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Abstract. This paper analyzes sequential auctions for private value objects using
second-price sealed-bid rules. Now, the equilibrium bids for such auctions depend
on the information uncertainty of the bidders. Specifically, there are three key
auction parameters that the bidders could be uncertain about: the valuations of the
objects for sale, the number of objects for sale, and the number of participating
bidders. We analyse the bidding behaviour for each of these three sources of
uncertainty. For each setting, we first find the equilibrium bidding strategies for
the individual auctions that comprise a series. Then we analyze the effect of these
uncertainties on the computational and economic properties of the equilibrium
solution. The former analysis is essential if we want to use software agents to bid
on our behalf. The latter is essential because both the auctioneer and the bidders
want to know how these uncertainties affect their profits. Thus we compare the
outcomes for these settings from the perspective of the bidders (i.e., in terms of
their profits), from the perspective of the auctioneer (i.e., in terms of his revenue),
and from a global perspective (i.e., in terms of auction efficiency).

1 Introduction

Auctions are now being widely studied as a means of buying/selling resources in multi-
agent systems. This is because auctions are not only simple but can also have desirable
economic properties, probably the most important of which are their ability to gener-
ate high revenues to the seller and also allocate resources efficiently [13, 2, 15]. Now, in
many cases the number of objects to be auctioned is more than one. For such cases, there
are two primary types of auctions: combinatorial [12] and sequential [4, 1]. The former
are typically used when the objects for sale are all available at the same time, while the
latter are used when the objects become available at different points in time. Our paper
focuses on sequential auctions. For these, it has been shown that although there is only
one object being auctioned at a time, the bidding behaviour for any individual auction
strongly depends on the auctions that are yet to be conducted [4, 1].

Given this, a key problem in the area of sequential auctions is to study the strategic
behaviour of bidders in each individual auction. To date, considerable research effort
has been devoted to this problem, but most of this work has focussed on scenarios where
the bidders are uncertain about the other bidders’ valuations for the objects. However,



this is but one source of uncertainty, and there are other auction parameters that the
bidders could equally well be uncertain® about. Moreover, these different cases lead to
different bidding behaviour and consequently result in different outcomes.

Against this background, our objective is to analyse the bidding behaviour for a
range of uncertain information settings. Specifically, we analyse four incomplete infor-
mation settings where the bidders are uncertain about:

S1. The other bidders’ valuations for the objects.

Sa. The other bidders’ valuations and the number of objects for sale.

Ss. The other bidders’ valuations and the number of participating bidders.

S4. The other bidders’ valuations, the number of objects for sale, and the number of
participating bidders.

For each of these four settings, we first find the equilibrium bidding strategies for the
individual auctions that comprise a series. Then we analyze the effect of these uncer-
tainties on the computational and economic properties of the equilibrium solution. The
former analysis is essential if we want to use software agents to bid on our behalf. The
latter is essential because both the auctioneer and the bidders want to know how these
uncertainties affect their profits. Thus we compare the outcomes for these settings from
the perspective of the bidders (i.e., in terms of their profits), from the perspective of the
auctioneer (i.e., in terms of his revenue), and from a global perspective (i.e., in terms of
auction efficiency).

Our study shows that, provided the bidders pre-compute certain functions (which we
define in terms of their common knowledge about the auction parameters) before the
auctions begin, the equilibrium bids can be computed in constant time for all the four
scenarios. We also show that between the four scenarios, Sy yields maximum profit to
the bidders, and .S, yields maximum revenue. However, the efficiency remains the same
in all the scenarios.

The remainder of the paper is organized as follows. Section 2 describes the auction
setting. Sections 3 to 6 determine the equilibrium bids for the four information settings.
Section 7 discusses related literature, and Section 8 concludes.

