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Abstract. We develop a new model to analyse the strategic behaviour of
buyers and sellers in market mechanisms. In particular, we wish to under-
stand how the different strategies they adopt affect their economic efficiency
in the market and to understand the impact of these choices on the overall
efficiency of the marketplace. To this end, we adopt a two-population evolu-
tionary game theoretic approach, where we consider how the behaviours of
both buyers and sellers evolve in marketplaces. In so doing, we address the
shortcomings of the previous state-of-the-art analytical model that assumes
that buyers and sellers have to adopt the same mixed strategy in the market.
Finally, we apply our model in one of the most common market mechanisms,
the Continuous Double Auction, and demonstrate how it allows us to provide
new insights into the strategic interactions of such trading agents.

1 Introduction

Autonomous agents are increasingly being used in a variety of marketplace settings
— be it in electronic market institutions such as eBay or the New York Stock Ex-
change (NYSE) or in market-based control applications [1]. Now, in most of these
cases there is no known, analytically-determined dominant strategy that such trad-
ing agents can adopt. This means a multitude of heuristic strategies have been and
continue to be developed, each trying to better exploit the observable market infor-
mation. Unfortunately, this makes it difficult to determine a priori which strategies
will be effective in which situations. This is a serious concern for agent designers
because they have no principled way of selecting which strategy to adopt (impor-
tant because the various strategies can perform very differently in different market
settings). Moreover, it is also a concern for the market designer because she wants
to deploy a mechanism that is efficient and stable, but this depends on the strate-
gies that the various participants adopt. Thus, she would like a way of determining
which strategies are more likely to be adopted in a given mechanism, so that she
can determine which mechanism is likely to be best.

To address these needs, Walsh et al. [10] proposed a methodology for analysing
strategic interactions in complex games, including markets. In particular, their ana-
lytical model is an evolutionary game theoretic (EGT) approach based on computing
the mixed-Nash equilibrium of heuristic strategies and the dynamics analysis of equi-
librium convergence [11]. Now, because an EGT analysis is infeasible for all but the
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simplest games, Walsh et al. describe how complex games that involve repeated in-
teractions with more elaborate actions and payoffs can be made amenable to such
an analysis. Specifically, their model considers the high-level, heuristic strategies of
the trading agents as simple actions, and the payoff to these strategies as the aver-
age profit extracted in the market (by so doing, they essentially abstract a complex
iterated game to a simple normal-form one). To illustrate their approach, they ap-
ply it to two different scenarios, the Automated Dynamic Pricing (ADP) game and
the Continuous Double Auction (CDA) game. In the former game, there is a set
of sellers, each of which offers a good to a much larger set of buyers. Both types
of trading agents try to maximise their profits, but sellers strategise over the price
they ask for, while the buyers’ strategies are fixed: half select a seller at random,
and the rest use a shopbot to find the current lowest-price seller. Walsh et al. then
analysed how the sellers, endowed with a set of heuristic strategies, interact in the
ADP game, and what strategies these sellers are most likely to adopt. In the latter
game, multiple buyers and sellers compete to transact at the same time (see Subsec-
tion 3.1 for more details). In this case, Walsh et al. analyse the strategic interaction
of both buyers and sellers to observe how the market behaviour is evolving. Their
methodology has now been widely adopted and, in particular, Phelps et al. [4] used
it to compare two different auction mechanisms (the continuous and the call double
auction mechanisms), given that similar strategies were available for both. Further-
more, Vytelingum et al. [8] used it to look at the evolutionary stability of various
degrees of aggressiveness in bidding behaviour in CDAs.

