
There’s more to a model than code: understanding
and formalizing in silico modeling experience

Janet Wiles1,2, Nic Geard1,2,
James Watson1,2, Kai Willadsen1,2

1School of Information Technology and Electrical
Engineering, The University of Queensland

2ARC Centre for Complex Systems
QLD 4072 Australia

+71 6 3365 2902

<wiles, nic, jwatson, kaiw>@itee.uq.edu.au

John Mattick3, Daniel Bradley3,4,
Jennifer Hallinan1,3,4

3Institute for Molecular Biosciences
The University of Queensland

4ARC Centre for Bioinformatics
QLD 4072 Australia

+71 6 3346 2615

<j.mattick, d.bradley, j.hallinan>@imb.uq.edu.au

ABSTRACT
Mapping biology into computation has both a domain specific
aspect – biological theory – and a methodological aspect – model
development. Computational modelers have implicit knowledge
that guides modeling in many ways but this knowledge is rarely
communicated. We review the challenge of biological complexity
and current practices in modeling genetic regulatory networks
with the aim of understanding characteristics of the in silico
modeling process and proposing directions for future
improvements. Specifically, we contend that the modeling of
complex biological systems can be made more efficient and more
effective by the use of structured methodologies incorporating
experience about modeling algorithms and implementation. We
suggest that an appropriate formalism is Complex Systems
Patterns, adopted from Design Patterns in software engineering.
First steps towards building community resources for such
patterns are described.

Categor ies and Subject Descr iptors
D.2 [Software] D.2.10 [Design]
D.2.11 [Software architectures]: D.2.m Rapid prototyping,
reusable software
I.6 [Simulation and modeling]
J.3 [Life and medical sciences]: biology and genetics

General Terms
Algorithms, Documentation, Performance, Design, Reliability,
Experimentation, Human Factors, Standardization, Languages.

Keywords
Complex systems modeling, in silico biology, complex systems
biology, design patterns, complex systems patterns, genetic
regulatory networks, artificial genomes, visualization

1. INTRODUCTION
The promise of in silico biology – the development of
computational models of biological systems – is yet to be fully
realized. After centuries of reductionist science’s spectacular
successes in revealing the components of biological systems,
increasing recognition is being given to integrating such
knowledge to understand systems as a whole. Methodological as
well as domain-specific issues need addressing to realize the
potential.

In this paper we review the challenges of in silico modeling, both
methods and domain (section 1). Communication is a major issue
in modeling, both between computational and biological experts
and between modelers within and across different projects. By
reflecting on the modeling practices in our own group and
collaborators (section 2) we propose a way to improve modeling
methods by understanding the inherent aspects of biological
modeling and formalizing the experience of modelers. Although
publications report what was done in a study, they rarely report
why it was done or what alternatives were rejected. Such
knowledge is the implicit knowledge of experienced modelers and
is critical both for training new modelers and streamlining the
process of model development. We propose that the field is
reaching a degree of maturity where knowledge about common
practices of modeling can be identified and formalized using a
technique developed for other fields called patterns (section 3). In
particular, we call the types of patterns in this field complex
systems patterns in recognition of specific methodological issues
related to the challenges of in silico modeling (described in
sections 1.1 and 1.2).

1.1 The challenge of biological complexity
One of the most complex processes in biology is the development
of an organism from a single cell, via division and differentiation
[38]. Each cell in the adult organism contains essentially the same
control program – the genetic regulatory network embedded in its
genome – but each cell follows its own specific trajectory, based
on a combination of intrinsic dynamics, interactions with
neighboring cells, morphogen gradients and other environmental
factors [6].

The control of development spans multiple temporal and spatial
scales from molecular motion on the nanosecond time scale to the
lifespan of the adult. Through organization at the level of genes,
cells, tissues, organs and whole organisms, development links a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Gecco’05, June 25--29, 2005, Washington, DC, USA.
Copyright 2005 ACM. 1-59593-097-3/05/0006…$5.00.

281

genotype to a phenotype via an incredible variety of entangled
processes.

When development is framed in an evolutionary context, the
temporal and spatial ranges involved increase dramatically.
Evolutionary changes occur at the molecular levels of single
nucleotides and stretches of DNA, but evolutionary selection acts
proximally on the organism as a whole, and evolutionary events
such as speciation can occur over millions of years and across vast
geographical distances. The relationship between development
and evolution is bidirectional: while micro-level evolutionary
changes to genomes are the ultimate agents of change that
underpin evolving morphologies, the effects of these changes are
mediated by development in ways that can eventually constrain
the direction of macro-level evolution. The mechanisms and their
effects may be orders of magnitude apart in temporal and spatial
dimensions.