2 TheAuction Setting

This model is a generalisation of [1], which studies sequential auctions for two private
value objects in the above defined setting .5 . Here, we generalise this model to m > 2
objects and also analyse it in three different information settings. There are m private
value objects for sale. Each object is sold in a separate auction using the second-price
sealed-bid rules and the auctions are held sequentially. There are n risk neutral bidders.
The valuations for the m objects are independently and identically distributed across
the bidders. Let V; : Ry — [0,1] (1 < j < m) denote the probability distribution
function for the valuation for object j.

! These other uncertainties have been studied, but mostly for single object auctions — as in [8].
Our objective is to analyze multi-object sequential auctions with different sources of uncer-
tainty.



The sequential auctions are conducted as follows. The first object is sold in a second-
price sealed bid auction. There are n bidders for this auction. The winning bid for the
first auction is announced at the end of the auction. Each bidder needs a single object.
Thus the winning bidder for an auction does not participate in any of the subsequent
auctions. All the losing bidders for an auction go to the next auction. This process
repeats for each of the m objects. In other words, the bidders continue to bid in the
auctions only until they win an object. Thus, if there are n bidders in the first auction,
then there are n — 1 bidders for the second, n. — 2 for the third, and so on. In general,
there are n — j + 1 bidders for auction j (1 < 5 < m).

Given this context, we analyse the four different incomplete information settings S,
So, S3, and Sy defined in Section 1. Note that a bidder’s uncertainty about the others’
valuations is common to all the settings. The auctions are conducted as follows. To
begin, the p.d.fs V; (1 < j < m) are common knowledge to all the bidders. However,
each bidder draws his private value signal for auction j after the end of auction j — 1.
Thus, although the p.d.fs for all the objects are initially known to all the bidders, a
bidder comes to know his valuation for auction j only just before the auction begins.

In more detail, the auctions are held as follows: i) All the bidders draw their private
value signals for auction 1 from the p.d.f. V3. ii) Auction 1 is held using the second-price
sealed-bid rules; at the end of the auction, the object is allocated to the winning bidder.
iii) The winning bidder for auction 1 leaves (because each bidder has unit demand) and
the remaining bidders go to the next auction. iv) For the next auction, the bidders draw
their private value signals (signals for auction 1 < j < m are drawn from the p.d.f. V).
V) Steps ii to iv are repeated for each of the remaining objects.

Note that the private values for our model are not correlated across the m objects.
Such correlations would occur if the value for object j = 2,...,m can be determined
on the basis of the value for object k¥ < j. However, our present work focuses on
m dissimilar objects, where such a direct relation between the objects may not exist.
Hence, for our analysis, the different objects have different distribution functions.

3 Equilibrium bidsfor scenario S,

In this setting, the p.d.fs for the valuations of the objects (i.e., V; for 1 < j < m), the
number of objects (m), the number of bidders for the first auction (n), and the auction
agenda are common knowledge to the bidders.

Since there is more than one auction, a bidder’s bid for an auction depends not only
on that auction but also on the profit he expects to get from the future auctions. This
profit depends on the number of bidders that participate in the future auctions. Given
this, we first determine this profit and then find the equilibrium bids.

If the number of bidders for the first auction is n, then let 4 (y, j, m,n) denote
a bidder’s ex-ante probability of winning the yth (for j < y < m) auction in the
series from the jth to the mth one before the jth auction begins. For instance, consider
B1(1,1,m,n), which is the probability of winning the first auction in the series of
auctions from the first to the mth one. Since 5 (1,1, m,n) is the ex-ante probability
(i.e., before the bidders draw their values for the first auction), each bidder has equal



chances of winning the first auction, i.e., 4 (1,1, m,n) = 1/n. Recall from Section 2
that if a bidder wins the first auction, he does not participate in the remaining ones.

