth value”. If a particular proposition is said to be true, then subsequent

proposition that rely on the first can also be reasoned to be true. A sample imple-

mentation was produced in RDF-Schema (RDFS), using XML Digital Signature

for verification of the meta-data itself.

In Level 2 KP Huang and Fox (2003) describe the addition of dynamic description

to the KP ontology, and investigates how the truth value of a proposition can

change over time. They find that propositions and further propositions derived

from previous ones may only be effective within a specific period, known as the

“effective period”. After creating additional axioms to take into account the ex-

tensions to the ontology, they show reasoning over dynamic KP, demonstrating

the ability to tell if an information resource is still within its “effective period”.

da Silva et al. (2003) propose an alternative knowledge provenance infrastruc-

ture that includes proof-like information on “how a question answering system

arrived at its answer(s).” This approach integrates tools such as Inference Web’s

IWBase [McGuinness and da Silva (2003)] and TAP [Guha et al. (2003)] for in-

formation inferencing and source construction.

2.3.4 Provenance Mechanisms

Provenance mechanisms distinguish themselves from the provenance descriptions

outlined in Section 2.3 because they are either built into the underlying logic

framework or part of the implementation of a particular system. Examples of logic

based provenance mechanisms include RDF reification, Named Graphs, contexts,

Minimal Self-contained Graphs, and RDF molecules. Quads and contexts tend to

be dependent on the triple store used, for example, 3store or RDFStore.

2.3.4.1 RDF Reification

RDF reification, defined in Hayes (2004), was intended as a framework for making

provenance statements and other statements about RDF triples. Each triple is

described with a special vocabulary as shown in Figure 2.1.

Chapter 2 Background 27

_:xxx rdf:type rdf:Statement .

_:xxx rdf:subject <ex:a> .

_:xxx rdf:predicate <ex:b> .

_:xxx rdf:object <ex:c> .

Figure 2.1: Example reified statement, taken from RDF Semantics Recom-
mendation

Whilst it has no formal semantics, RDF reification is by far the most popular

mechanism for attributing provenance for RDF statements. It is, for example,

trivial to add arbitrary triples that might relate to the reified triple; Figure 2.2

demonstrates this with the simple attribution of authorship and creation date of

the original triple.

_:xxx rdf:type rdf:Statement .

_:xxx rdf:subject <ex:a> .

_:xxx rdf:predicate <ex:b> .

_:xxx rdf:object <ex:c> .

_:xxy foaf:maker _:xxx .

_:xxy dcterms:created ‘‘18-9-2006’’.

Figure 2.2: Reified Statement with Additional Arbitrary Triples

2.3.4.2 Quads

Harris and Gibbins (2003) have written a fast triplestore implementation, 3store [Har-

ris and Gibbins (2003)], that uses quads to track the provenance of triples; this

has been used in several novel applications including http://hyphen.info/ and CS

AKTive Space [Shadbolt et al. (2003)]. The fourth element keeps a record of

the source RDF document where the triple originally came. 3Store also supports

RDFS entailment, although there does not appear to be any general purpose in-

ference engine to date.

2.3.4.3 Contexts

Reggiori et al. (2003) use contexts as a means to record provenance in their RDF-

Store. They see contexts as an additional and orthogonal dimension to the RDF

triple. Each RDF statement is flagged as belonging to a specific context. Figure 2.3

shows an example of RDFStore contexts.

28 Chapter 2 Background

Each line contains two triples; the first is the context and the second is the triple

that resides in that context. Note that since each context has been defined by

different users (X and Y), both triples are in effect in different contexts.

Quality → Defined by → User X:Newspaper A → Quality → “liberal”
Quality → Defined by → User Y:Newspaper A → Quality → “conservative”

Figure 2.3: RDFStore Contexts

2.3.4.4 RDFX

RDFX, part of the Universal Information Service Browser (UISB) project63, is a set

of RDF plugins for the Eclipse platform64. It provides a framework to manipulate

RDF which includes a SPARQL editor. Baker and Boakes (2004) describes the use

of RDFX and UISB and the role of provenance. They define their own provenance

ontology65 based on the RDF Reification vocabulary.

2.3.4.5 Named Graphs

TRIPLE, by Sintek and Decker (2002) adopts a Named Graph approach; how-

ever, it incorporates data representation and Horn-clause logic in the same syntax

(Figure 2.4). It is intended as a rule language supporting applications that re-

quire RDF reasoning and transformation under different semantics. Its use of

Horn-clause logic means it can be enacted by Prolog systems.

@dfki:document {
dfki:d 01 01 [
dc:title → TRIPLE
dc:creator → Michael Sintek;
dc:creator → Stefan Decker;
dc:subject → RDF;
dc:subject → triples; . . .].

∀S, D search(S, D) ←
D[dc:subject → S].

}

Figure 2.4: Example TRIPLE Syntax with Dublin Core

Carroll et al. (2005) note that imposing a single way to implement RDFS and

OWL semantics with Horn-rules should be seen as a weakness.
63http://dsg.port.ac.uk/projects/uisb/.
64http://www.eclipse.org/.
65Available at http://rdfx.org/schema/2004/06/09-prov.rdf.

Chapter 2 Background 29

2.3.4.6 RDF Molecules

RDF molecules are an alternative method for RDF graph decomposition [Ding

et al. (2005)] and provenance attribution. RDF molecules are described as sub-

graphs of their parent graph that can be used to track provenance without loss of

information. The argument set out in Ding et al. (2005) claims that provenance

tracking at the document level yields too few matches, whilst the triple level has

issues with blank nodes. The apparent granularity of RDF molecules places them

between triples and Named Graphs (Section 2.3.4.5).

2.4 Logic Frameworks

2.4.1 Description Logics

Description Logics (DL) are a family of knowledge representation (KR) languages

that represent knowledge in a problem domain. DLs are comprised of four main

components: the Class Expression Language (CEL) which defines the logic; the

TBox which defines the ontology; the ABox which contains instances of an ontol-

ogy; the RBox which defines relationships between roles. In a DL knowledge-base,

the TBox and RBox represent intensional knowledge, i.e., general knowledge. Su-

perficially, DL shares a lot of the concepts found in object orientated languages.

DLs are a decidable fragment of First Order Logic (FOL). DLs exhibit high ex-

pressivity together with decidability, which guarantees that a reasoning algorithm

will always terminate, with the correct answer [Artale and Franconi (1999)]. DLs

form the basis for describing domains of knowledge, often in the form of an on-

tology (see Section 2.5.3). The Semantic Web Language, OWL [Bechhofer et al.

(2004)] is split into three sub-languages: one, probably the most popular, is a DL.

2.4.1.1 Class Expression Language

The Class Expression Language defines the logical concept constructors used in

the DL (∩, ∪). The CEL also gives rise to a wide range of names to DLs that

include: ALC, SHIF , SHIQ, SHOQ [Horrocks and Sattler (2001)], SHIOQ,

SHION . These DLs can be characterised as follows:

30 Chapter 2 Background

• ALC

ALC represents Attribute Logic Complement [Baader and Nutt (2002)] that

includes Conjunction, Universal Value Restriction, and Limited Existential

Qualifications. Modern DL languages denote ALC by S when describing

more expressive languages.

• H Role Hierarchy

H introduces Role Hierarchies for general TBoxes (see Section 2.4.1.2).

• I Inverse Roles

Inverse Roles are useful when representing opposing relations such as replaces

and isReplacedBy.

• F Functional Roles

A Functional Role is a role that can have only one (unique) value y for each

concept instance x, i.e., there cannot be two distinct values y1 and y2 such

that the pairs (x, y1) and (x, y2) are both instances of this role. A common

example of a SHIQ DL is OWL Lite (see Section 2.5.3.4) where both object

properties and datatype properties (the range) can be declared ‘functional’.

Figure 2.5 shows another example taken from the OWL Guide [Smith et al.

(2004)] that shows the hasVintageYear property. By defining this property

as being functional, a wine will have a unique vintage year.

<owl:Class rdf:ID="VintageYear" />

<owl:ObjectProperty rdf:ID="hasVintageYear">

<rdf:type rdf:resource="&owl;FunctionalProperty" />

<rdfs:domain rdf:resource="#Vintage" />

<rdfs:range rdf:resource="#VintageYear" />

</owl:ObjectProperty>

Figure 2.5: Example functional property, taken from the OWL Guide

DL languages can also declare roles as inverse-functional, where the value of

the role uniquely determines the concept (the domain) of an instance. For

example, if we define the role isMotherOf and declare it inverse-functional

for the concept Mother, then the value y can only be the value of isMotherOf

for a single instance of Mother ; it is not possible for two instances of Mother

to have the same value of isMotherOf. Inverse-functional properties can be

seen as equivalent to keys in relational databases.

Chapter 2 Background 31

• O Individuals

Up until now each DL only considers concept and role subsumption in the

TBox. DLs that include O also permit ABox reasoning on individuals.

• Q Qualified Restrictions

Q denotes qualified restrictions on concepts and roles. SHIQ, SHOQ and

SHIOQ are known examples. SHIQ is supported by the FaCT inference

engine, however, as we noted above, individuals are not supported by the

absence of O. SHIOQ adds individual support and forms the basis of

DAML-OIL, the predecessor of OWL.

• N Nominals

N adds an unqualified number restrictions (nominals, oneOf) to concepts

and roles. Unqualified restrictions are useful when exhaustively enumerating

concept instances in lists, for example, names of countries.

OWL DL (see Section 2.5.3.3) includes N to form SHION (D) where D

represents datatypes (Section 2.4.1.5).

2.4.1.2 The TBox

The TBox (Terminology Box) defines relations between concept names and expres-

sions. Concept names represent things in a particular domain of knowledge, for

example, mammal, human, or computer. Concepts can be part of a hierarchy

forming complex relationships between different concepts.

2.4.1.3 The ABox

The ABox (Assertional Box) is a world description containing individuals accord-

ing to the TBox. Individuals are essentially class instances as defined by the TBox.

Consistency checks can be made over the ABox (ABox reasoning)

2.4.1.4 The RBox

The RBox (Relational Box) defines the relationships between roles and the various

properties a role might have. In practise, the RBox is not used very often since

relations between roles, known as role value maps [Baader (2003)] increase the

expressiveness of a DL to a point where it is no longer decidable.

32 Chapter 2 Background

2.4.1.5 Concrete Datatypes

Concrete datatypes are used to represent literal values, for example, numbers

and strings. A type system typically defines a set of ‘primitive’ datatypes, such as

string or integer, and provides mechanisms to derive new datatypes from ones that

already exist. In the XML schema type system the nonNegativeInteger datatype

is derived from the integer datatype by constraining values of nonNegativeInteger

to be greater than or equal to zero [Biron and Malhotra (2004)].

2.4.2 Semantic Inferences

Semantic inferences are logical consequences based on a set of rules. Rules are built

up from proposition statements such as those found in Horn clause logic [Horn

(1951)]. Horn clauses express a subset of statements of first-order logic, where

clauses contain at most one positive literal, L:

L1 . . . Ln → L

Clauses with exactly one positive literal are known as definite clauses while clauses

with zero positive literals are known as goals. Goal -based reasoning and Horn

clauses form the basis of expert system languages such as Prolog [Colmerauer and

Roussel (1992); Covington et al. (1996)].

In DL, GCI (General Concept Inclusion) axioms are similar to rules that allow

custom semantic constructs to be included in an ontology. GCIs can be used to

complement existing constructs found in class subsumption (subclassOf, intersec-

tionOf) to classify concepts. Unlike Horn clause-like rules, axioms do not have

any operational grounding [Baader and Nutt (2002)].

Other rule languages exist that are able to be used for semantic inferences. Ta-

ble 2.1 lists some rule approaches and includes notes on the expressivity and decid-

ability. OWL DL is included since it is capable of a limited subset of concept-based

subsumption that is known to be decidable. Unfortunately, this is not enough for

general purpose reasoning that has long existed in expert system languages.

Work during the 1990’s saw attempts to create “deductive databases” that could

perform Prolog-like inferences with datalog languages that were efficient over per-

sistent stores [Butler (2005)]. The PARKA-DB project66 was one success, where

66http://www.cs.umd.edu/projects/plus/Parka/parka-db.html.

Chapter 2 Background 33

Approach Expressivity Decidability
OWL DL SHION (D) Tree-like rules Decidable
Axiomatic (SWRL) DL with role-value maps

Unrestricted rules.
Un-decidable

DL-safe Rules SHIQ(D) [Motik (2006)]
Concepts and roles in head
and body of rule. DL-safe
rules.

Decidable

AL-log ALC Concepts in body of
rule.

Decidable

CARIN ALCNR Concepts and
roles in body of rule
[Levy and Rousset (1996)].
Role-safe rules.

Decidable for non-
recursive rules

Intersection Some constructors of DL.
Variants include if con-
structor, occurs on left or
right hand side of the rule.
Unrestricted rules.

Decidable

Table 2.1: Comparison of Rule Language Approaches

researchers integrated a knowledge-base with a relational database management

system (RDBMS) [Evett (1994); Stoffel et al. (1996)].

2.4.2.1 Types of Inferences

Rule-based systems generally operate in one of two modes: backward and forward

chaining. Execution strategies for each mode are distinctly different, relying on

different sets of algorithms to improve performance.

Backward Chaining Backward reasoning or Logic Programming (LP) is a

common inferencing strategy. Used in Prolog systems, backward reasoning is goal-

orientated where knowledge-bases are searched to support predetermined conclu-

sions. In fact, Prolog is constructed entirely out of Horn clauses:

A← B1 . . . Bk

where A is a fact, B1 . . . Bk are goals, the left-hand-side (LHS) of the clause is the

head (consequent) of the rule, and the right-hand-side (RHS) of the rule is known

as the body (antecedent).

34 Chapter 2 Background

Backward reasoning engines tend to be more efficient compared to their forward

counterparts. Given a sufficiently expressive logic, however, it is possible for back-

ward reasoners to fail to terminate.

Forward Chaining Rather than seeking data to support a goal, forward rea-

soning involves drawing conclusions by matching rules to an underlying dataset.

Rule matches are incremental which means rules can be triggered continuously

as new knowledge is added to the dataset. Incremental updates are particularly

useful in expert systems where use is made of previous knowledge. RETE [Forgy

(1982)] is a well known algorithm used in many forward rules engines, for example,

Jena 2 and Jess [Friedman-Hill (2003)].

2.4.2.2 Popular Inference Engines

Tools such as the Closed World Machine (CWM)67, Jena, Redland68, Pellet69,

FaCT70 [Horrocks (1998)], and Racer [Haarslev and Mller (2003)] are being used

by people to process RDF using rules. Unfortunately, despite the submission

of the Semantic Web Rule Language (SWRL), no standards activity has been

started [Butler (2005)].

Jena 2 provides a family reasoners that support RDFS and OWL entailments, and

a generic reasoner that allows developers to define their own rules. The generic

reasoner has both forward (RETE algorithm) and backward (Logic Programming)

engines. Other rule-based expert systems engines include the C Library Integrated

Production System (CLIPS) [Giarratano and Riley (1993)] and Jess. Jess in par-

ticular has been used as an OWL reasoner in OWLJessKB71.

2.4.3 Frame Logics

Frame Logic (F-Logic) is an object-orientated approach to knowledge represen-

tation that extends Prolog. [Kifer et al. (1995)] describes the formal aspects of

F-Logic including its relationship to frame-based languages found in Artificial In-

telligence (AI) [Minsky (1981); Hayes (1979)]. It is interesting to note that while

67http://www.w3.org/2000/10/swap/doc/cwm.html.
68http://librdf.org/.
69http://www.mindswap.org/2003/pellet/index.shtml.
70http://www.cs.man.ac.uk/∼horrocks/FaCT/.
71http://edge.cs.drexel.edu/assemblies/software/owljesskb/.

Chapter 2 Background 35

F-Logics take their name from frame languages, they do not use the same termi-

nology since they are primarily object-orientated.

F-Logic formalisms such as the Web Service Modelling Ontology (WSMO)72 and

its concrete syntax, the Web Service Modelling Language (WSML)73 are becoming

popular as description frameworks for Semantic Web Services. Considerable effort

in WSMO is being made to align F-Logic alongside Datalog, Logic Programming

and even DL for the purposes of automated web service composition, discovery

and invocation.

2.4.4 Open and Closed World Semantics

Logic-based systems fall into two kinds of semantics: Open World and Closed

World. Open World semantics assumes that absence of knowledge means that

it is not currently known; this means a knowledge-base is perhaps incomplete.

Any negation is due to unsatisfiability, i.e., something is false only if it can be

proven to contradict other information in the knowledge-base [Rector et al. (2004)].

Formally, given a knowledge-base
∑

, for every formula ϕ, if
∑

2 ϕ and
∑

2 ¬ϕ,

the answer is unknown.

If we were to assert that John is-a Human, and Human is-a Mammal the fact

that the transitive closure John is-a Mammal does not yet exist means that it is

unknown for the time being. While logics based on Open World semantics might

look like a giant jigsaw puzzle, their incompleteness makes them expandable since

there is normally74 new knowledge to be asserted. The one major disadvantage

of Open World systems is that the more they grow, the more computationally

complex semantic inference becomes.

Closed World semantics follows the principle of Negation as Failure (NAF). If

knowledge is not present in a knowledge-base then it cannot be ‘true’, as the

knowledge-base is assumed to be complete. Formally, given a knowledge-base
∑

,

for every formula ϕ, if
∑

2 ϕ, then ¬ϕ.

A classic example of a Closed World system is the relational database. Queries

for non-existent information will always return false. A Closed World system

has complete control and knowledge of its state; as such nothing is unknown.

72http://www.wsmo.org/.
73http://www.wsml.org/.
74Some small logics, e.g., prepositional, are complete.

36 Chapter 2 Background

This does mean, however, that Closed World systems are less scalable than Open

World systems. For example, it is rather difficult to expand a relational database

schema (tables, columns). Adding new rows is trivial although it may invalidate

previous results. The strict control of information in a relational database also

means information is less likely to become inconsistent or contradictory.

Contradictory facts are possible in Open World systems. Given a knowledge-base∑
, for every formula ϕ, there may be instances where

∑
� ϕ ·

∑
� ¬ϕ hold.

Critics of the Semantic Web often cite contradictions as a flaw. This may be true,

but only given our current knowledge and understanding of open systems [Hewitt

(1985)].

The Semantic Web by necessity operates under Open World semantics. Not only

does Open World semantics maintain the scalable nature of the WWW, it also

reflects the ‘incomplete’ nature of the WWW.

2.4.5 Monotonicity

Logics can be either monotonic or non-monotonic. The differences between the

two approaches are subtle; these differences can, however, have profound effects

on the interpretation of a knowledge-base and inferences.

Monotonic Logics state that all assertions in a knowledge-base are considered

‘true’ irrespective of whether the statement has factual grounding. If we asserted

that “pigs can fly” into our knowledge-base that was a monotonic logic, then

the statement would be true despite the laws of physics stating otherwise. An

important feature of monotonic logics is that the assertion of new knowledge never

negates existing knowledge, although it is possible for contradictions to appear.

This would imply that the Semantic Web would always grow and never shrink.

A non-monotonic logic permits the loss of knowledge. While assertions may in-

fer new relations in a knowledge-base, they may also negate knowledge and thus

reduce the size of the knowledge-base. Classic expert systems are predominantly

non-monotonic; Horn-clause rule engines can remove ‘old’ assertions as as neces-

sary.

Chapter 2 Background 37

2.5 World Wide Web Technologies

2.5.1 URIs

Uniform Resource Identifiers, names for web-based resources can be split into two

categories: URLs and URNs.

• URL

A Uniform Resource Locator is the only standard existing today for identi-

fying information resources on the Internet. The URL is an abstract, human

readable address to the location where a specific resource can be found,

specifying the protocol with which to retrieve the resource. URLs invari-

ably become unstable references to a resource. URLs can also be accessible

through different protocols, part of the URL, which can cause headaches and

confusion for the casual web user.

• URN

The Uniform Resource Name is an attempt to solve the problems of URLs,

especially in terms of longevity. A URN is a non-human readable string

that use namespaces to identify how the URN should be handled. There

are numerous registered URN namespaces, however, it is possible to create

URN namespaces for the purpose of an application or system where URI

preservation was important.

2.5.2 Description Frameworks

2.5.2.1 Resource Description Framework

RDF [Klyne and Carroll (2004)] provides a way to describe relations between

WWW resources as a graph where the arcs are represented by XML Qualified

Names (QNames) [Bray et al. (1999)], an alias for a URI and nodes are represented

by QNames, local names, blank nodes and (typed) literals (see Figure 2.6). RDF

records these relationships as (subject, predicate, object) triples (see Figure 2.7).

The RDF recommendation defines how we may merge a set of graphs into one,

while the formal semantics [Hayes (2004)] defines the meaning of triples and basic

entailments.

38 Chapter 2 Background

Figure 2.6: An RDF Graph

Resources in RDF are uniquely identified by URIs (see Section 2.5.1). The subject

and predicate of a triple must be a URI, whereas the object can be either a

typed literal (XML Datatypes) [Biron and Malhotra (2004)] or a URI. There are

some who argue that literals as subjects should be allowed [Carroll et al. (2005)],

however, due to constraints made in the RDF/XML concrete syntax, literals as

subjects are not permitted.

RDF triples form binary relationships in a graph which makes RDF semi-structured.

New binary relations can be added at will without restrictions. As we shall see

in Section 2.5.3, ontologies give frameworks like RDF a structure based on formal

logics.

Figure 2.7: An RDF Triple

2.5.2.2 Topic Maps

Topic Maps is an ISO standard75 for describing WWW resources, similar to RDF76.

While Topic Maps appear to be in direct competition with RDF, it does support

ontology building, using OWL as its ontology language of choice.

75http://www.topicmaps.org/xtm/1.0/#ref iso13250.
76http://www.topicmaps.org/.

Chapter 2 Background 39

2.5.3 Ontologies

An ontology is “a specification of a conceptualisation” [Gruber (1993); Noy and

McGuinness (2001)]. Ontologies are useful to us because they explicitly define re-

lationships or roles between abstract concepts. In DL, ontologies are referred to as

vocabularies or Tboxes (see Section 2.4.1.2). Instances (the Abox, Section 2.4.1.3)

of a given vocabulary can be supplemented by inferencing: the creation of new

relations by implicit relationships defined by a rule set.

2.5.3.1 RDFS

RDF Schema (RDFS) adds basic structure to RDF and the beginnings of an

ontology language. It allows URIs to be labelled so we can give them human

readable interpretations. RDFS adds the following to RDF:

• Class/SubClass relationships

• Instances

• Properties (relations)

• Multiple inheritance

It is important to note that RDFS is meant as an ontology language for use in

logical reasoning; unlike XML Schema it is not meant for validation.

Class/SubClass declaration Class and subclass declarations allow basic con-

cept taxonomies to be developed. Class declarations represent concepts that can

be formed into controlled vocabularies.

Instances An instance is a particular realisation of a class, similar to an in-

dividual in DL. Class instances can be checked for consistency against an RDFS

ontology and classified against the class hierarchy.

40 Chapter 2 Background

Properties (relations) Properties (roles in DL) form the basis for relationships

between classes in an ontology. Properties may be restricted by declaring a domain

and range. The domain specifies which classes have a particular property; the

range specifies the kinds of values (classes, datatypes, etc.) a property can have.

RDFS supports only simple properties and as such does not support datatypes (see

Section 2.4.1.5).

Multiple Inheritance Multiple inheritance is a well known feature of ob-

ject orientated programming languages. While some well known programming

languages such as JavaTM forbid multiple inheritance, knowledge representation

languages like RDFS do not. RDFS permits multiple inheritance for both classes

and properties.

2.5.3.2 OWL

OWL builds upon RDFS and expands the vocabulary of possible constructs. OWL

provides sub-languages with reduced expressivity and computational complexity.

Ontologies that import an RDFS ontology fall within OWL Full. Two smaller

languages exist: OWL DL and OWL Lite.

OWL Full’s rich expressiveness means that it is computationally expensive; it is

not decidable. As a result, OWL Full tools are difficult to build.

2.5.3.3 OWL DL

OWL DL, based on Description Logics and equivalent to SHION (D), adds nu-

merous restrictions on OWL constructors including classes and properties. The

reduction in expressivity means OWL DL is decidable.

OWL DL includes class restrictions so that, for example, a class cannot be an

instance of another class; metaclasses are therefore forbidden. Property constructs

such as, FunctionalProperty and InverseFunctionalProperty cannot be used with

datatypes, they can only use used with the ObjectProperty construct.

Chapter 2 Background 41

2.5.3.4 OWL Lite

OWL Lite inherits all the restrictions of OWL DL and introduces its own. While

OWL Lite is the least expressive sublanguage of OWL, it is the most tractable and

several Semantic Web toolkits support it, for example, Jena, Pellet, and FaCT.

In addition to OWL DL restrictions, OWL Lite forbids owl:minCardinality and

owl:maxCardinality while owl:cardinality may only be 0 or 1. owl:hasValue, owl:

disjointWith, owl:oneOf, owl:complementOf and owl:unionOf are all forbidden.

2.6 Summary

This chapter summarised a range of topics relevant to the research described in

this thesis. In later chapters we will explore in more detail some of the concepts

and technologies mentioned in this chapter.

Key to this thesis are questions relating to the relative benefits of the RDBMS

compared to recent advances in Semantic Web technology. In the next chapter we

will investigate our two case studies and analyse the suitability of RDBMS and

Semantic Web technology in version control for distributed collaborative software

development.

Chapter 3

Analysis

In the previous chapter we presented a general overview of the background concepts

and technologies relevant to this work. This chapter concentrates on how version

control is used in two collaborative development case studies and goes on to analyse

the various issues relating to the use of contemporary version control systems. We

then go on to analyse the potential use of Semantic Web technology, the role of

provenance, and our motivation for RDF digital signatures.

3.1 Distributed Collaborative Software Develop-

ment Case Studies

Distributed collaborative software development is typically characterised by medium

to large scale projects with development partners disparately located, often in sep-

arate domains of trust. Here we concentrate on two examples of distributed collab-

orative software development: Free, Libre, Open Source Software (FLOSS) [Di-

Bona et al. (1999, 2005)] and European Community (EC) Information Society

Technology (IST) projects [EC-IST (2006b,a)].

3.1.1 FLOSS

FLOSS development, once restricted to university campuses, has now become

a major movement in the software development community. It is at the heart

43

44 Chapter 3 Analysis

of the GNU1 philosophy, particularly the GNU/Linux kernel2. In recent years

numerous commercial companies have started to contribute to FLOSS projects

including Sun Microsystems, IBM, HP, and Apple Computers. Such contributions

and commitment shows the viability of FLOSS in various business models.

The vast majority of FLOSS projects, however, do not enjoy financial backing and

therefore rely on the contribution and goodwill of developers around the world.

Projects tend to have a small core development team who control the development

and integrate contributions. The number of contributors can vary, but often be

in the thousands within large projects. Since core developers and contributors

spread throughout the globe, FLOSS development is truly decentralised in its

structure. Management meetings will invariably be conducted in online chatrooms,

for example, Internet Relay Chat (IRC).

Whilst FLOSS development is laudable in its efforts to produce software that

is freely available for anyone to use and modify as they wish3, the quality of

such software is questionable. FLOSS projects rarely attract financial support,

receiving contributions from amateur and professional programmers on a best effort

basis. As a result there is very little accountability in the production of code since

developers are not bound by contractual obligations, nor are their contribution

guaranteed to work. The vast majority of FLOSS licences include a statement

that states that the software is provided “as is” and without warranty.

FLOSS projects, whilst decentralised in terms of social structure, typically use a

centralised repository for storing code. This is one of the predominant reasons for

the checkout-modify-commit model found in most version control systems. De-

velopers will checkout a local copy of the repository, hack code until they are

satisfied, then commit changes back into the repository, making merges as nec-

essary. Source Forge4 is a good example of a freely available, centralised, hosted

FLOSS development repository. Other examples include GNU Savannah5, Tigris6,

BerliOS7.

1GNU is Not UNIX R©.
2http://www.kernel.org/.
3GPL, LGPL, BSD, Apache, and Creative Commons are some examples of FLOSS licences

that permit modification and redistribution of derivative works. All these licences are available
at http://www.opensource.org/licenses/.

4http://sourceforge.net/.
5http://savannah.gnu.org/.
6http://www.tigris.org/.
7http://www.berlios.de/.

Chapter 3 Analysis 45

The centralised approach to FLOSS project management is convenient for most

developers, even though it means that there is less emphasis on accountability and

trust, since most host repositories are support on a “best efforts” basis. Project ad-

ministrators have the power to do what they like to projects with no responsibility

to the wider public.

3.1.2 EC IST Grid Collaboration

Recent years have seen an increase in the funding of Grid projects under the Eu-

ropean Community (EC) Information Society Technology (IST) Framework pro-

gramme. Projects that have been funded in the past include Fifth Framework

projects including GRIA8, EGEE9, UNICORE10, and more recently Sixth Frame-

work projects such as SIMDAT11, NextGRID12, Akogrimo13, CoreGrid14, Edu-

tain@Grid15, BREIN16, ArguGrid17, BEinGrid18, and BRIDGE19. Each project

consortium is formed from various academic and commercial partners under con-

tract to produce novel and commercially exploitable products, based on Grid tech-

nology. Each partner is a stakeholder in the project, however, commercial partners

often have more risk since they must contribute to their budget costs.

The size of a consortium varies and can increase over the course of a project; an

EC project with eight partners can expect to contribute tens rather than hundreds

of developers. Each partner leads a Work Package (WP) which concentrates on

a particular aspect of the project, which shows that not only are EC projects

heavily centralised, but also that there is a clear understanding of responsibility

and accountability between partners.

One major feature of EC funded projects is the management process that the

project consortium must adhere to. The EC requires regular progress reports, de-

liverables and annual review meetings, all of which are outline in the Description

8http://www.gria.org/.
9http://public.eu-egee.org/.

10http://www.unicore.eu/.
11http://www.scai.fraunhofer.de/simdat.html.
12http://www.nextgrid.org/.
13http://www.mobilegrid.org/.
14http://www.coregrid.net/.
15http://www.edutaingrid.eu/.
16http://www.gridsforbusiness.eu/.
17http://www.argugrid.org/.
18http://www.beingrid.com/.
19http://www.bridge-grid.eu/.

46 Chapter 3 Analysis

of Work (DoW) negotiated before the project starts. Each partner is contractu-

ally obliged to contribute to deliverables and send them to the EC in a timely

manner. Annual review meetings with the EC can include a panel of experts

whose job it is to analyse the originality and novelty of a project, and can provide

recommendations that should be taken into consideration.

Whilst development in EC IST Grid projects is distributed in nature, due to the

potential commercial exploitation of developed software, each partner will nor-

mally develop in a private source code repository. Software integration phases

require more collaboration between partners with one partner responsible for pro-

ducing an integrated prototype.

Intellectual Property Rights (IPR) and confidentiality issues mean that most con-

sortium members will (initially at least) work on separate repositories then permit

controlled access (often licenced) to source code or binary distributions. The EC,

whilst keen on reaping the benefits of funded projects in the form of FLOSS un-

derstand the need for industrial partners to close source certain project results

for the purposes of exploitation. In most cases companies will deliver individual

confidential exploitation plans to project officers and EC representatives.

Both of the above case studies have particular requirements in terms of the type of

version control system that should be used for effective collaboration. As we have

already noted (see Section 2.2.2), the vast majority of version control systems are

based around RDBMS technology with some form of remote access protocol. Only

GNU Arch, Git and depart from this, relying on the underlying file system as the

storage mechanism. While these newer systems are of interest, they are used in a

community far smaller than that supported by Source Forge and others.

As we stated in Chapter 1, one of the motivations in this work is to test the suitabil-

ity of Semantic Web technology in the same problem domain. Before doing this,

however, we need to analyse the relative benefits and issues of both approaches,

particularly with regard to data federation, trust, scalability, interoperability, as

well as server and metadata integrity.

3.1.3 EC IST Collaboration with FLOSS

The two case studies described above are not isolated from one another. The

vast majority of EC IST projects include industrial partners to help improve the

exploitation of project results. While the EC understands that industrial partners

Chapter 3 Analysis 47

want to individually exploit results, there is an increasing emphasis for FLOSS

exploitation.

Large organisations are increasing finding that FLOSS products are cost effective

and are bringing value to the enterprise. In the past companies had to develop their

own operating systems for specialised products, but can now reuse the GNU/Linux

kernel. IBM, Novell, Sun, Apple Inc., and many other industry leaders supply at

least one FLOSS product.

Although FLOSS adoption is argued to be a good thing, companies must be care-

ful how they incorporate FLOSS in their product development pipeline. FLOSS

licences must be carefully analysed so that companies can leverage in their prod-

ucts. For example, most companies will not be willing to incorporate GPL-based

code since derivative products must also be GPL. The Lesser GPL (LGPL) is far

more attractive since proprietary code can link to it without having to be similarly

licensed.

3.2 RDBMS Approach

Early version control systems such as Revision Control System (RCS)20 worked on

flat file systems which made them rather slow and cumbersome to use. File meta-

data and diffs were kept in the same logical structure making them more difficult

to manage over time, often leading to the possibility of inconsistent metadata in

the event a failed commit.

The use of an RDBMS in version control is a fairly old fashioned approach but pre-

dominant method, despite the exponential growth of open standards that make up

the WWW. More recent systems including CVS, Subversion, and Git are examples

of the RDBMS approach, all of whom are used extensively in FLOSS projects. For

example Source Forge supports both CVS and Subversion repositories for users.

20http://www.gnu.org/software/rcs/.

48 Chapter 3 Analysis

3.2.1 Benefits

RDBMSs form the basis of many successful businesses (Amazon21, Google22, Ebay23)

and enterprise technologies (JavaTM2 Enterprise Edition24, Microsoft .NET Plat-

form25) which gives an idea of the maturity of the technology. As their maturity

has increased, so has their speed and availability. The vast majority of modern

operating systems now ship with some form of RDBMS (Microsoft SQL Server26,

MySQL27, PostgreSQL28).

3.2.1.1 Interoperability

Most modern RDBMSs can be access remotely for administration purposes, and

more importantly remote querying of databases; the vast majority of RDBMSs

support the Structured Query Language (SQL) or a major dialect. Recent stan-

dardisation of data access in web services has led to the OGSA-DAI (Data Access

and Integration) [Antonioletti et al. (2003, 2005)]29 standard.

In more recent version control systems, version metadata is stored in an RDBMS

rather than in flat files. By keeping the metadata distinct and separate from the

documents under version control, modern communication protocols can then be

used for generic access, for example, HTTP and WebDAV. The use of standardised

protocols has obvious interoperability advantages over proprietary protocols used

in early version control systems.

3.2.1.2 Performance and Scalability

The maturity of RDBMS technology means that the majority commercial and

FLOSS products are high performance and very scalable. Performance is nor-

mally accomplished using multi-threading for query processing. More advanced

concepts such as transactions and two-phase commits also improve performance

and reliability.

21http://www.amazon.co.uk/.
22http://www.google.co.uk/.
23http://www.ebay.co.uk/.
24http://java.sun.com/javaee/.
25http://www.microsoft.com/net/.
26http://www.microsoft.com/sql/.
27http://www.mysql.com/.
28http://www.postgresql.org/.
29http://www.ogsadai.org.uk/.

Chapter 3 Analysis 49

Scalability can be achieved by server replication, however, version control systems

have yet to take advantage this. Repository hosts like SourceForge typically repli-

cate repositories to maximise availability which is appropriate for serving FLOSS

projects. IST projects on the other hand are small enough that scalability is not

a core requirement.

3.2.2 Issues

Although RDBMS technology has number benefits as outlined above, it is not the

panacea for version control systems. Remote access to servers has its limitations

in terms of reliability and security. Repository federation is also be problematic

due to the data model and transport issues.

3.2.2.1 Federation

Federation is a challenge in an RDBMS environment. Challenges range from differ-

ences in data models to transport protocol interoperability between organisations

wishing to collaborate. JavaTM2 Enterprise Edition (J2EE)30 has been one attempt

to ease interoperability issues, defining a set of standards that helps developers

to abstract access to databases using Enterprise Java Beans and transport them

across enterprises using Remote Method Invocation (RMI) [Grosso (2001)] in a

reliable manner with transactions [Baksi (2001)]. While J2EE has been widely

accepted by industry, many developers have criticised its stack as being “heavy-

weight”, over complicated [Tate and Gehtland (2004)] and too closed since it is

developed under the Java Community Process (JCP)31. Some companies, includ-

ing IBM, HP, Intel and Microsoft are moving toward a more decoupled, SOA

approach using web service based around extensions to WS-Transfer [Cline et al.

(2006)] including WS-ResourceTransfer (WS-RT) [Reistad et al. (2006)].

Repository federation is a highly desirable feature for IST project collaboration,

especially during integrated prototype phases. Contributing partners can allow

remote access to the integrating partner, who then federates each repository to

construct the integrated prototype. At present, the vast majority of projects

either copy all necessary code into a new central repository or settle with binary

distributions from contributing partners.

30http://java.sun.com/javaee/.
31http://jcp.org/.

50 Chapter 3 Analysis

Newer web service-based protocols such as OGSA-DAI offer another approach to

realise federated queries. It is unlikely, however, that web services will find their

way into version control systems any time soon due to performance and scalability.

SOAP adds additional overheads (XML processing) that do not exist in custom

protocols used in SVN and Git.

3.2.2.2 Trust Management

Trust management is a significant issue when it comes to RDBMS-based version

control repositories. In FLOSS projects, source code is typically held in one or

more repositories, stored on a single server32. This server must be explicitly trusted

by all developers to reliably store and protect the contents of each repository.

Unfortunately, in most cases the server is implicitly trusted without the developer

having the opportunity to analyse the accountability mechanisms available at the

hoster. In the vast number of incidents when a server is compromised, the entire

server can no longer be considered reliable and must be rebuilt [Kemp (2006)]. In

most cases a complete rebuild is necessary which not only takes time but can cost

a project financially. Trust in centralised hosting environments is not limited to

the integrity of the machines used for storage and processing; owners of projects

and system administrators must also be trusted not to abuse their positions.

In the case of EC IST projects, trust management is essential. Each partner will

have a repository within their own trust domain, accessible to other partners within

the terms of the Consortium Agreement. As such, all source code must have ap-

propriate copyright attribution so that other partners understand the provenance

of third-party code. Any version control system used should be able to provide

facilities to enforce copyright attribution to maintain IPR.

Some version control systems including GNU Arch and Git attempt to increase

commit trust with SHA-1 hashes, and optionally GNU Privacy Guard (GPG)33

or Pretty Good Privacy (PGP)34 signatures. The use of SHA-1 digests is a wel-

come improvement, although recent discovers call into question its ability to resist

collisions [Wang et al. (2005b,a)]. The use of digital signatures is also a good

development, unfortunately this is appears to be only optional. Unless developers

have had previous experience in the use of PGP, GPG, or any other PKI they are

32More advanced server configurations like those hosted at Source Forge include a certain
amount of replication to increase availability.

33http://www.gnupg.org/.
34http://www.pgpi.org/.

Chapter 3 Analysis 51

less likely to take advantage of digital signatures. To truly improve commit trust

in these systems, digital signatures must become an integral part of the version

control workflow.

As with most secure systems that employ advanced cryptography, in a truly dis-

tributed collaborative environment, it is not enough to simply sign the commits

and trust the server to handle them correctly. A third-party server must always be

explicitly trusted rather than implicitly trusted as the current model with Source

Forge; if the server becomes compromised, signatures can easily be ignored, source

code could be modified, at worst lost, to the detriment of the project. By mak-

ing trust decisions explicit together with digital signatures, it is then possible for

repository integrity to be vested in the repository metadata itself.

3.2.2.3 Interoperability

Despite the existence of standardised query languages, RDBMS approaches tend

to suffer from data format interoperability issues. Subversion, for example is pro-

moted by its authors as the successor to CVS [Nagel (2004)]. This has perhaps led

to a problem whereby the developers view Subversion as a gold plated CVS rather

than a new repository [Collins-Sussman (2004)]. It adds more mainstream net-

working capability (HTTP, SSL/TLS [Dierks and Allen (1999)], and WebDAV),

introduces atomic commits, and the ability to be accessed via WebDAV. Subver-

sion implements a strict subset of Delta-V; however, Subversion’s authors stress

that this does not make it Delta-V compliant, which opens Subversion to interop-

erability problems.

It is a common problem that CVS, SVN, Git, etc. all have different metadata for-

mats, incompatible with one another. To get around this problem each have import

programs that allow developers to import from one type of repository into another.

This can be cumbersome and unreliable for large repositories; any mistakes or im-

port failures can cause data loss in large parts of a repository. Fortunately, access

to actual source code is better than in the past, since many repositories support

HTTP extensions such as WebDAV, rather than simple custom protocols used in

CVS.

52 Chapter 3 Analysis

3.3 Semantic Web Approach

There is promise in bringing Semantic Web technology to distributed version con-

trol. Both cases studies outlined in Section 3.1, whilst differing in method and

motivation, both have similar needs since both employ distributed collaborative

software development. The Semantic Web is being pushed as a means for data

federation, knowledge sharing, and trust analysis among others. Whilst take up

has been reasonable, is still difficult to determine how successful it has been.

We have already argued that version control systems based on an RDBMS, whilst

mature and fast, do not provide the facilities required by our case studies. Part of

our research question in this thesis (Section 1.3) is to discover the relative benefits

of Semantic Web technology over the RDBMS to further version control.

3.3.1 Benefits

One of the first and foremost advantages of Semantic Web technology is that it

is built upon existing, mature, and standardised protocols. The use of URIs (see

Section 2.5.1) to label nodes in RDF graphs and HTTP to retrieve serialised RDF

is a distinct bonus since development and more user-centric tools are trivial to

implement. At least at the syntactic level, Semantic Web technology has a high

degree of interoperability with existing web tool kits.

3.3.1.1 Federation

RDF Semantics [Hayes (2004)] explains how to merge RDF graphs from multiple

sources. This is important if we want to federate repositories based on a common

ontology. Significant work has already been done in this area, where Semantic Web

technology has been used to map native SQL databases onto a common ontology,

that can then be queried by RDQL or even SPARQL [Bizer and Seaborne (2004)].

Extensions to this work now include several service-based implementations such

as R2O [Barrasa et al. (2004)] and D2R [Bizer and Cyganiak (2006,?)], based on

the Joseki RDF Server [Seaborne (2003)].

Even simple RDF data federation provides natural, obvious results at the crudest

level using semantic query languages. SPARQL is fast becoming the standard

Chapter 3 Analysis 53

Semantic Web query language35 which has a rich feature set, including the ability

to distinguish the originating graph of a triple.