1.2 Roles for complex systems modeling
A computational model encapsulates a theory about the essential
mechanisms and the way in which those mechanisms give rise to
the behavior of a system.

A core challenge for computational modeling is to investigate
how the functionality of a system arises from its component parts.
In this context, ‘ functionality’ is more than just structure and
dynamics: it requires simulating the system’s components and
their interactions and then observing the degree to which the
resulting behaviors match the phenomenon of interest. We refer to
models of such systems as complex systems models.

Complex systems modeling is a way to formalize theories about
the nature of components and their multi-scale interactions.
Because these models can be implemented using computer
simulations, it is possible to develop and check the internal
consistency of biological theories that have too many nonlinear
interactions to be understood intuitively. They also provide a way
to explore the behavior of systems, formulate and evaluate
hypotheses and they have the potential (albeit as yet rarely
realized) to guide the direction of future empirical research.

The complex systems field has developed an impressive set of
tools for studying systems that generate complexity. An early
discovery was how simple systems can generate complex patterns
of behavior and how networks of interacting components behave.
In any system with several elements – nodes in a network, cells in
a cellular automata, rules in a generative grammar – even a
modest number of interactions between the elements can
transform the system from exhibiting stable dynamics to
combinatorial complexity and even chaotic behavior [20, 27].

However, the results of applying such models to understanding
biological functionality have been modest as measured by its
limited impact as a methodology for mainstream biology. In
applying complex systems methods to biological systems, it is
apparent that generating complexity from simple components is
not the difficult issue; rather, it is controlling complex behavior in
a way that is simultaneously robust and flexible. The difficulty
lies in reverse engineering a complex behavior to identify the
underlying generators. In this sense, complexity is easy to
generate but hard to control.

In recent years, there has been an increasing appreciation of the
need for more rigorous models and frameworks that bridge the

gap between biological grounding and computational theory of
multi-scale interactions [9, 22, 39].

In addition to models and frameworks, we also think that attention
to software engineering practices in the field as a whole can
provide substantial benefit to modelers and biologists alike. To
understand the options for improvement the next sections review
current practices.

1.3 What’s wrong with the status quo?
It might be argued that the current ad hoc approach to modeling is
perfectly adequate. After all, the current approach has been
successfully applied to problems in many domains and (continues
the argument) there is nothing special about complex systems,
biology, or the interface between them.

A further suggestion is that standards for modeling already exist.
Indeed, it could be argued that biology has an embarrassment of
standards. As well as attempts at biological standardization, such
as gene ontologies [7] and a plethora of databases defining genes,
genomes, proteins, interactions, etcetera, there are computational
standards such as XML [31] and various cell modeling languages
like CellML [25] and the Virtual Cell modeling and simulation
framework [30]. Adding yet another layer of complexity to the
process of in silico modeling might be seen as futile at best, and a
waste of time and energy at worst.

The main evidence supporting the contention that the
incorporation of additional structure into the modeling process is
unnecessary and even counter-productive lies in the advances that
have already been made using the existing approaches to complex
systems modeling. Particularly noteworthy in this regard are the
achievements of network researchers over the past five years or
so. During this time network analysis has moved from an abstract
topic of purely mathematical interest (e.g. [11]) to a vital field
applicable to domains as diverse as social networks [23], the
internet [3], economics [12], physics [24] and biology at all scales
[15, 36]. The realization that aspects of network evolution,
topology and dynamics are common to all of these areas and more
has arisen directly from the application of standard modeling
techniques and existing standards to issues in complex systems.

This success is, however, the exception rather than the rule.
Although modelers have embraced techniques such as neural
networks, agent-based modeling and cellular automata with
enthusiasm, such approaches tend to be, in most biological
contexts, solutions in search of a problem. Although the current
approach has been valuable in some domains, biological systems
tend to be too complex and poorly understood to model
effectively. None of these approaches has, to date, yielded insights
into biological systems which have been heralded as unique and
valuable by biologists themselves, although some individual
models show promise of providing biologically valuable results.

In addition, it cannot be denied that the current approach of small
teams of modelers working more-or-less in isolation, using tools
and techniques with which they are familiar has two serious
drawbacks. One is the problem of reinventing the wheel; that is,
squandering valuable time and resources on solving problems
which have already been addressed successfully by others; while
the other is that of inventing square wheels, that is, solving a
problem but in a manner inferior to that which has already been
done. Both of these drawbacks lead to less effective and efficient
models.

282

2. FIRST HAND EXPERIENCES
Our own work concerns the multiple levels of complexity from
genotype to phenotype (see Fig 1). In particular, we are interested
in designing suites of models that traverse the path from DNA to
organism via a series of interlinked simulations, each addressing
the transition between two adjacent levels of description.

Figure 1. The processes that link DNA to organism can be studied
at many different spatial and temporal levels.

