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ABSTRACT 
Mapping biology into computation has both a domain specific 
aspect – biological theory – and a methodological aspect – model 
development. Computational modelers have implicit knowledge 
that guides modeling in many ways but this knowledge is rarely 
communicated. We review the challenge of biological complexity 
and current practices in modeling genetic regulatory networks 
with the aim of understanding characteristics of the in silico 
modeling process and proposing directions for future 
improvements. Specifically, we contend that the modeling of 
complex biological systems can be made more efficient and more 
effective by the use of structured methodologies incorporating 
experience about modeling algorithms and implementation. We 
suggest that an appropriate formalism is Complex Systems 
Patterns, adopted from Design Patterns in software engineering. 
First steps towards building community resources for such 
patterns are described. 

Categor ies and Subject Descr iptors 
D.2 [Software] D.2.10 [Design]  
D.2.11 [Software architectures]: D.2.m  Rapid prototyping, 
reusable software 
I.6 [Simulation and modeling] 
J.3 [Life and medical sciences]: biology and genetics 

General Terms  
Algorithms, Documentation, Performance, Design, Reliability, 
Experimentation, Human Factors, Standardization, Languages. 

Keywords 
Complex systems modeling, in silico biology, complex systems 
biology, design patterns, complex systems patterns, genetic 
regulatory networks, artificial genomes, visualization 

1. INTRODUCTION 
The promise of in silico biology – the development of 
computational models of biological systems – is yet to be fully 
realized. After centuries of reductionist science’s spectacular 
successes in revealing the components of biological systems, 
increasing recognition is being given to integrating such 
knowledge to understand systems as a whole. Methodological as 
well as domain-specific issues need addressing to realize the 
potential.   

In this paper we review the challenges of in silico modeling, both 
methods and domain (section 1). Communication is a major issue 
in modeling, both between computational and biological experts 
and between modelers within and across different projects. By 
reflecting on the modeling practices in our own group and 
collaborators (section 2) we propose a way to improve modeling 
methods by understanding the inherent aspects of biological 
modeling and formalizing the experience of modelers. Although 
publications report what was done in a study, they rarely report 
why it was done or what alternatives were rejected. Such 
knowledge is the implicit knowledge of experienced modelers and 
is critical both for training new modelers and streamlining the 
process of model development. We propose that the field is 
reaching a degree of maturity where knowledge about common 
practices of modeling can be identified and formalized using a 
technique developed for other fields called patterns (section 3). In 
particular, we call the types of patterns in this field complex 
systems patterns in recognition of specific methodological issues 
related to the challenges of in silico modeling (described in 
sections 1.1 and 1.2). 

1.1 The challenge of biological complexity 
One of the most complex processes in biology is the development 
of an organism from a single cell, via division and differentiation 
[38]. Each cell in the adult organism contains essentially the same 
control program – the genetic regulatory network embedded in its 
genome – but each cell follows its own specific trajectory, based 
on a combination of intrinsic dynamics, interactions with 
neighboring cells, morphogen gradients and other environmental 
factors [6]. 

The control of development spans multiple temporal and spatial 
scales from molecular motion on the nanosecond time scale to the 
lifespan of the adult. Through organization at the level of genes, 
cells, tissues, organs and whole organisms, development links a 
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genotype to a phenotype via an incredible variety of entangled 
processes. 

When development is framed in an evolutionary context, the 
temporal and spatial ranges involved increase dramatically.  
Evolutionary changes occur at the molecular levels of single 
nucleotides and stretches of DNA, but evolutionary selection acts 
proximally on the organism as a whole, and evolutionary events 
such as speciation can occur over millions of years and across vast 
geographical distances.  The relationship between development 
and evolution is bidirectional: while micro-level evolutionary 
changes to genomes are the ultimate agents of change that 
underpin evolving morphologies, the effects of these changes are 
mediated by development in ways that can eventually constrain 
the direction of macro-level evolution. The mechanisms and their 
effects may be orders of magnitude apart in temporal and spatial 
dimensions. 

1.2 Roles for  complex systems modeling 
A computational model encapsulates a theory about the essential 
mechanisms and the way in which those mechanisms give rise to 
the behavior of a system.  

