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Abstract-
As advances in molecular biology continue to reveal

additional layers of complexity in gene regulation, com-
putational models need to incorporate additional fea-
tures to explore the implications of new theories and hy-
potheses. It has recently been suggested that eukary-
otic organisms owe their phenotypic complexity and di-
versity to the exploitation of small RNAs as signalling
molecules. Previous models of genetic systems are, for
several reasons, inadequate to investigate this theory.

In this study, we present an Artificial Genome model
of genetic regulatory networks based upon previous
work by Torsten Reil, and demonstrate how this model
generates networks with biologically plausible struc-
tural and dynamic properties. We also extend the model
to explore the implications of incorporating regulation
by small RNA molecules in a gene network. We demon-
strate how, using these signals, highly connected net-
works can display dynamics that are more stable than
expected given their level of connectivity.

1 Introduction

One of the most surprising results to emerge from the com-
pletion of the Human Genome Project was that the num-
ber of genes in the genome was far lower than initially ex-
pected [14]. The 35,000 or so genes that are estimated to be
encoded by the human genome is not significantly greater
than the number of genes found in organisms considered to
be less “complex”, such as the nematode wormC. elegans
(around 20,000 genes) and the fruit flyD. melanogaster
(around 13,500 genes). These figures suggest that the
greater complexity of the higher eukaryotes is not due to ad-
ditional genes, as generally thought, but rather to the com-
plexity of the regulatory interactions controlling their ex-
pression.

However, complex genetic regulation has its own costs.
It is well known that higher levels of connectivity tend to
push network behaviour towards chaos [23]. Furthermore, it
has been shown that as the number of genes to be regulated
increases, the number of regulatory genes required to con-
trol their expression grows quadratically [9]. One method
by which higher eukaryotes may have bypassed this com-
plexity limitation is by exploiting small RNA molecules as
regulatory signals [28, 29].

Previous models of genetic regulatory networks (GRNs)
have generally operated under the assumption that a single
mechanism, based on regulatory proteins, is responsible for
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Figure 1: The Central Dogma. Information is transmitted
from DNA to protein through RNA.

network connectivity. The possibility of multiple control
systems, each with fundamentally different signal costs and
speeds, has not been considered. The purpose of this paper
is twofold: firstly, to present our GRN model and describe
its relevance to the biological systems we aim to simulate;
secondly, to demonstrate the ability of this model to increase
the range of phenomena that can be simulated by using it to
model the role that small RNAs may play in gene regulation.

Initially, some background is provided on the traditional
view of gene regulation in biology and the way in which this
is reflected in current models. Recent discoveries concern-
ing the role of small RNA molecules that are challenging
this view are then described. A new model is proposed that
generates networks with multiple levels of regulatory con-
trol. Initial results illustrating the structural and dynamic
properties of this model are then presented and discussed.
Finally the future directions of this model with respect to
studies of evolvability are discussed.

2 Gene Regulation

The most simplistic view of gene regulation, and the cur-
rent dominant paradigm, is that expressed by the “central
dogma” of molecular biology, first expressed in 1957, that
information flows from DNA through RNA to protein (see
figure 1). Implicit in this view is the idea of a unique map-
ping from gene to protein in which RNA plays only a medi-
atory role.

The operon model of gene regulation, developed by Ja-
cob and Monod in 1961 [19], refined the central dogma by
proposing a distinction between two different types of gene.
One type, “structural” genes, encode the proteins that play
some functional role in the metabolism of a cell. The other
type, “regulatory” genes, encode proteins that act as tran-
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Figure 2: The Operon Model. DNA encodes two classes
of proteins. Structural proteins play a functional role in the
cell’s metabolism. Regulatory proteins interact with DNA
to control the rate of transcription of other genes.

scription factors (TFs), controling the rate of transcription
of other genes without otherwise affecting the proteins they
encode (see figure 2).

Early complex systems models of gene regulation were
based on this idea of a simple, protein-based regulatory
logic. In particular, the Random Boolean Network (RBN)
model developed by Kauffman was designed to study the
global patterns of behaviour exhibited by networks of in-
teracting genes [21, 22]. RBNs exhibit many properties
common to genetic systems, including complex periodic be-
haviour, self-organisation and robustness [2, 23].