Now consider the ex-ante probability 51(2, 1, m, n), which is the probability that a
bidder wins the second auction in the series of auctions from the first to the mth one
where $1(2,1,m,n) = (1 —1/n)(1/(n — 1)) = 1/n. This is because a bidder can
win the second auction if he loses the first one — this has probability (1 — 1/n). The
probability of winning the second auction is 1/(n — 1). If he wins the second auction
then he does not participate in the remaining auctions. In the same way, for 1 < y < m,
we get 51 (y, 1, m,n) as:

= | N =
sLmyn) = ——— [[(1- = S
Bi(y,1,m,n) n_y+1k1;[1( n—k‘+1) n_y+1k1;[1n—k+1 n

In general, for j <y <m, B1(j,y, m,n) is given by:

o) = — ot ye L]k
1(y, 7, m, —n_y+1k:j n—k+1 _n—y+1k:jn—k+l_n—j+1-
1)

Note that 51 (y, j, m,n) does not depend on y. Intuitively, before the beginning of the
jth auction, all bidders are symmetric with respect to winning the yth auction, and there
are n — j + 1 bidders left at that point. Hence, each bidder’s probability of winning the
yth auction is 1/(n — j + 1). The winner’s expected profit for the (y — 1)th auction
depends on this probability.

Let EP; (4, m,n) denote the winner’s expected profit for the jth auction in the se-
ries of m auctions with n bidders for the first one. Likewise, let 4 (j, m,n) denote a
bidder’s ex-ante expected profit from winning any one auction in the series of auctions
from the jth (for 1 < 5 < m) to the mth one. This profit is:

1

szpl(y,m,n).(z)

y=J

al(jaman) = Zﬁl(yvjaman)Epl(yvmvn) =

y=J

A definition for ER (y, m,n) will be given in Theorem 1. Note that since there are m
objects, a(m + 1,m,n) = 0.

Given that the number of objects is m and the number of bidders for the first auction
is n, for auction j, 51 (4, m, n) denotes the expected surplus (surplus is what gets split
between the auctioneer and the winning bidder, and it is synonymous with efficiency),
and ER;(j,m,n) the expected revenue. Finally, for n bidders, E(f}') and E(s}) de-
note the expected first and second order statistic for the distribution V}, from which the
bidders draw their valuations for auction j.

Theorem 1. If each auction in a series is conducted using the second price rules, then
the equilibrium for auction j (1 < 57 < m)s:

le(vj) =max{0,v; —a1(j +1,m,n)} 3)



Proof. In order to find the equilibrium strategies, we begin with the last auction and
then reason backwards. Recall that a bidder comes to know his valuation v; just before
auction j begins (i.e., after the previous 7 — 1 auctions are over).

Consider auction m. The number of bidders for this auction is n — m + 1. Since this
is the last auction, the bidding strategies for it are the same as those for a single object
auction [13]. Hence we get the following:

EP(m,m,n) = E(f;,"™"") = E(sp, ™) 4)
ESl(m7m7n) = E(fgm_m+1) (5)
ERy(m,m,n) = E(s" ™% (6)

Now consider auction j (1 < j < m). Consider bidder 1 and suppose that b* =
max;+1b; is the highest competing bid. By bidding z; = v; — a(j + 1,m,n), the
bidder will win if z; > b* and lose if z; < b*. Now suppose that he bids z; < z;. If
xj > z1 > b*, then he still wins and his profit is still x; — b*. If b* > x; > 21, he still
loses. But, if z; > b* > 21, then he loses whereas if he had bid «; he would have made
a positive profit. Thus, bidding less than z; can never increase his profit, but in some
cases it may actually decrease it. A similar argument shows that it is not profitable to
bid more than z;.

Note that, for auction j, a1 (j + 1, m,n) is a bidder’s expected ex-ante profit from
winning a future auction and is therefore constant (i.e., it is the same for all the bidders).
Now, this constant may be greater than v; or less than it. Let C' denote the condition
ai(j +1,m,n) < min{v;}. We first analyze the case where C'is true and then the
case where C is false?.