Finding the ‘ right’ components and interactions to include in a
model requires understanding their functional consequences for
the theory under consideration. Such a criterion is easy to state,
but honing a model until it satisfies this requirement constitutes a
major part of the design effort in many modeling projects.

We use a framework based on the structure, dynamics and
function of systems. The core computational component of this
chain of models is the genetic regulatory network in a developing
organism (see Fig 2).

Here we briefly review the range of studies in our group, and refer
the reader to published papers for more details. The research in
our group can be divided into two methodological categories: the
development of tools and theoretical insights to aid in exploring
and understanding the behavior of models; and the development
of models of biological systems, at both a general and more
specific level.

2.1 Structure, dynamics and function
Our more abstract models are aimed at developing a theoretical
understanding of gene interactions in purely network models [26],
network behavior and its dynamics [17, 18], and stability to
perturbations [29].

Grounding our understanding gained from these gene interaction
models in biological simulations requires understanding both the
lower level of detail that gives rise to the network components and
interactions, and also the higher level of behavior that the
networks are intended to control.

Figure 2. Three levels at which computational models of genotype
to phenotype can be expressed. The genome is represented as a
sequence of nucleotides; the regulatory system is represented as a
network of interacting nodes; and the phenotype is represented
either as a linear tree or as a grammar. The genetic regulatory
network is the computational controller in the developmental
dynamics.

Genetic regulatory systems that control the division and
differentiation of cells are modeled as networks of interacting
elements (which can represent a variety of factors such as genes,
noncoding RNA, intra- and extra-cellular signals and
environmental factors). The nodes in the network are derived from
a model of a genome specified as a nucleotide sequence, and the
links between nodes that indicate their interactions are derived
from a simplistic model of molecular chemistry. To model
evolutionary effects, changes in the links between the nodes in a
network can be derived from mutations at the level of the
nucleotide string. By using an artificial nucleotide string and
modeling mutation operators (e.g. point mutation, duplication,
translocation), more realistic change operators can be included in
the development of the genetic regulatory network [32]. An
artificial genome also enables us to investigate the power of
control elements such as non-coding RNA, that are outside the
standard model of gene regulation [21, 29].

To integrate our models into a broader behavioral context, we use
the genetic regulatory network models to control a variety of
different representations of phenotypes. A representation that can
be derived directly from biological data is the diverging cell
lineages of simple multi-celled organisms (Fig. 3). One of the
simplest multi-celled organisms much studied by developmental
biologists is the nematode C. elegans. It has just 959 cells as an
adult and each worm develops in almost exactly the same

Sequence

Network
interactions

&
Gene

expression

Grammar

&
Lineage

trees

II. Gene Expression

AB

EMS

MS E C

D

P1

P2

P3

P4

zygote

neurons
epidermis
pharynx

pharynx intestine epidermis
muscle

muscle germ line

1st cleavage:

4th c leavage:

3rd cleavage:

2nd c leavage:

Anterior Posterior

III. Phenotype

..GTCATACTATAATCCTGGTCAT
CATGTCTGCTCTACATCGTGTC
TACTCTGTTATACTTTACTGTCT
TACTCTCACATATATCTCGTCAC
TGCATGCCATGTTACATCGTGT
CTACTCTGTTATACTTTACTACA
TATATCTCGTCACTGCCTGT...

I. Genome

DNA

Sequence

Organism

Multiple
processes from
expression to
development

283

sequence of cell divisions, to the extent that the lineage tree for
the complete organism has been well characterized [28]. Our
group is using models of genetic regulatory networks to control
the division and differentiation events of a variety of lineage trees
from simple artificial systems to the full complexity of the C.
elegans lineage [5, 14].

2.2 In silico phenotypes
The generation of lineage trees forms a family of benchmark
problems. By ‘generation of lineage trees’ , we do not just mean a
description of the tree structure itself, but rather, the task requires
a control system analogous at some level to cellular control to
produce signals that drive the division and differentiation of cells
in each branch of the lineage.

Figure 3. Lineage trees. (above) Branches of nematode lineages
can be used as a biologically grounded reference on the lineage
complexity that occurs in real organisms. (below) The controllers
for lineage trees can be defined in different ways. In this example
the controllers are genetic regulatory networks (indicated by
networks) that interact with their cellular environment (indicated
by the input arrows) and produce signals such as division and
differentiation (indicated by the output arrows). A family of
benchmark problems can be designed for a particular type of
controller by varying the specificity of the output signals required
and the size and complexity of the lineage trees.

A graded family of problems can be created by varying the
difficulty of the tasks, in terms of the depth of the tree, the amount
of information available at each cell, and the complexity of the
lineages. The models can also incrementally incorporate

additional components of biological complexity [4, 5] (see Figure
3).