3 A Role for RNA

Since the 1960s, advances in molecular biology have re-
vealed a more complicated picture of gene regulation, par-
ticularly in eukaryotic organisms. Initially, it was found
that there was considerably more genetic information in
the genome than was required to specify the protein-coding
genes. Separating these genes were long sequences of DNA
whose purpose was unknown. Towards the end of the
1970s, it was also discovered that the DNA coding for an
individual protein was not necessarily arranged in a contin-
uous sequence. Most eukaryotic genes consist of coding
segments (exons) broken up by long noncoding segments
(introns) that are removed prior to translation (see figure 3).
Exons are frequently joined together in a variety of differ-
ent combinations, permitting several different proteins to be
produced from a single DNA sequence. This alternative
splicing mechanism is likely to contribute significantly to
the greater complexity of eukaryotes [37].

A widespread early view of these intronic and inter-
genic sequences, which constitute over 90% of the human
genome, was that they were “junk” DNA. Explanations for
the origin of these DNA sequences included that they are the
non-functional remnants of gene duplication events or the
result of parasitic DNA sequences, conferring no advantage
to the genome as a whole [40]. Another suggestion was that
these noncoding regions act as separating regions to allow
“exon-shuffling” – rapid exploration of evolutionary space
via the recombination of functional building blocks [16].

Subsequent investigations revealed that damage to these
intronic and intergenic regions frequently results in devel-
opmental defects [31], suggesting that the specific content
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Figure 3: The Intron/Exon Structure of Genes. Genes
are generally separated on the chromosome by long, non-
coding intergenic regions. A single gene consists of both
protein-coding exons and non-coding introns, which are re-
moved before an mRNA is translated into a protein.

of these “junk”, or noncoding, sequences is significant. It is
now known that many of these noncoding regions are tran-
scribed into RNA, and that these RNA molecules, although
not translated into proteins, play an important functional
role [3].

In the last few years, many more studies have provided
evidence for the important role that RNA plays in the reg-
ulation and control of genetic events (see [8] for a recent
review). A large quantity of RNA is transcribed from
the genome, of which only a small fraction is messenger
RNA molecules (mRNAs) that will be translated into pro-
teins. Many other noncoding RNAs (ncRNAs) are also
transcribed, ranging in size over several orders of magni-
tude from several kilobases down to around 20 nucleotides.
These ncRNAs appear to play a role in a number of ge-
netic processes, including regulation of transcription and
translation, the modification of chromatin structure, and the
processing, modification and stability of RNA and protein
molecules [11] (see figure 4).

As noncoding regions and introns are characteristic fea-
tures distinguishing eukaryotic genomes from those of the
simple, more compact genomes of prokaryotes, it has been
proposed that regulatory RNA may form the basis of a par-
allel control system [27]. This more sophisticed level of reg-
ulatory control may have been one of the key features that
enabled the evolution of multicellularity and the subsequent
increase in phenotypic complexity and diversity found in
eukaryotic organisms. This idea has been further explored
and developed into the idea that information processing by
small RNA molecules (sRNAs) may provide a “meta”-level
of regulation allowing for the evolution of new and com-
plex functions by modulating the control architecture of an
otherwise stable core proteome [28, 29]. To date, no com-
putational models of GRNs exist that explicitly incorporate
multiple levels of regulatory control.

4 Modeling Framework

Current complex systems approaches to modeling GRNs
are generally based on the outdated “central dogma” view
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Figure 4: Small RNA Regulation. Produced in parallel with
mRNA, sRNA molecules appear to play a number of roles
involved in the regulation of transcription and translation
events.

of gene regulation described above, and rarely incorporate
such features as alternative splicing, post-transcriptional
processing and RNA-mediated regulation. More signifi-
cantly, most models make no distinction between regulatory
and structural genes and proteins. In Kauffman’s networks,
for example, all nodes are regulatory and no environmen-
tal input/output or system functionality is modeled. While
many insights have been gained from such environmentally
isolated models, crucial issues relating to the functionality
and control of complex behaviour call for the ability to em-
bed a system in a dynamic environment.

One of the most important contributions that systems
level models can make is to provide mappings from biolog-
ical processes to computational analogues that reveal new
insights into the way systems are structured and controlled.
The mapping from a DNA sequence to a computational
string is a widely accepted analogy, as is the mapping from
genetic and metabolic systems to networks. What is less
frequently considered, however, is the process by which in-
formation encoded in a string is transformed into a network.
One field in which this mapping has been investigated is Ar-
tificial Life, where developmental models have been used
to increase the potential phenotypic complexity that can be
encoded in a genotype (e.g., [10, 12, 34]). The model that
we have chosen as our starting point, the Artificial Genome
(AG) [33], uses a DNA-inspired representation for its geno-
type (see figure 5).