C True: For this case, v; — oy (j + 1, m, n) is always positive, so the equilibrium bids are:

Bj(v;) =vj —a(j +1,m,n) )
Since the equilibrium bid for auction j decreases by a4 (j + 1, m,n) (relative to
a single object auction), the auctioneer’s revenue decreases by the same amount.
But the surplus for an auction (which is the sum of the winner’s profit and the
auctioneer’s revenue) remains the same as that for a single object auction. Hence,
we get the following:

EPy(j,m,n) = E(ff ™)~ E(s]™") + aa(G + Lomn) - (8)
ESy(j,m,n) = E(f77*) ©)
ER\(jym,n) = E(s" ™) — a1 (j + 1,m,n) (10)

J

C False: For this case, v; — a1 (j + 1, m, n) may be negative, so the equilibrium bids are:

le»(vj) =max{0,v; —a1(j +1,m,n)}

Here, the expected surplus, the expected revenue, and the winner’s expected profit
for auction j depend on the relationship of a1 ( + 1, m, n) with the valuations for

2 As mentioned in the Introduction, this proof is a generalisation of [1] which obtained the
equilibrium for a setting with just two objects and where C'is true.



the n bidders. Let the valuations of the n bidders be v,, > v,,_1 > --- > v1. Then,
there are 3 cases we need to consider depending on this relationship. These cases
are as follows: Case 1: a1 (j + 1,m,n) < vy, Case 2: v1 < a1(j +1,m,n) < v,
Case 3: vy < a1(j+1,m,n). We now analyze each of these cases. In what follows,
we let i, denote the number of bidders whose bid for auction j is zero.

Consider Case 1. For this case, n, = n. All the bidders bid zero, and so the object
is allocated to a randomly chosen bidder. The winner pays nothing, so the winner’s
profit, the surplus, and the revenue are:

EPy(j,m,n) = E(V;|f1 7" < an(j +1,m,n)) = Eq
ES1(j,m,n) = EP1(j,m,n) = Ey
ER;(j,m,n) =0

Consider Case 2. Here n, = n — 1 and only one bidder makes a positive bid while
the rest bid zero. Thus, the object is allocated to the bidder with a positive bid. The
winner pays nothing because the second highest bid is zero, so the winner’s profit,
the surplus, and the revenue are:

EPi(j,m,n) = E(f] 7 s <ai(j+ 1,myn) < [ = By

ES1(j,m,n) = EP1(j,m,n) = F4

ER;(j,m,n)=0

Consider Case 3. For this case, n, < n — 2. Here, the winner pays the second
highest bid so the winner’s profit, the surplus, and the revenue are:

EPi(j,m,n) = B(f] 7 oa(j + 1,m,n) < 5777 -
E(sT7 " an(j +1,m,n) < 8777 +
a1(j+1,m,n) = E,

ESl(jvmvn) = E(f?7j+1|al(j + l,m,n) < 8?7j+1) = EQ,S

ERi(j,m,n) = B(s} 7 aa (j + 1,m,m) < s779%) =

a1(j+1,m,n) = Es,
By combining these three cases, we get:

EPy(j,m,n) = PoEy + PLE1 + P> E»
ESi(j,m,n) = PoEy + PLEy + PaFs s
ERI (]a m, n) = P2E2,r (11)

where the probability Py = (V;(a1(j + 1,m,n)))" 771, the probability P, =
(n—73+1)(Vi(ar(j +1,m,n)))" (1 — Vj(a1(j + 1,m,n)), and the probability
P, =1— Py — Py. Thus, given a; (j + 1, m,n), we can find EP; (4, m,n). Hence
given a; (y, m,n) for j +1 <y < m, we can find a1 (j, m,n) using Equation 2.



Between Case 1, Case 2, and Case 3, if we assume it is Case 3 (note that under this
assumption, the equilibrium bids are as given in Equation 7; so EP;, ESq, and ER;
are as given in Equations 8, 9, and 10 respectively) then the expressions for finding £ R
are easier to deal with because we do not have conditional expectations. Moreover, this
case is important because, in general, for a large number of bidders, it is quite likely
that P, = 1. This is because as n increases, E(f;') — E(s7) decreases [3], so a bidder’s
profit from future auctions decreases and ¢4 also decreases. Hence, in the following
sections, we will work under the assumption that P, = 1. We leave the analysis for the
other cases (viz., Case 1 and Case 2) as part of future work.