3.3.1.2 Trust Management

As we noted earlier, RDBMS-based version control systems have poor trust man-

agement in server-based deployments. Far too little effort is made to maintain

the integrity of metadata stored on the server, not to mention disregard for the

human factor of secure systems. Once data is federated across distributed servers,

especially in different domains of control, server integrity becomes crucial. For

example, project partners in an EC IST project must have confidence when ac-

cessing a remote partners’ software repository, that the repository’s integrity has

been maintained and appropriately licenced. Loss of remote repository integrity

can leave dependent partners open to IPR contamination.

Trust management in a Semantic Web environment should involve the integration

of digital signature technologies with RDF. Some recent approaches to trust man-

agement include the use of policies [Dimitrakos et al. (2001)], trust metrics [Gol-

beck and Hendler (2004a,b)], and several web service drafts, for example, WS-

Trust [Anderson et al. (2005)] and WS-Federation [Bajaj et al. (2003)]. In addition

to providing message integrity, there needs to be a mechanism for managing RDF

graphs that have been digitally signed.

3.3.2 Issues

There are several issues related to the use of Semantic Web technologies; some of

these issues are due to the relative immaturity of available toolkits for developers,

others are to do with the underlying logic that forms the foundations of the Seman-

tic Web. Issues of particular interest include scalability, provenance mechanisms,

semantic interoperability and performance.

35Latest W3C Working draft, 4 October, 2006: http://www.w3.org/TR/2006/WD-rdf-sparql-
query-20061004/.

54 Chapter 3 Analysis

3.3.2.1 Performance and Scalability

While Semantic Web is in principle capable of effective data federation, it is not

clear how scalable and efficient this federation can be. In effect, storage mecha-

nisms for storing RDF should scale in a similar manner to the WWW itself. Se-

mantic Web toolkits at present, however, are not very mature, unlike their RDBMS

counterparts with the result that performance is non-optimal. Most toolkits sup-

port both flat files as well as persistent storage in an RDBMS. Unfortunately,

schemata for persistent storage is far from optimal with the result that queries are

not as fast as native SQL queries.

Unfortunately, performance of Semantic Web technology is a real issue that has yet

to be improved. Even relatively fast triplestores such as 3Store36, Sesame37, and

Kowari38 fail to compare with the performance of an RDBMS39. One of the main

reasons for this is a lack of decent indexing strategies used to speed up queries.

3.3.2.2 Provenance Mechanisms

RDF Reification Issues Several problems become apparent when we attempt

to assert provenance with RDF Reification. The key issue is that the presence of a

reified triple in the knowledge-base is unrelated to the presence of the triple itself;

thus including the reification does not of itself assert the triple. If we choose to

assert each triple as well as its reification, then it is asserted unconditionally and

this triple is not bound to the reification.

One major consequence of these problems is that it is difficult, if not impossible,

to reason about reified triples. If the reified triple is not bound to an asserted

(or not as the case may be) triple, then RDF reification is of no real use in the

recording of provenance.

Another consequence is that reification is limited to the triple level; there is no

support for making statements about other RDF graphs. Relationships between

graphs are desirable if we are to introduce digital signatures into Tim Berners-Lee’s

Semantic Web stack (Figure 3.1) [Berners-Lee (2005)].

36http://www.aktors.org/technologies/3store/.
37http://www.openrdf.org/.
38http://kowari.sourceforge.net/.
39Chapter 5 includes an evaluation of Semantic Web and RDBMS performance.

Chapter 3 Analysis 55

Figure 3.1: Semantic Web Stack by Tim Berners-Lee.

MSG and RDF Molecule Issues Although Minimal Self-contained Graphs

(MSGs) and RDF molecules appear to be different at first glance, they are rather

similar. They both define themselves as methods to decompose RDF graphs, and

attempt to define a minimal set of triples that can make up a graph without loss of

information. Ding et al. (2005) argue that RDF molecules can be used to annotate

named sub-graphs, individual triples and other RDF molecules with provenance

information. This suggests that only portions of an RDF graph (single triples)

can be annotated, not the graph itself. This is very similar to RDF reification

where only single triples can be reified to attached additional information (see

Figure 2.2).

MSGs follow a similar provenance annotation approach, although they use RDF

reification to ‘attach’ digital signatures to arbitrary triples [Tummarello et al.

(2005)]. As we have already noted in Section 3.3.2.2, RDF Reification has sev-

eral semantic flaws that prevents such digital signature information being used in

semantic inferences. Another potential issue is that a digital signature can only

be attached to a single reified triple, not a group of triples or graph. While it is

relatively simple to detect reified triples, Tummarello et al. (2005) do not specify

a method for selecting which triple to reify; arbitrary selection could quite easily

lead to loss of the signature when graphs are merged or the triple is de-reified.

This is, of course, a signature management problem.

It is difficult to discern the relative benefits of RDF molecules and MSGs. Both

approaches claim an advantage over Named Graphs in that they each define the

smallest RDF graph to which one might want to attribute provenance. Unfortu-

nately, neither approach explain how to create relationships between RDF graphs,

56 Chapter 3 Analysis

an important feature of Named Graphs. RDF molecules can name sub-graphs,

however, do not provide an explanation of what this means, nor how it is used.

While the term sub-graph is defined in RDF Semantics [Hayes (2004)], the term

named sub-graph is not. Ding et al. (2005) do not specify the semantics or syntax

of a named sub-graph so it is difficult to determine if there is a relationship with

Named Graphs; this is unlikely given that Ding et al. (2005) believe Named Graphs

of arbitrary size are problematic for provenance.

Semantic Interoperability Issues Wong et al. (2005) argue for a platform-

independent framework to validate workflow execution based upon XML-based

provenance pioneered by Groth et al. (2004, 2005, 2006); Groth (2005). Wong et al.

(2005) defines custom rules in the Semantic Web Rule Language (SWRL) [Hor-

rocks et al. (2004)], executable in the Jena 2 environment.

While defining custom rules in Semantic Web Rule Language (SWRL) is the start

of good practice (SWRL is a W3C Member submission) and is supported by a

range of toolkits (SweetRules40), SWRL is known to be an undecidable logic which

can lead to incomplete results. SWRL simulates role value maps [Schmidt-Schauss

(1989)] which are not available in languages such as OWL DL. Wong et al. (2005)

claim the need for role value maps for their reasoning use cases, although they

do not elaborate how their use of SWRL remains decidable. A Horn-clause based

rule language that is DL-safe might be more appropriate [Motik et al. (2005)].

The Two Towers of the Semantic Web The Semantic Web’s foundations

rest firmly on Open World semantics and mono-tonic logics. The wider com-

munity is now active building systems based on OWL, particularly OWL DL.

Work has started extending DL with rule components, particularly those based on

Datalog, Logic Programming (LP) and more recently Description Logic Program-

ming (DLP) [Grosof et al. (2003)].

However, recent proposals such as Katz and Parsia (2005), describing rule exten-

sions to OWL, are likely to cause a substantial rift in the Semantic Web commu-

nity. Horrocks et al. (2005) effectively demonstrate the problem based on a new

version of the Semantic Web stack [Figure 3.2]. They note the following regarding

Figure 3.2:

40Available at http://sweetrules.projects.semwebcentral.org/.

Chapter 3 Analysis 57

Figure 3.2: Latest Version of the Semantic Web Stack.

• Datalog style rule extensions to DLP can only be syntactic. Any semantic

compatibility would require DLP, and thus OWL to follow Closed World

Semantics and effectively become a non-monotonic logic.

• Semantic incompatibility with OWL means DLP cannot be layered between

OWL and RDFS. As a consequence this also means DLP is incompatible

with RDF.

• Incompatibility between DLP and RDF means a separate Semantic Web

could arise, based completely on XML and non-monotonic logics, rather

than RDF.

Horrocks et al. (2005) go on to state that it makes more sense to layer DLP and

rules on top of XML or another syntax and ignore RDF and OWL. Even current

efforts in web service description frameworks such as the Web Service Modelling

Ontology (WSMO)41 uses Datalog and LP style rules for various purposes. All

these signs point to the conclusion that the Semantic Web community is in danger

of splitting into two camps each with diametrically opposed semantics that are

completely incompatible with one another. This lack of consensus could hamper

future WWW development.

It is interesting to note that this new Semantic Web Stack and its implications is

in apparent contradiction to Berners-Lee (2001) and Russell (2003) which regard

Open World semantics and monotonic logics as essential to the Semantic Web.

Patrick Hayes [Russell (2003)] notes that while he agrees with the inherent mono-

tonicity of the Semantic Web, it is inevitable that other third-parties (software or

otherwise) will perform non-monotonic inferences over otherwise monotonic logics.

41http://www.wsmo.org/.

58 Chapter 3 Analysis

While future development of the Semantic Web may include non-monotonic ex-

tensions, current research and toolsets support monotonic logics as best practice.

It would therefore be prudent for any ontologies we design to be based on DLs

until a satisfactory compromise is found between the Rule and DL researchers.

3.4 Digital Signatures

As we noted in Section 2.2.8.1, a digital signature is cryptographic function that

proves the signer of a message possesses the private key associated with the trans-

mitted public key. Successful verification of a digital signature validates the in-

tegrity of the message and subsequent messages42. If the digital signature fails,

then the message has been maliciously or otherwise modified. Digital signatures

in a PKI are also useful in identifying the sender, a common form of digital au-

thentication.

In secure web services, digital signatures form a crucial part of the WS-Security

Basic Profile [McIntosh et al. (2006)] which describes how to secure SOAP mes-

sages. WS-Security relies on XML Digital Signature [Bartel et al. (2002b)] and

XML Encryption [Bartel et al. (2002a)] to provide integrity and confidentiality to

SOAP messages during transit. The sender signs the message with their private

key, and optionally attaches the public key, usually contained in an X.509v3 cer-

tificate [Solo (2002)]. The receiver uses the same public key to verify the integrity

of the message; if the key is inside an X.509v3 certificate, the receiver can also

verify the identity of the sender against a well known Certificate Authority and

form a simple trust relationship.

Other approaches to web service security have taken the ReST approach, but with-

out the need for SSL/TLS [Dierks and Allen (1999)]. HTTPSec43 is the result of

work done by Secarta44; rather than securing only the body of an HTTP message,

HTTPSec also secures portions of the HTTP header. Asymmetric key exchange

protocol for accessing public keys is similar to the public directory structure de-

scribed by Diffie-Hellman [Diffie and Hellman (1976, 1988)].

42WS-Security Basic Profile mandates exactly one digital signature per SOAP message. This
has several consequences when it comes to routing SOAP messages through intermediaries.

43http://httpsec.org/protocol/1.0/.
44http://secarta.com/.

Chapter 3 Analysis 59

3.4.1 Digital Signatures and the Semantic Web

Digital signatures provide a convenient, yet powerful way to verify the integrity

of a message (see Section 2.2.8.1). Standards such as XML Digital Signature de-

scribe how to sign XML-based documents as well as arbitrary binary objects in an

efficient manner. The Semantic Web, while based on WWW standards, provides

a fundamentally different semantic (Description Logic) and syntactic model (RDF

graphs) that makes digital signatures more of a challenge. Integrity verification

Tim Berners-Lee has argued for some time that digital signatures form part of the

solution to trust on the Semantic Web45.

We can identify three challenges that need to be overcome before digital signatures

on the Semantic Web become reality: RDF canonicalisation, semantic interoper-

ability, signature serialisation.

3.4.1.1 Canonicalisation Issues

Unlike XML, RDF does have a canonical form. Canonical XML is characterised by

the XML Information Set [Cowan and Tobin (2004)] which attempts to guarantee

that logically identical XML documents produce identical serialised representa-

tions. While Gutmann (2004) argues that Canonical XML is fundamentally bro-

ken, XML Digital Signature has successfully used as the basis for various security

specifications including WS-Security and SAML [Cantor et al. (2005)].

Before digital signatures in RDF can be realised, it is vital that some form of

canonicalisation (C14N) is achieved. Cloran and Irwin (2005) argue that canon-

ical RDF can be broken down into two categories: canonicalisation of the RDF

model and canonicalisation of a serialised RDF model. We will see later (Sec-

tion 3.4.1.3) why using a canonical serialisation of the RDF model is not an ideal

approach. To our knowledge, at least two algorithms exist for creating canon-

ical RDF models [Carroll (2003); Sayers and Karp (2003)], with only Carroll’s

algorithm having an implementation in the public domain.

Blank Nodes Blank nodes as defined by the RDF Recommendation [Klyne

and Carroll (2004)] are used to label resources not described by a URI. Figure 3.3

shows a fully labelled RDF graph that contains no blank nodes. If we wanted to

45http://www.w3.org/DesignIssues/Toolbox.html.

60 Chapter 3 Analysis

<urn:uuid:CA2CAF30-21A8-11DB-8270-9859210973A2> {

<https://localhost:8443/JSPWiki/Wiki.jsp?page=

org.embl.ebi.escience.scuflui.workbench.Workbench>

a dp:Wikipage ;

dp:content "description content" ;

dp:firstVersion <https://localhost:8443/webdav/taverna/

taverna/org/embl/ebi/escience/scuflui/workbench/Workbench/

1/1/Workbench.java> ;

dcterms:created "Tue Aug 01 22:57:55 BST 2006"^^

<http://www.w3.org/2001/XMLSchema#dateTime> ;

}

Figure 3.3: A Fully Labelled RDF Graph

digitally sign this graph, we would canonicalise it according to Carroll’s algorithm,

which would trivially reorder all triples preceded by the graph name.

Figure 3.4 illustrates a more complex example where not all triples in the graph

are fully labelled, encapsulated in square brackets. This example happens to

represent an RDF collection. The difficulty in this case is when a triple’s subject

and object are both blank nodes; if several such triples exist then they can become

indistinguishable from one another and therefore need to be altered if the graph

is to be suitably reordered for signing.

Carroll’s solution to this problem is to actually modify the graph with meaningless

changes, defining a special property c14n:true which is always true; this means

triples with this predicate can be added and subtracted from the graph without

changing its meaning according to RDF Semantics [Hayes (2004)]. This means

the RDF graphs digitally signed is different from the original. While Figure 3.4

can be reliably canonicalised (see Appendix C.1.2), the more blank nodes in the

graph, the more likely it is for Carroll’s algorithm to fail.

If we want to find an extreme example where Carroll’s algorithm really does fail, we

should consider a complex graph such as the Petersen Graph [Holton and Sheehan

(1993)]. Figure 3.5 shows one graphical representation of the Petersen graph with

its ten nodes and fifteen edges (An example TriG serialisation can be found in

Appendix C.1.2).

Since the Petersen graph, like an RDF graph with only blank nodes, can have

many different representations based on its labelling, it can be extremely difficult

to determine if two graphs are identical (isomorphic).

Chapter 3 Analysis 61

<urn:uuid:E192F360-226F-11DB-94B3-E05EDA46CF20> {

wn20schema:NounWordSense

rdfs:domain

[a owl:Class ;

owl:unionOf

[rdf:first wn20schema:AdjectiveWordSense ;

rdf:rest

[rdf:first wn20schema:VerbWordSense ;

rdf:rest () ;

] ;

]

] ;

}

Figure 3.4: Partially Labelled RDF Graph

McKay (1981) describes a more robust algorithm that solves the graph isomor-

phism problem [Köbler et al. (1993)] and can therefore cope with blank nodes and

reliably relabel the Petersen graph (Figure 3.5)46. McKay’s algorithm has made

an implementation available in the nauty distribution47. While this algorithm

satisfactorily creates a canonical representation of an arbitrary graph, unlike the

Carroll and Sayer algorithms, it has non-polynomial complexity [Miyazaki (1997)],

which makes it less favourable in a Semantic Web environment.

Figure 3.5: A Petersen Graph

46See Appendix C.1.2 for further details.
47no automorphisms, yes?, available at http://cs.anu.edu.au/ bdm/nauty/.

62 Chapter 3 Analysis

3.4.1.2 Semantic Issues

While DBin’s RDF digital signature solution provides a starting point for future

implementations, its reliance on RDF Reification as the signature attachment

mechanism is problematic. One major problem is that treating a digital signature

as a reified statement only applies to that statement, not the graph itself. As we

also noted in Section 3.3.2.2, there are also semantic problems.

Because reified triples are not part of the knowledge-base, they are not part of

the underlying logic. If we consider an OWL DL knowledge-base with a number

of reified digital signatures, basic DL subsumption is not possible over any reified

statement. It is also true that any custom GCI axioms or Horn-clause rules would

not be able to operate over reified statements. Even Semantic Web toolkits such

as Jena 248 have to provide a specialised API to access reifications.

3.4.1.3 Serialisation Issues

Dunbill49 and Cloran and Irwin (2005) both suggest that canonical serialised RDF

can be used as the basis for RDF digital signatures. Dunbill’s FOAF signatures

use PGP, while Cloran and Irwin (2005) take a more interoperable approach with

XML Digital Signature.

Signing serialised RDF has the obvious benefit in that it avoids the various canon-

ical RDF issues mentioned earlier. RDF documents and their detached signa-

tures (PGP and XML Digital Signature) can be stored on a personal website and

verified at a later date. On the other hand, storing an RDF document and its

signature in a triple store would yield a different serialisation at verification time,

and would thus invalidate the signature.

3.5 Querying Semantic Version Control

If we are to take full advantage of the DL underpinnings of the Semantic Web

approach, then there is a need to consider the types of questions developers in our

two case studies would pose to the version control repository. Such questions must

be sufficiently complex enough to be not to implemented in a trivial manner in an

48http://jena.sourceforge.net/.
49http://usefulinc.com/foaf/signingFoafFiles.

Chapter 3 Analysis 63

RDBMS. Complexity should come in the form of repository federation, curation

of different data sources and the use of procedures (builtins) found in most rule

languages.

A reasonable set of questions should be able to discover additional evidence in

the event a version control repository loses its integrity. Computer systems, es-

pecially version control systems, typically do not attempt to search for additional

information that can contribute to forming a conclusion about the validity of meta-

data. Although Git and GNU Arch digitally sign commit metadata, if a signature

failed, the system would fail; it would not pursue another avenue to see if external

information could override the broken signature.

While searching for additional information to determine validity in a version con-

trol system is desirable, it is important that any questions programmed into the

system do not make exhaustive searches or use algorithms that could run out of

control. With this is in mind we have put together some questions that might be

asked in the domain of our case studies. These questions attempt to use federation

where ever possible, so not to limited the system to pre-existing knowledge.

Rather than attempt to automatically infer trust, we want the answers to these

questions to guide developers and administrators in deciding their next actions.

Automatic inference of trust, for example, creating trust policies [Dimitrakos et al.

(2001); Bizer (2004b)], scores, or metrics [Golbeck and Hendler (2004a,c)] is a

complex subject that goes beyond the scope of this thesis and will not be covered

in this chapter50. A reasonable approach would be for answers to be in the form of

a report that explains what has been found, along with a set of recommendations.

Below is a set of scenarios that include example queries for our semantic version

control system. We have defined two types of scenario: metadata integrity recov-

ery, and repository federation. Each scenario has been tailored to each of our case

studies.

3.5.1 FLOSS Questions

1. A digital signature fails in the repository, search for other information that

can help determine trust:

In the event a digital signature fails in the repository, the project administra-

tor must take steps to determine the reason for the failure. Failure could be

50These topics are, however, suitable for future work as we will describe in Section 6.3.

64 Chapter 3 Analysis

either due to inadvertent corruption in the repository or a sign of malicious

modification. Apart from the repository itself, additional information can

be found in the following places:

• Project DOAP description

• Author’s project FOAF description

The administrator should firstly check that the author of the failed signature

is actually an authorised committer, since this will quickly determine that

an unauthorised intrusion has taken place; this information is contained

in a DOAP file, published on the project’s main webpage. If the author

is a known committer, the administrator should instruct the repository to

search for other commits by this author to analyse if they are not committing

properly. The repository will

2. Source code dependency federation

Developers will often experience missing dependencies that require importing

into their repository. If we consider a JavaTM example, the missing depen-

dency will most likely be an unsatisfied import declaration. In most cases

the developer will need to find third-party libraries to satisfy the dependency

which diverts them from their problem solving.

Rather than explicitly importing third-party libraries, the developer should

ask the repository to search known repositories for the missing dependency.

Metadata for the dependency is then imported into the developer’s reposi-

tory, completing the dependency. The actual source code will remain at the

remote repository, creating a federated compilation environment.

3.5.2 IST Project Questions

1. A digital signature fails in the repository, search for other information that

can help determine trust:

As in Section 3.5.1, the repository administrator must take steps to discover

the cause of the digital signature failure. Since an IST project has a smaller

collaboration community this analysis should be slightly easier and have

more information at its disposal.

The administrator should firstly check whether the author’s public key

(FOAF) has been signed by one of the known CAs in the project consortium.

Chapter 3 Analysis 65

The author’s FOAF description and partner CAs are just two example of

federable information published on the project webpage. Additional checks

of the published project DOAP description will reveal whether the author is

supposed to be making commits to the source code based on their responsi-

bilities in the associated workpackage.

The repository should then produce a report based on the above information.

As well as providing information on the number of changes since the last

verifed commit, the repository can offer the administrator the option to

override the broken signature to fix the problem. Future verifications ignore

the original signature in favour of the new one.

2. Source code integration federation

Project partners during an integration phase need access to source code

from other partners to produce an integrated prototype. A more convenient

method is for metadata from each contributing partner to be federated to

the integrating partner. To keep track of IPR attribution, the integrating

partner will tag each set of metadata with a digital signature so to assert

where it came from. Then, in a similar fashion to Section 3.5.1, the inte-

grating partner will access source code directly from the remote contributing

partner’s repositories.

Unlike the FLOSS scenarios which operate in a more open environment, both IST

scenarios require more trust of federated information to be considered reliable.

DOAP, FOAF, and CA information must be published by a trusted party (the

project coordinator) otherwise answers in the event of a signature failure could

be misleading. If wrong doing was discovered in an IST project and proved with

these questions, contract obligations could be employed to resolve issues. In the

case of FLOSS projects, all a repository administrator can is to ban the CA of the

committer and manually check the affected source code.

The above scenarios and queries will form the basis for our analysis of the benefits

of Semantic Web technology in Chapter 5. We will expand on these questions,

demonstrating how they can be implemented in practise and provide experimental

performance results.

66 Chapter 3 Analysis

3.6 Summary

Distributed collaborative software development, by its very nature, relies on in-

teraction with third-party remote servers. Analysis of two approaches to version

control reveal that the current RDBMS-based version control systems do not pro-

vide the necessary support necessary for successful inter-domain development as

required by our two case studies: FLOSS and EC IST Framework projects. In each

case study there is a need for collaborators not to implicitly trust the integrity of

the remote host, rather rely on the integrity of the repository’s metadata, secured

using digital signatures and a PKI.

Semantic Web technologies offer another approach that should be considered. Un-

like an RDBMS, RDF graphs appear ideal for data federation, which is desirable

in distributed collaboration. The selection of Semantic Web technology in version

control can be seen as a significant test as to whether it is a valuable and prac-

tical technology. We have noted issues that still need to be resolved before take

up improves; further analysis can be found in Chapter 5. Issues that should be

addressed in our design include canonical RDF and provenance.

Nevertheless, the capabilities of SVN, GNU Arch, etc. represent a baseline ver-

sion control capability which has proven itself over the years. Both Subversion and

GNU Arch have introduced new architectural refinements, for example, file hier-

archy restructuring, scalable and distributed repositories, and atomic commits to

version control. It might therefore be productive to introduce some of the lessons

of RDBMS version control into a Semantic Web DL approach.

In the next chapter we describe a design for an ontology for version control that

uses Named Graphs as a mechanism for provenance. The purpose of this ontology

is to act as the schema for a knowledge-base that performs the same functionality

as a Subversion database. Our ontology leverages existing Description Logics and

integrates with a new method of RDF digital signatures that promotes explicit

trusted collaboration based on an established PKI. We go on to describe how

our ontology, Named Graphs and digital signatures form the basis of an online

collaborative tool that can support the necessary requirements of our case studies.

Chapter 4

Design and Implementation

This chapter provides an overview of our version control ontology, the use of

Named Graphs for provenance, and security considerations in the form of digital

signatures. We provide our rationale for using DL as the underlying logic; we

also demonstrate ontology extension and argue for re-using other ontologies to

promote interoperability on the Semantic Web. Our design shows how Semantic

Web technology can be used as the foundations of a next-generation version control

system that supports distributed collaborative software development.

There are two parts to our design: Document Provenance which provides de-

scriptive provenance similar to related work in Section 2.3.1 based on DL; IPR

attribution based upon Named Graphs. Attribution is enforced by RDF digital

signatures that help maintain integrity, forming the foundations of developer trust

and accountability, in an otherwise open environment.

4.1 Ontology Design Overview

Software version control repositories like SVN manage the changes made to doc-

uments over time. SVN uses a bespoke metadata format to record the author,

description and version of a document which cannot readily be shared externally.

Unlike CVS which uses a form of delta versioning [Hudson (2002)] on documents

only, SVN is in addition capable of versioning directory structures and metadata.

A well-known consequent restriction of CVS is its assumption of long-lived file

names and, particularly, directory structures.

67

68 Chapter 4 Design and Implementation

Another immediate problem with older tools such as CVS is that they keep the

history metadata and delta versioning information together in the same logical

structure. The Delta-V Working Group addressed this problem by separating

the history and version metadata. Subversion [Collins-Sussman et al. (2004)] also

improves on this problem, introducing a relational database to store metadata. To

further develop this and leverage the rich tools of the Semantic Web we introduce

Document Provenance, a Description Logic (DL) [Baader et al. (2003)] framework

based on open standards which can be used for semantic version control and

validation.

4.1.1 Requirements

If we look back at our research motivation in Section 1.2 we listed a set of features

that are missing from current version control systems, but necessary for effec-

tive distributed software development. We went on to analyse the suitability of

RDBMS and Semantic Web technology against these features, based on the needs

of our case studies. These features included:

• Trusted provenance of server

• Knowledge federation

• Semantic interoperability

• New facilities (reasoning)

In this chapter we will propose a design that satisfies the above requirements. By

thinking about security as an integral part of our design, we can worry less about

the provenance of the server since integrity is vested in the underlying metadata of

the version control repository. Reusing existing ontologies provides the first steps

of semantic interoperability and knowledge federation. These components then

lay the foundations of new facilities that include semantic reasoning.

4.1.2 Document Provenance

Document provenance (DP) is an abstract and somewhat ill-defined concept that

associates authenticity with a document, based on work done by Buneman et al.

Chapter 4 Design and Implementation 69

Figure 4.1: Document Provenance Ontology - OWL sub-language OWL DL,
expressivity SHIOF (D)

(2001a), Goble, and Szomszor and Moreau (2003). The term implicitly assumes

that provenance should be bound to information at the level of documents (URIs)

rather than, for example, that of websites (as is achieved by HTTPS authenti-

cation) or of individual rows in a database. If we consider JavaTM source code,

the natural document unit is a class; these are usually kept in separate files. The

JavaTM compiler enforces this naming convention. Hence the class unit we map

onto a document is intended to be the smallest natural source object that should

be updated as an entity.

We have defined DP as a DL framework using RDF and OWL to develop an

ontology that describes documents as they evolve. While we can leverage existing

ontologies, we believe that we need to introduce small extensions for semantic

version control. Figure 4.1 shows the three new classes we have created which

themselves inherit from FOAF and DOAP as well as importing properties from

Dublin Core. An RDF/XML-ABBREV version can be found in Appendix A.

Our use of existing ontologies is important because simply defining a new ontology

does not help in shared understanding across domains. This concern was voiced

70 Chapter 4 Design and Implementation

by Guus Schreiber at Berliner XML Tage 20041, who stated “Good ontologies

are used in applications. They represent some form of consensus in a community

[. . .] creating my own ontology is a misappropriation of the term. Ontology is

about shared understanding” [Cyganiak (2004)]. The DP ontology describes only

information that can be readily extracted from a document, e.g. file name, date

last modified, etc.; this is simply metadata, it does not hold information describing

who made it.

Here we briefly describe each OWL class in our ontology along with any OWL

constructs used. We include paraphrasing of our concepts and roles similar to that

used in Rector et al. (2004). Restrictions on classes are based on recommendations

in Schreiber (2005) and Gruber (1995). The namespace for our ontology is denoted

by the prefix dp:.

4.1.2.1 Document Class

dp:Document represents an individual version of a version controlled resource (see

Table 4.1). It records common metadata that can be readily extracted from the

document, as well as information that cannot: authorship, preceding and succeed-

ing versions. Preceding and succeeding versions can be zero, one or many.

4.1.2.2 Wikipage Class

The dp:Wikipage class acts as an anchor point for a version controlled resource (see

Table 4.2). This is comparable with a Version Controlled Resource found in Web-

DAV and Delta-V. The Wikipage has access to only the first version of the re-

source, includes a description and when it was first created. dp:Wikipage extends

foaf:Document. Whilst the dp:Wikipage only points to the first version, there may

be several versions in a chain after the initial version. Only one dp:Wikipage can

exist.

By anchoring a version controlled resource with a dp:Wikipage, we effectively

force the use of informal collaboration into the development cycle through the

Wiki interface.

1http://www.xml-clearinghouse.de/ws/BXML2004/.

Chapter 4 Design and Implementation 71

OWL:
class(dp:Document partial foaf:Document

SubClassOf (dp:Document, foaf:Document)
restriction(dc:title someValuesFrom(xsd:string))
restriction(dc:format someValuesFrom(xsd:string))
restriction(dp:replaces allValuesFrom(dp:Document))
restriction(dp:isReplacedBy allValuesFrom(dp:Document))
restriction(dp:maker someValuesFrom(dp:Person))
restriction(foaf:sha1 someValuesFrom(xsd:string))
restriction(dp:revision someValuesFrom(xsd:nonNegativeInteger))
restriction(dp:branch someValuesFrom(xsd:nonNegativeInteger))
restriction(dp:dateSubmitted someValuesFrom(xsd:dateTime))
restriction(dp:hasClass someValuesFrom(java:Class))

)
Paraphrase:
A Document is any document that has amongst other things
a title, format, maker, sha1 sum, revision, branch, class, and a
date of submission. A Document may replace
zero, one or many Documents and be replaced by zero, one
or many Documents.

Table 4.1: dp:Document Constructs

4.1.2.3 Person Class

The dp:Person class extends foaf:Person (see Table 4.3) and adds two properties

describing which projects that person works on and which common classes they

have created or modified. One or more persons may be attributed authors.

4.1.3 Other Ontologies

Several other ontologies have been used in conjunction with our classes that de-

scribe projects, people and JavaTM source code. Developers who use our version

control system will create FOAF descriptions to identify themselves and DOAP

projects DOAP (Figure 4.4) descriptions for their projects. Not all these ontolo-

gies are written in OWL; as we will discuss shortly, FOAF is a combination of

RDFS and OWL, while the Simple Java Ontology and the DCMI are both written

in RDFS. If we are to import these ontologies and keep our ontology OWL DL,

each ontology must be in their OWL DL form, otherwise our ontology becomes

OWL Full. We will explore this issue further in Section 5.3.2.1.

72 Chapter 4 Design and Implementation

OWL:
class(dp:Wikipage partial foaf:Document

SubClassOf (dp:Wikipage, foaf:Document)
restriction(dcterms:created someValuesFrom(xsd:dateTime))
restriction(dp:content someValuesFrom(xsd:string))
restriction(dp:module someValuesFrom(xsd:string))
restriction(dp:isPartOf someValuesFrom(doap:Project))
restriction(dp:firstVersion someValuesFrom(dp:Document))
restriction(dp:firstVersion cardinality(1))

)
Paraphrase:
A Wikipage is any wikipage that amongst other things
has a creation date, some textual content, is part of a module
and a known DOAP project. Each Wikipage has exactly
one Document that represents the first version of a Version
Controlled Resource.

Table 4.2: dp:Wikipage Constructs

Figure 4.2 shows our DP ontology together with relations to FOAF, DOAP, and

the Simple Java Ontology. This visual representation will be especially useful when

we consider how to partition our ontology for digital signatures in Section 4.5.2.

4.1.3.1 Friend of a Friend

The Friend of a Friend (FOAF) ontology is possibly one of the best known projects

associated with the Semantic Web. It defines a simple vocabulary that allows

indirect friendships to be discovered automatically. On-line services such as http:

//plink.org take FOAF descriptions to create a large social knowledge-base.

OWL:
class(dp:Person partial foaf:Person

SubClassOf (dp:Person, foaf:Person)
restriction(foaf:name someValuesFrom(xsd:string))
restriction(dp:mbox someValuesFrom(xsd:anyURI))

)
Paraphrase:
A Person is any person that amongst other things
has a name, an email address has co-authored a Document, and
works on a project.

Table 4.3: dp:Person Constructs

http://plink.org
http://plink.org

Chapter 4 Design and Implementation 73

Figure 4.2: Expanded Document Provenance Ontology

Unfortunately, FOAF is more of a vocabulary than a formal logic for managing

relationships between friends. It uses a combination of RDFS and OWL in its

construction which means it must be categorised as OWL Full. OWL Full is

known to be undecidable and therefore not recommended for basic subsumption

and general purpose inference. In the future the FOAF community would be better

served by an OWL DL version of the ontology. The Mindswap community2 has

produced an OWL DL version which would be a first step toward reducing the

FOAF’s current expressiveness.

Figure 4.3: Friend of a Friend Ontology

2http://www.mindswap.org/.

74 Chapter 4 Design and Implementation

4.1.3.2 Description of a Project

The Description of a Project (DOAP) ontology follows on from the success of

FOAF by proposing a controlled vocabulary to describe a software-based project.

Figure 4.4 shows a cut down version of the ontology with its various classes and

properties.

Figure 4.4: Description of a Project

4.1.3.3 Dublin Core Metadata Initiative

The Dublin Core Metadata Initiative (DCMI)3 is a controlled vocabulary, primar-

ily for resources found in libraries. The DCMI is attractive to use since it is a

well known standard with a tightly controlled development cycle. The DCMI is

formed of three vocabularies:

• DCMI Element Set (ISO Standard 158364)

• DCMI Metadata Terms

• DCMI Type Vocabulary

3http://www.dublincore.org/.
4Available at http://www.niso.org/internation/SC4/n515.pdf.

Chapter 4 Design and Implementation 75

Figure 4.5: Simple Java Ontology

All three vocabularies are available in XML Schema and RDFS; Protégé distribute

an OWL DL version5.

Like FOAF and DOAP, the DCMI is more of a vocabulary than an ontology. This

means its use of RDFS as a language is more of a convenience than a necessity.

Properties defined by the DCMI are not restricted to particular classes, which

means developers are free to use the vocabulary in any way they wish. It is quite

common to use DCMI metadata embedded in HTML attributing authorship in

a standard format. Although unrestricted qualification is useful in general, it is

desirable for us to use the DCMI in such a way that we constrain its properties as

we have shown in Table 4.1 and Table 4.2.

4.1.3.4 Simple Java Ontology

The simple JavaTM ontology is a small component of the Simile project. It is

a cut down version of certain JavaTM concepts together with some non-standard

properties (see Figure 4.5). The significance of the java:uses property is to show

that a JavaTM class may also use (import) other JavaTM classes.

The simple JavaTM ontology is based on RDFS, although we have written an

OWL DL version that is suitable for our purposes. By extracting key portions of

JavaTM classes and attaching them to a dp:Document, we can infer relationships

and dependencies in a project.

5Available at http://protege.stanford.edu/plugins/owl/dc/.

76 Chapter 4 Design and Implementation

4.1.4 Construction

Ontologies can be constructed in various ways, from writing RDF/XML [Beckett

(2004)] by hand to fully featured GUI interfaces. Due to the relative complexity of

RDF/XML6, hand written RDF is not encouraged. Most Semantic Web developers

work with GUI interfaces such as Protégé7 and SWOOP8.

Protégé9 is a well known knowledge management editor, developed by Stanford

University. Whilst based on Frames and KIF (Knowledge Interchange Format)10

it has been retrofitted to support RDF and OWL and has an extensible plugin

mechanism. Protégé is capable of various forms of semantic reasoning including

its native Protégé Axiom Language (PAL) for Frame-based ontologies, Racer for

DL languages including OWL DL, and Jess for more complex reasoning.

SWOOP is an ontology editor and browser that is designed specifically for DL-

based languages. It uses a web browser-like interface, that makes ontology au-

thoring relatively quick with minimal fuss. SWOOP has access to its own Pel-

let [Parsia and Sirin (2004)] reasoner, an RDFS reasoner, and even SWI-Prolog

for the Semantic Web Rule Language (SWRL)11. It also features a useful set of

class expression constructs and an General Class Inclusion (GCI) editor.

SWOOP has several advantages over Protégé, primarily due to SWOOP’s concen-

tration on DL. SWOOP can quickly inform developers the expressivity of their

ontology with the need for external reasoning tools. It is also very useful at de-

bugging OWL ontologies [Parsia et al. (2005)].

Early versions of our ontology were designed using Protégé due to reputation and

popularity. Recent versions, however, have been modified using SWOOP. This

transition was based on the debugging features and highly visible OWL species

validation in SWOOP. Species validation shows a knowledge engineer the DL sub-

language at a glance. Determining the OWL sub-language in Protégé is a non-

trivial task.

6RDF has two recommended concrete syntaxes: RDF/XML and RDF/XML-ABBREV.
7http://protege.stanford.edu/
8http://www.mindswap.org/2004/SWOOP/.
9http://protege.stanford.edu/.

10http://logic.stanford.edu/kif/dpans.html.
11http://www.mindswap.org/ edna/swoopRules/.

Chapter 4 Design and Implementation 77

:G1 {

:erw foaf:mbox <mailto:erw@it-innovation.soton.ac.uk> .

:G2 foaf:maker "Rowland Watkins".

}

:G2 {

:erw foaf:mbox <mailto:rowland.watkins@gmail.com> .

:G2 dcterms:created "28-7-2006".

}

Figure 4.6: Self-Referencing and Cross-Referencing Named Graphs

4.2 Provenance Mechanism

While our Document Provenance ontology describes some interesting information

about documents and basic associations between different versions of a document,

we still require a mechanism to make assertions about our metadata and hence

record provenance.

4.2.1 Named Graphs

Named Graphs provide a natural way to record provenance. Each graph is poten-

tially labelled by a URI, which can then be referenced by other Named Graphs.

Figure 4.6 depicts two Named Graphs using the TriG [Bizer (2005)] syntax, where

the first graph states that the second graph was made by Rowland Watkins, while

the second graph self-references, stating its creation date.

Each graph is named with a URI; blank nodes are not permitted under scop-

ing rules defined in the RDF Recommendations. These scoping rules state that

blank nodes are unique to the RDF graph where they are found and cannot be

referenced outside of that graph. Since Named Graphs provide opportunities for

creating relationships between graphs, any reference must be fully qualified URI.

In Figure 4.6, the TriG syntax uses short-hand when labelling graphs and re-

sources (:G1, :G2, :Bob). Blank nodes in most RDF concrete syntaxes take the

form, :blank node id. In many RDF libraries, blank nodes are automatically

generated each time the serialised syntax is read from persistent storage.

78 Chapter 4 Design and Implementation

Figure 4.7: Version Control using DP

4.3 Modelling Version Control with DP

Up to this point we have defined an ontology that models version control and

selected a provenance mechanism that allows us to created relationships between

RDF graphs. To the casual observer this may seem no better than what has

already defined by Goble; Zhao et al. (2003, 2004b), at best can be considered a

glorified form of logging. To show how both points are not the case, we will firstly

show how versions relate to one another visually, which will give an idea of DP’s

structure. We will then go on to explain how digital signatures can be attached to

DP instances. Since the digital signature is created by the user, they become part

of the process for generating DP; logging systems such as Log4J are typically side-

effects of events in the system. The intention is for our version control structure

to be self-contained, non-repudiable, and immutable.

Figure 4.7 is a graphical representation of a version history using DP. A dp:Wikipage,

as we noted earlier, represents the anchor-point for a version controlled resource,

which points to the first version. We then have several versions that feed off the

first, including a fork and a merge.

In terms of RDF concepts represented in Figure 4.7, each ellipse represents a DP

class and each box represents the encompassing Named Graph. Relationships feed

back up the history to show how which version is being superseded.

Chapter 4 Design and Implementation 79

Since each commit is contained within a Named Graph, we can start thinking

about how to maintain the integrity and enforce IPR attribution for each version

controlled resource. As we stated in Figure 4.1, each dp:Document contains the

SHA-1 digest of the document it describes. If we could digitally sign the Named

Graph, then attach the associated signature, we would not only be able to verify

the document under version control, but also the metadata that describes it.

4.4 Security

Named Graph-based provenance is not limited to simple assertions about who

made the assertion and when. Such assertions, whilst true according to the open

world assumption (see Section 2.4.4), do not uniquely bind an owner to an asser-

tion, or set of assertions. Cryptographic methods such as digital signatures offer

one way to uniquely bind a security principal12 to a digital document and, coupled

with digital certificates, add non-repudiation to signatures. Since it is difficult to

guarantee that every RDF graph found on the Semantic Web is error free, Named

Graphs and digital signatures form a good heuristic for evaluating trustworthiness.

Simply asserting an RDF graph does not mean that the information it contains

is reliable. Trusted metadata methods based on digital signatures are also a first

step toward a basic level of trust on the Semantic Web [Bizer (2004b)]. Note that

while we do not preclude the use of access control or confidentiality mechanisms

on our trusted metadata, such mechanisms are beyond the scope of this thesis.

Figure 4.8 gives an example of how Named Graphs can be signed. A separate

Named Graph (in red) is created with the signature information, that then asserts

the referred Named Graph. We will see a concrete example of this in our work on

the NG4J project in Section 4.6.4.

4.4.1 Signing RDF Graphs

As we argued in Section 3.2.2, to help create a more robust trust infrastructure

during distributed collaborative software development, digital signatures must be-

come a core part of the version control workflow. Digital signatures ensure the

12See http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/What%20Is%
20A%20Security%20Principal.html for further details.

http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/What%20Is%20A%20Security%20Principal.html
http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/What%20Is%20A%20Security%20Principal.html

80 Chapter 4 Design and Implementation

dp:firstVersion

dp:replaces

dp:replaces

dp:replaces

dp:replaces

dp:Wikipage

dp:Document

dp:Document

dp:Document

dp:Document

Asserts...

X.509Certificate...

SignatureAlgorithm...

DigestAlgorithm...

Signature...asserts

Asserts...

X.509Certificate...

SignatureAlgorithm...

DigestAlgorithm...

Signature...

asserts

Asserts...

X.509Certificate...

SignatureAlgorithm...

DigestAlgorithm...