Another benchmark problem is the control of plant development,
which can be computationally specified by L-systems. Again, in
our research we use a genetic regulatory network to control the
system, but in this case, the network only needs to control the
parameters of the L-system, rather than every cell in the plant.
Mutating the parameters of a plant model produces a broad range
of phenotypes [34].

The evolution of the plant L-systems can be compared to the C.
elegans lineages. The architectures for the two models differ in
complexity, as hundreds or thousands of parameters are used in
the lineage tree simulations compared to less than ten variables to
control the plant phenotype. The variables in plant growth are
expected to be easy to evolve because the complexity of the
system has been encapsulated in the L-system, which is a
generative grammar that expresses just those aspects that enable
the system to evolve coherently. A specified set of parameters
enables the mutations to be easily aligned with the phenotypic
selection.

In current work we are extending the plant studies using selection
criterion based on measured properties of the resulting
phenotypes, trading off factors such as leaf coverage versus water
consumption. Many additional methodological challenges remain
to be addressed. One, in particular, concerns the connection
between the control of cell divisions that create lineage trees, and
the way in which such systems can be understood as grammars, or
parameterized morphological forms, such as L-systems.

2.3 Long term research questions
The family of models developed to date constitutes a framework
that includes the levels of artificial genome (nucleotide strings),
genetic regulatory networks, and different models of phenotype
based on both lineage trees and generative grammars.

This overarching framework facilitates the study of a range of
complementary questions that address relationships between
levels of description, questions about developmental processes,
and evolutionary question. Specifying one aspect of the system,
such as the lineage tree model of development enables
comparison between different models of genetic regulatory
systems and the effect of different genotypic representations.

Conversely, fixing the model of genetic regulation enables
comparison of the control of different phenotypic systems and
exploration of the evolutionary history of various body plans and
the phylogenetic relationships between them.

The models also enable the investigation of a variety of questions
in the control of complexity. In particular, we are investigating the
role of non-coding RNA in cell regulation and its potential
influences on evolution and development of complex organisms
[21, 29]. This is a long term project, with many converging lines
of evidence. The in silico studies provide a platform for
comparing the computational power of genetic architectures with
and without non-coding RNA regulation.

Cellular control systems are remarkably robust, but many factors
can damage or subvert the natural controls. When gene regulation
is interfered with, the resulting cells frequently die, but those that
survive have the potential to form tumors. Cancers were once
thought of as diseases of genes, but are increasingly being studied

AB

EMS

MS E C

D

P1

P2

P3

P4

zygote

neurons
epidermis
pharynx

pharynx intestine epidermis
muscle

muscle germ line

1st cleavage:

4th cleavage:

3rd cleavage:

2nd cleavage:

Anterior Posterior

��������	��
��
���
��
��
��

�����������������	����
�����
�
���	�
�

Output Input

284

as diseases of gene regulation. Networks can be used to simulate
the dynamics of the genes and signals that regulate P53, a gene
that has been implicated in more than half of all cancers [16].

3. MODELING PRACTICES
The aim of the final section of this paper is to discuss modeling
issues and practices and ways to enhance them. As one might
expect, the characteristics of model development for in silico
research differ from traditional software engineering. It helps to
highlight where major differences lie and consequences for
effective research.

3.1 Issues specific to in silico modeling
As in any science, the ultimate goal of an in silico model is to gain
insight into the phenomena of interest. However, the structure of
models that might provide insights into system-level properties is
often non-obvious. Biological systems span multiple levels of
time and space, and interactions link the systems from the very
bottom to the top and back again. In model design a constant
tension exists between fidelity to biological detail and the right
level of abstraction at which to model causal factors of interest.

Three issues are fundamental to the modeling of complex
biological systems:

1. Choosing tasks that incorporate appropriate challenges

A modeling task can be thought of as what a system does.
Typically tasks have a high level description and a computational
specification. For example, in the C. elegans lineage simulations,
the conceptual task is for a genetic regulatory network to control
the development of the lineage tree of a nematode starting from a
single cell. Simpler versions of the task could involve controlling
branches of the tree. To turn the conceptual task into a simulation,
it needs to be specified as a mapping between a set of inputs and
outputs. For example, in the cell lineage task, the inputs could be
the position of each cell at each point in time and information
from their neighbors. The required output from the controller
could be whether each cell divides or differentiates at each point
in time.

Tasks are points of communication between biologists and
computational specialists and for a model to be relevant, the
conceptual tasks need to be interesting and important to
biologists. A complaint from biological colleagues against some
artificial life models is that they stray too far from real biological
systems for their results to be applicable [10]. Clearly, modeling
tasks need to be chosen with care, as there is a risk that toy worlds
can focus attention on problems that are rare or non-existent in
biology while omitting or sidelining fundamental issues that are
core to biological theorizing. When models abstract away from
biological details to the extent that they can no longer relate to
real world data, the onus is on the modelers, not the biologists, to
demonstrate the usefulness of their techniques.