A core challenge for computational modeling is to investigate 
how the functionality of a system arises from its component parts. 
In this context, ‘ functionality’  is more than just structure and 
dynamics: it requires simulating the system’s components and 
their interactions and then observing the degree to which the 
resulting behaviors match the phenomenon of interest. We refer to 
models of such systems as complex systems models. 

Complex systems modeling is a way to formalize theories about 
the nature of components and their multi-scale interactions.  
Because these models can be implemented using computer 
simulations, it is possible to develop and check the internal 
consistency of biological theories that have too many nonlinear 
interactions to be understood intuitively. They also provide a way 
to explore the behavior of systems, formulate and evaluate 
hypotheses and they have the potential (albeit as yet rarely 
realized) to guide the direction of future empirical research. 

The complex systems field has developed an impressive set of 
tools for studying systems that generate complexity. An early 
discovery was how simple systems can generate complex patterns 
of behavior and how networks of interacting components behave. 
In any system with several elements – nodes in a network, cells in 
a cellular automata, rules in a generative grammar – even a 
modest number of interactions between the elements can 
transform the system from exhibiting stable dynamics to 
combinatorial complexity and even  chaotic behavior [20, 27]. 

However, the results of applying such models to understanding 
biological functionality have been modest as measured by its 
limited impact as a methodology for mainstream biology. In 
applying complex systems methods to biological systems, it is 
apparent that generating complexity from simple components is 
not the difficult issue; rather, it is controlling complex behavior in 
a way that is simultaneously robust and flexible.  The difficulty 
lies in reverse engineering a complex behavior to identify the 
underlying generators. In this sense, complexity is easy to 
generate but hard to control. 

In recent years, there has been an increasing appreciation of the 
need for more rigorous models and frameworks that bridge the 

gap between biological grounding and computational theory of 
multi-scale interactions [9, 22, 39].  

In addition to models and frameworks, we also think that attention 
to software engineering practices in the field as a whole can 
provide substantial benefit to modelers and biologists alike. To 
understand the options for improvement the next sections review 
current practices. 

1.3 What’s wrong with the status quo? 
It might be argued that the current ad hoc approach to modeling is 
perfectly adequate. After all, the current approach has been 
successfully applied to problems in many domains and (continues 
the argument) there is nothing special about complex systems, 
biology, or the interface between them. 

A further suggestion is that standards for modeling already exist.  
Indeed, it could be argued that biology has an embarrassment of 
standards. As well as attempts at biological standardization, such 
as gene ontologies [7] and a plethora of databases defining genes, 
genomes, proteins, interactions, etcetera, there are computational 
standards such as XML [31] and various cell modeling languages 
like CellML [25] and the Virtual Cell modeling and simulation 
framework [30]. Adding yet another layer of complexity to the 
process of in silico modeling might be seen as futile at best, and a 
waste of time and energy at worst. 

The main evidence supporting the contention that the 
incorporation of additional structure into the modeling process is 
unnecessary and even counter-productive lies in the advances that 
have already been made using the existing approaches to complex 
systems modeling. Particularly noteworthy in this regard are the 
achievements of network researchers over the past five years or 
so. During this time network analysis has moved from an abstract 
topic of purely mathematical interest (e.g. [11]) to a vital field 
applicable to domains as diverse as social networks [23], the 
internet [3], economics [12], physics [24] and biology at all scales 
[15, 36]. The realization that aspects of network evolution, 
topology and dynamics are common to all of these areas and more 
has arisen directly from the application of standard modeling 
techniques and existing standards to issues in complex systems. 

This success is, however, the exception rather than the rule. 
Although modelers have embraced techniques such as neural 
networks, agent-based modeling and cellular automata with 
enthusiasm, such approaches tend to be, in most biological 
contexts, solutions in search of a problem. Although the current 
approach has been valuable in some domains, biological systems 
tend to be too complex and poorly understood to model 
effectively. None of these approaches has, to date, yielded insights 
into biological systems which have been heralded as unique and 
valuable by biologists themselves, although some individual 
models show promise of providing biologically valuable results. 