Signature...

asserts

Figure 4.8: DP with Digital Signatures

integrity of messages and, when generated with an appropriate PKI, support non-

repudiation13 [McCullagh and Caelli (2000); Zhou (2003)]. The goal in our work is

to create an RDF digital signature framework that follows several of the principles

in Tummarello et al. (2005), although builds upon Named Graphs rather than

RDF Reification.

It is important to note that non-repudiation in our framework is supported through

the use of asymmetric public key cryptography. This means the onus of responsi-

bility for protecting private keys lies in the hands of the developer or administrator

of the online repository. This is why PKI-based systems such as X.509 go to the

trouble of using the Certificate Authority as the trusted third-party, tracking com-

promised certificates using a Certificate Revocation List (CRL).

Symmetric key based systems such as Kerberos and the SAML protocol, do not

support non-repudiation and therefore should not be used as part of our RDF

digital signature mechanism.

13Non-repudiation is supported in X.509v3 with the KeyUsage (OID 2.5.29.15,
http://oid.elibel.tm.fr/2.5.29.15) critical extension. The non-repudiation bit is limited to digital
signatures and precludes certificate and CRL signing.

Chapter 4 Design and Implementation 81

4.4.1.1 Carroll’s algorithm vs. nauty

Due to the graph-like nature of RDF and the issue of blank nodes (see Sec-

tion 3.4.1.1) generating reliable and robust digital signatures is non-trivial. As

we have noted in Section 3.4.1.1), Carroll’s algorithm and nauty take very dif-

ferent approaches to graph canonicalisation. Carroll’s algorithm can be seen as a

quick and cheap canonicalisation method that does not attempt to solve the iso-

morphism problem; Carroll (2003) goes to some lengths to state that the proposed

algorithm is not intended for arbitrary RDF graphs. The nauty approach is far

more elegant, satisfactorily solves the isomorphism problem; however, it is overly

complex to program [Carroll (2003)] and non-polynomial. It would be unwise to

rely on a non-polynomial algorithm in an RDF digital signature solution for the

Semantic Web.

Figure 4.9: Comprehensive Canonical RDF Workflow

A another approach we have yet to consider is to combine Carroll’s algorithm

with nauty. We could leverage the speed of Carroll’s algorithm for simple cases

and nauty in complex cases, creating a workflow solution that is comprehensive.

82 Chapter 4 Design and Implementation

Figure 4.9 shows our proposed canonical RDF workflow. At first glance, this

workflow seems reasonable; we modify Carroll’s algorithm to detect when it has

failed, then pass it on to nauty to complete the canonical reordering. Even

if Carroll’s algorithm produced false negatives, they would be taken care of by

nauty.

One potential problem with Figure 4.9 is the expectation that a canonical rep-

resentation produced by each algorithm is identical. Both algorithms take very

different approaches, meaning that it is possible in one instance for Carroll’s algo-

rithm to succeed and successfully sign an RDF graph. When the graph’s signature

comes to be verified, Carroll’s algorithm fails, passing the graph to nauty. nauty

then produces a canonical reordering, however, completely different to Carroll’s

algorithm, thus breaking the signature. Appendix C.1.1 gives an example of where

this case is true; we canonicalised the WordNet NounWordSense OWL class and

compared the results of each algorithm which are shown to be very different. It

is therefore important that the algorithm used to create the signature is the same

as the algorithm used to verify the same signature.

If we were to take a pragmatic approach and choose between the two algorithms,

Carroll’s algorithm offers the better choice. It is fast and able to cope with the

majority of graphs we are interested in for our research. To be used in our RDF

signature solution, however, we must devise a conservative approach that will

guarantee a canonicalisation that can be reliably replicated in the future.

4.4.1.2 Conservative Canonicalisation

Conservative canonicalisation is an approach that accepts the existence of false

negatives when using Carroll’s algorithm, i.e., if the algorithm claims it cannot

canonicalise an RDF graph even though it should be able to, then we accept its

conclusion. This approach may reject more graphs, however, should reduce the

number of digital signatures generated that subsequently fail when verified. We

have therefore placed restrictions on the introduction of blank nodes to improve

reliability of our digital signature mechanism.

Our approach can be summarised as follows:

1. DP instances should consist of fully labelled RDF graphs.

2. RDF Digital Signatures should consist of fully labelled RDF graphs.

Chapter 4 Design and Implementation 83

3. External federated RDF that is to be signed should be analysed for blank

nodes.

Carroll’s algorithm appears to suit to our needs in all cases given we take the

conservative canonicalisation approach. We do not intend to use Sayers’ algorithm,

which would otherwise introduce additional complexity when managing digital

signatures and future verification. Continual publishing and updating of signatures

seems to be rather laborious for our purposes.

4.5 Open Issues

There are several open issues in our design that have yet to be fully resolved,

mostly due to the experimental nature of our approach and the immaturity of the

technology being used. While solutions to these issues are not critical to providing

answers to our research question, they will have some impact on the final analysis

in Chapter 5.

4.5.1 NG Management

Named Graphs are a relatively immature provenance recording mechanism. Our

need for attaching digital signatures to RDF graphs means that there is a seri-

ous need for appropriate management of graphs and signatures as well as some

understanding of what is to be digitally signed.

4.5.1.1 Signature Management

Digital signatures must be stored in some reliable manner so they can be verified

at a later date. The XML Signature Syntax and Processing [Bartel et al. (2002b)]

standard defines an XML Schema for signature storage, although similar to having

no canonical form, no structure exists for storing digital signatures. Tummarello

et al. (2005) and Dumbill (2002) provide ideas on how this might be done; we

have, however, noted in Section 3.3.2.2 and Section 3.4 these approaches are not

suitable for our needs. Section 4.6.4 gives an overview of our realisation of RDF

digital signatures.

84 Chapter 4 Design and Implementation

4.5.2 Ontology Decomposition

Although an RDF graph is a collection of triples which can be merged and ag-

gregated with other graphs according to the RDF Recommendation, there is little

guidance or consensus on how to decompose RDF graphs into a smaller set of

subgraphs. Such decomposition is useful when considering large ontologies or por-

tions of an ontology that requires digitally signing. Ding et al. (2005) describe

RDF molecules as a possible unit of decomposition for an ontology and go on to

describe an algorithm for automatic decomposition. E-Connections [Grau et al.

(2005b,a)], an alternative approach, is also capable of automatic partitioning, al-

though its primary purpose is as a syntactic and semantic extension to OWL (DL)

that allows different ontologies of equivalent expressivity to be combined with link

properties14.

While automatic decomposition might be useful for signing large or complex on-

tologies, our work concentrates on a small ontology with a large dataset and there-

fore does not require substantial decomposition analysis. If we consider Figure 4.1

we notice that the cardinality of each class is different. Each version controlled

resource can only be represented by one wikipage, which links to one or more

document versions, created by a known person. We could näıvely sign over an

entire ontology instance. When we add, however, a new version to the ontology

instance and then attempt to verify our original signature, we will discover that

the signature is broken. A better method is to decompose our ontology into sep-

arate Named Graphs independent of one another. It would then be a simple case

to create secure hashes for each Named Graph, and sign each separately, storing

the signature in a separate Named Graph.

Figure 4.10 proposes one way to decompose the Document Provenance ontology.

dp:Wikipage is contained within its own Named Graph, which provides a secure,

trustworthy anchor for version controlled resources; only one dp:Wikipage exists

for any one resource. Each dp:Document with associated metadata (JavaTM class

information) is decomposed in separate Named Graphs, with successive dp:Document

graphs referring to their predecessors (dp:replaces).

The advantage of independent signatures is that successive versions will always

be verifiable and would not affect other signatures. It does mean, however, that

our knowledge-base will contain a large number of Named Graphs with signatures

that will require verification.

14Similar to datatype properties.

Chapter 4 Design and Implementation 85

Figure 4.10: Document Provenance Ontology Decomposition

4.6 Implementation - An Online Collaborative

Tool

Our online collaborative tool must provide version control services in a transparent

manner, yet still allow developers to do their work. We have taken an existing

Wiki, JSPWiki15 as the our base system. As its name suggests, JSPWiki uses

JavaTM Server Pages and JavaTM Servlets. Servlets provide a convenient mecha-

nism for web applications. We have retained much of the general functionality of

JSPWiki, although we have changed various underlying components to integrate

the semantic and cryptographic features [Watkins and Nicole (2005a)].

4.6.1 Motivation

At first sight, the value of the synthesis of the WikiWikiWeb, Semantic Web

and advanced cryptography for version control is not too obvious. They are dis-

tinct from one another even though they are used in the same application space:

PKI-based cryptography is used to secure HTTP sessions with the Secure Sockets

Layer (SSL); the WikiWikiWeb is used for dynamic collaboration on the WWW;

the Semantic Web aims to make the WWW into a Web of Knowledge. Our mo-

tivation for using the WikiWikiWeb is based upon a WWW-based collaborative

environment that is scalable and relatively easy to use. In Chapter 3 we discussed

15http://www.jspwiki.org/.

86 Chapter 4 Design and Implementation

the needs of our case studies, which included the attribution and enforcement of

IPR. In Section 4.1 we described how this could work with our DP If we have a

PKI to validate users, then the same mechanism can be used for authorship.

The third part of the puzzle, the Semantic Web, is important not only for technolo-

gies such as RDF and OWL, but the logic it is based upon, namely Description

Logic. The vast majority of version control systems use a relational database

which is formal and static; such systems are difficult to change. DL languages, for

example, OWL DL are built upon RDF which is much better suited to knowledge

federation than an RDBMS. This means the underlying structure of a version con-

trol system that uses Semantic Web technology is relatively expressive and highly

extensible. Coupled with this extensibility is another key advantage; the DL’s

inference capability, which provides effective tools for the distributed management

of the software engineering process.

4.6.2 Architecture

Figure 4.11: Online Collaborative Tool Architecture

Figure 4.11 shows the top level architecture of our online collaborative tool. Our

architecture is split into three main portions: the client browser, the Jakarta

Tomcat application server, and the RDBMS and WebDAV server.

Both on the client and server side, we use the Jena 2 Semantic Web frame-

work [Carroll et al. (2004)] and its Named Graph extension library, NG4J16. We

use NG4J extensively to manipulate RDF, Named Graphs and RDF digital sig-

natures. Cryptographic support comes from the Bouncy Castle17 JCE provider

16http://www.wiwiss.fu-berlin.de/suhl/bizer/ng4j/.
17http://www.bouncycastle.org/.

Chapter 4 Design and Implementation 87

and the digital signing of Named Graphs allows us to track IPR attribution and

enforce non-repudiation, suitable for our two use cases.

4.6.2.1 Client Side

The client side uses any standard web browser capable of executing a JavaTM ap-

plet. Developers select their source code to upload; the applet’s job is to generate

metadata based on those files and cryptographically sign it. Note that in this

architecture, the integrity of the repository is vested in the trusted metadata de-

scribed in Section 4.4; the repository contents may freely be duplicated to protect

against loss of the primary site and core trust is vested only in individual authors,

not in the repository itself.

The browser interface allows developers not only to check-in and update new source

code but also to actively collaborate with other developers using the Wiki as an

online development journal: design issues can potentially be tracked and additional

information such as UML diagrams or collaborative “whiteboard” sketches for each

class can be attached in the Wikipage or linked from the WebDAV repository as

appropriate. Figure 4.12 shows the main Wikipage for our online collaboration

tool. Developers can navigate through package and class hierarchies since each is

represented by its own Wikipage.

Figure 4.12: Online Collaboration Tool Interface

88 Chapter 4 Design and Implementation

4.6.2.2 Server Side

The server side is a generic servlet-based web application that hosts an enhanced

instance of JSPWiki. JSPWiki handles all portions of the interface based on a

template system similar to, but simpler than, Struts18. Wiki content is stored in

an MySQL RDBMS as a Named Graph quad store19, in contrast to JSPWiki’s

flat file persistent storage. Source code is stored separately from its metadata, in

a WebDAV repository which can either be co-located with the Wiki or run on a

different remote host.

To support external access to the Named Graph quad store, we have developed a

web service interface that enables distributed knowledge federation. This function-

ality will become critical when we consider new information that can be brought

into the system by federating external sources (see Chapter 4.7).

Commit Process When the server processes requests from the client it ver-

ifies the attached signature and endorses the commit with its own signature if

successful. The additional signature adds a timestamp that confirms receipt of

the commit and that the client’s Certificate Authority is known and trusted by

the server. All signed metadata, once verified, is persisted in the quad store for

later retrieval.

Wikipages Wikipages are stored as plaintext files, which give developers the op-

portunity to discuss design issues, post news, link diagrams, and make announce-

ments. JSPWiki has several plugins that make it easy to add UML [Jacobson et al.

(1998)] diagrams to wikipages. It is essential to complement the non-repudiable

foundations of the repository (signed metadata) with this soft interface.

As an additional benefit besides the adherence to the Model View Controller (MVC)

[Buschmann et al. (1996)] pattern, keeping the quad store and document storage

mechanism separate from the Wiki means we can easily provide alternative access

to the source codebase using Web or Grid Services [Atkinson et al. (2005)]. These

can be used to support automatic build and installation of named releases onto

Grid hosts.

Our online tool utilises Jena 2’s forward RETE rule engine for inference support.

We have written various rules that match triple patterns to create new relations

18http://struts.apache.org/.
19The Named Graph’s URI is the first element of the quad.

Chapter 4 Design and Implementation 89

which we can then query with an RDF query language like RDQL [Miller et al.

(2002)]. While our DL implementation is based around Named Graphs, it is com-

patible with Jena 2, so we can take full advantage without any problems. Indeed,

we have also used Jena 2’s OWL reasoner to check periodically the consistency of

the quad store based on our ontology.

4.6.3 Named Graphs for Jena (NG4J) API

Developed in collaboration with Chris Bizer20 and Richard Cyganiak21 of the Freie

Universität Berlin22, the NG4J API23 is an experimental implementation of Named

Graphs [Bizer et al. (2005a)]. NG4J defines a set of interfaces for manipulating

Named Graphs based on Jena 2. Named Graphs can be created, merged, and

serialised using an XML concrete syntax, TriX24, and a Turtle-like concrete syntax,

TriG25.

The quad is the basic unit in NG4J which extends the Jena 2 Triple by appending

the label of the Named Graph it belongs to. At the core of NG4J is the Named-

GraphSet class, a logical set of NamedGraphs which extends the Jena Graph

interface and adds the graph name. In Jena 2 it is common to manipulate graphs

as models. Models provide a convenient API for developers to create resources and

add properties to them. Since NG4J works primarily with graphs, it operates at

a subtly lower level.

A NamedGraphSet can be viewed as a Jena 2 model by creating a union of all the

Named Graphs in that set. The Model itself becomes a Named Graph and any

additions to the model become part of that graph.

4.6.4 Semantic Web Publishing Framework

The Semantic Web Publishing Framework (SWP) extends NG4J and implements

an RDF digital signature toolkit similar to what Apache Security does for the

XML Digital Signature recommendation [Bartel et al. (2002b)]. Our contribution

to this framework includes keystore manipulation and core functionality necessary

20mailto:chris@bizer.de
21mailto:richard@cyganiak.de
22http://www.fu-berlin.de/.
23Available at http://ng4j.sourceforge.net/.
24http://swdev.nokia.com/trix/TriX.html.
25http://sites.wiwiss.fu-berlin.de/suhl/bizer/TriG/.

90 Chapter 4 Design and Implementation

Figure 4.13: Semantic Web Publishing Ontology

to create, query and verify RDF signatures as described in Carroll et al. (2005); we

have also contributed to the development of the SWP API and ontology. The SWP

ontology26 reuses a lot of terms found in the XML Signature Recommendation,

although since XML is rather verbose and tree-like in structure, it is not necessary

to directly map all elements found.

Figure 4.13 shows the SWP ontology as described in Carroll et al. (2005). As

can be seen, it takes as much as possible from XML Signature; however, not all

elements are necessary since modelling all elements in RDF would make querying

inefficient and slow.

To generate an RDF digital signature, we first create a canonical Named Graph [Car-

roll (2003)] then hash it with an appropriate secure digest (SHA-1, SHA-224, SHA-

384, or SHA-512. Please see Wang et al. (2005c,b,a) for reasons why SHA-1 may

not be safe to use in the future.). This digest is placed in a special Named Graph

called a Warrant Graph (see Figure 4.14) [Carroll et al. (2005)] and signed. Please

note that the digest and signatures values have been abbreviated. Our work in

the SWP has concentrated on the implementation of Warrant graph creation and

verification. A full representation of a DP instance with a Warrant Graph can be

found in Appendix A.

26Available at http://www.w3.org/2004/03/trix/swp-2/.

Chapter 4 Design and Implementation 91

A Warrant Graph can contain any number of graph digests. Each digested graph

is explicitly asserted by a known principal who possesses a digital certificate

(X.509v3) or PGP key. The Warrant Graph asserts itself and signs itself with

the principals credentials, certifying that not only did the principal make the as-

sertion, but that the assertion has not been altered.

4.7 Federation Scenarios

In Section 3.5 we listed some example questions that should be answerable by

our design. We will now expand on these questions and develop some concrete

scenarios of where Semantic Web technology can be used to improve version con-

trol beyond the state-of-the-art, i.e., scenarios that cannot be achieved using an

RDBMS. For the purposes of these scenarios, we have invented fictional names for

a FLOSS and EC IST project; MyProject27 and AcmeGrid28 respectively.

The main requirement here is that each scenario must take advantage of Semantic

Web knowledge federation. Rather than attempting to infer new knowledge from

existing information inside our online collaborative tool, we want to reach out and

extract useful information that can supplement existing knowledge to improve

distributed collaborative software development.

:warrant {

:warrant a swp:Warrant.

:warrant swp:authority

<mailto:erw@it-innovation.soton.ac.uk>.

:warrant swp:signatureMethod

swp:JjcRdfC14N-rsa-sha1.

:warrant swp:signature

"E2a...ylV"^^xsd:base64Binary.

:warrant swp:assertedBy :warrant.

:G1 swp:assertedBy :warrant.

:G1 swp:digestMethod swp:JjcRdfC14N-sha1.

:G1 swp:digest "YjR...hNz"^^xsd:base64Binary.

:G2 swp:assertedBy :warrant.

:G2 swp:digestMethod swp:JjcRdfC14N-sha1.

:G2 swp:digest "NmM...2NW"^^xsd:base64Binary.

}

Figure 4.14: Warrant Graph Including Digital Signature

27http://www.ecs.soton.ac.uk/ erw/MyProject/
28http://www.ecs.soton.ac.uk/ erw/AcmeGrid/.

92 Chapter 4 Design and Implementation

We will concentrate on two federation scenarios that can be of interest to software

developers: metadata integrity recovery and distributed knowledge federation.

Metadata integrity recovery investigates the use of knowledge federation to estab-

lish trust in the event part of a repository becomes compromised. Distributed

knowledge federation uses multiple data sources in different trust domains to sup-

plement missing information in a local repository. Each scenario will be applied

to our case studies so that we get a range of new possibilities for data sharing in

distributed software development.

The SPARQL web service used in these scenarios was developed using the GRIA

5 Development Kit29. This developer kit provides a reusable helper API for secure

grid services. A simple client was also developed for calling the SPARQL grid ser-

vice from other components of our online collaborative tool. The Jena 2 inference

engine was used to drive the signature recovery scenarios; the rules can be found

in Appendix D. Performance results for all federation scenarios can be found in

Section 5.1.2.1.

4.7.1 FLOSS Federation

FLOSS federation presents a simple scenario where there exist two repository

hosts (see Figure 4.15) who have a trust relationship. Developers at Host A have

discovered missing dependencies in their code and query Host B for the missing

information. Host B provides a secure SPARQL web service interface30 so that

developers can be confident of the connection between hosts.

Data passed between Host A and B includes only signed repository metadata31.

This means that actual source code remains at the original host, with the result

that distributed builds are possible in a similar fashion to Maven32 repositories33.

4.7.2 EC IST Federation

EC IST Federation presents a slightly more complicated scenario based on inte-

grated prototype integration (see Figure 4.16). The Integrating Partner is respon-

sible for integrating code developed by Contributing Partners A and B, either in

29http://www.gria.org
30Transport Layer Security and WS-Security.
31DP instances as found in Appendix A.
32http://maven.apache.org/.
33Please note that distributed builds have not been implemented during this research.

Chapter 4 Design and Implementation 93

Host A Host B

QuadStoreJSPWiki

SPARQL

Service

JSPWiki

SPARQL

Service

QuadStore

Organisational Boundary

Figure 4.15: FLOSS Federation Scenario

source form or binary. Access to Contributing Partners A or B’s repository is sim-

ilar to Section 4.7.1, however, the Contributing Partner must take steps to record

where they received metadata from to maintain IPR attribution.

The Integrating Partner will retrieve signed DP instances from each Contributing

Partner, signing the result so to assert where they received the instances from (Fig-

ure 4.17). This additional signing process means the Integrating Partner acknowl-

edges receipt of the metadata. Source code and binary code is accessed over HTTP

from the Contributing Partners’ WebDAV repository.

4.7.3 FLOSS Signature Recovery

The above scenarios describe the sharing of repository metadata across different

trust domains. In the majority of cases, metadata integrity will not degrade due

to transport between repositories. If a public FLOSS repository, however, be-

comes compromised as metadata is being federated, then it is possible for digital

signatures to fail. The following FLOSS scenario looks at a strategy for simple in-

tegrity recovery with minimal external public information available to the affected

repository.

94 Chapter 4 Design and Implementation

QuadStoreJSPWiki

SPARQL

Service

Integrating PartnerContributing Partner A

Contributing Partner B

JSPWiki

SPARQL

Service

JSPWiki

SPARQL

Service

QuadStore

QuadStore

Organisational Boundary

Figure 4.16: EC IST Federation Scenario

Figure 4.18 shows the scenario. When the host repository discovers a broken

signature, it needs to establish whether the remainder of a version history can be

salvaged. The repository should perform the following steps:

1. Determine the author of commit with the broken signature;

2. Check if author has made other commits for same document;

3. Check if author is listed a committer to project (DOAP);

4. Search for other commits with same author and check status;

5. Generate report of author for repository admin.

This scenario is a prime example of where the key benefits of the Semantic Web can

be leveraged: semantic reasoning and knowledge federation. The repository needs

to go beyond its current knowledge-base and discover additional information like

FOAF and DOAP descriptions that it can use to support decisions to be made by

a developer or repository administrator34. The Jena 2 inference rules used in this

scenario can be found in Appendix D.1.1 with an example report in Figure D.4.

34An extension this scenario could see the searching of mirror repositories for backup metadata.
If such metadata is valid, then it can be imported like in Section 4.7.1. If invalid, then it reveals
a larger problem that must be addressed manually. This extension has not been implemented.

Chapter 4 Design and Implementation 95

One difficulty with this scenario is that it is unlikely that published FOAF and

DOAP information is going to be particularly reliable. Users will have links to

their FOAF descriptions in a DOAP document located on the project webpage.

4.7.4 EC IST Signature Recovery

Our last scenario looks at signature failure during the integration of code from sev-

eral Contributing partners. Unlike Section 4.7.3 which had little information (sim-

ple FOAF and DOAP description) to determine the remaining trust after signature

failure, this scenario a range of additional information at its disposable.

Partners in an EC IST consortium will each have repositories kept within their

own trust domains. Information, including source code will be made available

to other partners only under strict guidelines outline in the project’s Consortium

Agreement. Since partners will be providing secure services to one another, each

will have their own Certificate Authority. It will also be very clear which partners

require access to data at any point in time as well as being able to verify where

information has been transferred to and for what purpose.

:warrant {

:warrant a swp:Warrant.

:warrant swp:authority

<mailto:erw@it-innovation.soton.ac.uk>.

:warrant swp:sourceProject

<http://http://www.ecs.soton.ac.uk/~erw/AcmeGrid/doap.rdf>.

:warrant swp:signatureMethod

swp:JjcRdfC14N-rsa-sha1.

:warrant swp:signature

"E2a...ylV"^^xsd:base64Binary.

:warrant swp:assertedBy :warrant.

:G1 swp:assertedBy :warrant.

:G1 swp:digestMethod swp:JjcRdfC14N-sha1.

:G1 swp:digest "YjR...hNz"^^xsd:base64Binary.

:G2 swp:assertedBy :warrant.

:G2 swp:digestMethod swp:JjcRdfC14N-sha1.

:G2 swp:digest "NmM...2NW"^^xsd:base64Binary.

}

Figure 4.17: IST Warrant Graph that includes source project

96 Chapter 4 Design and Implementation

JSPWiki

QuadStore

MyProject Webpage

FOAFDOAP

Inference

Engine

Digital Signature

Organisational Boundary

Figure 4.18: FLOSS Signature Recovery Scenario

Figure 4.19 gives an overview of the scenario which extends what we described

in Section 4.7.2. The Integrating Partner has discovered a signature failure and

needs to resolve the issue. The repository should perform the following steps:

1. Determine the author of commit with the broken signature;

2. Check if author’s certificate is signed by a CA known to the project (Cer-

tificate);

3. Check if author is listed as working in the workpackage the document is part

of (FOAF, DOAP);

4. Check if author has committed in local repository;

5. Request metadata about any commits in Contributing Partners’ repository;

6. Generate report of author for repository admin;

7. Provide override option (new Digital Signature).

While many of the steps here are similar to those specified in Section 4.7.3, step

seven is different. Once the repository administrator at the Integrating Partner has

Chapter 4 Design and Implementation 97

JSPWiki

AcmeGrid Project Webpage

FOAF

DOAP Certificate

Authority

Inference

Engine

Organisational Boundary

Digital Signature

QuadstoreJSPWiki

SPARQL

Service

Quadstore

Integrating PartnerContributing Partner

Coordinator

Figure 4.19: EC IST Signature Recovery Scenario

reviewed the integrity report, they have a choice to ignore the error and override

with a new signature. Note that this is only possible for the local repository; if the

offending signature failed in one of the Contributing Partners’ repositories, then

the override signature must be done by the Contributing Partner out-of-band. The

Jena 2 inference rules used in this scenario can be found in Appendix D.1.2 with

an example report in Figure D.8.

4.8 Summary

In this section we gave our rationale for Document Provenance and how it models

version control. We also described its realisation as an OWL DL ontology. While

Document Provenance forms the core of our DL framework it does not itself create

provenance. For this we have used Named Graphs, an compatible extension to

RDF that provides a natural way to record provenance in RDF. Named Graphs also

provide a convenient mechanism that allow us to attach digital signatures of other

RDF graphs. Digitally signed DP forms the core of a version control structure

that not only enforces committer IPR attribution, but is also self-contained, non-

repudiable, and immutable.

98 Chapter 4 Design and Implementation

Our online collaborative tool, based on our work with Named Graphs and digital

signatures, defines an example collaborative distributed software engineering en-

vironment. To show how this framework can be used to satisfy the the questions

useful to our case studies in Section 3.5, we have defined as set concrete federa-

tion scenarios that attempt to demonstrate Semantic Web knowledge federation

coupled with semantic reasoning, that goes beyond the capabilities of the modern

RDBMS. Performance results of these scenarios can be found in Section 5.1.2.1.

Despite our successful work with Semantic Web technology, there still exist issues

that need to be resolved in further work. While the conservative canonicalisation

approach we employ for our RDF digital signature solution is viable, it limits the

wider variety of RDF graphs that exist on the Semantic Web. The way RDF

instances are decomposed and selected for signing still pose issues. In the next

chapter we evaluate our online collaborative tool, RDF digital signature solution,

and Semantic Web technology.

Chapter 5

Evaluation

In the previous chapter we described our DL-based provenance design, its secu-

rity considerations, and its use in our online collaborative tool. We went on to

define some federation scenarios that could be used to demonstrate the value of

Semantic Web technology beyond the capabilities of a standard RDBMS. This

chapter evaluates the research described in this thesis and includes quantitative

and qualitative analysis of Semantic Web and RDBMS technology.

Quantitative experimental results included in this chapter were conducted on a

CoreTM2Duo 2.00Ghz machine with 2GB RAM, running Windows XP SP2. The

effective heap size available to Java was set to 1GB, which became essential when

measuring results for the federation scenarios and OWL DL entailment perfor-

mance.

5.1 Semantic Web Evaluation

During the course of our research we have been exposed to a wide array of Se-

mantic Web concepts and techniques that we believe are valuable in improving

distributed collaborative software development. Despite demonstrable advantages

such as knowledge federation, there are still questions regarding the performance

of Semantic Web toolkits against their modern RDBMS counterparts. If, for ex-

ample, we were to select a simple RDBMS (embedded without optimisation or

indexing), how does our Semantic Web-based version control approach compare?

99

100 Chapter 5 Evaluation

5.1.1 Semantic Web Performance

In this section we measure various aspects of Semantic Web performance of based

on representative JavaTMsource documents that has been committed into our se-

mantic version control system. We have used real-world source code from the

Taverna project some of whose classes (Workbench1) provides a reasonably large

version history (90 versions as of 20th February, 2007).

5.1.1.1 Data Models

RDBMS and Semantic Web technology take distinctly different approaches to

data modelling. An RDBMS contains a collection of tuples of attributes whose

structure is based on a schema. An RDBMS schema is a highly structured set

of relationships between attributes that is also highly static; once a schema has

been developed and deployed, it cannot be dynamically changed. Developing a

schema takes a great deal of effort on the part of the developer, although a schema

in third-normal form [Kent (1983)] should be extremely efficient when used in

conjunction with indexes.

The RDF data model is, in contrast, more flexible than the RDBMS approach,

primarily due to its so-called semi-structured nature. Its graph-based structure is

therefore less strict than an RDBMS schema and more extensible. For example,

it is quite simple to increase the size of an RDF graph simply by adding new

relationships that form triples; any entailments on these triples will be based on

an ontology which can also be changed since it also follows the same data model.

As we noted in Section 2.5.3, the purpose of OWL ontology language is to give

meaning to RDF. Typically an OWL ontology is used to process RDF and produce

simple type classification. The main argument behind OWL DL inferencing is

so that different vocabularies can be mapped together based on categorisation

hierarchies. As we will see in Section 5.2, the additional classification produced

by OWL DL entailments is a poor return on investment.

While the RDF data model is in principle more flexible and open to change, we

will see that this flexibility comes a price. Its semi-structured nature makes it very

difficult to store efficiently, which leads to performance issues in read and write

operations.

1http://taverna.cvs.sourceforge.net/taverna/taverna1.0/taverna-workbench/
src/main/java/org/embl/ebi/escience/scuflui/workbench/Workbench.java?view=log

http://taverna.cvs.sourceforge.net/taverna/taverna1.0/taverna-workbench/src/main/java/org/embl/ebi/escience/scuflui/workbench/Workbench.java?view=log
http://taverna.cvs.sourceforge.net/taverna/taverna1.0/taverna-workbench/src/main/java/org/embl/ebi/escience/scuflui/workbench/Workbench.java?view=log

Chapter 5 Evaluation 101

0

25

50

75

100

C
o
m

m
it

T
im

e
(s

)
C

o
m

m
it

T
im

e
(s

)

0 5 · 103 1 · 104 1.5 · 104

Graph Size (Quads)Graph Size (Quads)

Figure 5.1: NG4J Commit Performance using HSQLDB

To determine the performance of our Semantic Web toolkit of choice, NG4J, we

set out to measure its ability to store and retrieve RDF compared to a simple

RDBMS. To ensure a like-for-like comparison, we used the same RDBMS in its

“native” mode and as a backend to NG4J. With this in mind we chose HSQLDB2 as

the RDBMS, which is one of the many databases supported by NG4J. HSQLDB is

an all-JavaTM database engine that is extremely useful in embedded deployments.

5.1.1.2 Storage

Most Semantic Web toolkits process all RDF in memory, fetching and storing RDF

from flat files located on the local file system or on the Web3. More advanced con-

figurations use RDBMS-based persistent storage so that SQL-like languages for

RDF can be used to reduce the amount of memory used to process RDF. For

small amounts of RDF (100-1000s of triples) in-memory is still quite usable. Un-

fortunately, once more advanced SW concepts such as inferencing are introduced,

memory usage increases, even if an RDBMS-triplestore is used; this is because all

current inference strategies must be performed in memory, no matter the size of

the underlying dataset.

Figure 5.1 shows the time taken for committing 90 successive DP instances de-

scribing the Taverna Workbench class. As can be seen from these results the

taken is using NG4J is non-linear; this suggests that there is a performance hit

compared to using an RDBMS natively which we would expect to be linear in

2http://hsqldb.org/.
3FOAF and DOAP descriptions are common examples where RDF will be serialised.

102 Chapter 5 Evaluation

0

200

400

600

800

C
o
m

m
it

T
im

e
(m

s)
C

o
m

m
it

T
im

e
(m

s)

0 5 · 103 1 · 104 1.5 · 104

Graph Size (Quads)Graph Size (Quads)

Figure 5.2: Commit Performance using HSQLDB Native

shape. If we were to “replay” the NG4J commits into HSQLDB natively we see a

proportional relationship between the time taken and size of dataset (Figure 5.2).

Given the maturity of RDBMS technology a linear result for HSQLDB is not un-

expected and also shows that embedded small-scale RDBMSs are just as capable

as their client-server counterparts (MySQL, PostgreSQL, Oracle).

It is quite obvious at this point that HSQLSB performs far better on its own

than with NG4J at the application layer. It is highly likely that is in part due

to the immaturity of NG4J and Semantic Web technology in general. RDBMS

technology has had several decades of development to achieve the performance we

see today. Another reason for NG4J’s reduced performance is the schema that is

used to represent the RDF data model in SQL. This is clearly sub-optimal and

needs reviewing; however, strategies will be constrained by the semi-structured

nature of RDF, making it difficult to be optimised in an RDBMS schema since it

is too generic.

5.1.1.3 Querying

Querying is a vital feature of any information storage system, semantic or oth-

erwise. At the time RDF and OWL were published as Recommendations by the

W3C in early 2004, no standard query language for RDF existed; this left develop-

ers to create their own based on SQL or similar. RDQL has been one of the most

popular languages, some parts having become part of the SPARQL RDF Protocol

and Query and Language.

Chapter 5 Evaluation 103

Both SQL and SPARQL can be seen as query languages that work on objects; SQL

for querying attributes of objects in an RDBMS; SPARQL for querying relation-

ships between objects in a knowledge-base Melton (2006). The closest equivalent

to these relationships in SQL is the foreign key attribute in an RDBMS relation.

SPARQL is designed to query collections of triples known as graph patterns from

one or more graphs. The SPARQL Dataset [Prud’hommeaux and Seaborne (2007)]

defines the so-called background graph and zero, one or more Named Graphs. As

a query language it has many advantages over SQL, some that derive from the

underlying RDF data model, others from its ability to query from multiple logical

data sources (different RDF graphs); it is the latter advantage that has been

leveraged by us for knowledge federation.

Some recent work by Prud’hommeaux (2006) has investigated the possibility of

mapping SPARQL directly onto MySQL, effectively turning SPARQL into a uni-

versal query language that supports both RDF and RDBMS data structures. Oth-

ers are attempting to bridge the gap between OWL and relational databases [Motik

et al. (2007)].

SELECT * FROM books

WHERE title = ’book1’;

Figure 5.3: Simple SQL Query

To illustrate the differences between SQL and SPARQL, consider the queries in

Figure 5.3 and Figure 5.4. Both queries perform a select, however, the method for

each is very different based on their respective data models. Rather than work-

ing against a strict schema, SPARQL allows the developer to write queries that

work on relationships and unbound variables. Despite this SPARQL maintains a

vaguely SQL syntax that makes writing queries relatively simple for those who

know SQL and RDF. Queries are constructed based on graph patterns which can

easily traverse relationships, something that is more difficult in SQL without the

use of JOIN between different tables.

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?title

WHERE

{

<http://example.org/book/book1> dc:title ?title

}

Figure 5.4: Simple SPARQL SELECT Query, taken from latest SPARQL
Working Draft, March 2007

104 Chapter 5 Evaluation

SPARQL is not limited to simple selects based on graph patterns. Entire graphs

can be returned using the CONSTRUCT and DESCRIBE constructs (Figure 5.5),

whilst existential tests can be made using ASK (5.6). While CONSTRUCT and

DESCRIBE both return an RDF graph, in a DESCRIBE request the structure of

the returned data is not prescribed by the SPARQL query, rather it is determined

by the SPARQL query processor.

CONSTRUCT {?s ?p ?o}

WHERE

{

GRAPH ?g {

?s ?p ?o

}

}

Figure 5.5: Example SPARQL CONSTRUCT Query

It is important to note that the query in Figure 5.5 will produce a graph is a logical

merge of all graphs that exist in the knowledge-base. Since a merge is performed,

all information about the originating graph is lost without additional queries.

This became particularly noticeable when we were implementing the federation

scenarios in Section 4.7.

PREFIX dp: <http://grid.cx/dp/1.0/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

ASK WHERE

{

GRAPH ?g {

?doc rdf:type dp:Document

}

}

Figure 5.6: Example SPARQL ASK Query

One interesting but subtle aspect of the SPARQL ASK construct is the issue of

monotonicity. As we noted in Section 2.4.5, the Semantic Web is considered a

monotonic logic and follows the Open World assumption. It can be argued that

SPARQL ASK simulates negation as failure and thus a non-monotonic operation;

if it were monotonic then the return value for a null result would be unknown. It is

likely that ASK was added to SPARQL for the convenience of yes or no questions,

despite its implications for the underlying logic.

While SPARQL does not support nested queries like those found in SQL, it can

emulate the same effect using the UNION construct. Prud’hommeaux (2006)

Chapter 5 Evaluation 105

SELECT * FROM ng4j_quads;

Figure 5.7: SQL Select *

presents an interesting example of the use of the SPARQL UNION construct;

whereas the SQL example used several subqueries SPARQL performs a number of

UNIONs which reduce the size and complexity of the query.

5.1.1.4 Query Performance

SELECT * FROM ng4j_quads

where

subject=’https://localhost:8443/webdav/taverna/

taverna-workbench/org/embl/ebi/escience/scuflui/

workbench/Workbench/1/45/Workbench.java’;

Figure 5.8: SQL Select DP Instance

Our strategy for evaluating the performance of SQL and SPARQL is to use some

simple queries to access the DP instances generated in Section 5.1.1.2. For SQL we

have used the queries shown in Figure 5.7 and Figure 5.8; in the first query we select

all quads from the knowledge-base, whilst in the second we select the metadata

description for a specific source code document. To ensure a fair comparison,

HSQLDB does not use indexes to increase SQL performance. Indexing is a notable

feature that is lacking from Semantic Web toolkits.

SELECT *

WHERE

{

GRAPH ?g {

?s ?p ?o

}

}

Figure 5.9: SPARQL Select

For SPARQL we have used the queries shown in Figure 5.9, Figure 5.5, and Fig-

ure 5.6 since they are the three main SPARQL query types that we have used in

our federation scenarios (Section 4.7).

Figure 5.10 and Figure 5.11 show results of HSQLDB SQL and NG4J SPARQL

respectively, based on our DP instances. On the whole there is little difference in

the query times between HSQLDB SQL and NG4J SPARQL. HSQLDB SQL is

106 Chapter 5 Evaluation

0

250

500

750

1000

Q
u
e
ry

T
im

e
(m

s)
Q

u
e
ry

T
im

e
(m

s)

0 5 · 103 1 · 104 1.5 · 104

Graph Size (Quads)Graph Size (Quads)

SQL SELECT

SQL SELECT Document

Figure 5.10: HSQLDB Native SQL Query Performance

clearly linear while NG4J SPARQL is non-linear which is expected given the RDF

data model.

0

200

400

600

800

Q
u
e
ry

T
im

e
(m

s)
Q

u
e
ry

T
im

e
(m

s)

0 5 · 103 1 · 104 1.5 · 104

Graph Size (Quads)Graph Size (Quads)

SPARQL SELECT

SPARQL CONSTRUCT

SPARQL ASK

Figure 5.11: NG4J HSQLDB SPARQL Query Performance

5.1.2 Federation

Federation is a key enabler for collaboration in distributed environments. We have

already noted that the ability to gather information from multiple sources is ben-

eficial and crucial for our case studies (Section 3.1). Our approach in Section 4.7

attempts to demonstrate how Semantic Web federation satisfies the case studies

and questions outlined in Section 3.5.

Chapter 5 Evaluation 107

Below we present a set of SPARQL queries used in the federation and signa-

ture recovery scenarios. In our implementation, each query has been encapsu-

lated as a Jena 2 builtin functor that can be called within a Jena 2 rule. Fig-

ure 5.12, Figure 5.13, and Figure 5.14 implement the builtins doapAuthorKnown,

remoteAuthorKnown, and listCommits respectively. The declarative nature of

the Jena 2 rule language makes introducing new functionality relatively simple.

Managing rules can be problematic, however, since it is difficult to understand the

data flow that causes rules to fire.

Figure 5.12 is designed to check a committer’s membership of a project based

on workpackage and CA, hosted on the project’s DOAP description4. The OP-

TIONAL keyword optionally matches graph patterns that do have solutions, oth-

erwise ignore and attempt to satisfy original pattern. This is a new feature that

was not available in SPARQL’s predecessor, RDQL. The use of OPTIONAL in our

federation scenarios means that the same query can be used in both the FLOSS

and IST federation scenarios that each query DOAP descriptions. This query is

used in the doapAuthorKnown rule builtin.

PREFIX doap: <http://usefulinc.com/ns/doap#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX swp: <http://www.w3.org/2004/03/trix/swp-2/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT *

WHERE

{

?author swp:certificate ?cert .

OPTIONAL { ?author doap:workpackage ?wp . }

OPTIONAL { ?s doap:knownCA ?ca . }

}

Figure 5.12: SPARQL query on DOAP description

Figure 5.13 shows a SPARQL ASK query that verifies whether a committer

(swp:authority) has committed a JavaTM class based on matching against the

digital signature. Here we see where the SPARQL GRAPH construct comes to into

its own. Since each Warrant graph (Section 4.6.4) that holds the signature to origi-

nal graph is distinct and logically separate, we must query for both graphs. Firstly,

we find the Warrant graph that has the same signature creator (swp:authority);

we can then find out which graph the Warrant graph asserts with the signature.

Secondly, we query the second graph and test for its class description. This query

is used in the remoteAuthorKnown rule builtin.

4http://www.ecs.soton.ac.uk/ erw/AcmeGrid/doap.rdf.

108 Chapter 5 Evaluation

PREFIX swp: <http://www.w3.org/2004/03/trix/swp-2/>

PREFIX dp: <http://grid.cx/dp/1.0/>

ASK WHERE

{

GRAPH ?g

{

?auth swp:authority

<mailto:erw@it-innovation.soton.ac.uk> .

?g2 swp:assertedBy ?g .

} .