A counter complaint from computational modelers is that many
biologists appear to be disinterested in simulations that address
general characteristics of the systems they study. At the two
extremes, these positions need not communicate, since there are
biological questions for which insight into higher levels of
organization has little utility, just as there are complexity
questions for which biological grounding has minimal impact.

However, where complex systems modeling is being used to
develop and advance biological theory, dialogue is critical.

2. Choosing the appropriate level of abstraction

One of the most common phrases the computational modeler
hears, on (she believes) grasping the essence of a biological
system of interest is “Well actually, it’s not that simple.” In
biology, the devil is in the detail. There is a temptation to believe
errors in biological models always occur because too little detail
has been included and that additional biological facts would
enhance the model.

However, not all aspects of a system have equal explanatory
power. Searching for the causal factors requires the right level of
detail, omitting details not relevant to functionality of the system.

Consider the phenomena of a traffic jam. The components on a
highway could include cars, trucks and other vehicles. In trying to
understand traffic jams, some understanding of vehicles is needed,
as well as their speeds, directions and distances from one another.
However, specific details about the details of each vehicle’s
engine would detract from understanding the essence of a traffic
jam. An appropriate level of abstraction would transfer to other
traffic jams such as bicycles or people in subways, which have
speeds and directions, but not engines.

All models, by necessity, neglect aspects of biological reality.
However, some models, when framed at an appropriate level of
abstraction, provide an understanding of a system's behavior that
could not have been obtained at a higher or lower level of detail.
Choosing the right level at which to model components and their
interactions requires understanding both how the components
arise from a lower level of detail, and how the behavior that they
generate integrates into the system at a higher level of description.

3. Appreciating the nature of the design process

The design process for in silico research involves both technical
and social aspects. Models are not created in a single design
session at the beginning of a project, but rather they evolve with
the understanding of both the modeler and the domain experts.
Details are added and removed, tasks are refined, and
understanding the link from mechanism to behavior is gradually
unfolded. There is typically a long lead time in developing an
effective in silico model.

For example, a classic simulation of the Baldwin effect (the effect
of learning upon evolution) was first published as an elegant
model using a vector of just 20 elements [19]. It is a simple model
that can be replicated easily. However, the original modeling
effort consisted of more than twenty designs over several months
as the essential aspects of the system were understood and the
simulations were refined.

The inherently iterative nature of the in silico design process has
to be taken into account in communications within the modeling
team and between modelers and domain experts.

3.2 More than code
Computer modeling is sometimes mistakenly seen as merely
programming, with a model comprising nothing but its code. A
central tenant of programming (succinctly expressed in the title of
a classic text by Wirth [37]) is that the finished product – the
program – is the sum of its algorithms and data structures:

285

Algorithms + data structures = programs

Software engineers realized that there is more to programming
than the finished product. The human team in a modeling project
brings a wealth of experience to the design task. Such experience
includes background knowledge of the strengths and weaknesses
of algorithms, efficient implementations, parameter choices,
reusable and extendable designs, rapid prototyping techniques,
extensive knowledge of the domain of interest, and much more.

Wirth’s tenant could be adapted for the modeling process as:

 Algorithms + data structures + experience = modeling

The art of modeling includes understanding the options and the
tradeoffs that are appropriate to the domain to be modeled.
Modelers frequently share code or pseudocode, but code only
contains the options that were chosen, not why they were
appropriate or what the alternatives were. We argue that the
complex systems modeling community is ready for the explicit
acknowledgement and communication of such information. The
key question is how to formalize the knowledge of experienced
modelers.

3.3 Lightweight software practices
The majority of models in our group (and amongst others we have
informally surveyed) are developed by teams of one to six people.
In practice, no matter how much thought is put into a prototype
model, or how experienced the software engineer, virtually all
prototype simulations are substantially rewritten as appropriate
directions for generalization emerge. An appropriate balance
between breadth and depth is required to facilitate effective
modeling.

Recently we have been reviewing complex systems practices and
software engineering literature to determine the characteristics of
in silico modeling projects, and to find appropriate techniques to
enhance the speed and quality of modeling studies. Through an
online survey of members of the ARC Centre for Complex
Systems Genetic Regulatory Network (GRN) group and focused
interviews, four characteristics were identified as important for
understanding current GRN research projects [33]:

1. Team sizes are typically small and even with a modeler and a
domain expert collaborating, the modeler is normally the sole
user of the software.

2. Software is commonly configured to address a single research
question, and frequent redesign and reuse of components from
current and previous projects is normal practice.