In addition, it cannot be denied that the current approach of small 
teams of modelers working more-or-less in isolation, using tools 
and techniques with which they are familiar has two serious 
drawbacks. One is the problem of reinventing the wheel; that is, 
squandering valuable time and resources on solving problems 
which have already been addressed successfully by others; while 
the other is that of inventing square wheels, that is, solving a 
problem but in a manner inferior to that which has already been 
done. Both of these drawbacks lead to less effective and efficient 
models. 
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2. FIRST HAND EXPERIENCES 
Our own work concerns the multiple levels of complexity from 
genotype to phenotype (see Fig 1). In particular, we are interested 
in designing suites of models that traverse the path from DNA to 
organism via a series of interlinked simulations, each addressing 
the transition between two adjacent levels of description. 

 
Figure 1. The processes that link DNA to organism can be studied 
at many different spatial and temporal levels.  

Finding the ‘ right’  components and interactions to include in a 
model requires understanding their functional consequences for 
the theory under consideration. Such a criterion is easy to state, 
but honing a model until it satisfies this requirement constitutes a 
major part of the design effort in many modeling projects. 

We use a framework based on the structure, dynamics and 
function of systems. The core computational component of this 
chain of models is the genetic regulatory network in a developing 
organism (see Fig 2).  

Here we briefly review the range of studies in our group, and refer 
the reader to published papers for more details.  The research in 
our group can be divided into two methodological categories: the 
development of tools and theoretical insights to aid in exploring 
and understanding the behavior of models; and the development 
of models of biological systems, at both a general and more 
specific level.   

2.1 Structure, dynamics and function 
Our more abstract models are aimed at developing a theoretical 
understanding of gene interactions in purely network models [26], 
network behavior and its dynamics [17, 18], and stability to 
perturbations [29].  

Grounding our understanding gained from these gene interaction 
models in biological simulations requires understanding both the 
lower level of detail that gives rise to the network components and 
interactions, and also the higher level of behavior that the 
networks are intended to control. 

 

 
Figure 2. Three levels at which computational models of genotype 
to phenotype can be expressed. The genome is represented as a 
sequence of nucleotides; the regulatory system is represented as a 
network of interacting nodes; and the phenotype is represented 
either as a linear tree or as a grammar. The genetic regulatory 
network is the computational controller in the developmental 
dynamics. 

Genetic regulatory systems that control the division and 
differentiation of cells are modeled as networks of interacting 
elements (which can represent a variety of factors such as genes, 
noncoding RNA, intra- and extra-cellular signals and 
environmental factors). The nodes in the network are derived from 
a model of a genome specified as a nucleotide sequence, and the 
links between nodes that indicate their interactions are derived 
from a simplistic model of molecular chemistry. To model 
evolutionary effects, changes in the links between the nodes in a 
network can be derived from mutations at the level of the 
nucleotide string. By using an artificial nucleotide string and 
modeling mutation operators (e.g. point mutation, duplication, 
translocation), more realistic change operators can be included in 
the development of the genetic regulatory network [32]. An 
artificial genome also enables us to investigate the power of 
control elements such as non-coding RNA, that are outside the 
standard model of gene regulation [21, 29]. 

To integrate our models into a broader behavioral context, we use 
the genetic regulatory network models to control a variety of 
different representations of phenotypes. A representation that can 
be derived directly from biological data is the diverging cell 
lineages of simple multi-celled organisms (Fig. 3). One of the 
simplest multi-celled organisms much studied by developmental 
biologists is the nematode C. elegans. It has just 959 cells as an 
adult and each worm develops in almost exactly the same 
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sequence of cell divisions, to the extent that the lineage tree for 
the complete organism has been well characterized [28]. Our 
group is using models of genetic regulatory networks to control 
the division and differentiation events of a variety of lineage trees 
from simple artificial systems to the full complexity of the C. 
elegans lineage [5, 14].  

2.2 In silico phenotypes 
The generation of lineage trees forms a family of benchmark 
problems. By ‘generation of lineage trees’ , we do not just mean a 
description of the tree structure itself, but rather, the task requires 
a control system analogous at some level to cellular control to 
produce signals that drive the division and differentiation of cells 
in each branch of the lineage. 