GRAPH ?g2

{

?doc dp:hasClass

<net.sf.taverna.tools.Bootstrap>

}

}

Figure 5.13: SPARQL ASK query used in federation scenarios

Figure 5.14 is designed to return a list of document descriptions committed by a

known committer. This has been used in the listCommits Jena 2 builtin so that

in the IST signature recovery scenario, the administrator can query contributing

partners to see whether the creator of the broken signature has committed any

other documents. Any additional documents are listed in the validity report using

the dp:knownCommits relationship. This SPARQL query takes advantage of the

DISTINCT construct which limits results to those that are unique only.

In addition to using SPARQL to query data in our knowledge federation sce-

narios, we have also used Horn clause-based inference rules to automate the ex-

ecution of our signature recovery scenarios. Inference rules take a declarative

approach that can also be found in languages such as Prolog and to some extent

JavaTM (RuleML). They are, however, difficult to author and difficult to manage.

Depending on the algorithm used they can also be computationally expensive. We

will discuss the performance of our custom rules in the next section and OWL DL

in Section 5.2.3.

Another issue when accessing data from NG4J is that, unlike SPARQL, the Jena

2 rule engine does not understand the existence of Named Graphs. At present it

still only works on standard RDF graphs, placing inferences into a separate graph

that can be optionally added to the original graph if required.

Chapter 5 Evaluation 109

PREFIX swp: <http://www.w3.org/2004/03/trix/swp-2/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX dp: <http://grid.cx/dp/1.0/>

PREFIX java: <http://simile.mit.edu/2004/09/ontologies/java#>

SELECT DISTINCT ?doc

WHERE

{

GRAPH ?warrant

{

?warrant swp:authority

<mailto:erw@it-innovation.soton.ac.uk>

} .

GRAPH ?graph

{

?doc dp:maker ?authority

}

}

Figure 5.14: SPARQL DISTINCT query used in federation scenarios

5.1.2.1 Federated Scenario Performance

To show the performance of our federation scenarios (Figure 4.15 and Figure 4.16),

we used the same Taverna Workbench JavaTM class dataset used in Section 5.1.1.2

and Section 5.1.1.3 and added the necessary RDF digital signatures. To ensure

that it also worked with a different dataset, we also tested using the Taverna

net.sf.taverna.tools.Bootstrap JavaTM class. Results presented here are for

the Taverna Workbench class.

0

5

10

15

20

T
im

e
(s

)
T

im
e

(s
)

0 5 · 103 1 · 104 1.5 · 104

Graph Size (Quads)Graph Size (Quads)

Figure 5.15: Federated Retrieve Document Metadata Performance

110 Chapter 5 Evaluation

Figure 5.15 shows results for returning a single version of the Workbench class

from our SPARQL GRIA service. We can see that the graph shape is clearly

non-linear, although not exponential. The main reason for this, as can be seen

by the time taken, is the cost of using secure SOAP to transport RDF and the

inefficiency of NG4J SPARQL queries.

0

100

200

300

T
im

e
(s

)
T

im
e

(s
)

0 5 · 103 1 · 104 1.5 · 104

Graph Size (Quads)Graph Size (Quads)

Figure 5.16: Federated Retrieve Document History Metadata Performance

Returning complete version histories is nearly ten times slower (Figure 5.16) more

due to SPARQL query inefficiencies than the SOAP invocations. In this case,

the web service must do much more work searching for all versions and packaging

them for transport. The worse than linear shape, therefore, is expected.

Turning to our signature recovery scenarios, we measured the performance for

the Jena 2 inference engine to process the rules defined in Appendix D.1.1.1

and Appendix D.1.2.1. While our rules are relatively simple, the nature of the

RETE [Forgy (1982)] algorithm can still be computationally expensive.

Figure 5.17 shows the results for FLOSS signature recovery. While the results are

somewhat erratic, even after several successive runs, the graphs shape can still be

seen to as more than linear. It can also be seen that all inferences are complete

within ten seconds. This is mainly due to the fact that the FLOSS signature

recovery scenario does not attempt to access any remote SPARQL services located

at another repository.

The IST signature recovery, on the other hand, is distinctively exponential in

shape. There are two reasons for this, the first being the use of Jena 2 rule

builtins that call a remote SPARQL web service to discover if the committer

has committed the same class before (remoteAuthorKnown, Figure 5.13) and to

Chapter 5 Evaluation 111

0

2.5

5

7.5

10

T
im

e
(s

)
T

im
e

(s
)

0 5 · 103 1 · 104 1.5 · 104

Graph Size (Quads)Graph Size (Quads)

Figure 5.17: FLOSS Signature Recovery Performance

retrieve a list of other good commits (checkDocument, Figure 5.14). The second

is the multiple SOAP invocations that the inference engine must make and the

associated processing time at the SPARQL web service.

Despite the relatively slow performance of the federation and signature recovery

scenarios, we can see that federation across different data sources using procedu-

ral (JavaTM) and declarative (Jena 2) rules is possible. The use of secure SOAP

also definitely impedes performance, although in the case of IST projects it is

crucial for effective collaboration between partners.

0

50

100

150

T
im

e
(s

)
T

im
e

(s
)

0 5 · 103 1 · 104 1.5 · 104 2 · 104

Graph Size (Quads)Graph Size (Quads)

Figure 5.18: IST Signature Recovery Performance

112 Chapter 5 Evaluation

5.1.3 Security

In Chapter 1 and Chapter 3 we argued that our case studies required a secu-

rity approach where trust was vested in the software repository’s internal struc-

ture (metadata) rather than the remote host. By taking this approach we could

avoid the monopolies that exist in current FLOSS hosting providers, for example,

SourceForge. Our solution to this problem has been to tightly couple trust into

the version control structure so that its integrity is self-asserting, and that since

developers must be part of the commit process, they are made accountable.

5.1.3.1 SWP Performance

Earlier implementations of SWP were based on DBin’s RDF signature mecha-

nism5. We initially tried the TriQL [Bizer (2004a)] query language, based on Jena

2’s RDQL [Seaborne (2004)]. TriQL is a small and relatively efficient query engine

that supports Named Graphs; unfortunately it does not scale well. The reference

implementations of SPARQL in Jena 2, ARQ, showed some promise; the SPARQL

draft specification6 had only just been released and only spoke of the SOURCE of

an RDF triple; Named Graphs did not arrive until January 20057.

The use of Named Graphs, an expressive query language (SPARQL) and inference

puts our implementation apart from other work. Tummarello et al. (2005) claim

that the use of RDF reification somehow causes the signature to be closer to the

RDF graph it signs. XML Signature has a similar approach with encapsulated

signatures, where the content is actually held as part of the signature structure.

Another well used method, used by Dumbill (2002) and XML Signature, and our

work is detached signatures. Detached signatures are separate to the content they

sign, for example, a file in a database. Our RDF digital signature solution is

detached in that it is held in a different Warrant Named Graph; since there is a

semantic connection which does not exist with RDF reification, our approach can

be seen as flexible and extensible, something not possible with Tummarello et al.

(2005).

Although digital encryption of data can be an expensive process it is relatively

simple compared to generating digital signatures. The object to be signed must

5We removed the need for the RDF Reification vocabulary.
6SPARQL Query Language for RDF W3C, Working Draft 12 October, 2004, available at

http://www.w3.org/TR/2004/WD-rdf-sparql-query-20041012/.
7Available at http://www.w3.org/2001/sw/DataAccess/rq23/#choosing.

Chapter 5 Evaluation 113

have its digest recorded (SHA-1, SHA-224, SHA-384, or SHA-512); a manageable

signature structure must be constructed that includes the digest of each RDF

graph; this is then signed. As we noted in Section 4.4.1, RDF does not have a

canonical form like XML, so digital signature generation is non-trivial. In Sec-

tion 4.6.4 we described our RDF digital signature solution which is now part of

the SWP Framework in NG4J. This solution uses a conservative canonicalisation

approach based on the algorithm detailed in Carroll (2003), that forbids the use

of blank nodes.

Here we present results for the performance of our RDF digital signature mecha-

nism using Document Provenance instances based on the Taverna dataset we used

in Section 5.1.1.2, Section 5.1.1.4,and Section 5.1.2.1. Results include the pro-

cessing time for canonicalisation as well as generation and verification of digital

signatures. Since our RDF digital signature mechanism is incapable of reliably

canonicalising the Petersen Graph, we have not included any results given that

such results cannot be validated properly.

5.1.3.2 DP Instances

DP instances provide an interesting dataset to test our RDF signature solution

because of the varying size and structures that exist in each instance. While these

structures include sub-graphs, RDF Semantics [Hayes (2004)] define how these

sub-graphs merge together; this means the introduction of sub-graphs should not

adversely affect the performance of our solution.

0

500

1000

1500

T
im

e
(m

s)
T

im
e

(m
s)

0 5 · 103 1 · 104 1.5 · 104

Graph Size (Quads)Graph Size (Quads)

Figure 5.19: Carroll’s Algorithm Performance

114 Chapter 5 Evaluation

Figure 5.19 shows the performance of Carroll’s algorithm over our DP instances.

Results suggest that graph size and time taken are proportional, which is not

surprising given that our conservative canonicalisation approach negates the use

of blank nodes (Section 4.4.1.2).

0

20

40

60

80

T
im

e
(s

)
T

im
e

(s
)

0 5 · 103 1 · 104 1.5 · 104

Graph Size (Quads)Graph Size (Quads)

SHA1WithRSA, SHA-1 Digest

SHA1WithRSA, SHA-224 Digest

SHA1WithRSA, SHA-384 Digest

SHA1WithRSA, SHA-512 Digest

Figure 5.20: SWP SHA1WithRSA Performance

While Carroll’s algorithm follows a linear shape, the actual generation of digital

signatures using this algorithm do not. As can be seen in Figure 5.20, over increas-

ing graph sizes our RDF digital signature solution is at best non-linear. Since we

have already see that Carroll’s algorithm is linear, this is most likely due to the

increased computation when generating the secure hashes and RSA signature.

5.2 Logic Evaluation

In this section we evaluate the various logics that we have encountered during our

research namely, SQL, Description Logics and Prolog. While we have not directly

worked with Prolog or Logic Programming, we believe that including them in this

evaluation given its prevalence in artificial intelligence.

5.2.1 Differences

While on the face of it SQL, DL and Prolog are clearly different, they are all

based on logics that are defined based on their expressiveness and computational

complexity. Each approach is increasingly expressive, yet becomes more compu-

tationally complex as can be seen in Figure 5.21.

Chapter 5 Evaluation 115

Expressivity

C
o
m
p
u
ta
ti
o
n
a
l

C
o
m
p
le
x
it
y

SQL

Description

Logic

Prolog

Figure 5.21: Logic Expressivity

SQL, which is the most common RDBMS query language is a simple and efficient

language that is the least expressive logic. Like Codd’s relational algebra and rela-

tional calculus it is decidable [Date (2000),Date (2006)], and capable of processing

queries in linear time as we have seen in Section 5.1.1.3.

Description Logic sits comfortably between SQL and Prolog. While DL is a subset

of FOL it uses a decidable subset that has made it an attractive logic for knowledge

representation (see Section 2.4.1). Computationally complete, several algorithms

exist to derive entailments on knowledge-bases. These algorithms, however, tend

to be relatively inefficient as we shall see in Section 5.2.3. Examples of DL such as

OWL DL provide an array of core entailments that provide automatic categorisa-

tion, a feature that is missing from SQL.

The last and most expressive logic related to our research is Prolog. Commonly

used in artificial intelligence, it is made up entirely of Horn clauses [Horn (1951)].

These clauses can also be used to construct rules that perform a similar function to

SQL when creating new relations8. The range of constructs that Prolog supports

makes it an extremely versatile and expressive language; it can be used to make

interesting programs based around business rules [Ross (2003); Walker (1990)]

and solve relatively complex problems. Prolog can be used to implement DL

8http://cs.wwc.edu/KU/PR/Prolog.html.

116 Chapter 5 Evaluation

entailments, and other FOL including F-Logic. This high expressivity, however,

means Prolog and related Logic Programming (LP) languages are known to be

undecidable [Covington et al. (1996)].

5.2.2 Application Domains

We have already seen the application of SQL in our online collaboration tool. SQL

is primarily used in data intensive, real-time systems in the Enterprise. It is not dif-

ficult to find real-world examples of where RDBMS technology and SQL enabling

more advanced systems whether for multi-tier web applications or web browser

enhancements. Enterprise JavaTM based on J2EE is still popular for multi-tier

systems, while attempts to build stateful web services are making progress using

WSRF and WS-ResourceTransfer. The Mozilla Foundation recently announced

that Firefox 3 will include support for off-line web applications9, including an

SQLite database that will index bookmarks among other things.

As we have demonstrated with our online collaborative tool, one of the main uses

of DL is in knowledge representation. Using a DL language for our DP ontology

meant we had a way to not only have a machine readable way of describing the

provenance of source code, but also have a way to potentially infer new knowledge

from the software repository, an issue we raised in our research statement (see

Section 1.3).

Ontologies are becoming more main stream, even if they are not strictly DL-

compatible; FOAF and DOAP are obvious examples where popular ontologies

are helping developers create machine readable metadata that can be federated.

Industry is also starting to see the benefit of Semantic Web-based knowledge rep-

resentation, particularly in the domain of bio-informatics [Stevens et al. (2003);

Sabou et al. (2005)].

Prolog is mostly found in specialised systems related to artificial intelligence. Even

today it is not in mainstream use since a lot of modern programming languages

including JavaTM able to replicate the declarative and rule-based innovations found

in Prolog10; JSR-94 [Toussaint (2003)] has become an industry standard with

implementations including Jess [Friedman-Hill (2003)].

9http://www.informationweek.com/software/showArticle.jhtml?articleID=
198000591.

10http://today.java.net/pub/a/today/2004/08/19/rulingout.html.

http://www.informationweek.com/software/showArticle.jhtml?articleID=198000591
http://www.informationweek.com/software/showArticle.jhtml?articleID=198000591
http://today.java.net/pub/a/today/2004/08/19/rulingout.html

Chapter 5 Evaluation 117

Revival of a kind has taken place with the resurgence of F-Logic under initiatives

such as the Web Services Modelling Ontology (WSMO), its sister languages Web

Service Modelling Language and execution environment, Web Services Modelling

eXecution (WSMX). As we mentioned in Section 2.4.3, F-Logic is an extension to

Prolog that introduces an object-orientated approach to knowledge representation.

While WSMO claims to be compatible to DL, it is difficult to see how two different

approaches to knowledge representation can be reconciled [Horrocks et al. (2005)].

5.2.3 Inference Performance

In this section we evaluate the performance of several inference engines and their

OWL implementations. As we shall see, various factors affect the performance of

inferences including the algorithm used and the complexity of logic (OWL DL,

Mini, Micro). We have not included performance measurements for Prolog given

the declarative approaches that are now available in JavaTM. We have also not

included SQL performance; as we have seen in Section 5.1.1.3 SQL performance

with our semantic version control dataset is reasonably fast (linear time) despite

the absence of indexing in HSQLDB. Value comes from relatively complex queries

across different tables in the RDBMS.

In general, Prolog returns solutions in polynomial time, although a Prolog program

cannot guarantee to complete. Prolog’s inference strategy, sometimes known as

“backward chaining” (see Section 2.4.2.1) or goal-seeking contributes to its com-

putational complexity. Previous studies, however, have found that in general per-

formance in Prolog can be increased by careful reordering of sub-goals [Escalante

(1993)].

The potential for non-terminating queries makes Prolog not an ideal choice for

providing inference facilities in distributed collaborative software development.

Federation might be possible, but answering queries needs to be done quickly,

otherwise users will go elsewhere.

5.2.3.1 DL

At present Description Logics and to a lesser extent F-Logics prevail on the Se-

mantic Web. We have found that DL reasoners such as Pellet [Parsia and Sirin

(2004)] and RacerPro [Haarslev and Mller (2003)] create an excessive number of

triples; this may be partially alleviated by more restrictive OWL subsets such as

118 Chapter 5 Evaluation

0

5

10

15

T
im

e
(s

)
T

im
e

(s
)

0 5 · 103 1 · 104 1.5 · 104 2 · 104

Graph Size (Quads)Graph Size (Quads)

Base Dataset

Pellet OWL DL

Figure 5.22: Pellet OWL DL Performance

OWL-Lite [Smith et al. (2004)], OWL-Mini, and OWL-Micro11. We have used

Jena 2 because we are able to tailor its inference rules to suit our needs beyond

OWL entailments.

DL is at best polynomial based on size of knowledge base. In most cases, even

basic DL reasoning produces a vast amount of triples based on TBox classification.

Whilst this may be useful in queries when you want to find the generic class of a

resource, for a large dataset such information is not valuable.

The vast majority of inference algorithms including RETE and other JSR-94 rule

engines consume enormous amounts of memory. JavaTMruns with a fixed heap

range that means system resources can be still be used up if the knowledge base

is moderately large (50,000 triples).

To test the relative performance DL based on the OWL DL sub-language, we

evaluated two common implementations available to the public: Jena 2 and Pel-

let [Parsia and Sirin (2004)]. Jena 2 supports a subset of OWL DL based on a

hybrid reasoner, whilst Pellet is a full OWL DL reasoner based on tableau algo-

rithms [Baader and Sattler (2001); Horrocks and Sattler (2003)]. In both cases,

we again used the DP instances generated in Section 5.1.1.2 and included the fol-

lowing OWL DL ontologies (see Section 5.3.2.1): DP, DOAP, FOAF, Simple Java,

DCMI, DC Terms, DC Type.

11http://jena.sourceforge.net/inference/.

Chapter 5 Evaluation 119

0

50

100

150

200

T
im

e
(s

)
T

im
e

(s
)

0 5 · 103 1 · 104 1.5 · 104 2 · 104

Graph Size (Quads)Graph Size (Quads)

Base Dataset

Jena 2 OWL Micro

Figure 5.23: Jena 2 OWL Micro Performance

Figure 5.22 shows results for Pellet. It is fairly clear from the graph that the

tableau algorithm used in Pellet is generally non-linear in shape given the differ-

ent ontologies that we have included. Results published by the Pellet developers12

show reasonable performance, there are no results on anything other than ex-

ample ontologies; it seems OWL DL inferences on real data is somewhat rare.

Fortunately, Pellet does not require a great deal of time to process the DP in-

stances. As we shall see with the Jena 2 OWL DL, OWL Mini and OWL Micro,

time can be a key issue.

The aim behind the Jena 2 OWL family inference engines is to provide a useful

sub-set of OWL DL functionality13 for Semantic Web applications. While some

performance results have been provided, there is little information on how well the

Jena 2 hybrid (forward and backward) inference engine works.

The Jena OWL (DL)14 reasoner uses a Logic Programming engine to perform its

inferences. In fact, the vast majority of rule languages, whether forward-based

(e.g. RETE) or backward-based (Prolog, LP) use Horn clauses to describe rules.

OWL Micro is theoretically the least expressive of the Jena 2 OWL dialects, sup-

porting little more than RDFS entailments as well as various property axioms. As

can be seen in Figure 5.23 OWL Micro is non-linear, the main difference being the

time scale; the performance hit incurred by using a RETE/LP hybrid engine is

around a factor of ten. This is quite shocking given that the OWL Micro reasoner

supports a minuscule sub-set of OWL DL in comparison to Pellet.

12http://www.mindswap.org/2003/pellet/performance.shtml.
13http://jena.sourceforge.net/inference/
14Jena 2 does not support the complete set of OWL DL entailments. See http://jena.

sourceforge.net/inference/index.html for further details.

http://jena.sourceforge.net/inference/index.html
http://jena.sourceforge.net/inference/index.html

120 Chapter 5 Evaluation

0

250

500

750

T
im

e
(s

)
T

im
e

(s
)

0 5 · 103 1 · 104 1.5 · 104 2 · 104

Graph Size (Quads)Graph Size (Quads)

Base Dataset

Jena 2 OWL Mini

Figure 5.24: Jena 2 OWL Mini Performance

OWL Mini, another non-standard OWL DL sub-set fairs little better. While

Figure 5.24 overall suggests linear relationship, this is unlikely given the results of

Pellet and OWL Micro, and as we shall see, Jena 2 OWL DL. One difficultly that

was found when taking results was the time taken for each iteration. As we can

see, the time scale of OWL Mini has increased again, although only by a factor of

five.

To get an idea of the memory usage of each implementation, we measured the

memory (heap) used to before the entailments. Figure 5.26 shows a non-linear

shape for OWL Micro, OWL Mini and Pellet. Unfortunately, the lengthy process

of recording Jena 2 OWL DL performance leaves wildly sporadic memory usage

results. What can be seen, however, is that Jena 2 OWL DL will eventually run

out of heap (set to 1024MB) well before completing entailments on the DP instance

data set.

0

1000

2000

3000

T
im

e
(s

)
T

im
e

(s
)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Graph Size (Quads)Graph Size (Quads)

Base Dataset

Jena 2 OWL DL

Figure 5.25: Jena 2 OWL DL Performance

Chapter 5 Evaluation 121

0

250

500

750

1000

M
e
m

o
ry

U
se

d
(M

B
)

M
e
m

o
ry

U
se

d
(M

B
)

0 5 · 103 1 · 104 1.5 · 104

Graph Size (Quads)Graph Size (Quads)

Pellet OWL DL

Jena 2 OWL Micro

Jena 2 OWL Mini

Jena 2 OWL DL

Figure 5.26: OWL Memory Performance

Depending on the OWL sub-language, entailments tend to generate a large number

of triple instances of which only a few may be necessary to infer whether a class

is a subclass within a class hierarchy. For example, a useful entailment would be

to know that a dp:Document is also a foaf:Document. On the other hand,

entailments that declare all DP instances to be owl:Thing is not as useful since

all OWL instances will be an owl:Thing. If a large knowledge-base has an equally

expressive OWL DL ontology, the vast majority of inferred triples will be useless

and laborious to produce.

5.2.4 Rule Language Standardisation

In an ideal world, inference strategy should be irrelevant; forward or backward-

chaining reasoners should produce the same results. If the Semantic Web is to

progress beyond OWL DL classification, a common rule language needs to exist

that can produce a consistent result across different logics. Unfortunately, this

does not appear to be a priority based on the Reasoning on the Web Workshop at

WWW 2006 in Edinburgh15.

Barkmeyer (2006) argues that a common rule language is premature and will

require considerable compromises. Even the existence of the Rule Interchange

Format (RIF) at the W3C16 has made little progress. Others are more positive,

continuing to state, “a little semantics goes a long way”. Even recent OWL Mini,

15http://www.aifb.uni-karlsruhe.de/WBS/phi/RoW06/.
16http://www.w3.org/2005/rules/.

122 Chapter 5 Evaluation

however, has its performance problems as we discovered in Section 5.2.3̃[Hendler

(2006)].

5.3 Document Provenance Evaluation

Here we evaluate the cost of developing an ontology for semantic version control

using Semantic Web languages. We note the difficulties that exist in developing

ontologies in general, as well as the importance of understanding the consequences

of the mixing of ontologies with different levels of expressivity. We also comment

on the challenges when using Named Graphs in conjunction with our DP ontology.

5.3.1 Ontology Design

Ontology design is quite possibly one of the most misunderstood activities in the

Semantic Web. Design guides such as Noy and McGuinness (2001) give a general

overview of what is meant by an ontology and state that there is no definitive

methodology. Grüninger and Fox (1995) attempt to define and evaluate ontologies

based on formal logic, although this is unlikely to be accessible to the average user,

even if they do understand the principles of RDF17. Researchers have been working

with ontologies for at least a decade, and many companies have invested a lot of

money in an attempt to adopt ontologies in the real world.

Unfortunately, ontologies are expensive to create (low return on investment) and

do not always reflect the way people think. If we consider OWL, we have a tree-

like structure that, given the Open World Assumption (see Section 2.4.4), does

not intuitively represent the real world and how we relate to it. Shipman and

Marshall (1999) note some problems associated with ontology design from a user

perspective. Users tend to be unwilling or unable to express concepts explicitly

for system designers. Jones and Paton (1998) give some views on the technical

perspectives of ontology design. They highlight five types of problem that can be

encountered during the design process and offer some solutions based on extensive

domain analysis. There also exist some theoretical limits to what an ontology can

describe based on the computational complexity of expressive logics.

Ontologies are generally useful in describing a particular domain of knowledge.

Potential problems come from who is generating terms for the ontology. In most

17http://www.dzr-web.com/people/darren/blog/2006/07/12/is-the-w3c-failing-us/.

Chapter 5 Evaluation 123

cases a domain specialist is necessary to populate the terminology based on pro-

fessional knowledge and other experience. On the other hand, Sabou et al. (2005)

is a very good example of where software strategies can be used to improve do-

main ontologies. Apart from being self-descriptive, ontologies are of course useful

as the basis of instances in the sense of DL. Based on our experience with OWL

DL performance (Section 5.2.3), it is not clear how useful DL reasoning is in the

long term. Certainly some value can be gained, unfortunately until DL reason-

ers become fast and efficient, they are unlikely to find themselves used beyond

research.

Like a modern language dictionary, an ontology needs to be maintained (depending

on use). This is especially true in open domains such as the Internet where users

and developers find new ways to use a vocabulary or find use cases to extend it that

previously did not exist. FOAF is an example which has slowly evolved based on

a consensus in the Semantic Web community. WordNet is another example that

follows more closely to our initial dictionary example; as the underlying corpus

develops, so must the ontology that annotates it.

5.3.2 Expressiveness and Complexity

Knowledge-based systems suffer from a problem of expressiveness versus complex-

ity; the more complex the constraints that exist between concepts and roles in a

knowledge-base, the more computationally complex class subsumption and con-

sistency checks become. The designers of OWL partially solved this problem by

creating three levels of increasing complexity. OWL DL, which is equivalent to

SHION (D), is the most expressive these ontology languages which is guaranteed

to be decidable.

From the outset of the design of the Document Provenance ontology it was clear

that a considerable amount of instance data would be generated over time. Any

subsumption or general purpose inference would be performed over this large

dataset. If any system based on our design to be sufficiently usable, this would

require us only being able to guarantee subsumption and general inference satis-

fiability, but also reduce computational complexity. Only two types of DL satisfy

these requirements: SHION (D) and SHIOQ(D) which are approximated by

OWL DL and OWL Lite respectively.

We found a minimalist OWL DL ontology would serve our requirements. De-

bugging based on work by Parsia et al. (2005) was essential and frequent but

124 Chapter 5 Evaluation

highlighted the need for effective ontology evolution management. Each time we

discovered we were defining concepts and roles that already existed, these ontolo-

gies were imported instead. Examples of this included ontologies for describing

projects, people, and JavaTM classes. Writing a new ontology that described all

these concepts would not only have been wasteful, but also would reduce the possi-

bility of semantic interoperability. However, due to semantic constraints imposed

by OWL, it was vital we found versions of these ontologies that were no more

expressive than OWL DL.

5.3.2.1 Ontology Interaction

During the design of our DP ontology we were careful to include common ontologies

available that support various application domains such as people (FOAF) and

projects (DOAP). The idea behind importing an ontology is to extend and be able

to maintain semantic interoperability through the use of OWL entailments. As we

demonstrated with our federation scenarios, multiple ontologies are also useful for

data federation even though OWL (DL, Mini, Micro) entailments are remarkably

slow.

Unfortunately, simply importing an ontology is not enough. Depending on the

language used, an ontology has a particular logic “strength” that affects the overall

expressivity of the ontology importing it. Understanding this important yet subtle

issue is one of the great problems with developing ontologies and the Semantic Web

in general. Core references on RDF [Calvanese and Giacomo (2003); Klyne and

Carroll (2004); Hayes (2004)] should become required reading for any appreciation

of the foundations of the Semantic Web.

Rector et al. (2004) provides an enlightening overview of the common errors that

can be introduced when working with OWL DL. Although they do not deal with

the issues surrounding mixing logic strengths, they do highlight the issues of un-

derstanding Open World Reasoning, which is quite rightly a difficult hurdle to

pass. If an ontology developer is to successfully write a sound ontology they must

understand the consequences of Open World Reasoning.

On the other hand, if an ontology developer wants to effectively reason over their

new ontology and associated instances, they must choose the ontology language

carefully. Table 5.1 gives an overview of each imported ontology, its language

and complexity level. The Dublin Core ontologies are currently RDFS18; FOAF is

18OWL DL version available at http://protege.stanford.edu/plugins/owl/dc/.

Chapter 5 Evaluation 125

OWL Full19; DOAP is also OWL Full since it imports FOAF20; the Simile project’s

Simple Java Ontology is RDFS in Notation 3 (N3) syntax.

Ontology Language Complexity Level21

Dublin Core Elements 1.1 RDFS OWL Full
Dublin Core Terms RDFS OWL Full
Dublin Core DCMITypes RDFS OWL Full
Friend of a Friend (FOAF RDFS/OWL OWL Full
Description of a Project (DOAP) OWL OWL Full
Simple Java Ontology RDFS OWL Full

Table 5.1: Imported Ontology Complexity without Modification

One of the reasons FOAF is classified as OWL Full is the inclusion of a property

that is defined as owl:inverseFunctionalProperty with a range xsd:string.

Inverse functional roles are useful in that they can uniquely identify the subject of

a triples (see Section 2.4.1). In the case of foaf:mbox sha1sum, however, the use

of xsd:sting causes the ontology to become OWL Full.

As we noted in Section 4.1.3, while it is permissible to freely mix ontology lan-

guages together, OWL rules state that importing a non-OWL ontology automat-

ically requires the new ontology to be OWL Full. FOAF is a prime example as

it uses a combination of RDFS and OWL constructs. All three DCMI ontologies

and the Simple Java Ontology are similarly OWL Full since they are pure RDFS.

DOAP is itself OWL DL; however, since it imports the default FOAF OWL Full

ontology, it must also be OWL Full.

Ontology Language Complexity Level22

Dublin Core Elements 1.1 OWL OWL DL
Dublin Core Terms OWL OWL DL
Dublin Core DCMITypes OWL OWL DL
Friend of a Friend (FOAF) OWL OWL DL
Description of a Project (DOAP) OWL OWL DL
Simple Java Ontology OWL OWL DL

Table 5.2: Imported Ontology Complexity after Modification

By using the OWL DL version of these ontologies, we produced an ontology that

was OWL DL, with an expressivity equivalent to SHIOF (see Table 5.2). This

ontology provides a minimal set of concepts and roles we have found necessary to

describe the principles of version control.

19OWL DL version available at http://www.mindswap.org/2003/owl/foaf/.
20Version available at http://www.usefulinc.com/doap/ becomes OWL DL once OWL DL

FOAF is imported.

126 Chapter 5 Evaluation

5.3.3 Temporal Restrictions

While ontologies can be seen as highly extensible schemata, concrete languages

including OWL are intrinsically static in nature. This limitation stems from the

monotonic foundations of formal logics such as FOL (Section 2.4.1). For example,

it is difficult to represent processes or anything that represent a sequence of events.

While proposals to extend DLs with temporal semantics exist [Artale and Franconi

(2000)], there are no mainstream temporal DL languages that we are aware of.

Our Document Provenance ontology does to a certain extent represent a sequence

of events, although we have been careful never to negate knowledge; our knowledge-

base always grows as new commits are added. In fact, our ontology and its un-

derlying logic are well suited to version control since all information is stored

indefinitely. This means we can take full advantage of our logic of choice yet

minimise most of the inadequacies of the approach.

The end result has been an ontology that is compact and easy to manage. We

have found ontology design to be subjective and despite efforts by authors [Noy

and McGuinness (2001)], tends either to be application specific, or too general to

be useful without creating subclasses or sub-properties. FOAF and Dublin Core

are common examples. FOAF is highly unstable (subject to regular change) and

targeted towards social relationships; Dublin Core is highly stable (controlled pub-

lic releases) and targeted towards resource cataloguing with a set of all-purpose,

standardised elements. When suitable properties cannot be found, Dublin Core

Elements can be used as base properties that provide some semantic compatibility.

5.3.4 Provenance Mechanism

Throughout the duration of this thesis there has been no clear consensus in the

RDF community on how provenance should be tackled. It was clear that while

we had developed an ontology that provided descriptive annotation that could

be readily rederived from the source document, there was a need for a mechanism

that could reliably bind provenance to source knowledge. The emergence of Named

Graphs as a contender for this task meant we had a way to not only bind prove-

nance to source knowledge represented in DP, but also cause the author of that

provenance to be accountable through the non-repudiation of digital signatures.

Prior to being endorsed in SPARQL draft specification, Named Graphs were a

niche research topic, while quads and contexts had too many toolkit and library

Chapter 5 Evaluation 127

constraints, and RDF Reification was not living up to expectations. The potential

of Named Graphs for provenance annotation gave us the impetus to use it and it

also gave us some influence on the future development of the NG4J API; our work

with Named Graphs has meant that it is now better known and now supports

basic digital signatures in RDF.

We have found that working with Named Graphs has been both challenging and

rewarding. Management of Named Graphs is still in its infancy but possible with

the SPARQL query language. Use of Named Graphs with inferences is also a

challenge since rule languages such as the one used in Jena 2 cannot match against

the graph name. With the knowledge we have gained, however, we are well placed

as SPARQL and new inference engines become mainstream.

5.4 Research Evaluation

The main thrust of this thesis has been to determine the viability of using Se-

mantic Web technology as an alternative approach to the RDBMS that improves

version control in distributed collaborative software development. To this end, we

investigated the merits of using Semantic Web technology as described in Chap-

ter 3, namely knowledge federation, explicit trust of servers and new facilities. We

also investigated the approaches that bind provenance to source knowledge that

we could subsequently reason over.

In the case of provenance binding, our research has led us to develop an ontology

that introduces a novel approach to version control yet captures the principles

behind early provenance recording strategies. This has been integrated with a

cryptographic integrity mechanism based upon Named Graphs and a PKI, a well

established approach to trust in business-to-business environments.

Based on the federation scenarios in Section 4.7 we argue that our case studies as

described in Chapter 3 can be better supported by our semantic version control

approach. Despite immature performance, we see the key enablers of our ap-

proach as trusted metadata, federated collaboration, and to some extent semantic

inferencing.

128 Chapter 5 Evaluation

5.4.1 Trusted Metadata

We argued in Chapter 1 that software development hosting platforms such as

SourceForge force developers to implicitly trust the server without a way to ver-

ify the integrity of the server’s content. Few version control systems in a hosted

environment support anything that includes secure hashes on version controlled

resources or even digital signatures. Our solution to this has been to develop an

approach to version control where integrity is vested in the metadata itself. Rather

than simply starting the commit process, software developers become part of the

process with the result that the signed metadata becomes part of a trusted audit

trail. This also means that they become more accountable for their actions; admin-

istrators can query the repository and other repositories in the event a signature

fails.

Confidence in the metadata is only one part of the problem. Organisations that

collaborate together as they do in our case studies need a mechanism to dynam-

ically create trusted collaborations with minimal fuss. Our approach to this has

been to use well-established grid middleware in the form of GRIA to transport

metadata from trusted sources into local repositories.

Performance results for our choice of conservative canonicalisation is promising,

even though large scale signing of graphs is expensive. We have shown though that

this is not that much of a boundary; DP instances are generally small in size, in

the order of hundreds rather than thousands of triples per graph. It is more likely

that problems will occur in preparing graphs for signature verification: querying

of large datasets to extract original graph and associated Warrant graph.

5.4.2 Federated Collaboration

Knowledge federation has often been touted as a genuine advantage of Semantic

Web technology [Schraefel et al. (2003); Jaén et al. (2005); Park (2006)]. The

ability to merge disparate data sources using the RDF data model is appealing,

especially when additional information is required. Analysis of RDBMS technology

has shown that knowledge federation is not readily possible and that the static

nature of the RDBMS schema makes it difficult to federate new data structures in

a dynamic manner. Our approach to addressing the data federation issues in our

case studies was to investigate what kind of scenarios we could use to demonstrate

the use of Semantic Web federation. The result of this was a set of scenarios

Chapter 5 Evaluation 129

in Section 3.5 that we implemented in Section 4.7 and performance tested in

Section 5.1.2.1.

Rather than using the term knowledge federation, it might be more appropriate to

use federated collaboration. Throughout this research we have been investigating

the use of Semantic Web technology in distributed collaboration. Our scenarios

demonstrate the federation of data between collaborating parties, both FLOSS

developers and IST project partners. Since much of this collaboration is between

different software repositories, we have already gone beyond what is possible with

current version control systems.

5.4.3 Semantic Inferencing

We have shown that inferences over semantic repositories is inevitably a slow

process. If we consider the results collected in Section 5.2.3, we found any OWL

DL, Mini or Micro subsumption to be overly expensive and largely un-useful. The

possibility of using such technology in a production environment with slow and

unscalable performance is highly unlikely. Performance was compounded by our

DP ontology importing several other ontologies. Since rule engines like the Jena

2 RETE engine match triple patterns in main memory, large knowledge-bases

will quickly use up all available heap space. Until more scalable algorithms are

used or a new alternative is proposed for Semantic Web inferencing, performance

will always be an issue. The inference rules we used in our signature recovery

scenarios were made relatively simple so that they would complete in a reasonably

short period of time.

The declarative programming approach we used for semantic inferencing has its

advantages and disadvantages. On the one hand, they provide a certain amount

of flexibility when introducing new functionality. We could, for example, quite

easily extend our federation scenarios with more elaborate rules. Unfortunately,

management and maintenance of rules is problematic because it is difficult to get

an overall picture of the data flow between different rules. We have already seen

in Appendix D that to represent a logical OR, we must write a separate rule that

tests for each different condition. We anticipate that future work will investigate

new strategies to improve performance, management, and maintenance of rules.

130 Chapter 5 Evaluation

5.5 Summary

Results from our research largely support the notion that Semantic Web technol-

ogy can is a viable alternative to the RDBMS in distributed collaborative software

development. Our federation and signature recovery scenarios show that knowl-

edge federation is possible across different trust domains; our trusted metadata

approach demonstrates that it is no longer necessary to implicitly trust the host

server; our choice of OWL DL means that other developers can improve on our

approach in an open manner to promote federated collaboration.

While reliably binding provenance to source knowledge has been a challenging

task, we believe that our approach is an appropriate solution that is scalable at the

provenance level. The use of semantic inferences have been somewhat successful,

although future iterations might include more efficient approaches to declarative

programming.

All this effort, however, comes at a price: performance and scalability. Our choice

of RDF as the data model has been both a blessing and a curse; its semi-structured

nature is highly flexible and extensible at the expense of efficiency compared to an

RDBMS schema. The absence of an efficient indexing strategy in Semantic Web

toolkits such as Jena 2 or NG4J means that both performance and scalability is

a long term issue for the sustained use of Semantic Web technology. We have

already seen in our results that accessing our trusted metadata is expensive and

becomes even more expensive as remote access is introduced.

In the last chapter we evaluate our contributions, review related work, propose

future work and conclude.

Chapter 6

Summary

The advent of Service Orientated Architectures (SOA) [Erl (2005)] and web ser-

vices has brought about a fundamental change in the development of distributed

systems. Rather than rely on proprietary and incompatible network protocols,

most systems now build upon HTTP. Recent initiatives such as the Semantic Web

build upon the WWW and even SOA, where we see the emergence of the semantic

web services and the Semantic Grid. Our work intersects many if not all of these

domains where we have investigated the viability of modelling version control us-

ing Description Logics rather than older RDBMS technologies and new ways to

reliably bind provenance to source knowledge.

To validate our approach, we analysed the need for additional facilities supported

by the Semantic Web using two case studies: FLOSS and EC IST project de-

velopment. We argued that each case study could be better supported using a

semantic version control system, based on the advantages of knowledge federa-

tion and trusted metadata. To our knowledge, the level of integration we have

achieved with Semantic Web, digital signature and grid technology is both unique

and novel.

Early on in our research, it became very clear to us the value and potential of

Named Graphs in the role of provenance. We recognised that for semantic ver-

sion control, we required two types of provenance: descriptive (annotation) and

assertive (relationships). We found initial investigations with RDF Reification,

RDF molecules and MSGs to be inadequate, none of which were able to effectively

make assertions about RDF graphs. In Named Graphs, however, we found an

approach that could not only make assertions about other graphs, that is, reliably

bind provenance to source knowledge at the graph level, but also attach more

131

132 Chapter 6 Summary

complicated data structures like digital signatures. Based on work by Tummarello

et al. (2005) and Carroll et al. (2005), we were able to write an RDF digital signa-

ture mechanism that generated signatures that were distinct from the source graph

and whose logic is capable of being reasoned over [Watkins and Nicole (2006)].

Our work on RDF digital signatures has been reasonably successful. Our con-

servative canonicalisation approach for signing DP instances has meant that the

integrity of metadata is vested in the metadata itself rather than the environ-

ment where it is stored. This means we have been able to remove the reliance on

trusted servers in an otherwise untrustworthy environment. We have also been

able to leverage this integrity to support non-repudiation and IPR attribution,

which we argue has been essential for our case studies. As part of our collabora-

tion with international partners in Bizer et al. (2005a), our RDF digital signature

solution has been published in NG4J as part of the SWP toolkit. We will later

look at ways our approach can be improved.

Fortunately, our decision to use Named Graphs has been validated by an unlikely

source: the SPARQL query language. This has brought Named Graphs much

closer to mainstream usage, where Semantic Web developers are now being exposed

to the possibility of querying more than one RDF graphs. SPARQL has, of course,

made our research easier by providing a query language that supplies many of the

necessary features for our federation scenarios. SPARQL is now a W3C Last Call

Working Draft and should become a W3C recommendation in the near future.

Our work with the Semantic Web, however, has been more than just recording

provenance and generating digital signatures. We have also been interested in

the additional facilities that it would provide, namely knowledge federation and

semantic reasoning. While knowledge federation has proved to be valuable in our

federation scenarios in Section 4.7, our experience of inferencing, in particular

OWL DL, has been less positive.

Further analysis of OWL DL and its performance has shown that it is not as useful

as it first appears. Firstly, quantitative evaluation found it to be computationally

expensive, even for small scale datasets. Secondly, the value of the entailments

provided by even the weakest non-official OWL sub-language, OWL Micro, is

called into question based on the cost to produce the entailment in the first place.

Even general purpose reasoning is expensive for simple tasks such as knowledge

federation orchestration. Management and maintenance is also an issue since

there is no clear way to track the data flow between rules since rule execution in

a RETE-based engine is not sequential.

Chapter 6 Summary 133

Unfortunately, despite the emergence of a common query language for RDF, differ-

ent logics are starting to be used to realise Semantic Web. OWL, which represents

the prevalent approach, builds upon early Description Logic research that is known

to be decidable. Other approaches, such as F-Logic are starting to gain ground

in WSMO [Dumitru Roman and Fensel (2005); Fensel et al. (2006)], even though

they are incompatible with OWL. Horrocks et al. (2005) warns of the dangers in

a Two Tower approach to the Semantic Web. Our own experience from WWW

2006 has also shown that the DL-Datalog semantic rift also applies to inferencing.