3. The specifications for any project are rarely stable for any
length of time. Both the modeler and the domain expert
iteratively improve their understanding of both the underlying
biological system and how the evolving model converges on
essential mechanisms and behaviors of interest.

4. The non-linear behavior of GRN models means that outcomes
are generally unknown before run time.

The characteristics of small teams and rapidly evolving projects
mean that lightweight techniques are the most likely to be
beneficial in practical studies. Lightweight techniques can be used
to aid implementation at the component level, manually tracking

interactions for very small systems, and extensive use of
visualization of system structures and behaviors [33].

The software that supports model development is a de facto
language for expressing and testing theories. Some software may
be so specific that it facilitates only a single simulation. Other
software may be so general that any simulation requires
considerable effort. The choice of which is more appropriate
depends on the size and scope of the modeling project.

3.4 Complex Systems Patterns as a formalism
We believe that it is too early to standardize specific theories or
complete methodologies for mapping biology into computation.
Computational modeling of the processes from genotype to
phenotype uses many different methodologies to represent the
components and interactions of biological control mechanisms.

However, all experienced modelers possess implicit knowledge
about modeling; insights into effective and efficient ways of
designing and developing models, visualizing system behaviors,
and analyzing issues of interest such as robustness and stability,
scalability and evolvability. These insights – practical techniques,
efficient algorithms, useful rules of thumb, extendable model
designs – are the implicit wisdom of individual modelers and
small groups. Experienced modelers also have insights into
seemingly sensible approaches that do not work in practice.
Unfortunately, this wisdom is rarely communicated, even within
the modeling community, and many of the same insights are
rediscovered time and time again. A widely accepted medium for
communicating such knowledge is urgently required. To this end,
we have begun to formalize insights from our own modeling
projects and started collaborations with colleagues in ACCS,
CSIRO and COSNet1 using the software engineering concept of
patterns [8, 13].

A pattern is a proven solution to a commonly recurring problem
[13]. They can occur in both model design and in systems
performance. A pattern is expressed as a brief description of the
problem and its solution, using ten standard headings: Name;
Intent; Motivation; Applicability; Example; Consequences;
Implementation; Sample Code; Known Uses; and Related
Patterns. An example pattern could be a standard visualization
process, such as an activation diagram (shown in the next
section).

Complex systems modelers would benefit from patterns that occur
in the design of models, such as patterns guiding the choice of
benchmark problems, software platforms, model architectures,
analysis and visualization techniques. Patterns also occur in
system behaviors, such as emergent robustness, evolvability,
efficient connectivity, and modular design. Since computational
models encompass all the implicit wisdom of modeling (not just
software), we call these ‘Complex Systems Patterns’ .

A more detailed description of the ideas behind the use of patterns
as a method for capturing the implicit wisdom of the complex
systems modeling community, and an example of a visualization
pattern is described in [35].

286

3.5 Example Pattern: Activation Diagram [35]
One commonly-recurring problem in genetic regulatory network
modeling is the visualization of system behavior, where
interesting behaviors span multiple levels in time and space. To
provide a concrete feel for the nature and scope of a complex
system pattern, this section illustrates a prototype pattern which
solves this problem.

Name: Activation Diagram (Classification: Dynamics-Local
Visualization)

Intent: Visualize micro level interaction of components over time
to see macro level characteristics.

Also known as: Gene expression diagram, gene activation
diagram, expression pattern, activation signature

Motivation: To gain insight into initial and long-term dynamics
of a set of interacting components. Interactive extension allows
the user to manually change the value of any component at an
arbitrary point in time to visualize the effects of perturbation.

Applicability: Use the Activation Diagram pattern to:

• visualize the characteristics of component interactions over
time when components have binary or real-valued states

• determine characteristics of macro level behavior such as
ordered, cyclic, or chaotic activity

• assess the lifecycle of macro level behaviors (such as the
number of steps before a network settles into a certain state)

• manually investigate robustness of macro-level behavior

Example Visualization: Time is shown along the x axis, and each
component is positioned
along the y axis. Active
components are denoted by
blue shading. This diagram
shows the component
interactions falling into a
cyclic state after a short
transient period.

Consequences: The Activation Diagram has the following
consequences and inherent limitations:

• it requires access to the values of all components for each
time step

• only a single starting state and trajectory is shown per
diagram

• depending on screen size, large numbers of components can
make viewing difficult

• very long cycles can appear similar to chaotic trajectories

Implementation: The Activation Diagram has the following
important implementation variations:

1. time can be expressed along the x or y axis

2. more than two component states can be visualized through
shading or color variations

Sample Code: Omitted for brevity. For details see [35].

Known uses: Gene expression, random Boolean networks,
cellular automata, neural network dynamics.