For Case 3, we know from Equations 2 and 8, that the time to find oy (j, m, n) for
j = 1is O(m). Since oy (j, m,n) is defined recursively, once we find ¢(1, m,n) it
means that we have already found a; (j, m,n) for 1 < j < m. Hence for auction 1, the
time to compute the equilibrium bid given in Equation 7 is also O(m). But the time to
compute the equilibrium bid for all subsequent auctions is O(1).

4 Equilibrium bidsfor scenario S»

This setting is the same as .S; except that the bidders are now additionally uncertain
about the number of objects for sale. This uncertainty is modelled as follows. We let
PL; denote the probability that auction j is the last auction. The probabilities PL;
(1 < j < m) are common knowledge to the bidders. Also, PL,, = 1, i.e., all the
bidders know that there are no more than m objects for sale. As before, a bidder’s
signal (drawn from the p.d.f. V; for auction j) is his private information.

As before, the equilibrium bids for an auction are obtained using backward reason-
ing. However, for this setting, a bidder’s ex-ante probability of winning auction y in
the series from j to m (denoted G2 (y, 7, m, n)) depends on the probability that a given
auction is the last one. Thus, we first find 8(y, 7, m,n).

To begin, consider the case where m = 2. For this case, 0 < PL; < 1 and
PLy; = 1. Since PLy = 1 (i.e., the second auction is known by all to be the last
one), B2(1,1,2,n) = 1/n,and B2(2,1,2,n) = (1 —1/n)(1 — PL1)(1/(n—1)). Here
(1 — 1/n) is a bidder’s ex-ante probability of losing auction 1, and (1/(n — 1)) is his
probability of winning auction 2. In general, for j <y < m, B2(j,y, m,n) is:

B2(y, j,m,n) = (yl:[l(l —PL)(1—1/(n—k+ 1))) x (#)

s n—y+1
1 ﬁ
= - (1—-PLy) (12)
n—j7+1 s

Let as(j, m,n) be a bidder’s ex-ante expected profit from winning any one auction in
the series from auction j to auction m where:

a?(jaman) = zﬂ?(yvjaman)EPQ(yvmvn) (13)

y=J



Obviously, as(m + 1,m,n) = 0. For this setting, we let B2(-) denote the equilibrium
bids, £ P, the winner’s profit, ES; the surplus, and ER- the revenue. The following
theorem characterises the equilibrium bids:

Theorem 2. The equilibrium for auction 5 (1 < j < m) is:
B} (v;) = vj — aa(j + 1,m,n) (14)
Proof. As per Theorem 1. (0

It follows from Section 3 that for this equilibrium, the outcome for1 < j < mis:

EPy(j,m,n) = E(f1 ) — E(s) /™) + aa(j + 1,m,n) (15)
ESs(j,m,n) = E(f7 /) (16)
ERg(j,m,n)ZESQ(j,m,n)—EPQ(j,m,n) (17)

Consider the effect of PL; on the bidding behaviour for auction j. We know from
Section 3, that the equilibrium bids for auction j depend on a1 (5 + 1,m,n). As per
Equation 2, a1 (j 4+ 1, m, n) depends on 51 (y, j, m, n) (where j <y < m). Also, since
0 < PL; <1, Ba2(y,5,m,n) < Bi(y, j,m,n) (see Equations 1 and 12). Consequently,
we get:

as(j,m,n) < ay(j,m,n) (18)

Hence, from Equations 8 and 15, it follows that EP5(j, m,n) < EP1(j, m,n). From
Equations 9 and 16 we get ES5(j,m,n) = ES1(j,m,n). Also, from Equations 10
and 17 it follows that ER2(j, m,n) > ER;(j, m,n).