 

 
Figure 3. Lineage trees. (above) Branches of nematode lineages 
can be used as a biologically grounded reference on the lineage 
complexity that occurs in real organisms. (below) The controllers 
for lineage trees can be defined in different ways. In this example 
the controllers are genetic regulatory networks (indicated by 
networks) that interact with their cellular environment (indicated 
by the input arrows) and produce signals such as division and 
differentiation (indicated by the output arrows). A family of 
benchmark problems can be designed for a particular type of 
controller by varying the specificity of the output signals required 
and the size and complexity of the lineage trees. 

 

A graded family of problems can be created by varying the 
difficulty of the tasks, in terms of the depth of the tree, the amount 
of information available at each cell, and the complexity of the 
lineages. The models can also incrementally incorporate 

additional components of biological complexity [4, 5] (see Figure 
3).  

Another benchmark problem is the control of plant development, 
which can be computationally specified by L-systems. Again, in 
our research we use a genetic regulatory network to control the 
system, but in this case, the network only needs to control the 
parameters of the L-system, rather than every cell in the plant. 
Mutating the parameters of a plant model produces a broad range 
of phenotypes [34]. 

The evolution of the plant L-systems can be compared to the C. 
elegans lineages. The architectures for the two models differ in 
complexity, as hundreds or thousands of parameters are used in 
the lineage tree simulations compared to less than ten variables to 
control the plant phenotype. The variables in plant growth are 
expected to be easy to evolve because the complexity of the 
system has been encapsulated in the L-system, which is a 
generative grammar that expresses just those aspects that enable 
the system to evolve coherently. A specified set of parameters 
enables the mutations to be easily aligned with the phenotypic 
selection.  

In current work we are extending the plant studies using selection 
criterion based on measured properties of the resulting 
phenotypes, trading off factors such as leaf coverage versus water 
consumption. Many additional methodological challenges remain 
to be addressed. One, in particular, concerns the connection 
between the control of cell divisions that create lineage trees, and 
the way in which such systems can be understood as grammars, or 
parameterized morphological forms, such as L-systems.  

2.3 Long term research questions 
The family of models developed to date constitutes a framework 
that includes the levels of artificial genome (nucleotide strings), 
genetic regulatory networks, and different models of phenotype 
based on both lineage trees and generative grammars.  

This overarching framework facilitates the study of a range of 
complementary questions that address relationships between 
levels of description, questions about developmental processes, 
and evolutionary question.  Specifying one aspect of the system, 
such as the lineage tree model of development enables 
comparison between different models of genetic regulatory 
systems and the effect of different genotypic representations.  

Conversely, fixing the model of genetic regulation enables 
comparison of the control of different phenotypic systems and 
exploration of the evolutionary history of various body plans and 
the phylogenetic relationships between them. 

The models also enable the investigation of a variety of questions 
in the control of complexity. In particular, we are investigating the 
role of non-coding RNA in cell regulation and its potential 
influences on evolution and development of complex organisms 
[21, 29]. This is a long term project, with many converging lines 
of evidence. The in silico studies provide a platform for 
comparing the computational power of genetic architectures with 
and without non-coding RNA regulation.  

Cellular control systems are remarkably robust, but many factors 
can damage or subvert the natural controls. When gene regulation 
is interfered with, the resulting cells frequently die, but those that 
survive have the potential to form tumors. Cancers were once 
thought of as diseases of genes, but are increasingly being studied 
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as diseases of gene regulation. Networks can be used to simulate 
the dynamics of the genes and signals that regulate P53, a gene 
that has been implicated in more than half of all cancers [16]. 

3. MODELING PRACTICES 
The aim of the final section of this paper is to discuss modeling 
issues and practices and ways to enhance them. As one might 
expect, the characteristics of model development for in silico 
research differ from traditional software engineering. It helps to 
highlight where major differences lie and consequences for 
effective research. 

3.1 Issues specific to in silico modeling 
As in any science, the ultimate goal of an in silico model is to gain 
insight into the phenomena of interest. However, the structure of 
models that might provide insights into system-level properties is 
often non-obvious. Biological systems span multiple levels of 
time and space, and interactions link the systems from the very 
bottom to the top and back again. In model design a constant 
tension exists between fidelity to biological detail and the right 
level of abstraction at which to model causal factors of interest.  

