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Abstract

Since Hinton and Nowlan introduced the Baldwin ef-
fect to the evolutionary computation community, agent-
based studies of genetic assimilation have uncovered
many details of the dynamic processes involved. In a
previous paper, we demonstrated genetic assimilation
with a simple food/toxin discrimination task using neu-
ral network agents that could evolve their learning rate.
The study reported in this paper investigated the ge-
netic assimilation of more complex learning tasks.

Kauffman’s NK landscape model, which can generate
landscapes with a variable degree of correlation, was
used to define learning tasks of varying levels of com-
plexity. Simulations indicate an increased tendency of
genetic assimilation to occur as the complexity of the
learning task decreases and the environmental stabil-
ity increases. These results are explained in terms of
the shifting balance between the evolutionary costs and
benefits of learning.

Introduction
The interaction between evolution and learning has been
an area of continual interest to the field of artificial life
ever since Hinton and Nowlan’s first computer simu-
lation of the Baldwin effect (Hinton & Nowlan 1987).
What initially appeared to be a relatively simple pro-
cess has been found to be a complex phenomena with
many interacting components.

The Baldwin effect was first described independently
by Morgan (1896), Baldwin (1896) and Osborn (1896),
and accounts for the tendency of learned behaviours
to become genetically specified without resorting to a
Lamarckian justification. Hinton and Nowlan’s intro-
duction of this biological concept into the evolutionary
computation and artificial life communities marked the
beginning of a growing body of research.

In Hinton and Nowlan’s original simulation, the bene-
fit of being able to learn was that it enabled an individual
to solve a ‘needle in a haystack’ task within their life-
time. However, the advantage of learning was balanced
by a fitness function that favoured individuals who were
genetically closer to the solution. This cost of learning
was sufficient to encourage the population to move, over
time, towards a genetically specified solution.

The reason that genetic assimilation occurs at all,
given the constraints of Darwinian selection, relies on
the balance between the relative benefits and costs asso-
ciated with the ability to learn (Mayley 1996). The Bald-
win effect can be conceptualized in two distinct phases:

(i) initially, the ability to learn a task gives some sub-
set of the population a selective advantage, resulting
in subsequent generations becoming increasingly dom-
inated by individuals with the ability to learn;

(ii) once the majority of individuals are able to learn,
the costs of learning (e.g., resulting from increased intra-
population competition between capable learners) cause
selection to favour those individuals who, due to muta-
tion and/or recombination, are more genetically predis-
posed towards the desired behaviour and therefore don’t
have as much to learn.

Genetic assimilation occurs when the balance between
the benefits and costs of learning shifts so that selective
pressures drive the ability to learn out of the population.
Empirical demonstrations have shown that genetic as-
similation is not always a straightforward process. Hin-
ton and Nowlan’s original simulation framework rarely,
if ever, results in the complete genetic specification of
the solution (see Harvey (1993) for a discussion). Other
factors, such as the mutation rate (Fontanari & Meir
1990), selection algorithm (Wiles et al. 2001), the cost of
learning (Mayley 1996), the amount of phenotypic plas-
ticity (French & Messinger 1994) and population size
have been shown to have an effect on the occurrence of
genetic assimilation.

In a previous paper, Watson and Wiles (2002) demon-
strated an equivalent result to that of Hinton and
Nowlan (1987) using a population of evolving neural net-
works as agents. The task was to learn to discriminate
between distinct sets of bit-string representations cor-
responding to food and toxin. The task was difficult
enough that agents who were able to learn initially had
a significant advantage. The learning rate was allowed to
evolve, providing an indication of the level of phenotypic
plasticity in the population. The practical effect of the
learning rate is to amplify an agent’s corrective action
to a given situation, therefore the cost of learning arose



from the noisy responses that resulted from a high learn-
ing rate. The magnitude of this cost of learning could
be altered by varying the stability of the environment,
implemented as a change in the number of consecutive
presentations of each representation.