This means that there is a real risk that rule authors will not be able to write

rules independent of their choice of logic.

While we have achieved a great deal during this research, many issues still remain.

In the next section we evaluate our approach and consider what aspects of our

research has not been fully realised.

6.1 Self Evaluation

The effective use of Semantic Web technology is deceptively difficult, requiring the

appreciation of several different topics areas. During our research in the use of the

Semantic Web, we discovered the importance in understanding Description Logics,

the Open World Assumption, monotonic logics, and what is meant by expressivity.

Many Semantic Web advocates who have espoused the virtues of RDF and OWL,

and how they are essential to the next iteration of the WWW fail to highlight the

importance of these concepts. This is a pity since not understanding these core

concepts can lead to incorrect decisions when developing ontologies and developing

inference-based systems. We see our research as not only demonstrating the value

of the Semantic Web technology in distributed collaborative software development,

but also highlighting the extent to which the technology can be used in practical

applications.

We believe that our choice to use Semantic Web technology, rather than more con-

ventional approaches has been fruitful despite the hurdles we have faced. Most of

the additional features we expected to be made available from our design have been

validated in our federation scenarios: the use of trusted metadata and knowledge

federation. Knowledge federation is key example where Semantic Web technology

is becoming better understood and showing real results; this is especially true

when providing access to legacy RDBMSs [Wilson and Dardailler (2003); Bizer

and Seaborne (2004); Hawke (2002); Jaén et al. (2005)]. Our own work continues

134 Chapter 6 Summary

to validate this approach, which is a positive sign that the RDF data model has

an advantage over RDBMS schemata. Semantic Web inferencing, however, has

not produced the results we expected and has shown OWL DL to be not as useful

as first thought. We will discuss the performance issues later in this section.

Trust is a another hard issue that plagues the Semantic Web. People are starting to

realise that the quality of information on the WWW is not quite what they thought

is was; Wikipedia has fast become a battle ground over information quality [Carr

(2006)]. Others argue that the Semantic Web is no better. Doctorow (2001)

provides a strong critique on “metacrap”, arguing that the same problem can only

get worse; even Tim Berners-Lee understands the problem, although he does not

provide many answers [Rowland (2007)].

On the other hand, recent research by Wilkinson and Huberman (2007) shows

Wikipedia to be a successful collaborative effort where quality generally improves

with the number of edits. This suggests that the “soft” peer review approach at

Wikipedia does work to some extent1. Unfortunately, until Wikipedia provides a

mechanism for accountability of authors, it will remain a social collaborative effort

with no real trust. Our use of digital signatures binds the author to the commit

process, and makes them accountable through the PKI.

While our research has produced some positive results, there are several areas

where we think improvement can be made on our research. These include the

canonicalisation algorithm used in our RDF signature approach, and Semantic

Web toolkit performance.

6.1.1 RDF Canonicalisation

One of the key challenges in this research has been the development of an RDF

digital signature mechanism that was fast, efficient, and scalable. Our initial

approach was to sign serialised RDF/XML using XML Digital Signature. Since

this approach did not enable us to store the digital signature in a triple store

we investigated other approaches. Work by Carroll et al. (2005) provided a new

direction that would mean including the digital signatures within an RDF data

model.

The RDF digital signature mechanism used in our research relies on the con-

strained usage of an algorithm described in Carroll (2003), which we have called

1http://en.wikipedia.org/wiki/Wikipedia:General disclaimer.

Chapter 6 Summary 135

conservative canonicalisation. In this approach, we restrict the RDF graphs that

we sign to only fully labelled graphs; we therefore forbid blank nodes. Conse-

quently, this has meant that all metadata used in our online collaborative tool

and federation scenarios have been based on fully labelled RDF graphs.

While our conservative canonicalisation approach has performed well in our re-

search, it is not practical to attempt to limit all RDF graphs to being fully labelled.

This means if RDF digital signature is to be used in different domains, a better

canonicalisation method must be found. As we have demonstrated in Appendix C,

since Carroll’s algorithm and nauty use wildly different techniques, they cannot

be used together. nauty on its own is an option, although it would have to be

updated to understand labelled edges and Named Graphs. We have limited our

activity in this area, because the topic of graph isomorphism is beyond the scope

and competency of this thesis.

6.1.2 Trust

The only trust model we have used in our research has been the classic PKI model

that relies on a trusted third-party, the Certificate Authority. While this model is

well tried and tested, it does not necessary enable us to leverage the full potential

of RDF digital signatures on the Semantic Web.

If we consider the inference rules we defined in Appendix D we can envisage the

use of more complex trust models like those used in Golbeck and Hendler (2004a)

or Bizer and Oldakowski (2004). A combination of different trust models would be

advantageous in our federation scenarios where consumers could use PKI, semantic

trust metrics and SPARQL-based queries to limit what kind of information they

are will to accept as genuine.

6.1.3 Performance

We have already seen that less than optimal performance from Semantic Web

technology in our research. However, we can argue Semantic Web toolkits includ-

ing Jena 2 and NG4J rightly choose novel features over low performance. The

vast majority of the technology we use today came from humble research projects;

the WWW is a prime example. It is often typical that initial releases of a new

technology are slower than the previous generation, although new features and

136 Chapter 6 Summary

advancements tend to overcome the perceived disadvantages. As the technology

matures, features may be dropped (semantic inferencing?), but features with a

large market will survive and flourish.

Results taken in Section 5.1.1 suggest that the RDF data model is the likely cause

for the lack of performance in RDF toolkits. The semi-structured, flexible manner

of RDF makes it difficult to optimise in an RDBMS, making it extremely difficult

to index. A first step to improving this situation is to investigate efficient ways to

index RDF, preferably with an RDBMS or using an object-orientated approach.

The next step would be to involve industry; this is essential for industry-wide take

up of the Semantic Web. Companies will not adopt technologies that they cannot

have a vested interest in. Perhaps following Oracle’s lead might help; the recently

released Oracle 10g supports the RDF data model.

A similar approach should also be applied to semantic inferencing. Current in-

ference strategies are over complicated, slow and could be complemented current

adoption of process-based workflow technology like BPEL 2.0 [Jordan and Evde-

mon (2007)] and Windows Workflow Foundation [Scribner (2007)]. New, more

practical algorithms should be investigated that can be integrated with common

business processes. The development of a common rule language could also be

developed in conjunction, helping to break the logic-split and make RIF a reality.

6.1.4 Achievements

Achievements of the work presented in this thesis can be summarised as follows:

1. The design of a DL framework based around Named Graphs called “Doc-

ument Provenance”, used as the basis for our online collaborative tool and

federation scenarios.

2. Development of an RDF digital signature mechanism based on our work with

Named Graphs. This work has subsequently been integrated into a toolkit in

collaboration with international partners which is now part of the Semantic

Web Publishing Framework, a sub-project of the NG4J. Our mechanism is

one of the few examples that satisfies the Digital Signature portion of the

Semantic Web stack (see Figure 3.1).

3. Development of an online collaborative tool that enables distributed collabo-

rative software development and supports two different case studies: FLOSS

Chapter 6 Summary 137

and EC IST projects. We used this tool to enhance the state-of-the-art,

demonstrated with a set of federation and signature recovery scenarios.

4. Used our online collaborative tool to mine information from existing software

repositories, such as the Taverna workflow platform.

5. Evaluated the use of Semantic Web technology through quantitative and

qualitative analysis. Our evaluation included performance comparisons against

RDBMS technology, as well as performance analysis of our RDF digital

signature mechanism and various OWL DL inference engines. We further

analysed the performance of our knowledge federation and digital signature

recovery scenarios.

These achievements serve to reinforce our original research statement made in Sec-

tion 1.3, chiefly that this thesis investigates new and novel strategies to improve

version control in distributed software development. Our approach not only pro-

vides a trusted metadata approach that can reliably bind provenance to source

knowledge, but also federation facilities not available in current version control

systems.

6.2 Related Work

In this section we present research that is related to the key issues we have been

investigating in this thesis namely, provenance mechanisms, trusted metadata,

RDF digital signatures, and semantic knowledge federation.

6.2.1 Provenance Frameworks

Recent work by Miles et al. (2007) presents a platform-independent framework for

validating workflow executions using a mixture of OWL descriptions and XML-

based provenance. OWL and web service descriptions are used during the valida-

tion process based on a set of inference rules implemented in Jena 2.

Several other approaches exist for employing semantics and provenance in service-

orientated environments. Chen et al. (2006b,c) describe a hybrid provenance ap-

proach, defining a new kind of provenance, augmented provenance. They dis-

tinguish augmented provenance as an enhancement of existing provenance using

138 Chapter 6 Summary

extensive metadata and semantic. Chen et al. (2006a) envisage the use of service-

based semantic for use in service discovery and composition, previously an aim of

OWL-S.

Liang (2006) seeks to address the issues surrounding ontology change management

using a Log Ontology to capture the ontology change information. They see two

approaches to ontology versioning: passive and active analysis. Passive analysis

compares the current version to previous versions, whereas active analysis records

all change events as they occur in a similar fashion to a logging utility.

6.2.2 RDF Digital Signatures

Tummarello et al. (2005) and Cloran and Irwin (2005) offer the only real alter-

natives to signing RDF. The approach taken by Tummarello et al. (2005) is to

use RDF Reification to attach the signature to the graph. While this approach

appears sound, we have argued that it is semantically flawed (Section 3.3.2.2).

Cloran and Irwin (2005) take a more conventional route, simply signing serialised

RDF for later verification. The use of XML Digital Signature is a good approach,

since it means developers who have existing toolkits based on XML Digital Sig-

nature can integrate easily. The only disadvantage is that managing signed RDF

becomes a problem; they have yet to address this in their approach.

Following on from their PASOA work, Tan et al. (2006b) have investigated the

use of XML Digital Signature to enable accountability and non-repudiation for

p-assertions [Groth et al. (2004)]. P-assertions are placed in the WS-Addressing

header of a SOAP message, then signed using XML Digital Signature. While

this approach has the potential to support non-repudiation, this is only applicable

if an asymmetric algorithm is used; symmetric algorithms such as Kerberos and

SAML token profiles do not support non-repudiation in WS-Security, which relies

on XML Digital Signature.

Tan et al. (2006a) look at a more wide range of security issues of when using p-

assertions. Rather than being limited to non-repudiation and digital signatures,

they investigate access control, trust models, confidentiality, and archival of p-

assertions. It is important to note here that Tan et al. (2006a), like Braun and

Shinnar (2006) have an interest to potentially protect access to provenance, an

issue that we have not explicitly addressed.

Chapter 6 Summary 139

6.2.3 Semantic Knowledge Federation

Bizer and Cyganiak (2006) provide a good example of where Semantic Web tech-

nology is being used to integrate legacy databases using SPARQL queries. They

define a declarative mapping language based on earlier work in Bizer and Seaborne

(2004). This can be compared to Joseki2, an RDF server that only supports a na-

tive RDF dataset. While our work does not envisage the use of a legacy database,

it would be interesting to investigate how our semantic version control approach

can be mapped onto existing version control systems.

Newer toolkits now support distributed SPARQL-based federation. DARQ3 is one

such example. It can be used to query multiple graphs which could include Joseki

and D2R servers, as if they were a single RDF graph. The ability to perform

distributed querying is a useful feature, even though DARQ is unable to perform

DESCRIBE or GRAPH constructs which would be required in our federation

scenarios. We expect that future versions of DARQ will support these features.

6.3 Future Work

Future work outlines areas where we can perform further research based on the

issues discussed in our self-evaluation and related work. Here we identify several

potential and interesting areas for future work which include: architecture, on-

tology, logic, and federation extensions. We also briefly discuss how performance

might be increased.

6.3.1 Architectural Improvements

6.3.1.1 GRIA

The use of GRIA in our federation scenarios has shown how easy it is to develop

a SPARQL service for querying our version control metadata. While our wiki

interface is useful for viewing documents and their histories online, third-party

access is an obvious advantage. Expanding our use of GRIA will enable us to

create more complex trust relationships between developers and service providers

2http://www.joseki.org/.
3http://darq.sourceforge.net/.

140 Chapter 6 Summary

who store the trusted metadata. One example would be to include constraints on

accessing our SPARQL service using Service Level Agreements (SLAs).

6.3.1.2 Maven 2

Another extension might include the integration of the Maven 2 project manage-

ment system [Massol et al. (2006)]. Projects hosted on our online collaborative tool

could use Maven 24 for full building, testing and deployment services. This would

potentially make the online collaborative tool a trusted compilation platform.

6.3.2 RDF Digital Signature Improvements

There are two key areas where we can improve on our RDF digital signature mech-

anism: the canonicalisation algorithm and the use of trust metrics. Improvements

in both of these areas would increase the reliability of our online collaborative tool

and create a solution that could be reused elsewhere.

As we noted in Appendix C, nauty is perfectly capable of canonicalising complex

unlabelled graphs like the Petersen graph. One option would be to extend nauty

so that it can understand labelled edges and Named Graphs. This would mean

our RDF digital signature mechanism would be able to sign over arbitrary RDF

graphs, removing the need for our current conservative canonicalisation approach.

It appears that recent work by Tan et al. (2006b) is particularly relevant to our

research. It would be advantageous to collaborate in future work to establish how

PASOA-based provenance and our Named Graph approach can be integrated. The

interest in trust metrics in Tan et al. (2006a) is also timely, since we believe that by

expanding our RDF digital signature mechanism to support trust metrics, we can

leverage existing approaches that have been developed in parallel to our own work.

It is highly likely that integrating these approaches with research by Dimitrakos

et al. (2001); Bizer (2004b) and Golbeck and Hendler (2004a,c) will open up new

avenues of collaboration.

4http://maven.apache.org/.

Chapter 6 Summary 141

6.3.3 Ontology Extensions

Just like the documents we put under version control in our online collaborative

tool, ontologies develop over time as requirements change [Noy and Klein (2004)].

While it is not envisaged that the ontology used as the basis for version control

be managed by the same system, there may come a point where extensions to the

ontology are vital for future development. Other developers, for example, may

want to improve the ontology, which will require change management.

6.3.3.1 Advanced Software Project Management

Software project management systems, for example Maven 2 [Massol et al. (2006)],

have become a fast and efficient method to manage and automate the build process

of simple and complex projects. If we were to consider Maven 2 as part of the

core architecture it would be necessary to model the Maven 2 build life-cycle so

to capture the progress of a build.

6.3.3.2 Intellectual Property Rights Management

While our RDF digital signature mechanism supports non-repudiation when using

a PKI and can help enforce Intellectual Property Rights, we have not written an

ontology to represent these rights. González (2005) suggests a interesting approach

to developing an OWL ontology for Digital Rights Management. This ontology

approach could be used as a first step to creating a generic ontology for IPR

attribution.

6.3.4 Logic Extensions

6.3.4.1 Non-monotonic Reasoning

One key advantage we have noted during this research of DL over relational

database systems is the ability to leverage explicit knowledge and generate im-

plicit knowledge using inference rules. Inferences are not limited to just RDF,

RDFS and OWL entailments; our work has demonstrated that useful information

can be generated with custom inference rules. These inferences, however, operate

142 Chapter 6 Summary

under monotonic, open world semantics in line with Semantic Web “best prac-

tices”. As SWRL becomes the mainstream language for rule composition, some

researchers are beginning to advocate non-monotonic extensions to OWL [Katz

and Parsia (2005); Hitzler et al. (2005)]. Others suggest combining the use of

open world reasoning with closed world reasoning at a local level [Grimm and

Motik (2005); Kolovski et al. (2005); Ng (2005)].

Web service description languages such as the Web Service Modelling Ontol-

ogy (WSMO)5 define a set of non-monotonic extensions to an otherwise monotonic

framework. Similar non-monotonic extensions could also be applied to our Named

Graph work.

6.3.5 Federation Extensions

6.3.5.1 Process-based Workflow

We have noted some of the management and maintenance issues regarding Jena 2-

based inference rules. Although the declarative approach used is flexible, it makes

data flow difficult to track, and can be computationally expensive depending on

the expressivity of the rules and procedural builtins used.

Another approach that could be used to complement declarative rule languages

is process-based workflow. Process-based workflow, while sequential in its execu-

tion, can easily track data flow and has several industry standards (BPEL 2.0),

currently lacking in the rule domain. Microsoft has gone some way toward this

integration with Windows Workflow Foundation (WF), which is capable of firing

rules sequentially [Young (2005)]. Workflows could be used for data flow and or-

chestration, firing rules as they are required. It is also conceivable that further

work here could produce useful results that work across different platforms.

6.3.5.2 SPARQL Query Protocol

We have taken advantage of only a small subset of SPARQL’s language. SPARQL

also defines a query protocol which might be useful to employ, especially through

a SOAP interface like that of Joseki6. Since SPARQL is now in its last call, all

features should now be stable; this will encourage adoption.

5http://www.wsmo.org/.
6Available at http://joseki.sourceforge.net/.

Chapter 6 Summary 143

It would be reasonable to take the SPARQL query service we developed for our

federation scenarios and develop it into a complete SPARQL protocol service. A

client should also be developed that leverages DARQ.

6.3.5.3 Natural Language Processing

Unfortunately, the interface between application and Semantic Web query mech-

anisms is such that it is difficult to dynamically create queries at runtime. This

needs to be improved, especially when queries are used in conjunction with seman-

tic inferences. Natural Language Processing (NLP) is one approach that maps

basic English onto ontology concepts and roles.

6.3.6 Performance Enhancements

At present there are two issues that need to be addressed before Semantic Web

toolkits will improve in their performance: triplestore database schemata and in-

dexing. Unfortunately, efficient indexing is linked to the schema used to represent

the RDF. It may be that rather than using SQL to perform the indexing, it will

be necessary to let a higher level library perform this task.

To our knowledge none of the major Semantic Web toolkits share the same database

schema for persistent storage. Each take their own approach, which can mean dif-

ferent performance depending on the toolkit used. NG4J, for example, takes a

näıve approach to persistent storage, keeping all components of a quad (graph-

name, subject, predicate, object) in the same table. It might be more productive

to investigate the Oracle approach where different components of an RDF triple

are kept in different tables.

6.4 Conclusions

In this study we investigated new and novel strategies to improve version control

in distributed software development. We posed two questions that would form the

core of this thesis: firstly, we considered the use of Semantic Web technology as

an alternative to the traditional relational database used in Subversion. Secondly,

we attempted to discover whether we could reliably bind provenance to source

144 Chapter 6 Summary

knowledge contained within a semantic version control repository and use it to

infer new knowledge.

We believe that our approach with Semantic Web technology has been relatively

successful. Our experience with ontologies and knowledge management has helped

us develop a DP ontology that made a minimal set of extensions based on popular

ontologies. This DP ontology was used to enhance a basic Wiki with semantic

content, capable of recording the version history of JavaTM documents. Since

our DP ontology used OWL DL, we were able in principle, to incorporate DL

reasoning into online collaborative tool. Experiments with a set of federation

scenarios revealed to us, however, that knowledge federation was of greater value

than DL entailments, which showed poor performance. Experience in the use

of Semantic Web technology has shown us how far we can push it (provenance

binding, federation), and where it fails to deliver (performance).

Our work on binding provenance to source knowledge has been more mixed. We

have been able to create reliable provenance using Named Graphs which we see as

a natural way to record provenance. We have also been able to digitally sign DP

instances to create trusted metadata that can maintain its own integrity. This is

a useful result from our work, since the reliance on server integrity that we were

trying to avoid has been reduced. On the other hand, to achieve a reliable RDF

digital signature mechanism, we have had to constrain the type of RDF that we

sign to fully labelled graphs only. We anticipate that future work will see this

constrained use of RDF disappear.

As a demonstration of how our work supported our case studies we developed a set

of federation and signature recovery scenarios that used a combination of SPARQL

and inference rules. We found our inference rule approach to be interesting, but

ultimately difficult to manage and maintain. We found management and main-

tenance of declarative rules required intimate knowledge of the application’s data

flow; rules can be written in any order independent of execution, which makes

it difficult to track and debug rules. Representing different conditions requires

separate rules since it is not possible to simulate logical ORs in the Jena 2 rule

language. Another issue with using inference rules is that if someone else wants

to perform same inferences with their own legacy tools, there is no common rule

language to maintain consistent view in a distributed federated environment.

While this work has reached an end point, we realise that further work can be

done on what has already been achieved. With this in mind we have listed several

areas where our work can be extended.

Appendix A

A.1 Document Provenance Ontology

<?xml version="1.0"?>

<!DOCTYPE owl [

<!ENTITY owl "http://www.w3.org/2002/07/owl#">

<!ENTITY java "http://simile.mit.edu/2004/09/ontologies/java#">

<!ENTITY dp "http://grid.cx/dp/1.0/">

<!ENTITY foaf "http://xmlns.com/foaf/0.1/">

<!ENTITY terms "http://purl.org/dc/terms/">

<!ENTITY doap "http://usefulinc.com/ns/doap#">

<!ENTITY swp-2 "http://www.w3.org/2004/03/trix/swp-2/">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

<!ENTITY dc "http://purl.org/dc/elements/1.1/">

]>

<rdf:RDF

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:java="http://simile.mit.edu/2004/09/ontologies/java#"

xmlns:dp="http://grid.cx/dp/1.0/"

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:terms="http://purl.org/dc/terms/"

xmlns:doap="http://usefulinc.com/ns/doap#"

xmlns:swp-2="http://www.w3.org/2004/03/trix/swp-2/"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

145

146 Appendix A

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xml:base="http://grid.cx/dp/1.0/"

>

<owl:Ontology rdf:about="http://grid.cx/dp/1.0/">

<owl:versionInfo>1.0</owl:versionInfo>

<owl:imports rdf:resource="http://purl.org/dc/elements/1.1/"/>

<owl:imports rdf:resource="file:/C:/Projects/Personal/phd/

ontologies/swp-3.rdf"/>

<owl:imports rdf:resource="file:///c:/Projects/Personal/phd/

terms.owl"/>

<owl:imports rdf:resource="file:///c:/Projects/Personal/phd/

dcmitype.owl"/>

<owl:imports rdf:resource="file:///c:/Projects/Personal/phd/

ontologies/java-simple.owl"/>

<owl:imports rdf:resource="http://usefulinc.com/ns/doap"/>

<owl:imports rdf:resource="http://www.mindswap.org/2003/owl/foaf"/>

</owl:Ontology>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Document">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://xmlns.com/foaf/

0.1/sha1" />

<owl:someValuesFrom>

<rdfs:Datatype rdf:about="http://www.w3.org/2001/

XMLSchema#string"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://purl.org/dc/elements/

1.1/title" />

<owl:someValuesFrom>

<rdfs:Datatype rdf:about="http://www.w3.org/2001/

XMLSchema#string"/>

Appendix A 147

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://grid.cx/dp/

1.0/version" />

<owl:someValuesFrom>

<rdfs:Datatype rdf:about="http://www.w3.org/2001/

XMLSchema#int"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://grid.cx/dp/1.0/

isReplacedBy" />

<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">

1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://grid.cx/dp/1.0/

dateSubmitted" />

<owl:someValuesFrom>

<rdfs:Datatype rdf:about="http://www.w3.org/2001/

XMLSchema#dateTime"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://purl.org/dc/elements/

1.1/format" />

<owl:someValuesFrom>

148 Appendix A

<rdfs:Datatype rdf:about="http://www.w3.org/2001/

XMLSchema#string"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://grid.cx/dp/

1.0/replaces" />

<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">

1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://grid.cx/dp/

1.0/branch" />

<owl:someValuesFrom>

<rdfs:Datatype rdf:about="http://www.w3.org/2001/

XMLSchema#int"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://grid.cx/dp/

1.0/replaces" />

<owl:allValuesFrom>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Document">

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://grid.cx/dp/

Appendix A 149

1.0/hasClass" />

<owl:someValuesFrom>

<owl:Class rdf:about="http://simile.mit.edu/2004/09/

ontologies/java#Class">

</owl:Class>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="http://xmlns.com/foaf/0.1/Document">

</owl:Class>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://grid.cx/dp/1.0/

isReplacedBy" />

<owl:allValuesFrom>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Document">

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://grid.cx/dp/

1.0/maker" />

<owl:someValuesFrom>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Person">

</owl:Class>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Person">

<rdfs:subClassOf>

<owl:Restriction>

150 Appendix A

<owl:onProperty rdf:resource="http://xmlns.com/foaf/

0.1/mbox" />

<owl:someValuesFrom>

<owl:Class rdf:about="http://www.w3.org/2001/

XMLSchema#anyURI">

</owl:Class>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="http://xmlns.com/foaf/0.1/Person">

</owl:Class>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://xmlns.com/foaf/

0.1/name" />

<owl:someValuesFrom>

<rdfs:Datatype rdf:about="http://www.w3.org/2001/

XMLSchema#string"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="http://grid.cx/dp/1.0/ValidityReport">

<rdfs:subClassOf>

<owl:Class rdf:about="http://xmlns.com/foaf/0.1/Document">

</owl:Class>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Wikipage">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://grid.cx/dp/

1.0/isPartOf" />

<owl:someValuesFrom>

Appendix A 151

<owl:Class rdf:about="http://usefulinc.com/ns/

doap#Project">

</owl:Class>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="http://xmlns.com/foaf/0.1/Document">

</owl:Class>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://grid.cx/dp/

1.0/module" />

<owl:someValuesFrom>

<owl:Class rdf:about="http://www.w3.org/2001/

XMLSchema#string">

</owl:Class>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://grid.cx/dp/1.0/

firstVersion" />

<owl:someValuesFrom>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Document">

</owl:Class>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://grid.cx/dp/1.0/

firstVersion" />

<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

152 Appendix A

1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://purl.org/dc/

terms/created" />

<owl:someValuesFrom>

<rdfs:Datatype rdf:about="http://www.w3.org/2001/

XMLSchema#dateTime"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="http://simile.mit.edu/2004/09/ontologies/

java#Class">

</owl:Class>

<owl:Class rdf:about="http://usefulinc.com/ns/doap#Project">

</owl:Class>

<owl:Class rdf:about="http://www.w3.org/2001/XMLSchema#anyURI">

</owl:Class>

<owl:Class rdf:about="http://www.w3.org/2001/XMLSchema#string">

</owl:Class>

<owl:Class rdf:about="http://www.w3.org/2004/03/trix/swp-2/

Authority">

</owl:Class>

<owl:Class rdf:about="http://xmlns.com/foaf/0.1/Document">

</owl:Class>

<owl:Class rdf:about="http://xmlns.com/foaf/0.1/Person">

</owl:Class>

<owl:ObjectProperty rdf:about="http://grid.cx/dp/1.0/

firstVersion">

<rdf:type rdf:resource="&owl;FunctionalProperty" />

<rdfs:domain>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Wikipage">

</owl:Class>

Appendix A 153

</rdfs:domain>

<rdfs:range>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Document">

</owl:Class>

</rdfs:range>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://grid.cx/dp/1.0/hasClass">

<rdfs:domain>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Document">

</owl:Class>

</rdfs:domain>

<rdfs:range>

<owl:Class rdf:about="http://simile.mit.edu/2004/09/

ontologies/java#Class">

</owl:Class>

</rdfs:range>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://grid.cx/dp/1.0/

isPartOf">

<rdfs:domain>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Wikipage">

</owl:Class>

</rdfs:domain>

<rdfs:range>

<owl:Class rdf:about="http://usefulinc.com/ns/

doap#Project">

</owl:Class>

</rdfs:range>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://grid.cx/dp/1.0/

isReplacedBy">

<rdfs:domain>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Document">

</owl:Class>

</rdfs:domain>

<rdfs:range>

154 Appendix A

<owl:Class rdf:about="http://grid.cx/dp/1.0/Document">

</owl:Class>

</rdfs:range>

<owl:inverseOf rdf:resource="http://grid.cx/dp/

1.0/replaces" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://grid.cx/dp/

1.0/knownCommit">

<rdfs:domain>

<owl:Class rdf:about="http://grid.cx/dp/1.0/

ValidityReport">

</owl:Class>

</rdfs:domain>

<rdfs:range>

<owl:Restriction>

<owl:onProperty rdf:resource="http://grid.cx/dp/1.0/

knownCommit" />

<owl:someValuesFrom>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Document">

</owl:Class>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:range>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://grid.cx/dp/1.0/maker">

<rdfs:domain>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Document">

</owl:Class>

</rdfs:domain>

<rdfs:domain>

<owl:Restriction>

<owl:onProperty rdf:resource="http://grid.cx/dp/1.0/maker" />

<owl:someValuesFrom>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Person">

</owl:Class>

</owl:someValuesFrom>

Appendix A 155

</owl:Restriction>

</rdfs:domain>

<rdfs:range>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Person">

</owl:Class>

</rdfs:range>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://grid.cx/dp/1.0/module">

<rdfs:domain>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Wikipage">

</owl:Class>

</rdfs:domain>

<rdfs:range>

<owl:Class rdf:about="http://www.w3.org/2001/

XMLSchema#string">

</owl:Class>

</rdfs:range>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://grid.cx/dp/1.0/

recommendation">

<rdfs:domain>

<owl:Class rdf:about="http://grid.cx/dp/1.0/

ValidityReport">

</owl:Class>

</rdfs:domain>

<rdfs:range>

<owl:Class rdf:about="http://www.w3.org/2001/

XMLSchema#anyURI">

</owl:Class>

</rdfs:range>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://grid.cx/dp/1.0/

replaces">

<rdfs:domain>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Document">

</owl:Class>

156 Appendix A

</rdfs:domain>

<rdfs:range>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Document">

</owl:Class>

</rdfs:range>

<owl:inverseOf rdf:resource="http://grid.cx/dp/1.0/

isReplacedBy" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://grid.cx/dp/1.0/

target">

<rdfs:domain>

<owl:Class rdf:about="http://grid.cx/dp/1.0/

ValidityReport">

</owl:Class>

</rdfs:domain>

<rdfs:range>

<owl:Restriction>

<owl:onProperty rdf:resource="http://grid.cx/dp/1.0/

branch" />

<owl:someValuesFrom>

<rdfs:Datatype rdf:about="http://www.w3.org/2001/

XMLSchema#anyURI"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:range>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://purl.org/dc/terms/

isReplacedBy">

<owl:inverseOf rdf:resource="http://purl.org/dc/terms/

replaces" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://purl.org/dc/terms/

replaces">

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://xmlns.com/foaf/0.1/maker">

</owl:ObjectProperty>

Appendix A 157

<owl:ObjectProperty rdf:about="http://xmlns.com/foaf/0.1/mbox">

<rdfs:domain>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Person">

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:about="http://grid.cx/dp/1.0/branch">

<rdfs:domain> <owl:Class rdf:about="http://grid.cx/dp/1.0/

Document">

</owl:Class>

</rdfs:domain>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://grid.cx/dp/1.0/caCheck">

<rdfs:domain> <owl:Class rdf:about="http://www.w3.org/2004/03/

trix/swp-2/Authority">

</owl:Class>

</rdfs:domain>

<rdfs:range> <rdfs:Datatype rdf:about="http://www.w3.org/2001/

XMLSchema#anyURI"/>

</rdfs:range>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://grid.cx/dp/1.0/content">

<rdfs:domain> <owl:Class rdf:about="http://grid.cx/dp/1.0/

Wikipage">

</owl:Class>

</rdfs:domain>

<rdfs:domain> <owl:Restriction>

<owl:onProperty rdf:resource="http://grid.cx/dp/1.0/

content" />

<owl:someValuesFrom>

<rdfs:Datatype rdf:about="http://www.w3.org/2001/

XMLSchema#string"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:domain>

158 Appendix A

<rdfs:range> <rdfs:Datatype rdf:about="http://www.w3.org/2001/

XMLSchema#string"/>

</rdfs:range>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://grid.cx/dp/

1.0/dateSubmitted">

<rdfs:domain> <owl:Class rdf:about="http://grid.cx/dp/

1.0/Document">

</owl:Class>

</rdfs:domain>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://grid.cx/dp/1.0/

localCommitStatus">

<rdfs:domain> <owl:Class rdf:about="http://www.w3.org/2004/03/

trix/swp-2/Authority">

</owl:Class>

</rdfs:domain>

<rdfs:range> <rdfs:Datatype rdf:about="http://www.w3.org/2001/

XMLSchema#anyURI"/>

</rdfs:range>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://grid.cx/dp/1.0/

module">

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://grid.cx/dp/1.0/

recommendation">

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://grid.cx/dp/1.0/

remoteCommitStatus">

<rdfs:domain> <owl:Class rdf:about="http://www.w3.org/2004/03/

trix/swp-2/Authority">

</owl:Class>

</rdfs:domain>

<rdfs:range> <rdfs:Datatype rdf:about="http://www.w3.org/2001/

XMLSchema#anyURI"/>

</rdfs:range>

Appendix A 159

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://grid.cx/dp/1.0/version">

<rdfs:domain> <owl:Class rdf:about="http://grid.cx/dp/1.0/

Document">

</owl:Class>

</rdfs:domain>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://grid.cx/dp/1.0/wpCheck">

<rdfs:domain> <owl:Class rdf:about="http://www.w3.org/2004/03/

trix/swp-2/Authority">

</owl:Class>

</rdfs:domain>

<rdfs:range> <rdfs:Datatype rdf:about="http://www.w3.org/2001/

XMLSchema#anyURI"/>

</rdfs:range>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://purl.org/dc/elements/1.1/

description">

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://purl.org/dc/elements/

1.1/format">

<rdfs:domain> <owl:Class rdf:about="http://grid.cx/dp/

1.0/Document">

</owl:Class>

</rdfs:domain>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://purl.org/dc/elements/

1.1/title">

<rdfs:domain> <owl:Class rdf:about="http://grid.cx/dp/

1.0/Document">

</owl:Class>

</rdfs:domain>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://purl.org/dc/terms/

created">

<rdfs:domain> <owl:Class rdf:about="http://grid.cx/dp/1.0/

160 Appendix A

Wikipage">

</owl:Class>

</rdfs:domain>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://usefulinc.com/ns/

doap#revision">

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://xmlns.com/foaf/

0.1/maker">

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://xmlns.com/foaf/

0.1/mbox">

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://xmlns.com/foaf/

0.1/name">

<rdfs:domain> <owl:Class rdf:about="http://grid.cx/dp/

1.0/Person">

</owl:Class>

</rdfs:domain>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://xmlns.com/foaf/0.1/sha1">

<rdfs:domain> <owl:Class rdf:about="http://grid.cx/dp/

1.0/Document">

</owl:Class>

</rdfs:domain>

</owl:DatatypeProperty>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Document">

<owl:disjointWith>

<owl:Class rdf:about="http://grid.cx/dp/1.0/Wikipage">

</owl:Class>

</owl:disjointWith>

</owl:Class>

<owl:DatatypeProperty rdf:about="http://grid.cx/dp/1.0/branch">

<rdfs:subPropertyOf>

Appendix A 161

<owl:DatatypeProperty rdf:about="http://usefulinc.com/ns/

doap#revision">

</owl:DatatypeProperty>

</rdfs:subPropertyOf>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:about="http://grid.cx/dp/1.0/replaces">

<rdfs:subPropertyOf>

<owl:ObjectProperty rdf:about="http://purl.org/dc/

terms/replaces">

</owl:ObjectProperty>

</rdfs:subPropertyOf>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://grid.cx/dp/1.0/

isReplacedBy">

<rdfs:subPropertyOf>

<owl:ObjectProperty rdf:about="http://purl.org/dc/terms/

isReplacedBy">

</owl:ObjectProperty>

</rdfs:subPropertyOf>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:about="http://grid.cx/dp/1.0/content">

<rdfs:subPropertyOf>

<owl:DatatypeProperty rdf:about="http://purl.org/dc/elements/

1.1/description">

</owl:DatatypeProperty>

</rdfs:subPropertyOf>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:about="http://grid.cx/dp/1.0/maker">

<rdfs:subPropertyOf>

<owl:ObjectProperty rdf:about="http://xmlns.com/

foaf/0.1/maker">

</owl:ObjectProperty>

162 Appendix A

</rdfs:subPropertyOf>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:about="http://grid.cx/dp/1.0/version">

<rdfs:subPropertyOf>

<owl:DatatypeProperty rdf:about="http://usefulinc.com/

ns/doap#revision">

</owl:DatatypeProperty>

</rdfs:subPropertyOf>

</owl:DatatypeProperty>

</rdf:RDF>

Appendix B

B.1 Instance Examples

This appendix gives a complete overview of a instance of the DP ontology, includ-

ing DOAP (FOAF), and Simple Java Ontology instances. Each section has been

annotated for easy cross-referencing. Since all RDF is decomposed into Named

Graphs, we have chosen to use the TriG concrete syntax for its simplicity.

B.2 DP

@prefix swp: <http://www.w3.org/2004/03/trix/swp-2/> .

@prefix ns0: <http://simile.mit.edu/2004/09/ontologies/java#> .

@prefix ns1: <http://grid.cx/dp/1.0/> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix doap: <http://usefulinc.com/ns/doap#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix : <#> .

<urn:uuid:C9180AE0-21A8-11DB-8270-8FCC55490BC5> {

<java:org.embl.ebi.escience.scuflui.workbench>

a ns0:Package .

<java:org.embl.ebi.escience.scuflui.workbench.Workbench>

163

164 Appendix B

a ns0:Class ;

ns0:contained

<java:org.embl.ebi.escience.scuflui.workbench> ;

ns0:located

<https://localhost:8443/webdav/taverna/taverna/

org/embl/ebi/escience/scuflui/workbench/Workbench/

1/1/Workbench.java> ;

ns0:uses

<java:java.awt.Dimension> ,

<java:java.awt.event.WindowEvent> ,

<java:org.embl.ebi.escience.scufl.ScuflModel> ,

<java:java.awt.event.ActionEvent> ,

<java:java.lang.String> ,

<java:org.embl.ebi.escience.scuflui.workbench.XScuflFrame> ,

<java:java.lang.Exception> ,

<java:org.embl.ebi.escience.scuflui.workbench.ExplorerFrame> ,

<java:org.embl.ebi.escience.scuflui.workbench.DiagramFrame> ,

<java:org.embl.ebi.escience.scufl.parser.XScuflParser> ,

<java:java.awt.Toolkit> ,

<java:javax.swing.*> ,

<java:java.awt.event.WindowAdapter> ,

<java:java.io.File> ,

<java:java.awt.event.ActionListener> ,

<java:java.lang.System> ;

swp:inGraph

<urn:uuid:C9180AE0-21A8-11DB-8270-8FCC55490BC5> .

<https://localhost:8443/webdav/taverna/taverna/org/embl/ebi/

escience/scuflui/workbench/Workbench/1/1/Workbench.java>

a ns1:Document ;

ns1:branch "1"^^<http://www.w3.org/2001/XMLSchema#int> ;

ns1:hasClass

<java:org.embl.ebi.escience.scuflui.workbench.Workbench> ;

ns1:maker <mailto:jjc@hpl.hp.com> ;

ns1:revision "1"^^<http://www.w3.org/2001/XMLSchema#int> ;

dc:format "text/x-java-source" ;

Appendix B 165

dc:title "Workbench.java" ;

dcterms:dateSubmitted

"Tue Aug 01 22:57:55 BST 2006"^^

<http://www.w3.org/2001/XMLSchema#dateTime> ;

dcterms:isPartOf <http://www.taverna.sourceforge.net> ;

dcterms:modified "Mon May 19 16:58:57 BST 2003"^^

<http://www.w3.org/2001/XMLSchema#dateTime> ;

doap:module "taverna" ;

swp:inGraph

<urn:uuid:C9180AE0-21A8-11DB-8270-8FCC55490BC5> ;

foaf:sha1 "85073015fc760ceda638fa03cbaae301256ed462" .

}

<urn:uuid:CA2CAF30-21A8-11DB-8270-9859210973A2> {

<https://localhost:8443/JSPWiki/Wiki.jsp?page=

org.embl.ebi.escience.scuflui.workbench.Workbench>

a ns1:Wikipage ;

ns1:content "description content" ;

ns1:firstVersion <https://localhost:8443/webdav/taverna/

taverna/org/embl/ebi/escience/scuflui/workbench/Workbench/

1/1/Workbench.java> ;

dcterms:created "Tue Aug 01 22:57:55 BST 2006"^^

<http://www.w3.org/2001/XMLSchema#dateTime> ;

swp:inGraph <urn:uuid:CA2CAF30-21A8-11DB-8270-9859210973A2> .

}

<urn:uuid:CB28C270-21A8-11DB-8270-E4B573A1C2E3> {

<urn:uuid:CB28C270-21A8-11DB-8270-E4B573A1C2E3>

swp:assertedBy

<urn:uuid:CB28C270-21A8-11DB-8270-E4B573A1C2E3> ;

swp:authority <mailto:jjc@hpl.hp.com> ;

swp:signature

"""t5Lzx8PY3oRWrwoXknv4iMdciR5oVFyVHUh9AQK4/EdK6a5i6z4T2mni

zZT0/EAW2xQ9ME85ZyHK3mEf15QNFUnOXedgBUZIshK7oXflr3/ifOZFCy4

mrfmITZAIY6HYwlrj1qTLXgB3//NfSCtkKNEsMI8yzvsdMwTWLgpI5Ns

="""^^<http://www.w3.org/2001/XMLSchema#base64Binary> ;

166 Appendix B

swp:signatureMethod swp:JjcRdfC14N-rsa-sha1 ;

swp:validFrom "Tue Aug 01 22:57:58 BST 2006"^^

<http://www.w3.org/2001/XMLSchema#dateTime> ;

swp:validUntil "Mon Aug 01 22:57:58 BST 2016"^^

<http://www.w3.org/2001/XMLSchema#dateTime> .