Finally, we look at the time to find the equilibrium bids. We know from Equations 13
and 15, that the time to find cx (1, m, n) is O(m). Hence, for the first auction, the time
to compute the equilibrium bid given in Equation14 is also O(m). By simply using the
values obtained while finding ax (1, m, n), we get the time to get the equilibrium bid as
O(1) for all subsequent auctions.

5 Equilibrium bidsfor scenario Ss

This setting is the same as .S; except that new bidders are allowed to join a series of
auctions just before an auction in the series commences. As before, once a bidder joins
the series, he does not leave until he wins an object or else the series ends. Here, the
bidders are uncertain about the other bidders’ valuations and the number of participating
bidders. The uncertainty regarding the others’ valuations is modelled as in Section 3.
The uncertainty regarding the number of participating bidders is modelled as follows.
We let PN (j,) denote the probability that auction j has 4 bidders. The probabilities
PN(j,i) (1 < j <m)and (1 < i < n)are common knowledge to the bidders. Note
that all the bidders know that there are no more than n bidders in any of the m auctions.
Note also that the number of bidders for auction j is at least one less than the number
of bidders for auction j — 1. Finally, as before, a bidder’s valuation for an object is his
private information.



We know from [8], that for a single object second price auction, the equilibrium
bids for the case with a known number of bidders are the same as those for the case of
an uncertain number of bidders — i.e., in both cases the bidders bid truthfully. On the
basis of this result, we derive the equilibrium bids for sequential second price auctions
as follows.

Consider the last auction. Since the equilibrium bids for this auction for the case
with a known number of bidders are the same as those for case with an unknown number
of bidders [8], the winner’s expected profit, the expected surplus, and the expected
revenue are obtained from Equations 4, 5, and 6:

m

EP3(m,m,n) = ZPNmz fi)—E(si))

ES3(m,m,n) ZPN m,i)E(f)
ERs(m,m,n) = ESg(m,m,n) — EP3(m,m,n)

We now reason backwards to obtain the bids for the previous auctions. Before doing
S0, we introduce some notation. Let IV be an m element vector where IV; denotes the
number of bidders in auction 5. Also, let a3 (7, m, V) denote a bidder’s ex-ante expected
profit from winning any one auction in the series from auction 5 to auction m when the
number of bidders in each of these auctions is as given in N. Let 35(y, j,m, N) be a
bidder’s ex-ante probability of winning auction y in the series of auctions from j to m,
if the number of bidders in each auction is as given in V. For the case where the number
of bidders is not known for the individual auctions, we let «5(j,m) denote a bidder’s
ex-ante expected profit from winning an auction in the series from j to m. Then we get
the following equations:

y—1
B?)(yvjamaN) = Niy X (H(l - Nik)>

k=j

m

dB(jam;N) = ZB3(yajvmvN)EP3(yama N)

y=J
where az(m + 1,m, N) = 0 and EP3(y, m, N) is
EPs(y,m,N) = E(f)*) — E(s)") + as(y + 1,m, N)
Since the number of bidders for each auction lies between 1 and n, it follows that

az(m —1,m) is:

S>> (PN(m —1,N,,_1) x PN(m,N,,) x Bs(m —1,m —1,m,N) x EP3(m —1,m, N))
Np—1=1 Nyp=1



and, in general, as(j, m) is

Z Z ((H PN (i, N;)) x Bs(i, 7, m,N) x EPg(i,m,N))

=1\ i=j

Thus, the equilibrium bids for auction j are the same as those for S; except that a; in
Equation 7 is replaced with a:

Bj(vj) = vj —as(j +1,m) (19)

Thus, as in Section 3, we get the following outcome for this scenario:
Vi EPs(j,m ZPN gk (E(ff) — B(s§) + as(j + 17m))

v] 1E53 ]7 ZPN j7 (f )

vm 1ER3(]7 ) ES3(.77 )_ER3(]7 )

We now find the relation between « (j, m,n) and as(j, m). We know from [3],
that for auction j, E(f}') — E(s}) is decreasing in n. In order to compare a4 and as,
the number of bidders in auction 1 must be the same in both cases—i.e., PN(1,n) =1
(and for k < n, PN(1,k) = 0). Then we get:

al(jaman) 2 CYB(j, m) (20)

Intuitively, this is so because in scenario S; the number of bidders decreases from one
auction to the next, but in S5 the number of bidders may increase. And if the number of
bidders increases, a bidder’s profit is bound to decrease.