The relationship between landscape complexity and
the Baldwin effect has been investigated previously. Bull
(1999) found that a high rate of learning was more ben-
eficial as landscapes became less correlated. However,
he compared the effect of using different fixed learning
rates, rather than learning rates that were able to evolve
over time. Bull’s study therefore illustrated the benefits
of learning in terms of finding a solution more rapidly,
but not the relationship between the benefits and costs
of learning that drive the occurrence of genetic assimila-
tion.

What remains to be investigated is the relationship be-
tween the tendency for genetic assimilation to occur and
the complexity of the learning task. To address this ques-
tion, we extended Watson and Wiles methodology by us-
ing multi-layer feed-forward neural networks as agents,
with a tunably complex food/toxin discrimination task
based on the NK landscape model (Kauffman 1993) as
the learning task.

The NK landscape model was originally developed to
model the fitness landscapes that result from systems
with varying degrees of epistatic interaction between
their components. By altering the level of interaction
(the parameter K), the resulting landscape can be var-
ied from smooth and unimodal (K = 0) to rugged and
highly multimodal (K = N − 1). In the simulations
reported in this paper, the landscape was comprised of
length N bit strings corresponding to food or toxin rep-
resentations.

Each bit of a representation contributes to the total
fitness in a manner dependent on its setting and on the
settings of the other K bits to which it is linked. It is
assigned a fitness table mapping each of the 2K+1 pos-
sible combinations to a random fitness value - in this
case, a real number in the range [0, 1]. The fitness of the
entire representation is given by the average of the N fit-
ness contributions and also falls in the range [0, 1] (see
Kauffman (1993) for further details). In this study the
epistatic linkages were specified to be to the K nearest
elements.

The complexity of the learning task was therefore de-
rived from the correlation of the underlying NK land-
scape. If the landscape was highly correlated, the food
and toxin representations would form easily separable
subsets of the problem space (Figure 1a). As the land-
scape became less correlated, the partitioning of the
problem space became more complicated (Figure 1b).
A major advantage of this approach was that it resulted
in a decoupling of the genotype space (defined by the
agent’s neural network weights – see next section) and

the phenotype space (defined by the NK landscape).

Methodology

The simulation consisted of a population of agents,
represented by fully-connected, multi-layer feed-forward
neural networks. Each network had N input units (cor-
responding to the N elements of a representation), N/2
hidden units and a single output unit (whose output val-
ues were determined by a sigmoidal activation function).
The (real-valued) connection weights between the input
units and the hidden units, between the hidden units
and the output unit, the unit biases, and the value of
the learning rate, formed each agent’s genotype.

Figure 1: Problem spaces for (a) a simple (K = 0) learn-
ing task and (b) a more complex (K > 0) learning task.

Each agent lived for a fixed number of ‘days’. For each
day, an agent’s task was to differentiate between two
strings; one representing food and the other toxin (see
below). The food/toxin representations were length N
bit-strings chosen randomly from the set of 2N possible
representations of the pre-generated NK landscape. If
an agent’s response to an input string was higher than
a fixed threshold, the agent was deemed to have ‘eaten’
the representation.

If a representation was eaten, the agent’s score was
adjusted according to the fitness of the corresponding
point on the associated NK landscape, normalized by



the landscape average. That is, representations above
the landscape average were considered to be food and
made a positive contribution to an agent’s score, while
representations below the landscape average were toxins
and made a negative contribution to an agent’s score.
The magnitude of the contribution was based on the dif-
ference between the value and the landscape average.

Thus, each day consisted of: (i) evaluating each
agent’s output given the current (length N bit-string)
representation of food; (ii) updating the agent’s score
accordingly; (iii) using the backpropagation learning al-
gorithm, updating agent weights to bring the next out-
put closer to what was expected for the current repre-
sentation (i.e. above or below the threshold); and then
repeating (i), (ii) and (iii) for the current toxin represen-
tation.

The level of environmental stability (i.e., the length of
time between changes to the current food and toxin rep-
resentations) was varied according to parameter C. For
example, if C = 1, a new food and toxin representation
were chosen each day; if C = 10, the same representa-
tions were presented for 10 days before being changed.
This allowed the benefits and costs of learning to be al-
tered independently of the complexity of the learning
task.