Three issues are fundamental to the modeling of complex 
biological systems: 

1. Choosing tasks that incorporate appropriate challenges 

A modeling task can be thought of as what a system does. 
Typically tasks have a high level description and a computational 
specification. For example, in the C. elegans lineage simulations, 
the conceptual task is for a genetic regulatory network to control 
the development of the lineage tree of a nematode starting from a 
single cell. Simpler versions of the task could involve controlling 
branches of the tree. To turn the conceptual task into a simulation, 
it needs to be specified as a mapping between a set of inputs and 
outputs. For example, in the cell lineage task, the inputs could be 
the position of each cell at each point in time and information 
from their neighbors. The required output from the controller 
could be whether each cell divides or differentiates at each point 
in time.  

Tasks are points of communication between biologists and 
computational specialists and for a model to be relevant, the 
conceptual tasks need to be interesting and important to 
biologists. A complaint from biological colleagues against some 
artificial life models is that they stray too far from real biological 
systems for their results to be applicable [10]. Clearly, modeling 
tasks need to be chosen with care, as there is a risk that toy worlds 
can focus attention on problems that are rare or non-existent in 
biology while omitting or sidelining fundamental issues that are 
core to biological theorizing. When models abstract away from 
biological details to the extent that they can no longer relate to 
real world data, the onus is on the modelers, not the biologists, to 
demonstrate the usefulness of their techniques. 

A counter complaint from computational modelers is that many 
biologists appear to be disinterested in simulations that address 
general characteristics of the systems they study. At the two 
extremes, these positions need not communicate, since there are 
biological questions for which insight into higher levels of 
organization has little utility, just as there are complexity 
questions for which biological grounding has minimal impact. 

However, where complex systems modeling is being used to 
develop and advance biological theory, dialogue is critical.  

2. Choosing the appropriate level of abstraction 

One of the most common phrases the computational modeler 
hears, on (she believes) grasping the essence of a biological 
system of interest is “Well actually, it’s not that simple.”   In 
biology, the devil is in the detail. There is a temptation to believe 
errors in biological models always occur because too little detail 
has been included and that additional biological facts would 
enhance the model. 

However, not all aspects of a system have equal explanatory 
power. Searching for the causal factors requires the right level of 
detail, omitting details not relevant to functionality of the system. 

Consider the phenomena of a traffic jam. The components on a 
highway could include cars, trucks and other vehicles. In trying to 
understand traffic jams, some understanding of vehicles is needed, 
as well as their speeds, directions and distances from one another. 
However, specific details about the details of each vehicle’s 
engine would detract from understanding the essence of a traffic 
jam. An appropriate level of abstraction would transfer to other 
traffic jams such as bicycles or people in subways, which have 
speeds and directions, but not engines. 

All models, by necessity, neglect aspects of biological reality. 
However, some models, when framed at an appropriate level of 
abstraction, provide an understanding of a system's behavior that 
could not have been obtained at a higher or lower level of detail.  
Choosing the right level at which to model components and their 
interactions requires understanding both how the components 
arise from a lower level of detail, and how the behavior that they 
generate integrates into the system at a higher level of description.  

3. Appreciating the nature of the design process 

The design process for in silico research involves both technical 
and social aspects. Models are not created in a single design 
session at the beginning of a project, but rather they evolve with 
the understanding of both the modeler and the domain experts. 
Details are added and removed, tasks are refined, and 
understanding the link from mechanism to behavior is gradually 
unfolded. There is typically a long lead time in developing an 
effective in silico model. 

For example, a classic simulation of the Baldwin effect (the effect 
of learning upon evolution) was first published as an elegant 
model using a vector of just 20 elements [19]. It is a simple model 
that can be replicated easily. However, the original modeling 
effort consisted of more than twenty designs over several months 
as the essential aspects of the system were understood and the 
simulations were refined. 

The inherently iterative nature of the in silico design process has 
to be taken into account in communications within the modeling 
team and between modelers and domain experts.  