<mailto:jjc@hpl.hp.com>

rdfs:label "Jeremy J Carroll" ;

swp:X509Certificate

"""MIID7zCCA1igAwIBAgIBCDANBgkqhkiG9w0BAQQFADC

BoTELMAkGA1UEBhMCVUsxEjAQBgNVBAgTCUhhbXBzaGlyZTEUMBIGA1UEBx

MLU291dGhhbXB0b24xIjAgBgNVBAoTGVVuaXZlcnNpdHkgb2YgU291dGhhb

XB0b24xDTALBgNVBAsTBERTU0UxDjAMBgNVBAMTBURQIENBMSUwIwYJKoZI

hvcNAQkBFhZlcncwMXJAZWNzLnNvdG9uLmFjLnVrMB4XDTA1MDEwMjEzNTA

wNloXDTA2MDEwMjEzNTAwNlowgacxCzAJBgNVBAYTAlVLMRAwDgYDVQQIEw

dCcmlzdG9sMRAwDgYDVQQHEwdCcmlzdG9sMRgwFgYDVQQKEw9IZXdsZXR0I

FBhY2thcmQxHTAbBgNVBAsTFEhld2xldHQgUGFja2FyZCBMYWJzMRcwFQYD

VQQDEw5KZXJlbXkgQ2Fycm9sbDEiMCAGCSqGSIb3DQEJARYTampjQGhwbGI

uaHBsLmhwLmNvbTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAuJZtp1

LBfVRdVhWbSHxXcL12QKJohLruaz6mQgc2p457zoOhWBgKRRt619Loe/r9r

kOww8FsGEzEdJ8jClDUMPikJEQgHHh77CDS/Yij/gANXwDr2JF7tm+ggpU4

xfXD/BB0N/V9QmldmmECNOnlJCqSew1navIkaeLewSYkXhUCAwEAAaOCAS0

wggEpMAkGA1UdEwQCMAAwLAYJYIZIAYb4QgENBB8WHU9wZW5TU0wgR2VuZX

JhdGVkIENlcnRpZmljYXRlMB0GA1UdDgQWBBQuFPsaZQrqZ/nU+/GHRsrGI

s+lhjCBzgYDVR0jBIHGMIHDgBTYGUpxKuD0zkwpARfVPq9eSgxw9aGBp6SB

pDCBoTELMAkGA1UEBhMCVUsxEjAQBgNVBAgTCUhhbXBzaGlyZTEUMBIGA1U

EBxMLU291dGhhbXB0b24xIjAgBgNVBAoTGVVuaXZlcnNpdHkgb2YgU291dG

hhbXB0b24xDTALBgNVBAsTBERTU0UxDjAMBgNVBAMTBURQIENBMSUwIwYJK

oZIhvcNAQkBFhZlcncwMXJAZWNzLnNvdG9uLmFjLnVrggEAMA0GCSqGSIb3

DQEBBAUAA4GBABeWT2cnm7ybPePb/6QToRV1XRYulN4x/0XqZyqfqGPz9zN

GEy1KXncoIRU3Iw5h32N2HXnce2M/YlOP49r1ucdhiGlJG3M0XAEUY7c8gw

afuK7BZZYD6cdxfAY9g8OwezR+MdwJYwFSUVKc67k6apiJEygy8MPLP3CEp

d4Eging"""^^

<http://www.w3.org/2001/XMLSchema#base64Binary> ;

foaf:mbox <mailto:jjc@hpl.hp.com> .

Appendix B 167

<urn:uuid:C9180AE0-21A8-11DB-8270-8FCC55490BC5>

swp:assertedBy

<urn:uuid:CB28C270-21A8-11DB-8270-E4B573A1C2E3> ;

swp:digest

"OTIwN2E3Nzg3YTYzYzA4ODNhMGRjZjQ1YzJmYjVmZTI5NmNkOWZmYQ=="^^

<http://www.w3.org/2001/XMLSchema#base64Binary> ;

swp:digestMethod swp:JjcRdfC14N-sha1 .

<urn:uuid:CA2CAF30-21A8-11DB-8270-9859210973A2>

swp:assertedBy

<urn:uuid:CB28C270-21A8-11DB-8270-E4B573A1C2E3> ;

swp:digest

"MmY5MGMyMGI5Y2I3YjI0MTE3NDNhN2FjNmNkMmIxNjNkMmQ1NjNiMw=="^^

<http://www.w3.org/2001/XMLSchema#base64Binary> ;

swp:digestMethod swp:JjcRdfC14N-sha1 .

}

B.3 DOAP

<Project

rdf:about="http://www.ecs.soton.ac.uk/~erw/AcmeGrid"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:swp="http://www.w3.org/2004/03/trix/swp-2/"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns="http://usefulinc.com/ns/doap#"

xmlns:doap="http://usefulinc.com/ns/doap#"

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:admin="http://webns.net/mvcb/">

<name>AcmeGrid</name>

<shortname>AcmeGrid</shortname>

<shortdesc>AcmeGrid</shortdesc>

<description>AcmeGrid</description>

<homepage

rdf:resource="http://www.ecs.soton.ac.uk/~erw/AcmeGrid" />

<programming-language>Java</programming-language>

168 Appendix B

<workpackage>

<Workpackage

rdf:about="http://www.ecs.soton.ac.uk/~erw/AcmeGrid/WP2">

<workpackageName>Integration</workpackageName>

</Workpackage>

</workpackage>

<workpackage>

<Workpackage

rdf:about="http://www.ecs.soton.ac.uk/~erw/AcmeGrid/WP3">

<workpackageName>Application Scenario</workpackageName>

</Workpackage>

</workpackage>

<workpackage>

<Workpackage

rdf:about="http://www.ecs.soton.ac.uk/~erw/AcmeGrid/WP1">

<workpackageName>Project Management</workpackageName>

</Workpackage>

</workpackage>

<license

rdf:resource="http://usefulinc.com/doap/licenses/lgpl" />

<knownCA>

MIIFNTCCBB2gAwIBAgIBATANBgkqhkiG9w0BAQUFADCBsTEXMBUGA1UEAxMOR1JJ

QSBUZXN0IENBIDIxCzAJBgNVBAYTAlVLMRQwEgYDVQQHEwtTb3V0aGFtcHRvbjES

MBAGA1UECBMJSGFtcHNoaXJlMR0wGwYDVQQKExRJVCBJbm5vdmF0aW9uIENlbnRy

ZTESMBAGA1UECxMJVGVjaFN1aXRlMSwwKgYJKoZIhvcNAQkBFh1lcndAaXQtaW5u

b3ZhdGlvbi5zb3Rvbi5hYy51azAeFw0wNjA2MTYxNDQ2MTZaFw0xNjA2MTMxNDQ2

MTZaMIGxMRcwFQYDVQQDEw5HUklBIFRlc3QgQ0EgMjELMAkGA1UEBhMCVUsxFDAS

BgNVBAcTC1NvdXRoYW1wdG9uMRIwEAYDVQQIEwlIYW1wc2hpcmUxHTAbBgNVBAoT

FElUIElubm92YXRpb24gQ2VudHJlMRIwEAYDVQQLEwlUZWNoU3VpdGUxLDAqBgkq

hkiG9w0BCQEWHWVyd0BpdC1pbm5vdmF0aW9uLnNvdG9uLmFjLnVrMIIBIjANBgkq

hkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAv5XKg1X2EKKPFj1GSNHsPgHD31V9CsPN

rhVRtDwTqng1XKYxuvyu37cOyndMO++sTq3MRrt81nD8wKROJ0D0xqtPAo/4lu5s

gCErrQM8dNi1md3Cxa/ys3vuuqZUvgvj6Lm6EPZXbvK17C5EG1u0JKfcdPg3kscX

Appendix B 169

mv+8NO0d3u1HIUXR839RWKZ3e7VKQGldyW82pgC2vO8Uss8zJudr+LHduiqGFmwb

SLnYgDmH20QfvDnJO0LanqVzBdXXsFt204s/+T4Q1rU3a8Si6PokYvD8Wc4zQE0k

xhym/r11djRMM17+yrroSz45xoTfsFlDBCeLTGQ3y1s1Wev4ZbvOhwIDAQABo4IB

VDCCAVAwDwYDVR0TAQH/BAUwAwEB/zAdBgNVHQ4EFgQUsjkeD0g02XqXFlO4LWJ8

noDoQIEwgd4GA1UdIwSB1jCB04AUsjkeD0g02XqXFlO4LWJ8noDoQIGhgbekgbQw

gbExFzAVBgNVBAMTDkdSSUEgVGVzdCBDQSAyMQswCQYDVQQGEwJVSzEUMBIGA1UE

BxMLU291dGhhbXB0b24xEjAQBgNVBAgTCUhhbXBzaGlyZTEdMBsGA1UEChMUSVQg

SW5ub3ZhdGlvbiBDZW50cmUxEjAQBgNVBAsTCVRlY2hTdWl0ZTEsMCoGCSqGSIb3

DQEJARYdZXJ3QGl0LWlubm92YXRpb24uc290b24uYWMudWuCAQEwCwYDVR0PBAQD

AgEGMBEGCWCGSAGG+EIBAQQEAwIABzAdBglghkgBhvhCAQ0EEBYOR1JJQSBUZXN0

IENBIDIwDQYJKoZIhvcNAQEFBQADggEBAAwKOIbKwTX6IOxab0NdPp2X7EQ8K2CV

hmsNCBWt2vk3JMxN6ymde9zPGam3qTQ3DoCGAPa+R4F7kH+PM96XZ4OVR0D8OlAS

pbzYMiKEDPhJQZA+JczZ8rvfyOxJZX5w6HfbwHr9tAJLsc/2XTOHFhvx4S9Ly8QF

018Uk/FX9Fv4W8m4kXidSfZGrtFBL1AyZHUp6QaZ23ESzERBqEQLkNhdA3rmzPHV

V1oZ6eU+eIoHnGIwGWZssfztqQfjcF0jV+W9CKLdzbNv+sKPW7aE8KHxN/dLBsUZ

VAPKyQcwSU6uURMzOCC747ye/GpTVHDsozkgdDMdiqwTTbOhcThoevU=

</knownCA>

<developer>

<foaf:Person>

<foaf:name>Rowland Watkins</foaf:name>

<foaf:mbox>erw@it-innovation.soton.ac.uk</foaf:mbox>

<swp:certificate>

MIIFNTCCBB2gAwIBAgIBEjANBgkqhkiG9w0BAQQFADCBsTEXMBUGA1UEAxMOR1JJ

QSBUZXN0IENBIDIxCzAJBgNVBAYTAlVLMRQwEgYDVQQHEwtTb3V0aGFtcHRvbjES

MBAGA1UECBMJSGFtcHNoaXJlMR0wGwYDVQQKExRJVCBJbm5vdmF0aW9uIENlbnRy

ZTESMBAGA1UECxMJVGVjaFN1aXRlMSwwKgYJKoZIhvcNAQkBFh1lcndAaXQtaW5u

b3ZhdGlvbi5zb3Rvbi5hYy51azAeFw0wNjEwMDUwODQ4MTNaFw0wNzEwMDUwODQ4

MTNaMIGyMRgwFgYDVQQDEw9Sb3dsYW5kIFdhdGtpbnMxCzAJBgNVBAYTAlVLMRQw

EgYDVQQHEwtTb3V0aGFtcHRvbjESMBAGA1UECBMJSGFtcHNoaXJlMR0wGwYDVQQK

ExRJVCBJbm5vdmF0aW9uIENlbnRyZTESMBAGA1UECxMJVGVjaFN1aXRlMSwwKgYJ

KoZIhvcNAQkBFh1lcndAaXQtaW5ub3ZhdGlvbi5zb3Rvbi5hYy51azCCASIwDQYJ

KoZIhvcNAQEBBQADggEPADCCAQoCggEBAOEbQJuYRyYXWV/EiMlT+Ku37aPvGAUi

BdSeI+a2zOsXH/AwUV19IabIzQqSY7H/KtPGN3UBjAyN3VgImxdK+ojhBpUV6New

J87ExAqYCbqZNFcu6Oe6cZTMQeAS1lGllXcdR/d74peJJqY+Yj6Ur+qNNpgxpAD4

oF8TxmZMpJCXdXexFc5D3gGprtPLkPMH3KvPzjrYhKYLKYJV+paQ8l9WbO90+Ino

MF9eWjkiGrqcvSD4zoTQg705T6p1r+UIilhrFKHSTOS4FLnkTIppm7AC+AY+txN9

170 Appendix B

M9hYD4Os+tsN7yxc/Tlt121pnGOvs7J6llduJ6eVGflxbN7LttRsg38CAwEAAaOC

AVMwggFPMAwGA1UdEwEB/wQCMAAwHQYDVR0OBBYEFA0/1D9J4sc5um6BxY5GeLVL

vf82MIHeBgNVHSMEgdYwgdOAFLI5Hg9INNl6lxZTuC1ifJ6A6ECBoYG3pIG0MIGx

MRcwFQYDVQQDEw5HUklBIFRlc3QgQ0EgMjELMAkGA1UEBhMCVUsxFDASBgNVBAcT

C1NvdXRoYW1wdG9uMRIwEAYDVQQIEwlIYW1wc2hpcmUxHTAbBgNVBAoTFElUIElu

bm92YXRpb24gQ2VudHJlMRIwEAYDVQQLEwlUZWNoU3VpdGUxLDAqBgkqhkiG9w0B

CQEWHWVyd0BpdC1pbm5vdmF0aW9uLnNvdG9uLmFjLnVrggEBMAsGA1UdDwQEAwIE

sDARBglghkgBhvhCAQEEBAMCBaAwHwYJYIZIAYb4QgENBBIWEEdEQ0QgQ2VydGlm

aWNhdGUwDQYJKoZIhvcNAQEEBQADggEBACrb7uI7ti4c8NV1x3486SKmVPutizrM

p423QLoDJuJVVJUqpniKyr0g4Bo9+yUzKhaGFMquf9pNubopwSf+3R6aIkcMqRKA

F37YyCkzaVgt7j0p3pRymTcHv9c9xLHfvWZv2SyzPgYZB0Yq2jqSttCF2Yoe2uZQ

/iCcj7s7ZuKubPOpoYDSh455yPn99SLQs5H3NYe+KYMqNntO6a9yDhifaryF6O0l

jbixyNp9kSioocu5pqlE69tNA9dEe+/qkTaLAK/GSSgbUscjxhL69Iqc3/m/AAXr

houJWMWr+ggJIzIGUAaZBOf6qHzZ3PFebPt/yiWTjoeFuOutXVnIilo=

</swp:certificate>

<workpackage

rdf:resource="http://www.ecs.soton.ac.uk/~erw/AcmeGrid/WP2" />

</foaf:Person>

</developer>

<repository>

<SVCRepository>

<browse

rdf:resource=’http://www.ecs.soton.ac.uk/~erw/Wiki’ />

<location

rdf:resource=’http://www.ecs.soton.ac.uk/~erw/sparql’ />

</SVCRepository>

</repository>

</Project>

B.4 Simple Java Ontology

<java:org.embl.ebi.escience.scuflui.workbench>

a ns0:Package .

Appendix B 171

<java:org.embl.ebi.escience.scuflui.workbench.Workbench>

a ns0:Class ;

ns0:contained

<java:org.embl.ebi.escience.scuflui.workbench> ;

ns0:located

<https://localhost:8443/webdav/taverna/taverna/

org/embl/ebi/escience/scuflui/workbench/Workbench/

1/1/Workbench.java> ;

ns0:uses

<java:java.awt.Dimension> ,

<java:java.awt.event.WindowEvent> ,

<java:org.embl.ebi.escience.scufl.ScuflModel> ,

<java:java.awt.event.ActionEvent> ,

<java:java.lang.String> ,

<java:org.embl.ebi.escience.scuflui.workbench.XScuflFrame> ,

<java:java.lang.Exception> ,

<java:org.embl.ebi.escience.scuflui.workbench.ExplorerFrame> ,

<java:org.embl.ebi.escience.scuflui.workbench.DiagramFrame> ,

<java:org.embl.ebi.escience.scufl.parser.XScuflParser> ,

<java:java.awt.Toolkit> ,

<java:javax.swing.*> ,

<java:java.awt.event.WindowAdapter> ,

<java:java.io.File> ,

<java:java.awt.event.ActionListener> ,

<java:java.lang.System> ;

Appendix C

C.1 Canonicalisation Examples

This appendix includes examples where Carroll (2003)’s canonicalisation algorithm

succeeds with a limited number of blank nodes and fails with a graph comprised

of only blank nodes. We have taken an OWL class from the WordNet ontology to

show where blank nodes can be canonicalised, and the Petersen graph to demon-

strate how Carroll’s algorithm fails. To prove that the Petersen graph can be

canonicalised, we show the use of nauty as a valid alternative. We include two

TriG-serialised RDF graphs representing the OWL WordNet ontology class and

Petersen graph, along with a step-by-step example of how nauty can verify the

equality of two graphs.

C.1.1 The WordNet Ontology

To show that Carroll’s algorithm can be used with a limited number of blank

nodes and that nauty canonicalisation is incompatible, we took a class from the

WordNet ontology1 and canonicalised it using both algorithms. Figure C.1 shows

the original RDF graph together with URI labels. The structure for this graph

was generated using the W3C RDF Validator Service2.

The most complicated part of the NounWordSense class is the owl:unionOf

OWL construct. This is commonly encoded as an RDF Collection in RDF/XML-

ABBREV concrete syntax. Since the owl:unionOf construct is only applied to

1Available at http://www.w3.org/2006/03/wn/wn20/download/wn20full.zip, accessed on
07.02.2007.

2http://www.w3.org/RDF/Validator/.

173

http://www.w3.org/2006/03/wn/wn20/download/wn20full.zip

174 Appendix C

Figure C.1: WordNet NounWordSense Class Labelled Graph.

two objects we are left with three blank nodes; this means Carroll’s algorithm can

relabel reliably.

C.1.1.1 TriG-Serialised RDF Graphs

Here we present two different serialisations of the WordNet NounWordSense class

in the TriG concrete syntax. We include canonical representations and SHA-512

digests that prove that Carroll’s algorithm is capable of serialising simple RDF

Collections.

TriG serialisation for NounWordSense Class:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix wn20schema: <https://example.org/wnfull.rdfs#> .

Appendix C 175

<urn:uuid:E192F360-226F-11DB-94B3-E05EDA46CF20> {

wn20schema:NounWordSense

rdfs:domain

[a owl:Class ;

owl:unionOf

[rdf:first wn20schema:AdjectiveWordSense ;

rdf:rest

[rdf:first wn20schema:VerbWordSense ;

rdf:rest () ;

] ;

]

] ;

}

Canonical string based on Carroll’s algorithm:

[urn:uuid:E192F360-226F-11DB-94B3-E05EDA46CF20,

_:g000001 http://www.w3.org/1999/02/22-rdf-syntax-ns#first

https://example.org/wnfull.rdfs#AdjectiveWordSense,

_:g000001 http://www.w3.org/1999/02/22-rdf-syntax-ns#rest

_:g000002,

_:g000002 http://www.w3.org/1999/02/22-rdf-syntax-ns#first

https://example.org/wnfull.rdfs#VerbWordSense,

_:g000002 http://www.w3.org/1999/02/22-rdf-syntax-ns#rest

http://www.w3.org/1999/02/22-rdf-syntax-ns#nil,

_:g000003 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.w3.org/2002/07/owl#Class,

_:g000003 http://www.w3.org/2002/07/owl#unionOf _:g000001,

https://example.org/wnfull.rdfs#NounWordSense

http://www.w3.org/2000/01/rdf-schema#domain _:g000003]

SHA-512 digital digest:

YmFkNzI1ZGVlOTg4Njg1Y2NmODc3YWZkZjQzMTU0YzZjNWQ2NTY2Yzg1Nzk0ZGExYzN

jOTg2NTIxMWQzZTYxYTY1YjM2MTJhOTBlYzViYTk1MTQ3ZjE0ODVlNTNhZmY4Zjk5Nj

Y3ZmJjMTQxMjg0MWQyZDJmODViZmQ3ZjU1MzU=

176 Appendix C

Another TriG serialisation for NounWordSense Class:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

<urn:uuid:E192F360-226F-11DB-94B3-E05EDA46CF20> {

<https://example.org/wnfull.rdfs#NounWordSense>

rdfs:domain

[a owl:Class ;

owl:unionOf

(<https://example.org/wnfull.rdfs#AdjectiveWordSense>

<https://example.org/wnfull.rdfs#VerbWordSense>)

] .

}

Canonical string based on Carroll’s algorithm:

[urn:uuid:E192F360-226F-11DB-94B3-E05EDA46CF20,

_:g000001 http://www.w3.org/1999/02/22-rdf-syntax-ns#first

https://example.org/wnfull.rdfs#AdjectiveWordSense,

_:g000001 http://www.w3.org/1999/02/22-rdf-syntax-ns#rest

_:g000002,

_:g000002 http://www.w3.org/1999/02/22-rdf-syntax-ns#first

https://example.org/wnfull.rdfs#VerbWordSense,

_:g000002 http://www.w3.org/1999/02/22-rdf-syntax-ns#rest

http://www.w3.org/1999/02/22-rdf-syntax-ns#nil,

_:g000003 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.w3.org/2002/07/owl#Class,

_:g000003 http://www.w3.org/2002/07/owl#unionOf

_:g000001,

https://example.org/wnfull.rdfs#NounWordSense

http://www.w3.org/2000/01/rdf-schema#domain _:g000003]

SHA-512 digital digest:

Appendix C 177

Figure C.2: WordNet NounWordSense Class Graph A

YmFkNzI1ZGVlOTg4Njg1Y2NmODc3YWZkZjQzMTU0YzZjNWQ2NTY2Yzg1Nzk0ZGExYzN

jOTg2NTIxMWQzZTYxYTY1YjM2MTJhOTBlYzViYTk1MTQ3ZjE0ODVlNTNhZmY4Zjk5Nj

Y3ZmJjMTQxMjg0MWQyZDJmODViZmQ3ZjU1MzU=

C.1.1.2 Comparison to nauty

The graph represented in Figure C.1 is one of the few examples that can be canoni-

calised by both Carroll’s algorithm and nauty. Unfortunately, due to the distinct

differences between each algorithm, they are incompatible. Carroll’s algorithm

acknowledges labelled arcs and re-arranges triples based on lexicographic order-

ing, whereas nauty takes a far more complicated approach based on isomorphism

groups [McKay (2006)].

Figure C.1 includes a number labelled version of the NounWordSense OWL class.

We have used this as the basis for input into nauty.

178 Appendix C

While nauty uses its own graph encodings known as graph6 and sparse6 respec-

tively [McKay (2006)], we have chosen to show the input of graphs into nauty

using its interactive dreadnaut shell for the sake of repeatability. Below shows

the canonical result of Figure C.2:

Dreadnaut version 2.4 (32 bits).

> c -a -m turn getcanon on, group writing off

> n=8 g enter graph

0 : 1;

1 : 2 3;

2 : ;

3 : 4 5;

4 : 6 7;

5 : ;

6 : ;

7 : ;

> x execute

4 orbits; grpsize=8; 3 gens; 8 nodes; maxlev=3

tctotal=10; canupdates=1; cpu time = 0.01 seconds

> b

5 0 6 7 2 1 4 3

0 : 7;

1 : 5;

2 : 6;

3 : 6;

4 : 5;

5 : 1 4 7;

6 : 2 3 7;

7 : 0 5 6;

>

The nauty below proves that Figure C.2 and Figure C.3 are identical:

Dreadnaut version 2.4 (32 bits).

> c -a -m turn getcanon on, group writing off

> n=8 g enter first graph

Appendix C 179

Figure C.3: WordNet NounWordSense Class Graph B

0 : 1;

1 : 2 3;

2 : ;

3 : 4 5;

4 : 6 7;

5 : ;

6 : ;

7 : ;

> x @ execute and save result

4 orbits; grpsize=8; 3 gens; 8 nodes; maxlev=3

tctotal=10; canupdates=1; cpu time = 0.00 seconds

> g enter second graph

0 : 3;

1 : 3;

2 : 4;

3 : 4;

180 Appendix C

4 : 6;

5 : 6;

6 : 7;

7 : ;

> x execute

4 orbits; grpsize=8; 3 gens; 8 nodes; maxlev=3

tctotal=10; canupdates=1; cpu time = 0.00 seconds

> ## compare with first graph

h and h’ are identical.

0-0 1-3 2-1 3-4 4-6 5-2 6-5 7-7

C.1.1.3 Summary

While there exist simple graphs that both Carroll’s algorithm and nauty can

canonicalise, their outputs are very different. Carroll’s algorithm is designed for

RDF and takes into account labelled vertices and edges that are reordered lexico-

graphically. nauty takes a more analytical approach to graph isomorphism that

does not re-order based on labelled vertices and edges.

C.1.2 The Petersen Graph

In this second set of canonicalisation examples we show a graph that cannot be

reliably canonicalised by Carroll’s algorithm, namely, the Petersen Graph.

Figure C.4: Common Petersen Graph Representation

Appendix C 181

Petersen graphs can be presented in more than one arrangement. Figure C.4

shows a common representation as a pentagon with a star inside, with five spokes;

Figure C.5 shows a slightly different arrangement with two crossings. Every vertex

in each graph has been numbered, zero through nine.

We will first of all create RDF Named Graph representations of Figure C.4 and

Figure C.5, then go on to their nauty representation.

Figure C.5: Petersen Graph with Two Crossings

C.1.2.1 Carroll’s Algorithm

For each representation, we will create a TriG RDF graph, then calculate its

canonical form and SHA-512 hash.

TriG-Serialised RDF Graphs TriG serialisation for Figure C.4:

<urn:petersen:graph:a:11-01-2007>

{_:b1 <urn:predicate> _:b2 , _:b3 , _:b4 ;

<urn:predicate>

[

] .

_:b5 <urn:predicate>

[

] .

_:b6 <urn:predicate> _:b5 , _:b7 , _:b8 ;

182 Appendix C

<urn:predicate>

[

] .

_:b7 <urn:predicate> _:b6 , _:b9 , _:b10 ;

<urn:predicate>

[

] .

_:b8 <urn:predicate> _:b6 , _:b2 , _:b4 ;

<urn:predicate>

[

] .

_:b9 <urn:predicate>

[

] .

_:b10

<urn:predicate> _:b7 , _:b3 , _:b4 ;

<urn:predicate>

[

] .

_:b3 <urn:predicate> _:b1 , _:b9 , _:b10 ;

<urn:predicate>

[

] .

_:b2 <urn:predicate> _:b1 , _:b5 , _:b8 ;

<urn:predicate>

[

] .

_:b4 <urn:predicate> _:b1 , _:b5 , _:b6 , _:b7 , _:b8 , _:b9 ,

_:b10 , _:b2 , _:b3 ;

<urn:predicate>

[

] .

}

Canonical string based on Carroll’s algorithm:

[urn:petersen:graph:a:11-01-2007,

Appendix C 183

_:g000001 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "1",

_:g000002 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "10",

_:g000003 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "11",

_:g000003 urn:predicate _:g000004,

_:g000003 urn:predicate _:g000011,

_:g000003 urn:predicate _:g000019,

_:g000003 urn:predicate _:g000020,

_:g000004 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "12",

_:g000004 urn:predicate _:g000003,

_:g000004 urn:predicate _:g000009,

_:g000004 urn:predicate _:g000014,

_:g000004 urn:predicate _:g000016,

_:g000005 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "13",

_:g000005 urn:predicate _:g000013,

_:g000006 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "14",

_:g000007 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "15",

_:g000008 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "16",

_:g000009 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "17",

_:g000010 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "18",

_:g000011 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "19",

_:g000012 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "2",

_:g000012 urn:predicate _:g000001,

_:g000012 urn:predicate _:g000014,

_:g000012 urn:predicate _:g000015,

_:g000012 urn:predicate _:g000016,

_:g000013 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "20",

_:g000014 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "3",

_:g000014 urn:predicate _:g000003,

_:g000014 urn:predicate _:g000004,

_:g000014 urn:predicate _:g000005,

_:g000014 urn:predicate _:g000010,

_:g000014 urn:predicate _:g000012,

_:g000014 urn:predicate _:g000015,

_:g000014 urn:predicate _:g000016,

_:g000014 urn:predicate _:g000018,

_:g000014 urn:predicate _:g000019,

184 Appendix C

_:g000014 urn:predicate _:g000020,

_:g000015 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "4",

_:g000015 urn:predicate _:g000005,

_:g000015 urn:predicate _:g000008,

_:g000015 urn:predicate _:g000012,

_:g000015 urn:predicate _:g000018,

_:g000016 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "5",

_:g000016 urn:predicate _:g000004,

_:g000016 urn:predicate _:g000005,

_:g000016 urn:predicate _:g000006,

_:g000016 urn:predicate _:g000012,

_:g000017 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "6",

_:g000018 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "7",

_:g000018 urn:predicate _:g000015,

_:g000018 urn:predicate _:g000017,

_:g000018 urn:predicate _:g000019,

_:g000018 urn:predicate _:g000020,

_:g000019 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "8",

_:g000019 urn:predicate _:g000002,

_:g000019 urn:predicate _:g000003,

_:g000019 urn:predicate _:g000014,

_:g000019 urn:predicate _:g000018,

_:g000020 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "9",

_:g000020 urn:predicate _:g000007]

SHA-512 digital digest:

NDFmNzhjNTFlYzcwZTAxMjI5Y2QyMTM3OGFjMWViYzU1YjZiMTQxYjA0MjIxM2NhZDB

mMGZlMDU0NzA1Y2UxZTVlM2EzOGU5YmI3YWU1YjU0MzBlZmQ0NjFmNGEyYWU4ZTk2Yz

IzYzQ0ODc1Y2NjNmM2MmQ3ZDk0OTA0ZWEyYTA=

TriG serialisation for Figure C.5:

<urn:petersen:graph:b:11-01-2007>

{_:b1 <urn:predicate> _:b2 , _:b3 , _:b4 ;

<urn:predicate>

Appendix C 185

[

] .

_:b5 <urn:predicate> _:b6 , _:b7 , _:b8 ;

<urn:predicate>

[

] .

_:b6 <urn:predicate>

[

] .

_:b2 <urn:predicate>

[

] .

_:b3 <urn:predicate> _:b6 , _:b1 , _:b5 , _:b2 , _:b3 , _:b7 ,

_:b9 ;

<urn:predicate>

[

] .

_:b7 <urn:predicate> _:b5 , _:b3 , _:b10 ;

<urn:predicate>

[

] .

_:b8 <urn:predicate> _:b5 , _:b9 , _:b10 ;

<urn:predicate>

[

] .

_:b9 <urn:predicate> _:b2 , _:b8 , _:b4 ;

<urn:predicate>

[

] .

_:b10

<urn:predicate> _:b7 , _:b8 , _:b4 ;

<urn:predicate>

[

] .

_:b4 <urn:predicate> _:b1 , _:b9 , _:b10 ;

<urn:predicate>

186 Appendix C

[

] .

}

Canonical string based on Carroll’s algorithm:

[urn:petersen:graph:b:11-01-2007,

_:g000001 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "1",

_:g000002 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "10",

_:g000002 urn:predicate _:g000002,

_:g000002 urn:predicate _:g000005,

_:g000002 urn:predicate _:g000011,

_:g000002 urn:predicate _:g000012,

_:g000002 urn:predicate _:g000014,

_:g000002 urn:predicate _:g000016,

_:g000002 urn:predicate _:g000019,

_:g000002 urn:predicate _:g000020,

_:g000003 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "11",

_:g000004 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "12",

_:g000004 urn:predicate _:g000013,

_:g000004 urn:predicate _:g000016,

_:g000004 urn:predicate _:g000017,

_:g000004 urn:predicate _:g000019,

_:g000005 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "13",

_:g000005 urn:predicate _:g000009,

_:g000006 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "14",

_:g000007 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "15",

_:g000008 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "16",

_:g000009 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "17",

_:g000010 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "18",

_:g000011 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "19",

_:g000012 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "2",

_:g000012 urn:predicate _:g000001,

_:g000013 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "20",

_:g000014 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "3",

_:g000014 urn:predicate _:g000002,

Appendix C 187

_:g000014 urn:predicate _:g000005,

_:g000014 urn:predicate _:g000008,

_:g000014 urn:predicate _:g000015,

_:g000015 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "4",

_:g000015 urn:predicate _:g000014,

_:g000015 urn:predicate _:g000016,

_:g000015 urn:predicate _:g000017,

_:g000015 urn:predicate _:g000018,

_:g000016 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "5",

_:g000016 urn:predicate _:g000004,

_:g000016 urn:predicate _:g000005,

_:g000016 urn:predicate _:g000006,

_:g000016 urn:predicate _:g000015,

_:g000017 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "6",

_:g000017 urn:predicate _:g000004,

_:g000017 urn:predicate _:g000010,

_:g000017 urn:predicate _:g000015,

_:g000017 urn:predicate _:g000020,

_:g000018 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "7",

_:g000019 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "8",

_:g000019 urn:predicate _:g000004,

_:g000019 urn:predicate _:g000007,

_:g000019 urn:predicate _:g000012,

_:g000019 urn:predicate _:g000020,

_:g000020 http://www-uk.hpl.hp.com/people/jjc/rdf/c14n#true "9",

_:g000020 urn:predicate _:g000002,

_:g000020 urn:predicate _:g000003,

_:g000020 urn:predicate _:g000017,

_:g000020 urn:predicate _:g000019]

SHA-512 digital digest:

NDFiNGYzY2IzZmIzMjA4MmZkMGZjZDhlZjQxMTljMWE2OTVjY2VjOGUyZDRhMWNjNDk

0ZTJkZjJhY2NiYjk2MTM0YzJiNTIzYzEwNjdkZDliNDZlZTIyYWFlMzdlNDRmOTgyOW

E1MTNkY2I2NmZjM2RkNDI0Y2EzYzkyZmQ5YWY=

188 Appendix C

As can be seen in with the above results, Carroll’s algorithm is incapable of reliably

relabelling both Petersen graphs in such a way that their canonical strings match.

This is further proved by the SHA-512 digital digest.

C.1.3 Nauty

nauty is an application suite that can compare and canonically relabel arbitrary

graphs. In this section we will demonstrate how nauty is able to provide a canon-

ical representation for Figure C.4 and Figure C.5, that could not have otherwise

been reliably solved using Carroll’s algorithm.

C.1.3.1 Setup

In this example we have again used dreadnaut to demonstrate how the nauty

algorithm is capable of reliably canonicalising the Petersen Graph. nauty input

for Figure C.4:

> c -a -m turn getcanon on, group writing off

> n=10 g enter graph

0 : 4 9 1;

1 : 0 8 2;

2 : 1 7 3;

3 : 2 6 4;

4 : 3 5 0;

5 : 4 6 9;

6 : 5 3 7;

7 : 6 2 8;

8 : 7 1 9;

9 : 8 0 5;

> x execute

1 orbit; grpsize=20; 3 gens; 8 nodes; maxlev=3

tctotal=16; canupdates=1; cpu time = 0.00 seconds

Canonically relabelled graph:

Appendix C 189

> b display the canonical labelling

0 9 1 4 6 7 2 3 8 5

0 : 1 2 3;

1 : 0 8 9;

2 : 0 6 8;

3 : 0 7 9;

4 : 5 7 9;

5 : 4 6 8;

6 : 2 5 7;

7 : 3 4 6;

8 : 1 2 5;

9 : 1 3 4;

nauty input for Figure C.4:

> n=10 g enter graph

0 : 1 5 4;

1 : 0 6 2;

2 : 1 7 3;

3 : 2 8 4;

4 : 3 9 0;

5 : 0 9 6;

6 : 5 1 7;

7 : 6 2 8;

8 : 7 3 9;

9 : 8 4 5;

> x execute

1 orbit; grpsize=20; 3 gens; 8 nodes; maxlev=3

tctotal=16; canupdates=1; cpu time = 0.00 seconds

Canonically relabelled graph:

>b display the canonical labelling

0 5 1 4 8 7 2 3 6 9

0 : 1 2 3;

1 : 0 8 9;

190 Appendix C

2 : 0 6 8;

3 : 0 7 9;

4 : 5 7 9;

5 : 4 6 8;

6 : 2 5 7;

7 : 3 4 6;

8 : 1 2 5;

9 : 1 3 4;

As can be seen, nauty is capable of reliable canonical relabelling of two representa-

tions of the Petersen graph. We can perform further analysis by using dreadnaut

to compare Figure C.4 and Figure C.5 directly for us an state whether two input

graphs are identical:

Dreadnaut version 2.4 (32 bits).

> c -a -m turn getcanon on, group writing off

> n=10 g enter first graph

0 : 4 9 1;

1 : 0 8 2;

2 : 1 7 3;

3 : 2 6 4;

4 : 3 5 0;

5 : 4 6 9;

6 : 5 3 7;

7 : 6 2 8;

8 : 7 1 9;

9 : 8 0 5;

> x @ execute, save the result

1 orbit; grpsize=20; 3 gens; 8 nodes; maxlev=3

tctotal=16; canupdates=1; cpu time = 0.00 seconds

> g enter second graph

0 : 1 5 4;

1 : 0 6 2;

2 : 1 7 3;

3 : 2 8 4;

4 : 3 9 0;

Appendix C 191

5 : 0 9 6;

6 : 5 1 7;

7 : 6 2 8;

8 : 7 3 9;

9 : 8 4 5;

> x execute

1 orbit; grpsize=20; 3 gens; 8 nodes; maxlev=3

tctotal=16; canupdates=1; cpu time = 0.00 seconds

> ## compare to saved graph

h and h’ are identical.

0-0 1-1 2-2 3-3 4-4 5-9 6-8 7-7 8-6 9-5

nauty not only reveals correctly that Figure C.4 and Figure C.5 are identical, but

it can also show the mapping between differing vertices in each graph.

Appendix D

D.1 Federation Scenario Inference Rules

Here we include the inference rules used in our federation scenarios described in

Section 4.7. Rules are specified using the Jena 2 rule language as Horn clauses.

Since Horn clauses in Jena 2 rules cannot represent logical ORs, additional rules

have been written to cover for alternative cases.

D.1.1 FLOSS Signature Recovery

If a digital signature fails most systems will typically report the error without

chance for recovery. Here we try to recover from a signature failure by federat-

ing data from external sources. For FLOSS, we will check that the signer is a

committer on the project (check project DOAP) and user’s personal FOAF; we

also confirm whether they have successfully committed before. Once these criteria

have been satisfied, a report is produced advising the administrator about what

to do next.

We defined the FLOSS recovery process (see Section 4.7) as follows:

1. Determine the author of commit with the broken signature;

2. Check if author is listed a committer to project (DOAP);

3. Check if author has made other commits for same document;

4. Search for other commits with same author and check status;

5. Generate report of author for repository admin.

193

194 Appendix D

While the above steps have a particular order, it is not possible with the Jena rule

engine to prioritise which rule is fired first. More advanced RETE implementations

such as Jess, include a feature where the salience can be specified. This means it

is possible to state that some rules will have priorities over others if the necessary

data to fire them exists.

[checkDOAP:

(?doc rdf:type dp:Document)

(?doc dp:revision "+version+")

(?doc swp:inGraph ?graph)

(?graph swp:assertedBy ?warrant)

(?warrant swp:authority ?authority)

(?authority swp:X509Certificate ?cert)

doapAuthorKnown(false)

-> (dp:Report"+date+" rdf:type dp:ValidityReport)

(dp:Report"+date+" dp:target ?doc)

(dp:Report"+date+" foaf:maker "+admin+")

(?doc swp:authority ?authority)

(dp:Report"+date+" swp:authority dp:known)

]

[checkDOAPFail:

(?doc rdf:type dp:Document)

(?doc dp:revision "+version+")

(?doc swp:inGraph ?graph)

(?graph swp:assertedBy ?warrant)

(?warrant swp:authority ?authority)

(?authority swp:X509Certificate ?cert)

doapAuthorKnown(false)

-> (dp:Report"+date+" rdf:type dp:ValidityReport)

(dp:Report"+date+" dp:target ?doc)

(dp:Report"+date+" foaf:maker "+admin+")

(dp:Report"+date+" swp:authority dp:unknown)

]

Figure D.1: FLOSS DOAP inference

Figure D.1 describes the FLOSS DOAP inference rules. Two sets of rules are

defined so that two possibilities are catered for: the author is either known or

not known in the remote DOAP file1. We firstly check the certificate of the doc-

ument that failed and compare it with the certificate stored in the DOAP de-

scription (Step 1) using the doapAuthorKnown builtin2. Once this check has been

1http://www.ecs.soton.ac.uk/ erw/MyProject/doap.rdf
2doapAuthorKnown take a boolean as input, depending on the scenario, e.g., false for FLOSS,

true for IST.

Appendix D 195

made, the the inference engine begins building up a report for the administrator,

stating the affected document, the creator of the report and whether the author

of the broken signature is known or not.

It is important to note that the order in which a rule is declared is indepedent of the

order of execution. In the case of the RETE algorithm, each time new information

is added to the knowledge-base, the rule engine will fire the appropriate rule.

[checkLocalRepositoryAuthor:

(?report dp:target ?doc)

(?doc dp:hasClass ?class)

(?doc dp:maker ?maker)

(?doc swp:authority ?authority)

-> (?report dp:localAuthorStatus dp:valid)

(?authority dp:localCommitStatus dp:valid)

]

[checkLocalRepositoryAuthorFail:

(?report dp:target ?doc)

(?doc dp:hasClass ?class)

(?doc dp:maker ?maker)

(?doc swp:authority ?authority)

(?report swp:authority dp:unknown)

-> (?report dp:localAuthorStatus dp:invalid)

(?authority dp:localCommitStatus dp:invalid)

]

Figure D.2: FLOSS check author inference

Once the DOAP description of a FLOSS project has been checked, we verify

whether they have committed the same document before (Step 2) as shown in

Figure D.2. This is a simple matching problem against the local repository.

[listCommits:

(?report rdf:type dp:ValidityReport)

(?authority dp:localCommitStatus dp:valid)

(?doc dp:maker ?authority)

(?report dp:target ?target)

-> (?report dp:knownCommit ?doc)

]

Figure D.3: FLOSS list local author commits

Finally, we list other documents that the author has committed and check their

status. For this rule to fire, the author must have already been identified as an

author. The absence of commits in Figure D.3 simply means that the committer

has not made any commits.

196 Appendix D

D.1.1.1 FLOSS Recovery Report

Figure D.4 shows an example validity report, serialised in RDF/XML-ABBREV.