Finally, for this scenario, the number of bidders for an auction lies between 1 and
n. Thus, the vector N can take n™ possible values. For a given NV, the time to find
as(1,m,N) is O(m). Thus, the time to find cz(1,m) is O(mn™) and so is the time
to find the equilibrium bid for auction 1. As before, for all remaining auctions, the time
taken is O(1).

6 Equilibrium bidsfor scenario Sy

This scenario is the same as S5 except that the bidders are now additionally uncertain
about the number of objects for sale. This uncertainty about the number of objects is
modelled with PL (as per Section 4). Let a4 (5, m, N), B4(y, j,m, N), and a4 (j, m) be
analogous to as(j, m, N), Bs(y, 4, m, N), and a3(j, m) respectively. From Sections 4



and 5, it is straightforward to obtain the equilibrium bids for S, as follows:

EPy(m,m,n) = (H 1- PL ) ZPN m,i)(E(f},) — E(sh,))
k=1

ES,(m,m,n) = (:i_[ll (1— PLy) ) ZPN m,i)E(f)

m—1

ERy(m,m,n) = ( [Ta- PLk)) X zn: PN (m,i)E(s!)
k=1 i=1
y—1
B4(y7jamaN): (H(l_PLk)> XB3(y7jamaN) (21)
k=j
654(j7 m, N) = 264(:%]'77”/7 N)EP4(y7 m, N)
y=j
y—1
EP4(y,m,N) = ][ (1 = PLx) x EP5(y,m, N) (22)
k=1

ay(j,m) = Z Z ((HPN(ZyNI)) X64(7;aj7mvN)XE_P4(7;am7N))
Nj=1  Np=1"\i=j
B} (vj) = vj = aa(j + 1,m) 23)

As in Section 5, we get the following outcome for this scenario:
VI EPy(j,m Z PN(j, k ( (f}) = B(s§) + ol + 17m))

] 1ES4]; ZPNJv XEfk)
v;‘nzlERél(]a ) - ES4(37 ) - ER4(]am)

Since 34 (y, j,m, N) < B3(y, j, m, N) (see Equation 21) and EP4(y,m, N) < EP3(y,m, N)
(see Equation 22) it follows that:

Oé4(j, m) < o3 (]7 m) (24)

Hence EP4(j,m) < EPs(j,m) and ER4(j,m) > ERs(j,m). In order to compare
ay and ag, we need to take PN (1,n) = 1. Then, it is straightforward to see that

Oé4(jv m) S QQ(j,m,n)« (25)



Information|Cumulative surplus Winner’s Revenue| Time to
setting (1) | or Efficiency (2) profit (3) 4) find «
S E(f7N BT - E(s; ] 9-) | O(m)
+a1(j +1,m,n)
S> BT BT - BT @-Q) | 0(m)
+as(j +1,m,n)
S BT BT - BT (2-0) [O(mn™)
+as(j +1,m,n)
Sa E(f77N BT - E(s;7T] -0) [0(mn™)
+ay(j+1,m,n)

Table 1. A summary of key results for auction j (1 < j < m).

So we get EP4(j,m) < EPy(j,m,n) and ER4(j,m) > ERs3(j,m,n). Intuitively,
this happens because in .S, the number of bidders from one auction to the next may
increase while in .S, this number strictly decreases by one. So a bidder’s profit for .S, is
higher than that for Ss.

Finally, as per Sections 4 and 5, we get the time to solve Equation 23 for auction 1
as O(mn™) and for all the remaining auctions as O(1).