The AG model provides a simple yet elegant means of
generating regulatory networks that addresses several criti-
cisms levelled at previous models, including their abstrac-
tion from biology and limited extensibility [13]. In contrast
to the random generation of networks used by many exist-
ing models, the structure and function of AG networks are
extracted from an underlying sequence, analogous to a bi-
ological genome. Utilising a sequence level of representa-
tion provides an intuitive link to the biological emergence
of regulatory networks from DNA sequences. It also per-
mits an increased level of control over individual facets of
gene expression, such as transcription, translation and reg-
ulatory binding. We have previously demonstrated how a
sequence-based model closely related to that described here
can be used to explore the effects of more biologically plau-
sible mutation operators [39].

The AG model as initially presented by Reil [33] pos-
sesses many interesting features, such as point and cyclic
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Figure 5: Artificial Genome Model - Gene Structure: A
gene is identified by a promoter sequence (TATA) and con-
sists of the followingg bases. The firstm bases specify the
mRNA sequence, the remainder is non-coding. An mRNA
sequence is translated into a protein binding sequence of
lengthb using an artificial genetic code (see figure 6). A
protein sequence regulates a gene by binding with a match-
ing sequence in its regulatory region.

attractors that exhibit robustness to perturbation and sen-
sitivity to initial conditions. However, some of the rules
used to define the network structure and behaviour in the
model are arbitrary and amenable to a greater level of bio-
logical justification. A more biologically grounded version
of the AG model is presented here. In particular, the pro-
cess of gene expression, modeled as a single step in the AG
model, is expanded to explicitly include DNA transcription
and RNA processing and translation. The modified model
is used to generate genetic networks with both protein and
RNA-mediated regulatory interactions.

Genome: At the heart of the model is the artificial
genome itself, a sequence of bases of length`. We have
chosen to use four bases (A, C, T and G) to match those
present in real DNA sequences.

Transcription: The beginning of a transcription unit is
defined by the presence of a standard promoter region (an
alternating sequence of T’s and A’s of lengthp), analo-
gous to the “TATA box” that indicates an RNA polymerase
binding site in eukaryotic genomes. The primary transcript
(gene) is defined as theg bases following the promoter re-
gion (see figure 5).

Processing: In biological systems, the primary tran-
script is subject to several processing steps that result inthe
production of a protein-coding mRNA. In our model, the
mRNA sequence is defined to be the firstm bases of the
primary transcript.

Translation:In a biological system, the mRNA sequence
is translated into an amino acid chain that is then folded
into a protein. A subset of these amino acids define the
binding domain of the protein that interacts with DNA to
control gene activity. In our model, the artificial genetic
code is used to translate an mRNA into a a sequence of bases
that specify the regulatory motif recognised by the protein’s
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Figure 6: The Artificial Genetic Code: The above code is
used to translate mRNA sequences into protein binding se-
quences. The code has been designed such that mutations to
the third base are always neutral, while mutations to the first
and second bases will always alter the binding sequence.

DNA-binding domain. The mRNA sequence is translated
into a binding domain of lengthb according to an artificial
genetic code. The mRNA sequence is read in triplets, in
which the first and second bases specify the target and the
third base is redundant (see figure 6).

GRN Structure:A subset of the protein products encode
the functional outputs of the network. The remainder are
TFs that regulate other genes. Targets for each TF are found
by searching for subsequences matching the TF binding se-
quence in the regulatory region of each gene, which extends
from the end of the preceding gene to the beginning of the
current gene. As any one TF can act as either a repressor
or an activator depending on context, the binding affinity of
a particular TF is determined by the three bases preceding
its binding site. The strength of the binding affinity is cal-
culated by converting the base-4 sequence to a real-valued
weight in the range[−w, w]. A positive weight indicates
activation and a negative weight, inhibition.

GRN Dynamics:In this simple model, time is measured
in discrete units and the activation state of each gene is
Boolean (i.e., either on or off). The input to a node at each
time step is determined by summing the inputs (weighted
by the strength of the binding affinity) from each TF that
regulates it:

neti(t) =
∑

j

wijaj(t − 1) (1)

whereaj(t − 1) is the activation state of genej at the
previous time step andwij is the strength of the regulatory
interaction between genesi and j. The current activation
state of a node is determined by thresholding the net input:

ai(t) =

{

1 if neti(t) ≥ 0.5
0 otherwise

(2)

5 Structure

5.1 Differences between Artificial Genome networks and
random networks

The first issue we address is how networks generated us-
ing the AG framework differ from randomly generated net-
works (e.g., the random Boolean networks developed by
Kauffman [23]).