The simulations were run with N = 12 and a range
of values for K and C. Each simulation was run for
5,000 generations, with each generation consisting of 100
neural-network agents (as described above) with a lifes-
pan of 50 days. The score for each individual was given
by the cumulative score over these 50 days. Tourna-
ment selection (see Mitchell (1996)) was used to cre-
ate each successive generation. Neural network popu-
lations were asexual, and selected agents reproduced by
passing on their inherited connection weights (not the
learned weights) to the next generation. The network
connections, the biases and learning rate were mutated
by adding uniform random noise with a probability of
0.1.

Results and Discussion

After an initial period of low performance, the agents ac-
quired the ability to discriminate between food and toxin
via learning. Marked increases in the evolved learning
rate corresponded to significant improvement in popula-
tion performance (with the exception of maximally com-
plex learning tasks with highly unstable landscapes).

Subsequent genetic assimilation (i.e. the learning rate
falling to zero after the task was learned) occurred most
frequently when the learning task was simple and the
level of environmental stability was low. For learning
tasks based on maximally correlated (K = 0) land-
scapes, complete genetic assimilation occurred when the
environment was highly unstable (C = 1 and C = 2,
see Figure 2). When the environment was more stable

Figure 2: Performance and evolved learning rate over a
simple landscape (K = 0) with increasing environmen-
tal stability. (a) maximally unstable conditions (C = 1):
the rise and fall of the learning rate demonstrates the 2
stages of the Baldwin effect; initial acquisition via learn-
ing followed by genetic assimilation of the food/toxin
discrimination task. Note that the average population
score rises with the steep increase in learning rate and
remains high even when the learning rate returns to 0.
(b) and (c) display similar initial behaviour (acquiring
the task through learning) as conditions became more
stable. However, the rate of genetic assimilation was
markedly slower for C = 2 and incomplete for C = 10.



(C = 10), the learning rate began to fall, but was still
quite high after 5,000 generations (more extensive simu-
lations are required to investigate whether the learning
rate does eventually fall to zero or if this residual learn-
ing remains).

These results can be explained in terms of the bal-
ance between the benefits and costs of learning. At a
low level of environmental stability, each agent saw a
constantly changing sequence of representations. In this
situation, having an instinctive (i.e., genetically speci-
fied) response was more important than being able to
learn the appropriate response during the agent’s life-
time – the benefits of learning were low relative to the
costs, and genetic assimilation occurred. As the level of
environmental stability increased, the same representa-
tion was seen repeatedly during the agent’s lifetime. The
resulting increase in the benefits of learning, relative to
the costs, was such that selective pressure was insuffi-
cient to drive the learning rate to zero. Consequently,
genetic assimilation did not occur.

As the learning task became more complex (i.e., as K
approached N − 1) and environmental stability was low,
the task could not be achieved. As environmental stabil-
ity was increased, learning became more beneficial and
agents were able to discriminate between food and toxin
via learning. The low costs of learning in this situation
prevented genetic assimilation from occurring.

A further observed trend was an increase in the vari-
ance of the average population score as the representa-
tion change rate decreased (with increasing C). This
trend was due to the fact that, as the change rate de-
creased but the agent’s lifespan remained constant, a
smaller sample of the total problem space was seen by
each generation.

Conclusions

The acquisition and subsequent genetic assimilation of
phenotypic traits occur when the relative costs and ben-
efits of learning are balanced so that selective pressures
first favour plasticity, then shift over evolutionary time
to favour innate specification of what has been learned.
The results from this study demonstrate how this bal-
ance is affected by the complexity of the learning task
and level of environmental stability.

The primary benefit of learning, performing correctly
in the absence of innately correct network weights, far
outweighs the costs while the task is initially being ac-
quired. Once the majority of a population can learn
the task, the costs begin to outweigh the benefits and
genetic assimilation can occur. The likelihood of such
assimilation occurring has been found to depend on task
complexity and environmental stability.

When task complexity is low and the representation
change rate is high, learning is selected against and ge-
netic assimilation occurs. As task complexity increases

and the change rate decreases, the benefit of learning
increases and genetic assimilation does not occur.
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