7 Reated Work

Since Ortega-Reichert’s [11] seminal work on sequential auctions, a considerable amount
of research effort has focussed on the subject. This work can be broadly divided into
two categories [7, 6]: that which deals with homogeneous objects and that which deals
with heterogeneous objects. The analysis of sequential auctions for homogeneous ob-
jects is very well developed for the special case where no bidder is interested in more
than one unit. Work in this category deals primarily with the study of sale price dynam-
ics and shows that even when identical objects are sold in a series, the sale price varies
from auction to auction. For instance, Weber [14] showed that in sequential auctions
of identical private value objects, the expected sale price is the same for each auction.
For sequential auctions with affiliated signals, Milgrom and Weber [10] showed that the
expected selling price has a tendency to drift upward in later auctions. Finally, Mc Afee
and Vincent [9] considered two identical private value objects and using the second
price sealed bid rules, they showed that prices increase in later auctions.

On the other hand, work in the category of sequential auctions for heterogeneous
objects includes [1, 4, 5] and mainly deals with the effect of the agenda on the auction
outcome. For instance, Bernhardt and Scoones [1] studied the effect of the agenda on the
auction revenue by considering two private value objects using the second price rules. In
the same setting, EImaghraby [4] studied the effect of the agenda on auction efficiency.
Finally, for the setting described in Section 3, Fatima et al [5] consider objects with
interdependent valuations and analyse the effect of uncertainty about these valuations
on the auction outcome.



Our work differs from the above in that we analyse four different information set-
tings, while earlier work on sequential auctions has focused only on uncertainty about
the bidders’ valuations for the objects®. By analysing a range of information settings,
our work complements and extends earlier work on sequential auctions.

8 Conclusionsand future work

This paper analyzes sequential auctions for four different incomplete information set-
tings with different sources of uncertainty. For each setting, we obtain the equilibrium
bidding strategies and the resulting outcomes for the second price sealed bid rules. We
then studied how the different sources of uncertainty affect the computational and the
economic properties of the equilibrium solutions.

On the basis of the results given in Tablel, we infer the following key conclusions
for each individual auction:

1. Sequential auctions are equally efficient in all the four information settings — see
Column 2 in Table 1.

2. Between all the scenarios, the winner’s expected profit for .S is the highest — see
Equations 18, 20, 24, and 25.

3. Between all the scenarios, the auctioneer’s revenue for S, is the highest — see Equa-
tions 18, 20, 24, and 25.

4. Since the revenue for scenario So, is higher than that for Sy, it is in the auctioneer’s
interest not to reveal information regarding which auction is the last one. This leaves
the bidders’ uncertain about whether or not there will be any future auctions and
forces them to bid higher in a given auction.

5. The time to compute the equilibrium bids for the three scenarios depends on the
time to compute the functions a1, s, a3 and a4 (See Equations 3, 14, 19, and 23).
But we know from Sections 3 to 6 that a1, as, a3, and a4 depend on the players’
common knowledge and are independent of their private value signals. Hence they
can be computed before the first auction starts and these precomputations can be
used when the auctions are run. Using these pre-computed values, it takes constant
time to compute the equilibrium bids for each individual auction in each of the four
scenarios.

There are several interesting direction for future work. Our present work assumes
that the auction agenda is common knowledge to the auctioneer and the bidders. How-
ever the agents may equally well be uncertain about the agenda (i.e., the order in which
the objects are auctioned). Since the auction outcome strongly depends on the agenda
— if we change the agenda, then the outcome changes — we need to consider scenarios
with an uncertain agenda and then find the equilibrium bidding strategies. Second, we
found the equilibrium bids using the second-price sealed bid rules. The analysis needs
to be extended to other auction rules such as English and first-price sealed bid rules.
Third, we focused on those scenarios where at least two bidders make a non-zero bid in
each auction. We need to extend our analysis to scenarios where this condition is false.

8 Even for this specific setting, the equilibrium bids were obtained for a restricted case — see
the proof for Theorem 1 for details. Here, we determine the equilibrium for the general case
without imposing any restrictions.
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