The number of genes,N , in AG networks scales linearly
with the length of the genome,`:

N = `/4p (3)

wherep is the length of the promoter sequence. Average
network connectivity in AG networks also scales linearly:

K = `/4b (4)

whereb is the length of the protein binding sequence.
For large systems, this relation results in an average con-
nectivity considerably higher than has previously been ar-
gued to occur in biological systems (e.g., in [23, 38], where
it is suggested that an average connectivity of around two
is likely). However, there is a growing opinion that actual
connectivity in gene networks may be denser rather than
sparser. The combinatorial nature of gene regulation in eu-
karyotes is proving to be more complex than initially sus-
pected [26, 36]. In particular, factors such as competition
for metabolic resources and transcription factors [6], thedi-
verse roles of co-regulators and other “accessory” proteins
in chromatin remodeling and DNA binding modulation [26]
and the structure of network architecture [7] may greatly in-
crease the number of input signals that affect transcription
of a given gene.

The most significant difference between AG networks
and randomly constructed networks is in the distribution of
input and output connections (Kin andKout respectively).
Randomly constructed networks are usually generated with
a fixed number of inputs per node and randomly assigned
outputs, resulting in a Poisson output distribution. For net-
works generated using the AG framework,Kin follows an
exponential distribution andKout follows a Poisson distri-
bution.

Analyses of regulatory networks in biology have re-
vealed an exponential distribution of both inputs and out-
puts [20]. Computational studies have suggested that this
“scale free” connectivity confers several advantages, in-
cluding increased stability at higher levels of connectiv-
ity [1, 15, 30]. Clearly, both random networks and the AG
model are failing to capture an important aspect of GRN
structure.

The biologically unrealisticKout distribution generated
by the AG model results from the assumption of fixed-
length binding sequences. It is possible to rectify this
anomaly by modifying the model to allow the length of
genes, and their resulting regulatory products, to vary by
defining a “gene end” sequence (three consecutive ‘A’s)
similar to the way in which a promoter region is used to
identify gene start sites. Due to the relatively short genome
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Figure 7: Input and Output Distributions for the Artifi-
cial Genome Network (Genome length = 500,000; promoter
length = 4; gene-end length = 3; data points were averaged
over 20 genomes). Both input and output distributions show
an exponential trend. Inset: Unscaled data for the output
distribution (see text for details).

lengths used, regulatory products fell into a small number
of discrete classes according to size. As before, the output
distribution of each of these classes follows a Poisson dis-
tribution. However, when all of these distributions are su-
perimposed, the overall trend is exponential (see figure 7).
It is also likely that evolution plays a role in determining the
distribution ofKout, and studies are planned to investigate
the plausibility of modelling these processes.

5.2 The effect of adding sRNAs

The next issue we address with regard to network structure
is the effect of adding a second class of signalling molecules
(i.e., sRNA molecules) to the model. The additional regu-
latory links were defined by modifying the processing stage
described in Section 4 to include the production of both a
mRNA sequence of lengthm as well as an sRNA sequence
of lengths. Unlike mRNA sequences, which are translated
into proteins prior to binding, sRNA sequences bind in their
untranslated state. As would be expected, the primary effect
on network structure is to increase the level of connectivity
that may be obtained from a genome of given length:

K = `/4b + `/4s (5)

One of the key features of small RNA molecules is that
they require much less DNA to encode than proteins. If an
AG network regulated only by protein signals were required
to achieve the same level of connectivity as a network reg-
ulated by both protein and sRNA signals, it would require
G to be increased by a factor of1 + 4(b−s). In situations
where high connectivity is advantageous but there is some
cost associated with genome size, the potential for a single
gene to provide multiple different outputs already provides
some reduction in these costs for a regulatory system using
sRNAs.

5.3 The evolvability of sRNA-regulated networks

From an evolvability perspective, we hypothesize that sys-
tems regulated by sRNA molecules as well as proteins are
likely to have an advantage over those regulated by proteins
alone.

The shape of the search landscape is likely to differ con-
siderably between protein-mediated regulation and sRNA-
mediated regulation. In biological systems, several levels
of indirection exist between a nucleotide sequence and the
functional product it encodes. Not only is the primary se-
quence substantially edited and translated into amino acids,
but the function of a protein molecule depends largely on the
three-dimensional shape into which these amino acids fold.
Protein folding is an extremely complex problem, contain-
ing a high degree of neutrality, and is not yet fully under-
stood. A complex, nonlinear mapping between sequence-
level mutations and changes to protein function will result
in rugged and difficult to search landscapes. On the other
hand, sRNA molecules are untranslated and frequently in-
teract with DNA and RNA targets via template match-
ing [17]. In these cases, there will be a simpler, one-to-
one mapping between mutations to the coding sequence and
changes to the signalling function. The search landscape
will be therefore be smoother and more easily searched. We
are currently investigating the evolvability of various classes
of AG networks.