Related patterns: State Space Diagram, 3D Network Display

4. CONCLUSION
In this paper we have reflected on the complex systems modeling
process itself, with the aim of understanding the progress made to
date, and proposing directions for future improvements.
Specifically, we contend that the modeling of complex biological
systems can be made more efficient and more effective by the use
of structured methodologies incorporating experience about
modeling algorithms and implementation.

Mapping biology into computation has both a domain specific
aspect – biological theory – and a methodological aspect – model
development. The power of an in silico model lies not just in the
algorithms, but also in the task, the representational system and
the architecture that facilitates the types of questions that the
modelers wish to ask.

All models have common methodologies. More than just code or
algorithms are required to design and communicate complex
systems models effectively and efficiently. Design Patterns are a
well established formalism in software engineering that describe
algorithms and contextual information about them in a structured
manner. We suggest that they can fill the need to incorporate
experience into the modeling process for the field of complex
systems biology modeling.

Our aim in proposing the formalism of complex systems patterns
is to build a community of modelers sharing knowledge and
experience to mutual benefit. All models contain aspects that can
be efficiently and effectively described in the patterns formalism
and we suggest that all modelers could contribute to codifying
their experience by defining their own patterns and/or refining
proposed patterns from other modelers. As a point of focus for
collecting and distributing patterns we have established an online
patterns repository [1] and meetings and workshops to discuss the
proposal and refinement of patterns [2].

5. ACKNOWLEDGMENTS
This research was funded by an ARC grant to JW, JSH, and JSM,
an ACCS grant to JW and JW and an APA to NG.
1 ACCS: ARC Centre for Complex Systems http://www.accs.uq.edu.au/
ARC: Australian Research Council http://www.arc.gov.au/
CIS: Division of Complex and Intelligent Systems Research
COSNet: Complex Open Systems Research Network
http://www.complexsystems.net.au/
CSIRO: Commonwealth Scientific and Industrial Research Organisation
http://www.csiro.au/

6. REFERENCES
[1] "Complex Systems Patterns Repository.

http://www.itee.uq.edu.au/~patterns/repository/."
[2] "Complex Systems Patterns Workshop I June 2005

http://www.itee.uq.edu.au/~patterns/PatternsWorkshopI.html
; Complex Systems Patterns Workshop II December 2005
http://www.itee.uq.edu.au/~patterns/PatternsWorkshopII.htm
l."

[3] R. Albert, H. Jeong, and A.-L. Barabasi, "Error and attack
tolerance of complex networks," Nature, vol. 406, pp. 378-
382, 2000.

[4] R. B. R. Azevedo, R. Lohaus, V. Braun, M. Gumbel, M.
Umamaheshwar, P. M. Agapow, W. Houthoofd, U. Platzer,
G. Borgonie, H. P. Meinzer, and A. M. Leroi, "The

287

simplicity of metazoan cell lineages," Nature, vol. 433, pp.
152--156, 2005.

[5] V. Braun, R. B. R. Azevedo, M. Gumbel, P. M. Agapow, A.
M. Leroi, and H. P. Meinzer, "ALES: cell lineage analysis
and mapping of developmental events," Bioinformatics, vol.
19, pp. 851--858, 2003.

[6] S. B. Carroll, J. Grenier, and S. D. Weatherbee, From DNA
to Diversity: Molecular genetics and the evolution of animal
design. MA: Malden: Blackwell Science, 2001.

[7] T. G. O. Consortium, "Gene Ontology: tool for the
unification of biology," Nature Genetics, vol. 25, pp. 25-29,
2000.

[8] J. O. Coplien, "Software design patterns: common questions
and answers," in The Patterns Handbook: Techniques,
Strategies, and Applications, L. Rising, Ed. NY: Cambridge
University Press, 1998, pp. 311-320.

[9] E. A. Di Paolo, J. Noble, and S. Bullock, "Simulation models
as opaque thought experiments," in Artificial Life VII:
Proceedings of the Seventh International Conference on
Artificial Life, M. Bedau, J. McCaskill, N. Packard, and S.
Rasmussen, Eds. Cambridge, MA: MIT Press, 2000, pp. 497-
-506.

[10] D. Endy and R. Brent, "Modelling cellular behaviour,"
Nature, vol. 409, pp. 391-395, 2001.

[11] P. Erdos and G. Katona, "Proceedings of the colloquium held
at Tihany, Hungary, September 1966," 1966.

[12] J. D. Farmer and F. Lillo, "On the Origin of Power-Law Tails
in Price Fluctuations," Quantitative Finance, vol. 4, pp. 7-
11, 2004.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software:
Addison-Wesley, 1994.

[14] N. Geard and J. Wiles, "A Gene Network Model for
Developing Cell Lineages," Artificial Life, vol. 11, 2005.