<rdf:RDF

xmlns:j.0="http://xmlns.com/foaf/0.1/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:j.1="http://www.w3.org/2004/03/trix/swp-2/"

xmlns:j.2="http://grid.cx/dp/1.0/">

<rdf:Description rdf:about="https://localhost:8443/webdav/

taverna/taverna-workbench/org/embl/ebi/escience/scuflui/

workbench/Workbench/1/2/Workbench.java">

<j.1:authority>

<rdf:Description

rdf:about="mailto:erw@it-innovation.soton.ac.uk">

<j.2:localCommitStatus

rdf:resource="http://grid.cx/dp/1.0/valid"/>

</rdf:Description>

</j.1:authority>

</rdf:Description>

<rdf:Description>

<j.0:maker

rdf:resource="mailto:erw@it-innovation.soton.ac.uk"/>

</rdf:Description>

<j.2:ValidityReport

rdf:about="http://grid.cx/dp/1.0/Report2007-04-01T12:34:34.734">

<j.2:recommendation

rdf:resource="http://grid.cx/dp/1.0/signatureOverride"/>

<j.2:knownCommit rdf:resource="https://localhost:8443/webdav/

taverna/taverna-workbench/org/embl/ebi/escience/scuflui/

workbench/Workbench/1/2/Workbench.java"/>

<j.2:knownCommit rdf:resource="https://localhost:8443/webdav/

taverna/taverna-workbench/org/embl/ebi/escience/scuflui/

workbench/Workbench/1/1/Workbench.java"/>

<j.2:localAuthorStatus

rdf:resource="http://grid.cx/dp/1.0/valid"/>

<j.2:target rdf:resource="https://localhost:8443/webdav/

taverna/taverna-workbench/org/embl/ebi/escience/scuflui/

workbench/Workbench/1/2/Workbench.java"/>

</j.2:ValidityReport>

<rdf:Description

rdf:about="http://www.ecs.soton.ac.uk/~erw/MyProject/doap.rdf">

</rdf:RDF>

Figure D.4: Example FLOSS Recovery Report

Appendix D 197

D.1.2 EC IST Signature Recovery

In the IST federation scenario we can use additional information that was not

available in the FLOSS scenario, notably project workpackage information, cer-

tification authorities and contributing partner remote repositories. Like in the

FLOSS recovery scenario, DOAP and FOAF information will be used from the

project website to verify the committer’s membership to the project which is cross-

checked with the certificate in the broken signature.

We defined the IST recovery process (see Section 4.7) as follows:

1. Determine the author of commit with the broken signature;

2. Check if author’s certificate is signed by a CA known to the project (Cer-

tificate);

3. Check if author is listed as working in the workpackage the document is part

of (FOAF, DOAP);

4. Check if author has committed in local repository;

5. Request metadata about any commits in Contributing Partners’ repository;

6. Generate report of author for repository admin;

7. Provide override option (new Digital Signature).

In a similar fashion to Figure D.1, Figure D.5 accesses the DOAP description

of our AcmeGrid project and verifies the identification of the author. However,

doapAuthorKnown does several additional steps. Firstly, it verifies the correspond-

ing certificate of the broken signature against the known CAs of the project (Step

2). Secondly, it also checks that the workpackage of the author matches that listed

in the DOAP description (Step 3). Once these have been checked, a new report is

generated.

Figure D.6 performs a local and remote check that determines three things: firstly,

whether the author of the broken signature has committed the same document

before locally (Step 4). Secondly, the builtin remoteAuthorUnknown performs the

same check at a contributing partner’s repository. Thirdly, for all documents

committed in a remote repository, we return the document descriptions (Step 5).

This means that the administrator can determine whether the broken signature is

an error or a malicious modification.

198 Appendix D

[checkDOAP:

(?doc rdf:type dp:Document)

(?doc dp:revision "+version+")

(?doc swp:inGraph ?graph)

(?graph swp:assertedBy ?warrant)

(?warrant swp:authority ?authority)

(?authority swp:X509Certificate ?cert)

doapAuthorKnown(true "+wp+")

-> (dp:Report"+date+" rdf:type dp:ValidityReport)

(dp:Report"+date+" dp:target ?doc)

(dp:Report"+date+" foaf:maker ?authority)

(?doc swp:authority ?authority)

(?authority dp:wpCheck dp:valid)

(?authority dp:caCheck dp:valid)

]

[checkDOAPfail:

(?doc rdf:type dp:Document)

(?doc dp:revision "+version+")

(?doc swp:inGraph ?graph)

(?graph swp:assertedBy ?warrant)

(?warrant swp:authority ?authority)

(?authority swp:X509Certificate ?cert)

doapAuthorUnknown(true "+wp+")

-> (dp:Report"+date+" rdf:type dp:ValidityReport)

(dp:Report"+date+" dp:target ?doc)

(?report foaf:maker ?authority)

(?doc swp:authority ?authority)

(?authority dp:wpCheck dp:invalid)

(?authority dp:caCheck dp:invalid)

]

Figure D.5: IST DOAP inferences

As Figure D.7 shows, once these checks have been made, the rule engine will fire

another rule that provides a simple recommendation as to what they should do

next (Step 6).

D.1.2.1 IST Recovery Report

Figure D.8 shows an example validity report for the IST recovery scenario.

Appendix D 199

[checkRemoteRepositoryAuthor:

(?report dp:target ?doc)

(?doc dp:revision "+version")

(?doc dp:hasClass ?class)

(?doc dp:maker ?maker)

(?doc swp:authority ?authority)

(?report dp:target ?target)

remoteAuthorKnown(?maker ?class)

listCommits(?report ?authority "+version+")

-> (?report dp:remoteAuthorStatus dp:valid)

(?authority dp:remoteCommitStatus dp:valid)

]

[checkRemoteRepositoryAuthorFail:

(?report dp:target ?doc)

(?doc dp:revision "+version")

(?doc dp:hasClass ?class)

(?doc dp:maker ?maker)

(?doc swp:authority ?authority)

(?report dp:target ?target)

remoteAuthorUnknown(?maker ?class)

-> (?report dp:remoteAuthorStatus dp:invalid)

(?authority dp:remoteCommitStatus dp:invalid)

]

Figure D.6: IST check author inferences

[makeRecommendation:

(?report rdf:type dp:ValidityReport)

(?report dp:remoteAuthorStatus dp:valid)

-> (?report dp:recommendation dp:signatureOverride)

]

[makeRecommendationFail:

(?report rdf:type dp:ValidityReport)

(?report dp:remoteAuthorStatus dp:invalid)

-> (?report dp:recommendation dp:manualFix)

]

Figure D.7: IST recommendation inferences

200 Appendix D

<rdf:RDF

xmlns:j.0="http://xmlns.com/foaf/0.1/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:j.1="http://www.w3.org/2004/03/trix/swp-2/"

xmlns:j.2="http://grid.cx/dp/1.0/">

<rdf:Description>

<j.0:maker>

<rdf:Description

rdf:about="mailto:erw@it-innovation.soton.ac.uk">

<j.2:remoteCommitStatus

rdf:resource="http://grid.cx/dp/1.0/valid"/>

<j.2:caCheck

rdf:resource="http://grid.cx/dp/1.0/valid"/>

<j.2:wpCheck

rdf:resource="http://grid.cx/dp/1.0/valid"/>

</rdf:Description>

</j.0:maker>

</rdf:Description>

<rdf:Description rdf:about="https://localhost:8443/webdav/

taverna/taverna-workbench/org/embl/ebi/escience/scuflui/

workbench/Workbench/1/7/Workbench.java">

<j.1:authority

rdf:resource="mailto:erw@it-innovation.soton.ac.uk"/>

</rdf:Description>

<j.2:ValidityReport

rdf:about="http://grid.cx/dp/1.0/Report2007-04-01T12:25:09.125">

<j.2:knownCommit rdf:resource="https://localhost:8443/webdav/

taverna/taverna-workbench/org/embl/ebi/escience/scuflui/

workbench/Workbench/1/3/Workbench.java"/>

<j.2:knownCommit rdf:resource="https://localhost:8443/webdav/

taverna/taverna-workbench/org/embl/ebi/escience/scuflui/

workbench/Workbench/1/1/Workbench.java"/>

<j.2:knownCommit rdf:resource="https://localhost:8443/webdav/

taverna/taverna-workbench/org/embl/ebi/escience/scuflui/

workbench/Workbench/1/6/Workbench.java"/>

<j.2:recommendation

rdf:resource="http://grid.cx/dp/1.0/signatureOverride"/>

<j.2:knownCommit rdf:resource="https://localhost:8443/webdav/

taverna/taverna-workbench/org/embl/ebi/escience/scuflui/

workbench/Workbench/1/5/Workbench.java"/>

<j.2:target rdf:resource="https://localhost:8443/webdav/

taverna/taverna-workbench/org/embl/ebi/escience/scuflui/

workbench/Workbench/1/7/Workbench.java"/>

<j.2:remoteAuthorStatus

rdf:resource="http://grid.cx/dp/1.0/valid"/>

</j.2:ValidityReport>

<rdf:Description

rdf:about="http://www.ecs.soton.ac.uk/~erw/AcmeGrid/doap.rdf">

</rdf:Description>

</rdf:RDF>

Figure D.8: Example IST Recovery Report

Bibliography

Philippe Aigrain, Roberto Andradas, Raphaël Badin, Renaud Bernard, Luis Ca

nas Daz, Paul David, Santiago Due nas, Theo Dunnewijk, Rishab Aiyer Ghosh,

Ruediger Glott, Jesus Gonzalez-Barahona, Kirsten Haaland, Bronwyn Hall,

Wendy Hansen, Juan Jose Amor, Huub Meijers, Alvaro Navarro, Francesco

Rentocchini, Gregorio Robles, Barbara Russo, Giancarlo Succi, and Adriaan

van Zon. Study on the: Economic impact of open source software on innovation

and the competitiveness of the Information and Communication Technologies

(ICT) sector in the EU. Technical report, UNU-MERIT, URJC, SOPINSPACE,

BICST, November 2006. Available at http://ec.europa.eu/enterprise/ict/

policy/doc/2006-11-20-flossimpact.pdf, accessed on 20.01.2007.

Steve Anderson, Jeff Bohren, Toufic Boubez, Marc Chanliau, Giovanni Della-

Libera, Brendan Dixon, Praerit Garg, Phillip Hallam-Baker, Maryann Hondo,

Chris Kaler, Hal Lockhart, Robin Martherus, Hiroshi Maruyama, Nataraj Na-

garatnam, Andrew Nash, Rob Philpott, Darren Platt, Hemma Prafullchandra,

Maneesh Sahu, John Shewchuk, Dan Simon, Davanum Srinivas, Elliot Waingold,

David Waite, Doug Walter, and Riaz Zolfonoon. Web Services Trust Language

(WS-Trust). IBM, February 2005. Available at ftp://www6.software.ibm.

com/software/developer/library/ws-trust.pdf, accessed on 13.01.2007.

Mario Antonioletti, Malcolm Atkinson, Rob Baxter, Andrew Borley, Neil P. Chue

Hong, Brian Collins, Neil Hardman, Alastair C. Hume, Alan Knox, Mike Jack-

son, Amy Krause, Simon Laws, James Magowan, Norman W. Paton, Dave

Pearson, Tom Sugden, Paul Watson, and Martin Westhead. The design and

implementation of grid database services in OGSA-DAI. Concurrency and

Computation: Practice and Experience, 17(2-4):357–376, February 2005.

Mario Antonioletti, Neil Chue Hong, Ally Hume, Mike Jackson, Amy Krause,

Jeremy Nowell, Charaka Palansuriya, Tom Sugden, and Martin Westhead.

Experiences of Designing and Implementing Grid Database Services in the

OGSA-DAI Project. In Global Grid Forum Workshop on Designing and

201

http://ec.europa.eu/enterprise/ict/policy/doc/2006-11-20-flossimpact.pdf
http://ec.europa.eu/enterprise/ict/policy/doc/2006-11-20-flossimpact.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-trust.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-trust.pdf

202 BIBLIOGRAPHY

Building Grid Services, Chicago, Illinois, USA, October 2003. Avail-

able at, http://www-unix.mcs.anl.gov/~keahey/DBGS/DBGS_files/dbgs_

papers/hong.pdf, accessed on 13.02.2007.

Alessandro Artale and Enrico Franconi. Introducing Temporal Description Logics.

In TIME ’99: Proceedings of the 6th International Workshop on Temporal

Representation and Reasoning, page 2, Washington, DC, USA, 1999. IEEE

Computer Society. ISBN 0-7695-0173-7.

Alessandro Artale and Enrico Franconi. Handbook of Time and Temporal

Reasoning in Artificial Iintelligence. MIT Press, Cambridge, MA, USA, 2000.

Malcolm Atkinson, David DeRoure, Alistair Dunlop, Geoffrey Fox, Peter Hen-

derson, Tony Hey, Norman Paton, Steven Newhouse, Savas Parastatidis, Anne

Trefethen, Paul Watson, and Jim Webber. Web Service Grids: An Evolutionary

Approach. Concurrency and Computation: Practice and Experience, 17(2-4):

377–389, February 2005.

F. Baader and W. Nutt. In F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi,

and P.F. Patel-Schneider, editors, Description Logic Handbook, chapter Basic

Description Logics, pages 47–100. Cambridge University Press, Cambridge, UK,

2002.

F. Baader and U. Sattler. An Overview of Tableau Algorithms for Description

Logics. Studia Logica, 69:5–40, 2001.

Franz Baader. Restricted Role-value-maps in a Description Logic with Exis-

tential Restrictions and Terminological Cycles. In Description Logics, 2003.

Available at http://SunSITE.Informatik.RWTH-Aachen.de/Publications/

CEUR-WS/Vol-81/baader.pdf, accessed on 12.12.2006.

Franz Baader, Diego Calvanese, Deborah Mcguinness, Daniele Nardi, and Peter

Patel-Schneider. The Description Logic Handbook: Theory, Implementation

and Applications. Cambridge University Press, 2003. ISBN 0521781760.

Siddharth Bajaj, Giovanni Della-Libera, Brendan Dixon, Mike Dusche, Maryann

Hondo, Matt Hur, Hal Lockhart, Hiroshi Maruyama, Nataraj Nagaratnam,

Andrew Nash, Hemma Prafullchandra, and John Shewchuk. Web Services

Federation Language (WS-Federation). IBM, July 2003. Available at ftp:

//www6.software.ibm.com/software/developer/library/ws-fed.pdf, ac-

cessed on 12.01.2007.

http://www-unix.mcs.anl.gov/~keahey/DBGS/DBGS_files/dbgs_papers/hong.pdf
http://www-unix.mcs.anl.gov/~keahey/DBGS/DBGS_files/dbgs_papers/hong.pdf
file:citeseer.ist.psu.edu/baader00overview.html
file:citeseer.ist.psu.edu/baader00overview.html
http://SunSITE.Informatik.RWTH-Aachen.de/Publications/CEUR-WS/Vol-81/baader.pdf
http://SunSITE.Informatik.RWTH-Aachen.de/Publications/CEUR-WS/Vol-81/baader.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-fed.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-fed.pdf

BIBLIOGRAPHY 203

Mark A. Baker and Richard Boakes. A Framework for Unified Information Brows-

ing. In Semantic Web Applications and Perspectives (SWAP), 1st Italian

Semantic Web Workshop, Ancona, Italy, December 2004. Available at http:

//rdfx.org/docs/presentation/boakes.pdf, accessed on 13.11.2006.

Dibyendu Baksi. J2EE Transaction Frameworks: Distributed Transaction Primer.

Website, May 2001. Available at http://www.onjava.com/lpt/a/852, accessed

on 23.02.3007.

Ed Barkmeyer. Rules on the Web: Why? In Rules on the Web Workshop,

WWW2006, May 2006. Available at http://www.aifb.uni-karlsruhe.de/

WBS/phi/RoW06/talks/barkmeyer.ppt, accessed on 05.03.2007.

Jesús Barrasa, Óscar Corcho, and Asunción Gómez-Pérez. R2O, an Extensible

and Semantically Based Database-to-Ontology Mapping Language. In Second

Workshop on Semantic Web and Databases (SWDB2004), Toronto, Canada,

August 2004. Available at http://www.cs.man.ac.uk/~ocorcho/documents/

SWDB2004_BarrasaEtAl.pdf, accessed on 28.11.2006.

Mark Bartel, John Boyer, Barb Fox, Brian LaMacchia, and Ed Simon.

XML-Encryption – W3C Recommendation. The Internet Society &

W3C R© (MIT, INRIA, Keio), February 2002a. Available at http://www.w3.

org/TR/xmlenc-core/, accessed on 04.12.2006.

Mark Bartel, John Boyer, Barb Fox, Brian LaMacchia, and Ed Simon.

XML-Signature Syntax and Processing – W3C Recommendation. The Inter-

net Society & W3C R© (MIT, INRIA, Keio), February 2002b. Available at

http://www.w3.org/TR/xmldsig-core/, accessed on 13.12.2006.

Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.

McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL Web

Ontology Language Reference – W3C Recommendation. W3C R© (MIT, ERCIM,

Keio), February 2004. Available at http://www.w3.org/TR/owl-ref/, accessed

on 24.11.2006.

Dave Beckett, editor. RDF/XML Syntax Specification (Revised). W3C R© (MIT,

ERCIM, Keio), February 2004. Available at http://www.w3.org/TR/

rdf-syntax-grammar/, accessed on 12.10.2006.

T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific

American, pages 28–37, May 2001.

http://rdfx.org/docs/presentation/boakes.pdf
http://rdfx.org/docs/presentation/boakes.pdf
http://www.onjava.com/lpt/a/852
http://www.aifb.uni-karlsruhe.de/WBS/phi/RoW06/talks/barkmeyer.ppt
http://www.aifb.uni-karlsruhe.de/WBS/phi/RoW06/talks/barkmeyer.ppt
http://www.cs.man.ac.uk/~ocorcho/documents/SWDB2004_BarrasaEtAl.pdf
http://www.cs.man.ac.uk/~ocorcho/documents/SWDB2004_BarrasaEtAl.pdf
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/

204 BIBLIOGRAPHY

Tim Berners-Lee. Information Management: A Proposal. Technical report,

Organisation Européenne pour la Recherche Nucléaire (CERN), March 1989.

Available at http://www.w3.org/History/1989/proposal.html, accessed on

13.12.2006.

Tim Berners-Lee. Weaving the Web: The Original Design and Ultimate Destiny

of the World Wide Web. Collins, November 2000. ISBN 006251587X.

Tim Berners-Lee. Semanic web design issues: Rules, 2001. Available at http:

//www.w3.org/DesignIssues/Logic.html, accessed on 13.12.2006.

Tim Berners-Lee. Web for real people. Website, 2005. Available at http://www.

w3.org/2005/Talks/0511-keynote-tbl/, accessed on 12.11.2006.

Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes Second

Edition – W3C Recommendation. W3C R© (MIT, ERCIM, Keio), October 2004.

Available at http://www.w3.org/TR/xmlschema-2/, accessed on 07.11.2006.

Chris Bizer. TriQL - A Query Language Named Graphs, April 2004a. Avail-

able at http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQL/, accessed on

15.01.2007.

Chris Bizer. TriQL.P - A Query Language for Querying Named Graphs Published

by Untrustworthy Sources, September 2004b. Available at http://www.wiwiss.

fu-berlin.de/suhl/bizer/TriQLP/, accessed on 15.01.2007.

Chris Bizer. The TriG Syntax. Website, June 2005. Available at http://www.

wiwiss.fu-berlin.de/suhl/bizer/TriG/Spec/, accessed on 15.01.2007.

Chris Bizer, Richard Cyganiak, and Rowland Watkins. Named Graphs for Jena

(NG4J) API. The 2nd European Semantic Web Conference, 2005a.

Christian Bizer and Richard Cyganiak. D2R Server - Publishing Relational

Databases on the Semantic Web. In Poster at the 5th International

Semantic Web Conference, Athens, USA, November 2006. Available at,

http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-server/resources/

d2r-Server-poster-iswc2006.pdf, accessed on 15.01.2007.

Christian Bizer, Richard Cyganiak, Tobias Gauss, and Oliver Maresch. The

TriQL.P Browser: Filtering Information using Context-, Content- and Rating-

Based Trust Policies. In Semantic Web and Policy Workshop at the 4th

International Semantic Web Conference. Springer-Verlag New York, Inc.,

http://www.w3.org/History/1989/proposal.html
http://www.w3.org/DesignIssues/Logic.html
http://www.w3.org/DesignIssues/Logic.html
http://www.w3.org/2005/Talks/0511-keynote-tbl/
http://www.w3.org/2005/Talks/0511-keynote-tbl/
http://www.w3.org/TR/xmlschema-2/
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQL/
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQLP/
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQLP/
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriG/Spec/
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriG/Spec/
http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-server/resources/d2r-Server-poster-iswc2006.pdf
http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-server/resources/d2r-Server-poster-iswc2006.pdf

BIBLIOGRAPHY 205

November 2005b. Available at http://sites.wiwiss.fu-berlin.de/suhl/

bizer/pub/Bizer-TriQLP-Browser-SWPW.pdf, accessed on 03.03.2007.

Christian Bizer and Radoslaw Oldakowski. Using Context- and Content-Based

Trust Policies on the Semantic Web. In 13th World Wide Web Conference,

WWW 2004 (poster), May 2004. Available at http://www.wiwiss.fu-berlin.

de/suhl/bizer/SWTSGuide/p747-bizer.pdf, accessed on 15.01.2007.

Christian Bizer and Andy Seaborne. D2RQ - Treating Non-RDF Databases

as Virtual RDF Graphs, November 2004. Available at http://

www.wiwiss.fu-berlin.de/suhl/bizer/pub/Bizer-D2RQ-ISWC2004.pdf, ac-

cessed on 15.01.2007.

Don Box, Erik Christensen, Francisco Curbera, Donald Ferguson, Jeffrey Frey,

Marc Hadley, Chris Kaler, David Langworthy, Frank Leymann, Brad Lovering,

Steve Lucco, Steve Millet, Nirmal Mukhi, Mark Nottingham, David Orchard,

John Shewchuk, Eugène Sindambiwe, Tony Storey, Sanjiva Weerawarana, and

Steve Winkler. Web Services Addressing (WS-Addressing) – W3C Member

Submission. August 2004. Available at http://www.w3.org/Submission/

ws-addressing/, accessed on 07.02.2007.

Uri Braun and Avi Shinnar. A Security Model for Provenance. Technical report,

Harvard University Computer Science Technical Report TR-04-06, 2006.

Tim Bray, Dave Hollander, and Andrew Layman, editors. Namespaces in XML.

W3C R© (MIT, INRIA, Keio), January 1999. Available at http://www.w3.org/

TR/REC-xml-names/, accessed on 05.11.2006.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler (Second Edition), and

François Yergeau (Third Edition), editors. Extensible Markup Language (XML)

1.0 – W3C Recommendation. W3C R© (MIT, ERCIM, Keio), third edition,

February 2004. Available at http://www.w3.org/TR/REC-xml/, accessed on

05.11.2006.

Paulo Tibério Bulhoes, Chansup Byun, Rick Castrapel, and Omar Hassaine.

N1TM Grid Engine 6 Features and Capabilities. In Sun Users Performace Group

(SUPerG), Phoenix, Arizona, USA, May 2004. Available at http://www.sun.

com/products-n-solutions/edu/whitepapers/pdf/N1GridEngine6.pdf, ac-

cessed on 05.12.2006.

http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/Bizer-TriQLP-Browser-SWPW.pdf
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/Bizer-TriQLP-Browser-SWPW.pdf
http://www.wiwiss.fu-berlin.de/suhl/bizer/SWTSGuide/p747-bizer.pdf
http://www.wiwiss.fu-berlin.de/suhl/bizer/SWTSGuide/p747-bizer.pdf
http://www.wiwiss.fu-berlin.de/suhl/bizer/pub/Bizer-D2RQ-ISWC2004.pdf
http://www.wiwiss.fu-berlin.de/suhl/bizer/pub/Bizer-D2RQ-ISWC2004.pdf
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml/
http://www.sun.com/products-n-solutions/edu/whitepapers/pdf/N1GridEngine6.pdf
http://www.sun.com/products-n-solutions/edu/whitepapers/pdf/N1GridEngine6.pdf

206 BIBLIOGRAPHY

Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Data provenance: Some

basic issues. Foundations of Software Technology and Theoretical Computer

Science, 2000.

Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Data Provenance. May

2001a. Available at http://db.cis.upenn.edu/Research/provenance.html,

accessed on 09.09.2006.

Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and Where: A

Characterisation of Data Provenance. International Conference on Database

Theory (ICDT), 2001b.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael

Stal. Pattern-Oriented Software Architecture. John Wiley and Sons Ltd, July

1996. ISBN 0-471-95869-7.

Dr Mark H. Butler. Is the Semantic Web Just Hype? March 2005. Available at

http://www.hpl.hp.com/personal/marbut/isTheSemanticWebHype.pdf, ac-

cessed on 05.11.2006.

D. Byrne, M. Chue Hong, A. Hume, and M. Jackson. e-Science, the Grid and

Microsoft .NET. In GlobusWorld 2004, San Francisco, USA, January 2004.

D. Byrne, A. Hume, and M. Jackson. Grid Services and Microsoft .NET. In

Proceedings of UK e-Science All Hands Meeting (ed. Cox, S), pages 129–136,

Nottingham, UK, September 2003. ISBN 1-904425-11-9.

Diego Calvanese and Giuseppe De Giacomo. Expressive Description Logics. pages

178–218. Cambridge University Press, 2003.

S. Cantor, F. Hirsch, J Kemp, R. Philpott, and E. Maler. Bindings and Profiles for

the OASIS Security Assertion Markup Language (SAML) V2.0. OASIS, 2005.

Nicholas Carr. Nature’s Flawed Study of Wikipedia’s Quality. Website,

February 2006. Available at http://www.roughtype.com/archives/2006/02/

community_and_h.php, accessed on 04.04.007.

J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson.

Jena: Implementing the Semantic Web Recommendations. In 13th World Wide

Web Conference, WWW2004, 2004.

http://db.cis.upenn.edu/Research/provenance.html
http://www.hpl.hp.com/personal/marbut/isTheSemanticWebHype.pdf
http://www.roughtype.com/archives/2006/02/community_and_h.php
http://www.roughtype.com/archives/2006/02/community_and_h.php

BIBLIOGRAPHY 207

Jeremy Carroll. Signing RDF Graphs. In 2nd International Semantic Web

Conference (ISWC2003), volume 2870. Springer-Verlag LNCS, July 2003. Avail-

able at http://www.hpl.hp.com/techreports/2003/HPL-2003-142.pdf, ac-

cessed on 05.11.2006.

Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named

Graphs, provenance and trust. In 14th International World Wide Web

Conference, Chiba, Japan, May 2005.

Donald D. Chamberlin and Raymond F. Boyce. SEQUEL: A structured English

query language. In FIDET ’74: Proceedings of the 1974 ACM SIGFIDET (now

SIGMOD) workshop on Data description, access and control, pages 249–264,

New York, NY, USA, 1974. ACM Press.

Merrill R. Chapman. In Search of Stupidity : Over 20 Years of High-Tech

Marketing Disasters. Springer-Verlag, New York, Inc., 2003. ISBN 1-59059-

104-6.

L. Chen, N. Shadbolt, C. Goble, and F. Tao. Managing Semantic Metadata for

Web Grid Services. International Journal of Web Services Research, 2006a.

L. Chen, F. Tao, and N. Shadbolt. A Semantic Web Service Based Approach for

Augmented Provenance. In Proceedings of IEEE/WIC/ACM Web Intelligent

2006, pages 594–600. IEEE Computer Society, December 2006b.

Liming Chen, Zhuoan Jiao, and Simon J. Cox. On the use of semantic annotations

for supporting provenance in grids. In Proceedings of Euro-Par 2006 Parallel

Processing, pages 371–380, Dresden, Germany, August-September 2006c. Lec-

ture Notes in Computer Science.

Liming Chen, Victor Tan, Fenglian Xu, Alexis Biller, Paul Groth, Simon Miles,

John Ibbotson, Michael Luck, and Luc Moreau. A proof of concept: Prove-

nance in a Service Oriented Architecture. In Proceedings of the 4th All

Hands Meeting (AHM), Nottingham, UK, September 2005. EPSRC. Available

at http://eprints.ecs.soton.ac.uk/10796/01/strawman.pdf, accessed on

04.12.2006.

Kevin Cline, Josh Cohen, Doug Davis, Donald F. Ferguson, Heather Kreger,

Raymond McCollum, Bryan Murray, Ian Robinson, Jeffrey Schlimmer, John

Shewchuk, Vijay Tewari, and William Vambenepe. Toward Converging Web

Service Standards for Resources, Events, and Management: A Joint White

http://www.hpl.hp.com/techreports/2003/HPL-2003-142.pdf
http://eprints.ecs.soton.ac.uk/10796/01/strawman.pdf

208 BIBLIOGRAPHY

Paper from Hewlett Packard Corporation, IBM Corporation, Intel Corporation

and Microsoft Corporation. IBM, 2006.

Russell Cloran and Barry Irwin. XML Digital Signature and RDF. In Information

Society South Africa (ISSA 2005), July 2005. Available at http://russell.

rucus.net/masters/writings/conferences/issa2005cloran-poster.pdf,

accessed on 04.04.2007.

C. C. Cocks. A Note on Non-Secret Encryption. Technical report, CESG Report,

1973.

E. F. Codd. A Relational Model of Data for Large Shared Data Banks.

Communications of the ACM, 13(6):377387, June 1970. Available at http:

//www.acm.org/classics/nov95/toc.html, accessed on 15.03.2007.

E. F. Codd. The Relational Model for Database Management, Version 2. Addison

Wesley Publishing Company, 1990. ISBN 0201141922.

Ben Collins-Sussman. Dispelling Subversion FUD, July 2004. Available at http:

//www.red-bean.com/sussman/svn-anti-fud.html, accessed on 13.12.2006.

Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version

Control with Subversion. O’Reilly Media, first edition, June 2004. ISBN 0-

596-00448-6.

Alain Colmerauer and Philippe Roussel. The birth of Prolog. In The second

ACM SIGPLAN conference on History of programming languages, pages 37–

52, November 1992. Available at http://www.lim.univ-mrs.fr/~colmer/

ArchivesPublications/HistoireProlog/19november92.pdf, accessed on

25.11.2006.

Michael A. Covington, Donald Nute, and Andre Vellino. Prolog Programming in

Depth. Prentice Hall, 1996. ISBN 0-13-138645-X.

John Cowan and Richard Tobin, editors. XML Information Set. W3C R© (MIT,

INRIA, Keio), 2nd edition, February 2004. Available at http://www.w3.org/

TR/xml-infoset/, accessed on 03.12.2006.

Richard Cyganiak. Guus Schreiber on Semantic Web best practices.

October 2004. Available at http://dowhatimean.net/2004/10/

guus-schreiber-on-semantic-web-best-practices, accessed on 04.02.2007.

http://russell.rucus.net/masters/writings/conferences/issa2005cloran-poster.pdf
http://russell.rucus.net/masters/writings/conferences/issa2005cloran-poster.pdf
http://www.acm.org/classics/nov95/toc.html
http://www.acm.org/classics/nov95/toc.html
http://www.red-bean.com/sussman/svn-anti-fud.html
http://www.red-bean.com/sussman/svn-anti-fud.html
http://www.lim.univ-mrs.fr/~colmer/ArchivesPublications/HistoireProlog/19november92.pdf
http://www.lim.univ-mrs.fr/~colmer/ArchivesPublications/HistoireProlog/19november92.pdf
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xml-infoset/
http://dowhatimean.net/2004/10/guus-schreiber- on-semantic-web-best-practices
http://dowhatimean.net/2004/10/guus-schreiber- on-semantic-web-best-practices

BIBLIOGRAPHY 209

K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire, D. Snelling,

and S. Tuecke. From Open Grid Services Infrastructure to WS-Resource Frame-

work: Refactoring & Evolution. March 2004a.

K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin,

D. Snelling, S. Tuecke, and W. Vambenepe. The WS-Resource Framework.

March 2004b. Available at http://www.globus.org/wsrf/specs/ws-wsrf.

pdf, accessed on 15.02.2007.

Paulo Pinheiro da Silva, Deborah L. McGuinness, and Rob McCool. Knowledge

provenance infrastructure. 26(4):26–32, December 2003.

C. J. Date. The Database Relational Model: A Retrospective Review and Analysis:

A Historical Account and Assessment of E. F. Codd’s Contribution to the Field

of Database Technology. Addison Wesley Longman, 2000. ISBN 0201612941.

C. J. Date. And now for something completely computational. Website, July

2006. Available at http://www.dcs.warwick.ac.uk/~hugh/TTM/comput.pdf,

accessed 20.03.2007.

Matthew Davis. Congress ‘made Wikipedia changes’. February 2006. Avail-

able at http://news.bbc.co.uk/2/hi/technology/4695376.stm, accessed on

20.01.2007.

Chris DiBona, Sam Ockman, and Mark Stone, editors. Open Sources: Voices

from the Open Source Revolution. O’Reilly & Associates, 1st edition edition,

January 1999. ISBN 1-56592-582-3.

Chris DiBona, Mark Stone, and Danese Cooper. Open Sources 2.0: The

Continuing Evolution. O’Reilly & Associates, first edition edition, October

2005. ISBN 0-596-00802-3.

T. Dierks and C. Allen. The TLS Protocol Version 1.0, January 1999. Available

at http://www.faqs.org/rfcs/rfc2246.html, accessed on 08.01.2007.

W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, 1976.

W. Diffie and M. E. Hellman. The First Ten Years of Public-Key Cryptography.

In Proceedings of the IEEE, volume 76, pages 560–577. IEEE, 1988.

Theo Dimitrakos, Brian Matthews, and Juan Bicarregui. Towards secu-

rity and trust management policies on the Web. In ERCIM Workshop

http://www.globus.org/wsrf/specs/ws-wsrf.pdf
http://www.globus.org/wsrf/specs/ws-wsrf.pdf
http://www.dcs.warwick.ac.uk/~hugh/TTM/comput.pdf
http://news.bbc.co.uk/2/hi/technology/4695376.stm
http://www.faqs.org/rfcs/rfc2246.html

210 BIBLIOGRAPHY

’The Role of Trust in e-Business’ in conjunction with IFIP I3E Conference,

CLRC Rutherford Appleton Laboratory, Oxfordshire, October 2001. Avail-

able at http://www.elec.qmul.ac.uk/staffinfo/stefan/fipa-security/

rfi-responses/ral-SecurityPoliciesWeb.pdf, accessed on 13.02.2007.

Li Ding, Tim Finin, Yun Peng, Anupam Joshi, Paulo Pinheiro da Silva, and Debo-

rah L. McGuinness. Tracking RDF Graph Provenance using RDF Molecules. In

Proceedings of the 4th International Semantic Web Conference, Galway, Ireland,

November 2005.

Cory Doctorow. Metacrap: Putting the torch to seven straw-men of the meta-

utopia. Website, August 2001. Available at http://www.well.com/~doctorow/

metacrap.htm, accessed on 27.03.2007.

Edd Dumbill. PGP Signing FOAF Files, 2002. Available at http://usefulinc.

com/foaf/signingFoafFiles, accessed on 13.03.2007.

Edd Dumbill. Decentralizing Software Project Registries with DOAP. In XML

2004, Marriott Wardman Park Hotel, Washington, D.C., U.S.A., November

2004. SchemaSoft. Available at http://www.idealliance.org/proceedings/

xml04/papers/273/273.pdf, accessed on 04.04.2007.

Holger Lausen Jos de Bruijn Rubén Lara Michael Stollberg Axel Polleres Cristina

Feier Christoph Bussler Dumitru Roman, Uwe Keller and Dieter Fensel. Web

Service Modeling Ontology. Applied Ontology, 2005.

EC-IST. ICT FP7 Work Programme 2007-08, December 2006a. Available at ftp:

//ftp.cordis.lu/pub/fp7/ict/docs/ict-wp-2007-08_en.pdf, accessed on

05.01.2007.

EC-IST. Information society technologies 2005-2006: Strategies for Leadership,

2006b. Available at http://bookshop.europa.eu/uri?target=EUB:NOTICE:

KKAB05001:EN:HTML, accessed on 05.01.2007.

ECMA. Standard ECMA-334 C# Language Specification. June 2005.

J. H. Ellis. The Possibility of Non-Secret Digital Encryption. Technical report,

CESG Report, 1970.

J. H. Ellis. The Story of Non-Secret Encryption. Technical report, CESG Report,

1987.

Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design.

Prentice Hall, July 2005.

http://www.elec.qmul.ac.uk/staffinfo/stefan/fipa-security/rfi-responses/ral-SecurityPoliciesWeb.pdf
http://www.elec.qmul.ac.uk/staffinfo/stefan/fipa-security/rfi-responses/ral-SecurityPoliciesWeb.pdf
http://www.well.com/~doctorow/metacrap.htm
http://www.well.com/~doctorow/metacrap.htm
http://usefulinc.com/foaf/signingFoafFiles
http://usefulinc.com/foaf/signingFoafFiles
http://www.idealliance.org/proceedings/xml04/papers/273/273.pdf
http://www.idealliance.org/proceedings/xml04/papers/273/273.pdf
ftp://ftp.cordis.lu/pub/fp7/ict/docs/ict-wp-2007-08_en.pdf
ftp://ftp.cordis.lu/pub/fp7/ict/docs/ict-wp-2007-08_en.pdf
http://bookshop.europa.eu/uri?target=EUB:NOTICE:KKAB05001:EN:HTML
http://bookshop.europa.eu/uri?target=EUB:NOTICE:KKAB05001:EN:HTML

BIBLIOGRAPHY 211

Carlos Escalante. A simple model of prolog’s performance: extensional predicates.

In CASCON ’93: Proceedings of the 1993 conference of the Centre for Advanced

Studies on Collaborative research, pages 1119–1132. IBM Press, 1993.

M. P. Evett. PARKA: A System for Massively Parallel Knowledge Representation.

PhD thesis, 1994.

Al Fasoldt. Librarian: Don’t use Wikipedia as source. August 2004. Avail-

able at http://www.syracuse.com/news/poststandard/index.ssf?/base/

news-0/1093338972139211.xml, accessed on 16.03.2007.

Dieter Fensel, Holger Lausen, Axel Polleres, Jos de Bruijn, Michael Stollberg, Du-

mitru Roman, and John Domingue. Enabling Semantic Web Services. Springer,

2006.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter amd P. Leach, and

T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1, June 1999. Avail-

able at http://www.w3.org/Protocols/rfc2616/rfc2616.html, accessed on

04.02.2007.

Roy Thomas Fielding. Architectural Styles and the Design of Network-based

Software Architectures. PhD thesis, 2000. Available at http://www.ebuilt.

com/fielding/pubs/dissertation/fielding_dissertation.pdf, accessed

on 04.12.2006.

C. L Forgy. RETE: A fast algorithm for the many pattern/many object pattern

match problem. In Artificial Intelligence, volume 19, pages 17–37, 1982.

I. Foster. The Grid: A New Infrastructure for 21st Century Science. Physics

Today, 55:42–47, 2002.

I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.

International Journal Supercomputer Applications, 11:115–128, 1997.

I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn,

F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, and J. Von Reich. The

open grid services architecture, version 1.0. January 2005.

Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The Physiology of

the Grid. Website, 2002. Available at http://www.gridforum.org/ogsi-wg/

drafts/ogsa_draft2.9_2002-06-22.pdf, accessed on 04.04.2007.

http://www.syracuse.com/news/poststandard/index.ssf?/base/news-0/1093338972139211.xml
http://www.syracuse.com/news/poststandard/index.ssf?/base/news-0/1093338972139211.xml
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.ebuilt.com/fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ebuilt.com/fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.gridforum.org/ogsi-wg/drafts/ogsa_draft2.9_2002-06-22.pdf
http://www.gridforum.org/ogsi-wg/drafts/ogsa_draft2.9_2002-06-22.pdf

212 BIBLIOGRAPHY

M. S. Fox and J. Huang. Knowledge Provenance: An Approach to Modeling and

Maintaining the Evolution and Validity of Knowledge. Technical report, EIL

Technical Report, University of Toronto, 2003. Available at http://www.eil.

utoronto.ca/km/papers/fox-kp1.pdf, accessed on 04.12.2006.

Ernest Friedman-Hill. Jess in Action. Manning Publications Co., July 2003. ISBN

1930110898.

Frederic J. Frommer. Coleman staff makes changes to Web encyclopedia bio.

January 2006. Available at http://www.kansascity.com/mid/kansascity/

news/politics/13750512.html, accessed on 04.04.2007.

Toshiaki Fujiki. Differences between Blogs and Web Diaries. In WWW 2005 2nd

Annual Workshop on the Weblogging Ecosystem: Aggregation, Analysis and

Dynamics, Chiba, Japan, May 2005.

Joseph C. Giarratano and G. Riley. CLIPS, Expert Systems: Principles and

Programming. PWS, 2nd edition, 1993. ISBN 0-534-95053-1.

Dan Gillmoor. Wikipedia Shows Power of Cooperation, January 2004. Avail-

able at http://weblog.siliconvalley.com/column/dangillmor/archives/

001709.shtml, accessed on 04.11.2006.

Carole Goble. Position Statement: Musings on Provenance, Workflow and (Seman-

tic Web) Annotations for Bioinformatics. Website, September 2002. Published

at Zhao (2002).

Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. Http extensions for

distributed authoring – WEBDAV, 1999. Available at http://citeseer.nj.

nec.com/goland99http.html, accessed on 04.04.2007.

Jennifer Golbeck and James Hendler. Accuracy of Metrics for Inferring Trust and

Reputation in Semantic Web-based Social Network. In Proceedings of EKAW

04, 2004a. Available at http://www.mindswap.org/papers/GolbeckEKAW04.

pdf, accessed on 04.03.2007.

Jennifer Golbeck and James Hendler. Reputation network analysis for email fil-

tering. In Proceedings of the 1st Conference on Email and Anti-Spam, 2004b.

Available at http://www.mindswap.org/papers/Email04.pdf, accessed on

04.03.2007.

http://www.eil.utoronto.ca/km/papers/fox-kp1.pdf
http://www.eil.utoronto.ca/km/papers/fox-kp1.pdf
http://www.kansascity.com/mid/kansascity/news/politics/13750512.html
http://www.kansascity.com/mid/kansascity/news/politics/13750512.html
http://weblog.siliconvalley.com/column/dangillmor/archives/001709.shtml
http://weblog.siliconvalley.com/column/dangillmor/archives/001709.shtml
http://citeseer.nj.nec.com/goland99http.html
http://citeseer.nj.nec.com/goland99http.html
http://www.mindswap.org/papers/GolbeckEKAW04.pdf
http://www.mindswap.org/papers/GolbeckEKAW04.pdf
http://www.mindswap.org/papers/Email04.pdf

BIBLIOGRAPHY 213

Jennifer Golbeck and James Hendler. Reputation network analysis for email fil-

tering. In Proceedings of the 1st Conference on Email and Anti-Spam, 2004c.

Available at http://www.mindswap.org/papers/Email04.pdf.

Roberto Garćıa González. A Semantic Web Approach to Digital Rights

Management. PhD thesis, Department of Technologies, Universitat Pompeu

Fabra, Barcelona, Spain, 2005.

Andrew Gowers. Gowers Review of Intellectual Property. Her Majesty’s

Treasury, December 2006. ISBN 9-780118-4083-9. Available at http:

//hm-treasury.gov.uk/media/583/91/pbr06_gowers_report_755.pdf, ac-

cessed on 03.02.2007.