3.2 More than code 
Computer modeling is sometimes mistakenly seen as merely 
programming, with a model comprising nothing but its code. A 
central tenant of programming (succinctly expressed in the title of 
a classic text by Wirth [37]) is that the finished product – the 
program – is the sum of its algorithms and data structures: 
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Algorithms + data structures = programs 

Software engineers realized that there is more to programming 
than the finished product. The human team in a modeling project 
brings a wealth of experience to the design task. Such experience 
includes background knowledge of the strengths and weaknesses 
of algorithms, efficient implementations, parameter choices, 
reusable and extendable designs, rapid prototyping techniques, 
extensive knowledge of the domain of interest, and much more.  

Wirth’s tenant could be adapted for the modeling process as: 

 Algorithms + data structures + experience = modeling 

The art of modeling includes understanding the options and the 
tradeoffs that are appropriate to the domain to be modeled. 
Modelers frequently share code or pseudocode, but code only 
contains the options that were chosen, not why they were 
appropriate or what the alternatives were. We argue that the 
complex systems modeling community is ready for the explicit 
acknowledgement and communication of such information. The 
key question is how to formalize the knowledge of experienced 
modelers. 

3.3 Lightweight software practices 
The majority of models in our group (and amongst others we have 
informally surveyed) are developed by teams of one to six people. 
In practice, no matter how much thought is put into a prototype 
model, or how experienced the software engineer, virtually all 
prototype simulations are substantially rewritten as appropriate 
directions for generalization emerge. An appropriate balance 
between breadth and depth is required to facilitate effective 
modeling.  

Recently we have been reviewing complex systems practices and 
software engineering literature to determine the characteristics of 
in silico modeling projects, and to find appropriate techniques to 
enhance the speed and quality of modeling studies. Through an 
online survey of members of the ARC Centre for Complex 
Systems Genetic Regulatory Network (GRN) group and focused 
interviews, four characteristics were identified as important for 
understanding current GRN research projects [33]: 

1. Team sizes are typically small and even with a modeler and a 
domain expert collaborating, the modeler is normally the sole 
user of the software. 

2. Software is commonly configured to address a single research 
question, and frequent redesign and reuse of components from 
current and previous projects is normal practice. 

3. The specifications for any project are rarely stable for any 
length of time. Both the modeler and the domain expert 
iteratively improve their understanding of both the underlying 
biological system and how the evolving model converges on 
essential mechanisms and behaviors of interest. 

4. The non-linear behavior of GRN models means that outcomes 
are generally unknown before run time. 

The characteristics of small teams and rapidly evolving projects 
mean that lightweight techniques are the most likely to be 
beneficial in practical studies. Lightweight techniques can be used 
to aid implementation at the component level, manually tracking 

interactions for very small systems, and extensive use of 
visualization of system structures and behaviors [33]. 

The software that supports model development is a de facto 
language for expressing and testing theories. Some software may 
be so specific that it facilitates only a single simulation. Other 
software may be so general that any simulation requires 
considerable effort. The choice of which is more appropriate 
depends on the size and scope of the modeling project. 

3.4 Complex Systems Patterns as a formalism 
We believe that it is too early to standardize specific theories or 
complete methodologies for mapping biology into computation. 
Computational modeling of the processes from genotype to 
phenotype uses many different methodologies to represent the 
components and interactions of biological control mechanisms.  

However, all experienced modelers possess implicit knowledge 
about modeling; insights into effective and efficient ways of 
designing and developing models, visualizing system behaviors, 
and analyzing issues of interest such as robustness and stability, 
scalability and evolvability. These insights – practical techniques, 
efficient algorithms, useful rules of thumb, extendable model 
designs – are the implicit wisdom of individual modelers and 
small groups. Experienced modelers also have insights into 
seemingly sensible approaches that do not work in practice. 
Unfortunately, this wisdom is rarely communicated, even within 
the modeling community, and many of the same insights are 
rediscovered time and time again. A widely accepted medium for 
communicating such knowledge is urgently required. To this end, 
we have begun to formalize insights from our own modeling 
projects and started collaborations with colleagues in ACCS, 
CSIRO and COSNet1 using the software engineering concept of 
patterns [8, 13].   

A pattern is a proven solution to a commonly recurring problem 
[13]. They can occur in both model design and in systems 
performance. A pattern is expressed as a brief description of the 
problem and its solution, using ten standard headings: Name; 
Intent; Motivation; Applicability; Example; Consequences; 
Implementation; Sample Code; Known Uses; and Related 
Patterns. An example pattern could be a standard visualization 
process, such as an activation diagram (shown in the next 
section). 