[15] P. M. Gleiser, F. A. Tamarit, and S. A. Cannas, "Self-
organised criticality in a model of biological evolution with
long-range interactions," Physica A : Statistical Mechanics
and its Applications, vol. 275, pp. 272, 2000.

[16] J. Hallinan, "Cluster analysis of the p53 genetic regulatory
network: Topology and biology," in IEEE Symposium on
Computational Intelligence in Bioinformatics and
Computational Biology, vol. 7-8 October. San Diego, 2004.

[17] J. Hallinan, "Gene duplication and hierarchical modularity in
intracellular interaction networks," BioSystems, vol. 74, pp.
51-62, 2004.

[18] J. Hallinan and J. Wiles, "Asynchronous Dynamics of an
Artificial Genetic Regulatory Network," presented at ALife
IX The 9th International Conference on Artificial Life,
Boston, Ma, 2004.

[19] G. E. Hinton and S. Nowlan, "How learning can guide
evolution," Complex Systems, vol. 1, pp. 495 -502, 1987.

[20] S. A. Kauffman, The Origins of Order: Self-Organization
and Selection in Evolution. Oxford: Oxford University Press,
1993.

[21] J. S. Mattick, "The hidden genetic program of complex
organisms.," Sci Am, vol. 291, pp. 60-7, 2004.

[22] G. E. Miller, "Artificial Life as Theoretical Biology: How to
do real science with computer simulation," School of
Cognitive and Computing Sciences, University of Sussex
1995.

[23] M. E. Newman, "The structure of scientific collaboration
networks," Proceedings of the National Academy of Sciences
of the USA, vol. 98, pp. 404 - 409, 2001.

[24] M. E. J. Newman, C. Moore, and D. J. Watts, "Mean-field
solution of the small-world network model," Physical Review
Letters, vol. 84, pp. 3201, 2000.

[25] P. Nielsen, "CellML http://www.cellml.org/ Last accessed 27
April 2005."

[26] B. Skellett, B. Cairns, N. Geard, B. Tonkes, and W. J,
"Rugged NK landscapes contain the highest peaks," in To
appear in the Proceedings of GECCO, 2005.

[27] R. V. Sole, P. Fernandez, and S. A. Kauffman, "Adaptive
walks in a gene network model of morphogenesis: insights
into the Cambrian explosion," International Journal of
Developmental Biology, vol. 47, pp. 685--694, 2003.

[28] J. E. Sulston, E. Schierenberg, J. G. White, and J. N.
Thompson, "The embryonic cell lineage of the nematode
Caenorhabditis elegans," Developmental Biology, vol. 100,
pp. 64--119, 1983.

[29] B. Tonkes, J. Wiles, and J. S. Mattick, "Controlling
Complexity in Biological Networks," in Poster presented at
the 11th International Conference on Intelligent Systems for
Molecular Biology, 2003.

[30] VirtualCell, "National Resource for Cell Analysis and
Modeling (NRCAM) http://www.nrcam.uchc.edu/ Last
accessed 27 April 2005."

[31] W3C, "Extensible Markup Language (XML)
http://www.w3.org/XML/ Last accessed 27 April 2005."

[32] J. Watson, N. Geard, and J. Wiles, "Towards more biological
mutation operators in gene regulation studies," BioSystems,
vol. 113, pp. 239--248, 2004.

[33] J. Watson, J. Hanan, and J. Wiles, "Practical software
engineering techniques for regulatory models in biology.
http://www.itee.uq.edu.au/~patterns/papers/ unpublished,"
Technical Report for the ARC Centre for Complex Systems.
49 pages. 2005.

[34] J. Watson, J. Wiles, and J. Hanan, "Towards more relevant
evolutionary models: Integrating an artificial genome with a
developmental phenotype," in The Australian Conference on
Artificial Life (ACAL 2003), 2003, pp. 288-298.

[35] J. Wiles and J. Watson, "Patterns in Complex Systems
Models," in IDEAL, M. Gallagher, et al., Ed. Brisbane:
Lecture Notes in Computer Science (LNCS), Springer
Verlag, in press., 2005, pp. 8 pages.

[36] R. J. Williams and N. D. Martinez, "Simple rules yield
complex food webs," Nature, vol. 409, pp. 180-183, 2000.

[37] N. Wirth, Algorithms + Data Structures = Programs:
Prentice-Hall, 1976.

[38] L. Wolpert, Curr Biol, vol. 13, pp. 120, 2003.
[39] R. S. Zebulum, D. Gwaltney, G. Hornby, D. Keymeulen, J.

Lohn, and A. Stoica, "NASA/DoD Conference on Evolvable
Hardware," IEEE Press, 2004.

288