B. Cuenca Grau, E.Sirin B. Parsia, and A.Kalyanpur. Automatic Partitioning

of OWL Ontologies using E-Connections. Technical report, 2005a. Avail-

able at http://www.mindswap.org/2004/multipleOnt/papers/Partition.

pdf, accessed on 04.02.2007.

Bernardo Cuenca Grau, Bijan Parsia, and Evren Sirin. Combining OWL Ontolo-

gies Using E-Connections. In Journal of Web Services. Elsevier Science, 2005b.

Stephan Grimm and Boris Motik. Closed World Reasoning in the Semantic Web

through Epistemic Operators. In OWL: Experiences and Directions, OWL

Workshop, Galway, Ireland, November 2005.

Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Descrip-

tion logic programs: Combining logic programs with description logic. In 12th

International World Wide Web Conference (WWW 2003), pages 48–57. Com-

munications of the ACM, 2003.

William Grosso. Java RMI. O’Reilly, November 2001. ISBN 1565924525.

Paul Groth. On the Record: Provenance in Large Scale, Open Distributed

Systems. University of Southampton, Faculty of Engineering, Science and

Mathematics, School of Electronics and Computer Science mini-thesis, July

2005.

Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, Victor Tan, Sofia Tsasakou,

and Luc Moreau. An Architecture for Provenance Systems. Technical report,

February 2006. PROVENANCE Project, IST Framework 6, D3.1.1 (Final Ar-

chitecture) Deliverable.

http://www.mindswap.org/papers/Email04.pdf
http://hm-treasury.gov.uk/media/583/91/pbr06_gowers_report_755.pdf
http://hm-treasury.gov.uk/media/583/91/pbr06_gowers_report_755.pdf
http://www.mindswap.org/2004/multipleOnt/papers/Partition.pdf
http://www.mindswap.org/2004/multipleOnt/papers/Partition.pdf

214 BIBLIOGRAPHY

Paul Groth, Michael Luck, and Luc Moreau. A protocol for recording prove-

nance in service-oriented grids. In 8th International Conference on Principles of

Distributed Systems (OPODIS’04), Grenoble, France, December 2004. Available

at http://www.ecs.soton.ac.uk/~lavm/papers/opodis04.pdf, accessed on

16.03.2007.

Paul Groth, Simon Miles, Weijian Fang, Sylvia C. Wong, Klaus-Peter Za-

uner, and Luc Moreau. Recording and Using Provenance in a Protein

Compressibility Experiment. In 14th IEEE International Symposium on

High Performance Distributed Computing (HPDC’05), July 2005. Available

at http://twiki.pasoa.ecs.soton.ac.uk/pub/PASOA/PublicationStore/

hpdc05.pdf, accessed on 16.03.2007.

NGG Group. Future for European Grids: Grids and Service-Oriented Knowledge

Utilities, Vision and research directions 2010 and beyond. Information Society

and Media, European Commission, January 2006. ISBN 92-79-01521-4. Avail-

able at ftp://ftp.cordis.europa.eu/pub/ist/docs/grids/ngg3-report_

en.pdf, accessed on 05.01.2007.

T. R. Gruber. A Translation Approach to Portable Ontologies. Knowledge

Acquisition, 5:199–220, 1993. Available at http://ksl-web.stanford.edu/

KSL_Abstracts/KSL-92-71.html, accessed on 16.12.2006.

Thomas R. Gruber. Toward principles for the design of ontologies used for knowl-

edge sharing. International Journal of Human-Computer Studies, 43(5–6):907–

928, 1995.

M. Grüninger and M. Fox. Methodology for the Design and Evaluation

of Ontologies. In Workshop on Basic Ontological Issues in Knowledge

Sharing (IJCAI’95), April 1995. Available at http://citeseer.nj.nec.com/

grninger95methodology.html, accessed on 16.03.2007.

Ramanathan V. Guha, Rob McCool, and Eric Miller. Semantic search.

In Proceedings of the 12th International World Wide Web Conference

(WWW2003), pages 700–709, Budapest, Hungary, May 2003. ACM Press.

Peter Gutmann. Why XML Security is Broken. Website, October 2004. Available

at http://www.cs.auckland.ac.nz/~pgut001/pubs/xmlsec.txt, accessed on

12.11.2006.

V. Haarslev and R. Mller. Racer: A Core Inference Engine for the Seman-

tic Web. In 2nd International Workshop on Evaluation of Ontology-based

http://www.ecs.soton.ac.uk/~lavm/papers/opodis04.pdf
http://twiki.pasoa.ecs.soton.ac.uk/pub/PASOA/PublicationStore/hpdc05.pdf
http://twiki.pasoa.ecs.soton.ac.uk/pub/PASOA/PublicationStore/hpdc05.pdf
ftp://ftp.cordis.europa.eu/pub/ist/docs/grids/ngg3-report_en.pdf
ftp://ftp.cordis.europa.eu/pub/ist/docs/grids/ngg3-report_en.pdf
http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92-71.html
http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92-71.html
http://citeseer.nj.nec.com/grninger95methodology.html
http://citeseer.nj.nec.com/grninger95methodology.html
http://www.cs.auckland.ac.nz/~pgut001/pubs/xmlsec.txt

BIBLIOGRAPHY 215

Tools (EON2003), located at the 2nd International Semantic Web Conference

(ISWC2003), page 2736, Sanibel Island, Florida, USA, October 2003.

Stephen Harris and Dr Nicholas Gibbins. 3store: Efficient Bulk RDF Stor-

age. In Proceedings 1st International Workshop on Practical and Scalable

Semantic Web Systems, Sanibel Island, Florida, USA, 2003. Available at http:

//eprints.aktors.org/archive/00000273/01/psss03-swh.pdf, accessed on

16.03.2007.

Sandro Hawke. RDF Database Federations And Logic, August 2002. Avail-

able at http://www.w3.org/2002/01/rdf-databases/federation, accessed

on 13.01.2007.

P. Hayes, editor. RDF Semantics – W3C Recommendation. W3C R© (MIT,

ERCIM, Keio), February 2004. Available at http://www.w3.org/TR/rdf-mt/,

accessed on 12.10.2006.

P. J. Hayes. The Logic for Frames. In D. Metzing, editor, Frame Concept and

Text Understanding, pages 46–61, 1979.

Jim Hendler. The Dark Side of the Semantic Web. Website, December 2006.

Available at http://www.cs.umd.edu/~hendler/presentations/DarkSide.

pdf, accessed on 27.03.2007.

Carl Hewitt. The challenge of open systems: current logic programming methods

may be insufficient for developing the intelligent systems of the future. BYTE,

10(4):223–242, 1985. ISSN 0360-5280.

Pascal Hitzler, Peter Haase, Markus Krötzsch, York Sure, and Rudi Studer. DLP

isnt so bad after all. In OWL: Experiences and Directions, OWL Workshop,

Galway, Ireland, November 2005.

D. A. Holton and J. Sheehan. The Petersen Graph. Cambridge University Press,

1993. ISBN 0521435943.

Alfred Horn. On sentences which are true of direct unions of algebras. Journal of

Symbolic Logic, 16:14–21, 1951.

I. Horrocks. Using an expressive description logic: FaCT or fiction? In A. G. Cohn,

L. Schubert, and S. C. Shapiro, editors, Principles of Knowledge Representation

and Reasoning: Proceedings of the 6th International Conference (KR’98), pages

636–647. Morgan Kaufmann Publishers, San Francisco, California, June 1998.

http://eprints.aktors.org/archive/00000273/01/psss03-swh.pdf
http://eprints.aktors.org/archive/00000273/01/psss03-swh.pdf
http://www.w3.org/2002/01/rdf-databases/federation
http://www.w3.org/TR/rdf-mt/
http://www.cs.umd.edu/~hendler/presentations/DarkSide.pdf
http://www.cs.umd.edu/~hendler/presentations/DarkSide.pdf

216 BIBLIOGRAPHY

Ian Horrocks, Bijan Parsia, Peter Patel-Schneider, and James Hendler. Seman-

tic Web Architecture: Stack or Two Towers? In Francois Fages and Sylvain

Soliman, editors, Principles and Practice of Semantic Web Reasoning (PPSWR

2005), number 3703 in LNCS, pages 37–41. Springer-Verlag, 2005.

Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin

Grosof, and Mike Dean. SWRL: A Semantic Web Rule Language Combining

OWL and RuleML – W3C Member Submission. National Research Council of

Canada, Network Inference, and Stanford University, May 2004. Available at

http://www.w3.org/Submission/SWRL/, accessed on 30.2.2007.

Ian Horrocks and Ulrike Sattler. Ontology Reasoning in the SHOQ(D) Description

Logic. In 17th International Joint Conference on Artificial Intelligence, August

2001.

Ian Horrocks and Ulrike Sattler. Decidability of SHIQ with Complex Role In-

clusion Axioms. In Eightheenth International Joint Conference on Artificial

Intelligence (IJCAI2003), pages 343–348, August 2003. Available at http:

//dli.iiit.ac.in/ijcai/IJCAI-2003/PDF/051.pdf, accessed on 05.03.2007.

J. Huang and M. S. Fox. Dynamic Knowledge Provenance. Technical report,

EIL Technical Report, University of Toronto, June 2003. Available at http:

//www.eil.utoronto.ca/km/papers/kp2-TR03.pdf, accessed on 04.12.2006.

Jingwei Huang and Mark S. Fox. Uncertainty in Knowledge Provenance. In

Proceedings of the European Semantic Web Symposium, Springer Lecture Notes

in Computer Science, May 2004. Available at http://www.eil.utoronto.ca/

km/papers/EuroSemWeb04-online.pdf, accessed on 04.12.2006.

Greg Hudson. Notes on keeping version histories of files. Website, October 2002.

Available at http://web.mit.edu/ghudson/thoughts/file-versioning, ac-

cessed on 13.11.2006.

M. Humphrey, G. Wasson, K. Jackson, J. Boverhof, M. Rodriguez, Joe Bester,

J. Gawor, S. Lang, I. Foster, S. Meder, S. Pickles, and M. McKeown. State

and Events for Web Services: A Comparison of Five WS-Resource Frame-

work and WS-Notification Implementations. In Proceedings of The 14th

IEEE International Symposium on High Performance Distributed Computing

(HPDC-14), Research Triangle Park, NC, July 2005. IEEE Computer Society

Press.

http://www.w3.org/Submission/SWRL/
http://dli.iiit.ac.in/ijcai/IJCAI-2003/PDF/051.pdf
http://dli.iiit.ac.in/ijcai/IJCAI-2003/PDF/051.pdf
http:// www.eil.utoronto.ca/km/papers/kp2-TR03.pdf
http:// www.eil.utoronto.ca/km/papers/kp2-TR03.pdf
http://www.eil.utoronto.ca/ km/papers/EuroSemWeb04-online.pdf
http://www.eil.utoronto.ca/ km/papers/EuroSemWeb04-online.pdf
http://web.mit.edu/ghudson/thoughts/file-versioning

BIBLIOGRAPHY 217

James J. Hunt and Jürgen Reuter. Using the Web for Document Versioning: An

Implementation Report for DeltaV. In Proceedings of the 23rd International

Conference on Software Engineering, Toronto, pages 507–513, May 2001. Avail-

able at http://wwwipd.ira.uka.de/~reuter/publications/deltav.pdf, ac-

cessed on 14.02.2007.

Joichi Ito. Wikipedia attacked by ignorant reporter. Website, August 2004. Avail-

able at http://joi.ito.com/archives/2004/08/29/wikipedia_attacked_

by_ignorant_reporter.html#c014592, accessed on 04.03.2007.

Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software

Development Process. Addison Wesley Longman, 1998. ISBN 0-201-57169-2.

Javier Jaén, Artur Boronat, and José H. Canós. Federated RDF Repositories

for Integrated Hybrid Museums. In ICHIM 05 - Digital Culture & Heritage /

Patrimoine & Culture Numérique, September 2005. Available at http://www.

archimuse.com/publishing/ichim05/Jaen.pdf, accessed on 01.04.2007.

Dean M. Jones and Ray C. Paton. Some Problems in the Formal Representation

of Hierarchical Knowledge. In International Conference on Formal Ontology

in Information Systems FOIS’98, In conjunction with the 6th International

Conference on Principles of Knowledge Representation and Reasoning KR’98,

volume 1, Trento, Italy, June 1998.

Diane Jordan and John Evdemon. Web Services Business Process Execution

Language Version 2.0. OASIS, January 2007. Available at http://

docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html, accessed

on 01.04.2007.

Gilbert Kalb. Bilateral Research and Industrial Development Enhancing and In-

tegrating Grid Enabled (bridge) technologies. In The 3rd Grid@Asia & GFK

2006 International Joint Workshop, December 2006. Available at http://

www.gridforumkorea.org/workshop/2006/w_data/11/Bridge.pdf, accessed

on 12.12.2006.

Yarden Katz and Bijan Parsia. Towards a Nonmonotonic Extension to OWL. In

OWL: Experiences and Directions, OWL Workshop, Galway, Ireland, November

2005.

Steve Kemp. Debian server compromise. Website, July 2006. Available at, http:

//www.debian-administration.org/articles/417.

http://wwwipd.ira.uka.de/~reuter/publications/deltav.pdf
http://joi.ito.com/archives/2004/08/29/wikipedia_attacked_by_ignorant _reporter.html#c014592
http://joi.ito.com/archives/2004/08/29/wikipedia_attacked_by_ignorant _reporter.html#c014592
http://www.archimuse.com/publishing/ichim05/Jaen.pdf
http://www.archimuse.com/publishing/ichim05/Jaen.pdf
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html
http://www.gridforumkorea.org/workshop/2006/w_data/11/Bridge.pdf
http://www.gridforumkorea.org/workshop/2006/w_data/11/Bridge.pdf
http://www.debian-administration.org/articles/417
http://www.debian-administration.org/articles/417

218 BIBLIOGRAPHY

W. Kent. A Simple Guide to Five Normal Forms in Relational Database Theory.

Communications of the ACM, 26(2):120–125, February 1983. Available at http:

//www.bkent.net/Doc/simple5.htm, accessed on 15.03.2007.

Michael Kifer, Georg Lausen, and James Wu. Logical Foundations of Object-

Oriented and Frame-Based Languages. Journal of the Association for

Computing Machinery, May 1995.

G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts

and Abstract Syntax – W3C Recommendation. W3C R© (MIT, ERCIM, Keio),

February 2004. Available at http://www.w3.org/TR/rdf-concepts/, accessed

on 24.11.2006.

J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem: Its

Structural Complexity. Birkhauser, 1993.

Vladimir Kolovski, Bijan Parsia, Yarden Katz, and James Hendler. Representing

Web Service Policies in OWL-DL. In Proceedings of 4th Internation Semantic

Web Conference (ISWC’05), Galway, Ireland, November 2005.

Micki Krause and Harold F. Tipton. Handbook of Information Security

Management, chapter Application Program Security. CRC Press LLC, January

1998. ISBN 0849399475. Available at http://www.ccert.edu.cn/education/

cissp/hism/ewtoc.html, accessed on 25.11.2006.

Bo Leuf and Ward Cunningham. The Wiki Way. Addison-Wesley Longman,

March 2001. ISBN 0-201-71499-X.

Alon Y. Levy and Marie-Christine Rousset. CARIN: A Representation Language

Combining Horn Rules and Description Logics. In Proceedings of 12th European

Conference on Artificial Intelligence (ECAI-96), pages 323–327, Budapest, Hun-

gary, August 1996.

Y. Liang. Enabling active ontology change management within semantic web-

based applications. Technical report, Mini-thesis: PhD upgrade report. School

of Electronics and Computer Science, University of Southampton, October 2006.

Available at http://eprints.ecs.soton.ac.uk/13068/01/minithesis.pdf,

accessed on 04.04.2007.

Jon Loeliger. Collaborating with Git. Linux Magazine, June 2006a. Available

at http://www.jdl.com/papers/Collaborating_Using_Git.pdf, accessed on

03.01.2007.

http://www.bkent.net/Doc/simple5.htm
http://www.bkent.net/Doc/simple5.htm
http://www.w3.org/TR/rdf-concepts/
http://www.ccert.edu.cn/education/cissp/hism/ewtoc.html
http://www.ccert.edu.cn/education/cissp/hism/ewtoc.html
http://eprints.ecs.soton.ac.uk/13068/01/minithesis.pdf
http://www.jdl.com/papers/Collaborating_Using_Git.pdf

BIBLIOGRAPHY 219

Jon Loeliger. How to Git It. Linux Magazine, March 2006b. Available at http:

//www.jdl.com/papers/How_To_Git_It.pdf, accessed on 03.01.2007.

D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness,

B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara.

Bringing Semantics to Web Services: The OWL-S Approach. In Semantic Web

Services and Web Process Composition: 1st International Workshop, SWSWPC,

July, 2004, volume 3387, pages 26–42, San Diego, CA, USA, 2005. Springer-

Verlag Berlin Heidelberg.

Vincent Massol, Jason van Zyl, Brett Porter, John Casey, and Carlos Sanchez.

Better Builds with Maven. Mergere Library Press, 2006.

Ross Mayfield. Ross Mayfield’s Weblog: Collaborative Proposal Development,

September 2003. Available at http://ross.typepad.com/blog/2003/09/

collaborative_p.html, accessed on 23.11.2006.

Ross Mayfield. Wikidmedia, July 2004a. Available at http://www.thestandard.

com/movabletype/rossmayfield/archives/000387.php, accessed on

23.11.2006.

Ross Mayfield. Wikipedia Reputation and the Wemedia Project, Au-

gust 2004b. Available at http://www.corante.com/many/archives/2004/

08/29/wikipedia_reputation_and_the_wemedia_project.php, accessed on

23.11.2006.

Adrian McCullagh and William Caelli. Non-Repudiation in the Digital Envi-

ronment. First Monday: Peer-reviewed Journal on the Internet, July 2000.

Available at http://www.firstmonday.dk/issues/issue5_8/mccullagh/, ac-

cessed on 14.10.2006.

Deborah L. McGuinness and Paulo Pinheiro da Silva. Registry-Based Sup-

port for Information Integration. In Proceedings of IJCAI-2003 Workshop on

Information Integration on the Web (IIWeb-03), pages 117–122, Acapulco, Mex-

ico, USA, August 2003.

Michael McIntosh, Martin Gudgin, K. Scott Morrison, and Abbie Barbir, editors.

Basic Security Profile Version 1.1. Web Services Interoperability Organization,

working group draft edition, 2006.

Brendan D. McKay. Practical Graph Isomorphism. In Congressus Numerantium,

volume 30, pages 45–87, 1981. Available at http://cs.anu.edu.au/~bdm/

papers/pgi.pdf, accessed on 23.11.2006.

http://www.jdl.com/papers/How_To_Git_It.pdf
http://www.jdl.com/papers/How_To_Git_It.pdf
http://ross.typepad.com/blog/2003/09/collaborative_p.html
http://ross.typepad.com/blog/2003/09/collaborative_p.html
http://www.thestandard.com/movabletype/rossmayfield/archives/000387.php
http://www.thestandard.com/movabletype/rossmayfield/archives/000387.php
http://www.corante.com/many/archives/2004/08/29/wikipedia_reputation_and_the_wemedia_project.php
http://www.corante.com/many/archives/2004/08/29/wikipedia_reputation_and_the_wemedia_project.php
http://www.firstmonday.dk/issues/issue5_8/mccullagh/
http://cs.anu.edu.au/~bdm/papers/pgi.pdf
http://cs.anu.edu.au/~bdm/papers/pgi.pdf

220 BIBLIOGRAPHY

Brendan D. McKay. nauty User’s Guide (Version 2.4). Website, December 2006.

Available at http://cs.anu.edu.au/~bdm/nauty/nug-2.4b3.pdf, accessed on

4.11.2006.

Jim Melton. SQL, XQuery, and SPARQL: What’s Wrong With This Pic-

ture? In XTech 2006: Building Web 2.0. IDEAlliance Inc., May 2006. Avail-

able at http://www.w3.org/2006/Talks/0301-melton-query-langs.pdf, ac-

cessed on 04.02.2007.

S. Miles, S. C. Wong, W. Fend, P. Groth, K. P. Zauner, and L. Moreau.

Provenance-based validation of e-science experiments. Journal of Web

Semantics, 5(1):28–38, March 2007.

Arthur Raphael Miller and Michael H. Davis. Intellectual Property: Patents,

Trademarks, and Copyright. West/Wadsworth, New York, 3rd edition, 2000.

ISBN 0-314-23519-1.

Libby Miller and Dan Brickley. SWAD-Europe Deliverable 3.16: Final Workshop

Report. 2004. IST Project IST-2001-34732, (2004). A report of the 1st Workshop

on Friend of a Friend, Social Networking and the Semantic Web, 1-2 September

2004, Galway, Ireland.

Libby Miller, Andy Seaborne, and Alberto Reggiori. Three Implementations of

SquishQL, a Simple RDF Query Language. In 1st International Semantic Web

Conference (ISWC2002), Sardinia, Italia, June 2002.

M. Minsky. A framework for representing knowledge. In J. Haugeland, editor,

Mind Design, pages 95–128, 1981.

T. Miyazaki. The complexity of McKay’s canonical labelling algorithm. In

L. Finkelstein and W. M. Kantor, editors, Groups and Computation II, DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, volume 28,

pages 239–256, Providence, R.I., 1997. American Mathematical Society. Avail-

able at http://www.cs.trincoll.edu/~miyazaki/rutgers.ps, accessed on

23.11.2006.

Nick Moffitt. Revision Control with Arch: Introduction to Arch. Linux Journal,

Nov 2004. Available at http://www.linuxjournal.com/article/7671, ac-

cessed on 09.09.2006.

Boris Motik. Reasoning in Description Logics using Resolution and Deductive

Databases. PhD thesis, January 2006.

http://cs.anu.edu.au/~bdm/nauty/nug-2.4b3.pdf
http://www.w3.org/2006/Talks/0301-melton-query-langs.pdf
http://www.cs.trincoll.edu/~miyazaki/rutgers.ps
http://www.linuxjournal.com/article/7671

BIBLIOGRAPHY 221

Boris Motik, Ian Horrocks, and Ulrike Sattler. Bridging the Gap Between OWL

and Relational Databases. In 16th International World Wide Web Conference

(WWW2007), May 2007. Available at .

Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for OWL-DL with

Rules. Journal of Web Semantics, July 2005.

William Nagel. Subversion 101: The new open source version control system

promises to obsolete CVS, May 2004. Available at http://www.linux-mag.

com/2004-05/subversion_01.html, accessed on 12.12.2006.

D. Nardi and R. J. Brachman. In F. Baader, D. Calvanese, D.L. McGuinness,

D. Nardi, and P.F. Patel-Schneider, editors, Description Logic Handbook, chap-

ter An Introduction to Description Logics, pages 5–44. Cambridge University

Press, 2002.

B. Clifford Neuman and Theodore Ts’o. Kerberos: An Authentication

Service for Computer Networks. IEEE Communications, 32(9):33–38,

September 1994. Available at http://www.isi.edu/gost/publications/

kerberos-neuman-tso.html, accessed on 09.09.2006.

Gary Ng. Open vs. Closed world, Rules vs. Queries: Use cases from Industry. In

OWL: Experiences and Directions, OWL Workshop, Galway, Ireland, November

2005.

Ulf Nilsson and Jan Mabarluszyǹski. Logic, Programming and Prolog. 2nd edition,

2000.

NIST. NIST FIPS PUB 180, Secure Hash Standard. U.S. Department of Com-

merce, May 1993.

Natalya F. Noy and Michel Klein. Ontology Evolution: Not the Same as Schema

Evolution. Knowledge Information Systems, 6(4):428–440, 2004. ISSN 0219-

1377.

Natalya F. Noy and Deborah L. McGuinness. Ontology Develop-

ment 101: A Guide to Creating Your First Ontology, March 2001.

Available at http://www.ksl.stanford.edu/people/dlm/papers/

ontology-tutorial-noy-mcguinness.pdf, accessed on 09.10.2006.

Christopher M. E. Painter. Tracing in Internet Fraud Cases: Pairgain and

NEI Webworld. Website, May 2001. Available at http://www.usdoj.gov/

criminal/cybercrime/usamay2001_3.htm, accessed on 04.12.2006.

http://www.linux-mag.com/2004-05/subversion_01.html
http://www.linux-mag.com/2004-05/subversion_01.html
http://www.isi.edu/gost/publications/kerberos-neuman-tso.html
http://www.isi.edu/gost/publications/kerberos-neuman-tso.html
http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness.pdf
http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness.pdf
http://www.usdoj.gov/ criminal/cybercrime/usamay2001_3.htm
http://www.usdoj.gov/ criminal/cybercrime/usamay2001_3.htm

222 BIBLIOGRAPHY

Jack Park. Promiscuous Semantic Federation: Semantic Desktops meet Web

2.0. In Semantic Desktop and Social Semantic Collaboration Workshop

(SemDesk 2006) located at the 5th International Semantic Web Conference

ISWC 2006, volume 202. SRI International, CEUR-WS, November 2006. Avail-

able at http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/

Vol-202/SEMDESK2006_0035.pdf, accessed on 01.04.2007.

Bijan Parsia and Evren Sirin. Pellet: An OWL DL Reasoner. In 3rd International

Semantic Web Conference (ISWC2004), Hiroshima, Japan, Nov 2004.

Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging OWL Ontologies. In

14th International World Wide Web Conference (WWW 2005), Chiba, Japan.

Communications of the ACM, May 2005.

PASOA. Provenance Aware Service Oriented Architecture. Website, 2005. Avail-

able at http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/WebHome,

accessed on 09.10.2006.

Eric Prud’hommeaux. Adding SPARQL Support to MySQL. Website, May

2006. Available at http://www.w3.org/2006/Talks/0518-SPASQL/, accessed

on 05.03.2007.

Eric Prud’hommeaux and Andy Seaborne, editors. SPARQL Query Language for

RDF – W3C Working Draft. W3C R© (MIT, ERCIM, Keio), March 2007. Avail-

able at http://www.w3.org/TR/rdf-sparql-query/, accessed on 30.03.2007.

Alan Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger

Knublauch, Robert Stevens, Hai Wang, and Chris Wroe. OWL Pizzas: Prac-

tical Experience of Teaching OWL-DL: Common Errors & Common Patterns.

In 14th International Conference on Knowledge Engineering and Knowledge

Management (EKAW 2004), Whittlebury Hall, Northamptonshire, UK, Octo-

ber 2004.

Alberto Reggiori, Dirk-Willem van Gulik, and Zavisa Bjelogrlic. Indexing and

Retrieving Semantic Web resources: the RDFStore Model. In SWAD-Europe

Workshop on Semantic Web Storage and Retrieval, Vrije Universiteit, Amster-

dam, Netherlands, November 2003. Available at http://www.w3.org/2001/sw/

Europe/events/20031113-storage/positions/asemantics.pdf, accessed on

09.01.2007.

http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-202/SEMDESK2006_0035.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-202/SEMDESK2006_0035.pdf
http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/WebHome
http://www.w3.org/2006/Talks/0518-SPASQL/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/2001/sw/Europe/events/20031113-storage/positions/asemantics.pdf
http://www.w3.org/2001/sw/Europe/events/20031113-storage/positions/asemantics.pdf

BIBLIOGRAPHY 223

Brian Reistad, Bryan Murray, Doug Davis, Alexander Nosov, Steve Graham, Vijay

Tewari, and William Vambenepe. Web Services Resource Transfer (WS-RT) 1.0.

IBM, 2006.

R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures

and Public-Key Cryptosystems. Communications of the ACM, 1978.

Ronald G. Ross. Principles Of Business Rule Approach. Aw Professional, 2003.

ISBN 0-201-78893-4.

David Roundy. Implementing the darcs patch formalism . . . and verifying it. In

Free and Open Source Developer’s European Meeting (FOSDEM06), February

2006. Available at http://darcs.net/fosdem_talk/talk.pdf, accessed on

03.01.2007.

D De Roure, N R Jennings, and N R Shadbolt. The Semantic Grid: Past, Present,

and Future. Proc. IEEE, 93:669–681, March 2005. ISSN 0018-9219.

David De Roure, Nicholas R. Jennings, and Nigel Shadbolt. The Semantic Grid:

A Future eSience Infrastructure. International Journal of Concurrency and

Computation: Practice and Experience, 2003.

Tom Rowland. Can you trust what you read on-line? Website, Febru-

ary 2007. Available http://business.timesonline.co.uk/tol/business/

related_reports/identity_management/article1413273.ece, accessed on

04.04.2007.

Seth Russell. Why Should the Semantic Web be a Monotonic Logic? January

2003. Available at http://robustai.net/papers/Monotonic_Reasoning_on_

the_Semantic_Web.html, accessed on 09.03.2007.

M. Sabou, C. Wroe, C. Goble, and H. Stuckenschmidt. Learning Domain On-

tologies for Semantic Web Service Descriptions. In Journal of Web Semantics.

Elsevier Science, 2005.

Craig Sayers and Alan H. Karp. Computing the Digest of an RDF Graph. Tech-

nical report, Hewlett Packard Laboratories, Bristol, November 2003. Available

at http://www.hpl.hp.com/techreports/2003/HPL-2003-235.pdf, accessed

on 04.04.2007.

Robert W. Scheifler and James Gettys. X Window System: Core and extension

protocols: X version 11, releases 6 and 6.1. Digital Press, 1996. ISBN 1-55558-

148-X.

http://darcs.net/fosdem_talk/talk.pdf
http://business.timesonline.co.uk/tol/business/related_reports/identity_management/article1413273.ece
http://business.timesonline.co.uk/tol/business/related_reports/identity_management/article1413273.ece
http://robustai.net/papers/Monotonic_Reasoning_on_the_Semantic_Web.html
http://robustai.net/papers/Monotonic_Reasoning_on_the_Semantic_Web.html
http://www.hpl.hp.com/techreports/2003/HPL-2003-235.pdf

224 BIBLIOGRAPHY

M. Schmidt-Schauss. Subsumption in KL-ONE is undecidable. In R. J. Brachman,

H. J. Levesque, R. Reiter, eds.: Proceedings of the 1st International Conference

on the Principles of Knowledge Representation and Reasoning (KR89), Morgan

Kaufmann, pages 421–431, 1989.

B. Schneier and J. Kelsey. Tamperproof Audit Logs as a Forensics Tool for Intru-

sion Detection Systems. Computer Networks and ISDN Systems, 1999a.

Bruce Schneier and John Kelsey. Secure Audit Logs to Support Computer Foren-

sics. ACM Transactions on Information and System Security, 1(3), 1999b.

Available at http://www.schneier.com/paper-auditlogs.html, accessed on

03.04.2007.

M. C. Schraefel, M. Karam, and S. Zhao. mspace: Interaction Design for User-

Determined, Adaptable Domain Exploration in Hypermedia. In AH 2003:

Workshop on Adaptive Hypermedia and Adaptive Web Based Systems, pages

217–235, 2003.

Guus Schreiber. OWL Restrictions, May 2005. Available at http://www.cs.vu.

nl/~guus/public/owl-restrictions/, accessed on 15.02.2007.

Kenn Scribner. Microsoft Windows Workflow Foundation Step by Step. Microsoft

Press, February 2007. ISBN 0-7356-2335-X.

Andy Seaborne. Joseki - The Jena RDF Server. Website, 2003. Available at

http://www.joseki.org/, accessed on 16.03.2007.

Andy Seaborne. RDQL - A Query Language for RDF. 2004. Available at http://

www.w3.org/Submission/2004/SUBM-RDQL-20040109, accessed on 15.02.2007.

Nigel R. Shadbolt, Nicholas Gibbins, Hugh Glaser, Stephen Harris, and Mon-

ica M. C. Schraefel. CS AKTive Space or How We Stopped Worrying

and Learned to Love the Semantic Web. In IEEE Intelligent Systems,

2003. Available at http://eprints.ecs.soton.ac.uk/archive/00007440/

01/CSaktiveSpace-ISWC.pdf, accessed on 15.03.2007.

F. Shipman and C. Marshall. Formality Considered Harmful: Experiences, Emerg-

ing Themes, and Directions on the Use of Formal Representations in Interactive

Systems. In Computer Supported Cooperative Work (CSCW), volume 8, pages

333–352, 1999.

http://www.schneier.com/paper-auditlogs.html
http://www.cs.vu.nl/~guus/public/owl-restrictions/
http://www.cs.vu.nl/~guus/public/owl-restrictions/
http://www.joseki.org/
http:// www.w3.org/Submission/2004/SUBM-RDQL-20040109
http:// www.w3.org/Submission/2004/SUBM-RDQL-20040109
http://eprints.ecs.soton.ac.uk/archive/00007440/01/CSaktiveSpace-ISWC.pdf
http://eprints.ecs.soton.ac.uk/archive/00007440/01/CSaktiveSpace-ISWC.pdf

BIBLIOGRAPHY 225

Michael Sintek and Stefan Decker. TRIPLE - A Query, Inference, and Transfor-

mation Language for the Semantic Web. In First International Semantic Web

Conference on The Semantic Web, pages 364–378, June 2002.

Michael K. Smith, Chris Welty, and Deborah L. McGuinness, editors. OWL Web

Ontology Language Guide – W3C Recommendation. W3C R© (MIT, ERCIM,

Keio), February 2004. Available at http://www.w3.org/TR/owl-guide/, ac-

cessed on 15.02.2007.

R. Housley W. Polk W. Ford D. Solo. Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL) Profile. IETF, April 2002.

Available at http://www.ietf.org/rfc/rfc3280.txt, accessed on 13.02.2007.

R. Stevens, A. Robinson, and C.A. Goble. myGrid: Personalised Bioinformatics on

the Information Grid. In 11th International Conference on Intelligent Systems

in Molecular Biology, volume 19, pages 302–304, 2003.

Kilian Stoffel, Merwyn Taylor, and James Hendler. PARKA-DB: Integrating

Knowledge and Data-Based technologies, 1996.

Martin Szomszor and Luc Moreau. Recording and Reasoning over Data Prove-

nance in Web and Grid Services. In International Conference on Ontologies,

Databases and Applications of SEmantics (ODBASE’03), volume 2888 of

Lecture Notes in Computer Science, Catania, Sicily, Italy, nov 2003. ISBN

3-540-20498-9. Available at http://www.ecs.soton.ac.uk/~lavm/papers/

odbase03.ps.gz, accessed on 15.02.2007.

V. Tan, P. Groth, S. Miles, S. Jiang, S. Munroe, and L. Moreau. Security Is-

sues in a SOA-based Provenance System. In Third International Provenance

and Annotation Workshop, Chicago, USA, May 2006a. LNCS. Available at

http://eprints.ecs.soton.ac.uk/12569/01/tan06security.pdf, accessed

on 04.04.2007.

V. Tan, S. Munroe, P. Groth, S. Jiang, S. Miles, and L. Moreau. A Profile for Non-

Repudiable Process Documentation. Technical report, School of Electronics and

Computer Science, University of Southampton, 2006b.

Bruce A. Tate and Justin Gehtland. Better, Faster, Lighter Java. O’Reilly, June

2004. ISBN 0596006764.

Patrick Taylor. Etymology of Wiki, November 2003. Available at http://c2.

com/wiki/WikiEtymology/3.pdf, accessed on 04.12.2006.

http://www.w3.org/TR/owl-guide/
http://www.ietf.org/rfc/rfc3280.txt
file:citeseer.csail.mit.edu/54974.html
file:citeseer.csail.mit.edu/54974.html
http://www.ecs.soton.ac.uk/~lavm/papers/odbase03.ps.gz
http://www.ecs.soton.ac.uk/~lavm/papers/odbase03.ps.gz
http://eprints.ecs.soton.ac.uk/12569/01/tan06security.pdf
http://c2.com/wiki/WikiEtymology/3.pdf
http://c2.com/wiki/WikiEtymology/3.pdf

226 BIBLIOGRAPHY

Alex Toussaint, editor. Java Rule Engine API: JSR-94. Java Community Process,

September 2003.

S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire,

T. Sandholm, P. Vanderbilt, and D. Snelling. Open Grid Services Infrastructure

(OGSI) Version 1.0. Global Grid Forum Draft Recommendation, June 2003.

Giovanni Tummarello, Christian Morbidoni, Paulo Puliti, and Francesco Piazza.

Signing individual fragments of an RDF graph. May 2005.

United Kingdom Patent Office UKPO. Confidentiality and Confidential Disclosure

Agreements (CDA) booklet. Website. Available at http://www.patent.gov.

uk/patent/info/cda.pdf, accessed on 20.01.2007.

Adrian Walker. Knowledge Systems and Prolog: Developing Expert, Database

and Natural Language Systems. Addison-Wesley, 2nd edition, July 1990. ISBN

0-201-52424-4.

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Collision Search Attacks on

SHA1. Technical report, 2005a.

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full

SHA-1. In The 25th Annual International Cryptology Conference (Crypto’05),

Santa Barbara, California, USA, August 2005b.

Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision

Search Attacks on SHA-0. In The 25th Annual International Cryptology

Conference (Crypto’05), Santa Barbara, California, USA, August 2005c.

Glenn Wasson, Norm Beekwilder, and Marty Humphrey. OGSI.NET: An

OGSI-compliant Hosting Container for the .NET Framework. Website, May

2003. Available at http://www.cs.virginia.edu/~gsw2c/grid/OGSIdotNet_

framework.pdf, accessed on 04.12.2006.

K. Watanabe. Introduction of Dublin Core metadata. Journal of Information

Processing and Management, 43, 2001.

E. Rowland Watkins and Denis A. Nicole. Version control in online software repos-

itories. In Proceedings of The 2005 International MultiConference in Computer

Science & Computer Engineering (SERP’05), Las Vegas, Nevada, USA, June

2005a.

E. Rowland Watkins and Denis A. Nicole. Version control in online software

repositories. ACM TechNews 7(872), 2005b.

http://www.patent.gov.uk/patent/info/cda.pdf
http://www.patent.gov.uk/patent/info/cda.pdf
http://www.cs.virginia.edu/~gsw2c/grid/OGSIdotNet_framework.pdf
http://www.cs.virginia.edu/~gsw2c/grid/OGSIdotNet_framework.pdf

BIBLIOGRAPHY 227

E. Rowland Watkins and Denis A. Nicole. Named Graphs as a Mechanism for

Reasoning about Provenance. In Lecture Notes in Computer Science, Frontiers

of WWW Research and Development – APWeb 2006: 8th Asia-Pacific Web

Conference, volume 3841, pages 943–948, Harbin, China, January 2006.

Jim Whitehead. WebDAV and DeltaV: Collaborative Authoring, Versioning, and

Configuration Management for the Web. Website, 2001. Available at www.

webdav.org/deltav/WWW10/deltav-www10.pdf, accessed on 16.12.2006.

E. James Whitehead, Jr. and Yaron Y. Goland. WebDAV: A network protocol for

remote collaborative authoring on the Web. In Proceedings of 6th European

Conf. on Computer Supported Cooperative Work (ECSCW’99), pages 291–310,

Copenhagen, Denmark, September 1999. Available at http://citeseer.nj.

nec.com/whitehead99webdav.html, accessed on 15.12.2006.

Dennis M. Wilkinson and Bernardo A. Huberman. Assessing the value of coop-

eration in Wikipedia. Technical report, Information Dynamics Laboratory, HP

Labs, Palo Alto, CA, February 2007. Available at http://www.hpl.hp.com/

research/idl/papers/wikipedia/wikipedia.pdf, accessed on 04.04.2007.

M. J. Williamson. Non-Secret Encryption Using a Finite Field. Technical report,

CESG Report, January 1974.

M. J. Williamson. Thoughts on Cheaper Non-Secret Encryption. Technical report,

CESG Report, August 1976.

Michael Wilson and Daniel Dardailler. Using RDF to query multiple

SQL Databases, March 2003. Available at http://www.w3.org/2002/08/

qh-d11-p15.html, accessed on 21.02.2007.

Sylvia C. Wong, Simon Miles, Weijian Fang, Paul Groth, and Luc Moreau.

Provenance-based Validation of E-Science Experiments. In Proceedings of 4th

Internation Semantic Web Conference (ISWC’05), Galway, Ireland, November

2005.

X/Open-Group. Distributed Transaction Processing: The XA Specification –

X/Open CAE Specification. X/Open Company Ltd., UK, 1992. ISBN 1-87263-

024-3.

Charles Young. WF: Comparing WF rules and the Microsoft Business Rule Engine.

Website, October 2005. Available at http://geekswithblogs.net/cyoung/

articles/56488.aspx, accessed on 24.04.2007.

www.webdav.org/deltav/WWW10/deltav-www10.pdf
www.webdav.org/deltav/WWW10/deltav-www10.pdf
http://citeseer.nj.nec.com/whitehead99webdav.html
http://citeseer.nj.nec.com/whitehead99webdav.html
http://www.hpl.hp.com/research/idl/papers/wikipedia/wikipedia.pdf
http://www.hpl.hp.com/research/idl/papers/wikipedia/wikipedia.pdf
http://www.w3.org/2002/08/qh-d11-p15.html
http://www.w3.org/2002/08/qh-d11-p15.html
http://geekswithblogs.net/cyoung/articles/56488.aspx
http://geekswithblogs.net/cyoung/articles/56488.aspx

228 BIBLIOGRAPHY

J. Zhao, C. Wroe, C. Goble, R. Stevens, D. Quan, and M. Greenwood. Using Se-

mantic Web Technologies for Representing e-Science Provenance. In Proceedings

of 3rd International Semantic Web Conference (ISWC2004), Hiroshima, Japan,

November 2004a. Springer LNCS.

Jun Zhao, Carole Goble, Mark Greenwood, Chris Wroe, and Robert Stevens.

Annotating, linking and browsing provenance logs for e-Science. In Workshop

on Semantic Web Technologies for Searching and Retrieving Scientific Data,

Florida, USA, October 2003.

Jun Zhao, Carole Goble, Robert Stevens, and Sean Bechhofer. Semantically Link-

ing and Browsing Provenance Logs for e-Science. In International Conference on

Semantics of a Networked World, pages 158–176, Paris, France, 2004b. Springer-

Verlag.

Yong Zhao. Data Provenance/Derivation Workshop Position Papers and Talks,

October 2002. Available at http://people.cs.uchicago.edu/~yongzh/

position_papers.html, accessed on 14.12.2006.

Jianying Zhou. Non-Repudiation in e-Commerce and e-Government, 2003. Avail-

able at http://acns2003.i2r.a-star.edu.sg/ACNS03-tutorial2.pdf, ac-

cessed on 04.12.2006.

http://people.cs.uchicago.edu/~yongzh/position_papers.html
http://people.cs.uchicago.edu/~yongzh/position_papers.html
http://acns2003.i2r.a-star.edu.sg/ACNS03-tutorial2.pdf