Complex systems modelers would benefit from patterns that occur 
in the design of models, such as patterns guiding the choice of 
benchmark problems, software platforms, model architectures, 
analysis and visualization techniques. Patterns also occur in 
system behaviors, such as emergent robustness, evolvability, 
efficient connectivity, and modular design. Since computational 
models encompass all the implicit wisdom of modeling (not just 
software), we call these ‘Complex Systems Patterns’ .   

A more detailed description of the ideas behind the use of patterns 
as a method for capturing the implicit wisdom of the complex 
systems modeling community, and an example of a visualization 
pattern is described in [35]. 
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3.5 Example Pattern: Activation Diagram [35] 
One commonly-recurring problem in genetic regulatory network 
modeling is the visualization of system behavior, where 
interesting behaviors span multiple levels in time and space.  To 
provide a concrete feel for the nature and scope of a complex 
system pattern, this section illustrates a prototype pattern which 
solves this problem. 

Name: Activation Diagram (Classification: Dynamics-Local 
Visualization) 

Intent: Visualize micro level interaction of components over time 
to see macro level characteristics. 

Also known as: Gene expression diagram, gene activation 
diagram, expression pattern, activation signature 

Motivation: To gain insight into initial and long-term dynamics 
of a set of interacting components.  Interactive extension allows 
the user to manually change the value of any component at an 
arbitrary point in time to visualize the effects of perturbation. 

Applicability: Use the Activation Diagram pattern to: 

• visualize the characteristics of component interactions over 
time when components have binary or real-valued states 

• determine characteristics of macro level behavior such as 
ordered, cyclic, or chaotic activity 

• assess the lifecycle of macro level behaviors (such as the 
number of steps before a network settles into a certain state) 

• manually investigate robustness of macro-level behavior 

Example Visualization: Time is shown along the x axis, and each 
component is positioned 
along the y axis.  Active 
components are denoted by 
blue shading.  This diagram 
shows the component 
interactions falling into a 
cyclic state after a short 
transient period. 

Consequences: The Activation Diagram has the following 
consequences and inherent limitations: 

• it requires access to the values of all components for each 
time step 

• only a single starting state and trajectory is shown per 
diagram 

• depending on screen size, large numbers of components can 
make viewing difficult 

• very long cycles can appear similar to chaotic trajectories 

Implementation: The Activation Diagram has the following 
important implementation variations: 

1. time can be expressed along the x or y axis 

2. more than two component states can be visualized through 
shading or color variations 

Sample Code: Omitted for brevity. For details see [35]. 

Known uses: Gene expression, random Boolean networks, 
cellular automata, neural network dynamics. 

Related patterns: State Space Diagram, 3D Network Display 

4. CONCLUSION 
In this paper we have reflected on the complex systems modeling 
process itself, with the aim of understanding the progress made to 
date, and proposing directions for future improvements. 
Specifically, we contend that the modeling of complex biological 
systems can be made more efficient and more effective by the use 
of structured methodologies incorporating experience about 
modeling algorithms and implementation. 

Mapping biology into computation has both a domain specific 
aspect – biological theory – and a methodological aspect – model 
development. The power of an in silico model lies not just in the 
algorithms, but also in the task, the representational system and 
the architecture that facilitates the types of questions that the 
modelers wish to ask.  

All models have common methodologies. More than just code or 
algorithms are required to design and communicate complex 
systems models effectively and efficiently. Design Patterns are a 
well established formalism in software engineering that describe 
algorithms and contextual information about them in a structured 
manner. We suggest that they can fill the need to incorporate 
experience into the modeling process for the field of complex 
systems biology modeling. 

Our aim in proposing the formalism of complex systems patterns 
is to build a community of modelers sharing knowledge and 
experience to mutual benefit. All models contain aspects that can 
be efficiently and effectively described in the patterns formalism 
and we suggest that all modelers could contribute to codifying 
their experience by defining their own patterns and/or refining 
proposed patterns from other modelers. As a point of focus for 
collecting and distributing patterns we have established an online 
patterns repository [1] and meetings and workshops to discuss the 
proposal and refinement of patterns [2]. 
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