6 Dynamics

6.1 The effect of sRNAs on system stability

As previously described by Reil [33], the AG model, as it
stands, can produce a wide range of dynamics, from single-
point and cyclic attractors to “chaotic” behaviour, depend-
ing upon the parameters used and the resulting level of con-
nectivity. More generally, it has been established that the
phase space of dynamic network models can be divided into
disordered and ordered regions depending on the level of
connectivity and the bias determining whether a given node
is active or not [24]. It has been hypothesised that the condi-
tions necessary for interesting behaviour are likely to occur
at the phase transition between these two regimes (the so-
called “edge of chaos”) [25].

One effect of incorporating sRNA interactions into a
network with low connectivity is to shift its dynamics
from the ordered region of phase space toward the or-
dered/disordered boundary, simply due to the increase in
connectivity. When both sRNA and protein signals operate
with the same time constant, network behaviour was found
to be more chaotic.

6.2 The behaviour of networks with multiple rates of in-
teraction

A more interesting possibility is to consider the role that
sRNAs may play in stabilizing the behaviour of highly con-
nected, chaotic networks when they operate at an increased
rate with respect to proteins. Several different approaches,
such as artificial evolution [5], have previously been used
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Figure 8: Expression Patterns for AG Network: (a) with proteins only; (b) with proteins and sRNA. In figure (b), the
sRNA signals operate faster than the protein signals by a factor of 35. In these graphs, each row represents the state of a
single gene, black when expressed, white when not expressed. A vertical column therefore describes the state of the entire
network at a given time step and the entire graph shows how thestate of the network activity changes over time. Network
parameters: N = 188 (only the first 100 genes are shown), K = 12.475. No claim is made for the biological plausibility of
the exact parameter values, which have been chosen purely toillustrate the characteristic behaviour of the model.

to generate highly connected networks that display ordered
behaviour. Structural properties such as scale-free topol-
ogy [15, 30, 1] and modularity [4, 32] also appear to provide
an intrinsic level of stability to highly connected networks.

A significant feature of employing sRNAs as transcrip-
tional regulators is that they have considerably shorter cod-
ing sequences and hence may be transcribed in less time.
Furthermore, sRNAs are able to operate without being
translated. Therefore, functional signals can be producedfar
more rapidly than would be the case if proteins alone were
used [35]. We investigated the effect of reducing the rate of
protein interactions with respect to sRNA interactions. This
time delay was implemented by updating the input from
sRNA-regulatory links every time step, but only updating
the input from protein-regulatory links everyτ time steps.
It was found that, in almost all cases, chaotic dynamic tra-
jectories collapsed into comparatively short periodic cycles.
Interestingly, in some cases, network behaviour exhibited
different classes of behaviour at two different time-scales.
In the short term, at time-scales< τ , the network moved
towards an attractor with short period length. The change
in input that occurred each time the protein-regulatory links
were updated was sufficient to shift the network between at-
tractors, resulting in the network exhibiting more complex
dynamics over longer time-scales (see figure 8)

It has been shown that much of the interesting behaviour
of Boolean networks disappears when the assumption of
synchronous updating is removed [18]. To test what oc-
curred when synchrony was not assumed, we altered the
updating rule such that, rather than all proteins being up-
dated together everyτ time steps, each protein was updated
with probability1/τ at each time step. Under this updating
scheme, the periodic behaviour seen above disappears, how-
ever, the increased rate of the sRNA interactions does still
appear to stabilize network dynamics, based upon measure-
ments of the Hamming distance between successive states.
We are investigating alternate statistical measures to char-
acterize network stability in asynchronous models.

7 Conclusions and Further Work

This study has presented a model of genetic regulation in-
corporating a number of biological correspondences. We
have demonstrated that when networks are extracted from a
sequence representation, rather than being randomly gener-
ated, they possess structural properties more closely approx-
imating those found in biological organisms. The model
has been used to simulate the networks that result when
two qualitatively different regulatory mechanisms, protein-
mediated and sRNA-mediated, are used. Current work is



focussing on quantifying the effect of multiple interaction
rates on network dynamics and using artificial evolution
to further investigate the properties of gene networks with
sRNA regulation.
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