However, a key assumption of all this previous work is that an agent will adopt
the same heuristic strategy even when it has to perform different roles (such as being
a buyer and a seller in the CDA). In games like the ADP, where agents have a single
role (as a competing seller), such an assumption does not constrain the analysis and
their methodology is appropriate. However, in double-sided games, like the CDA,
with multiple buyers and sellers, such an assumption is both unrealistic and un-
necessarily restrictive. In practice, buyers and sellers usually have different bidding
behaviours whose efficiency depends on a number of factors (including what strate-
gies other buyers and sellers adopt). The demand and supply of the market then
determines the complex interactions of these strategies, which, in turn, determine
their overall effectiveness. Given the aim of maximising its profit, an agent should
be allowed to select whatever is the best strategy for it when acting as a buyer and
whatever is the best for it as a seller. The present constraint of compromising on
both and having to select the same strategy in each role can only have a negative
effect on the agents’ economic efficiency. For example, Vytelingum et al.’s analysis
highlighted the loss in effectiveness of doing this when considering asymmetric de-
mand and supply (with the magnitude of the dynamics decreasing by up to around
60% when buyers and sellers have different preferences compared to the symmetric
and special case where the assumption is less problematic).

To address this shortcoming, we propose a two-population EGT model1 to anal-

1 It is also possible to separately analyse the strategic interactions of buyers with Sb

strategies and sellers with Ss strategies by considering the one-population EGT model.
An agent’s strategy would then consist of a buying and a selling strategy from a strategy
set of size (Sb × Ss). However, the analysis would then be more complex than with the
two-population case. In particular, when we have 2 buyer and 2 seller strategies, we would
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yse the complex interactions of buyers and sellers in the market. Specifically, we
consider a game with two distinct populations. The two populations correspond to
the two different types of trading agents, the buyers and the sellers, and they are
endowed with distinct sets of heuristic strategies. Thus, our model makes no assump-
tion that an agent must have the same strategy for buying and selling, although if
this is the best thing to do, then our model will converge to it.

In developing this new model, we advance the state of the art as follows. First,
we provide a novel analytical model that dissects the buyer and seller trading roles
in the market and allows us to analyse the market efficiency and stability from both
perspectives. This move from a one-population to a two-population EGT model is
a non-trivial extension. As well as requiring a larger set of information about the
buyers’ and sellers’ payoffs, we also need to reformulate the dynamics of the now
co-evolving buyers’ and sellers’ strategies. Furthermore, we have to reformulate the
problem to find the mixed-Nash equilibrium (which is now the mixed strategy of the
buyers and of the sellers where it does not benefit both types to deviate to another
mixed strategy). To this end, we had to devise a means of calculating the dynamics
and the mixed-Nash equilibria of the market game with buyers and sellers. Second,
to illustrate the power of our model, we analyse a typical market game, namely the
CDA, and identify strategic interactions between buyers and sellers that have not
been previously observed.

The remainder of the paper is structured as follows. In Section 2, we describe our
model, including the equilibrium computation and the dynamics analysis. Section 3
describes its application to the CDA and compares our analysis with that of Walsh
et al.’s. Section 4 concludes.

2 The Two-Population EGT Model

In a two-population game, a player i from population P selects its strategy from a set
of SP strategies, where a strategy is a policy that determines the agent’s action(s) in
the game. The payoff to each player is then a deterministic mapping of the strategies
of the players from the two populations and is usually given by a corresponding
payoff table. For generality, we assume that each player has a mixed strategy, xi =
(xi

1, . . . , x
i
j , . . . , x

i
SP

) (where xj is the probability that it plays pure strategy j) that
it plays in the game. Then, as rational behaviour dictates that each player will
change its mixed strategy for a higher payoff, we have an evolution of behaviours
as all the players in the game concurrently change their mixed strategy. EGT, then,
allows us to analyse such an evolution. To date, however, it has typically been used
to analyse simple games such as the two-population, two-player and two-strategy
Prisoner’s Dilemma (PD) [11]. Here, however, we are interested in more complex
two-population market games with Ab buyers and As sellers that are endowed with
a set of Sb and a set of Ss heuristic strategies respectively.

have a strategy space of 4 for the one-population case with the analysis in a 4-dimensional
space. With the two-population model, the analysis would be in a two-dimensional space
and so possible to visualise.
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We simplify the complex market game to a simple normal-form game (as per
Walsh et al.2). Moreover, as discussed previously, playing the complex buyer and
seller strategies in the game can be considered as high-level actions similar to the
actions in a normal-form game. The payoff to a buyer or a seller for such actions
is then the total profit that they have extracted at the end of the game (which can
last several trading days). In such cases, the payoffs are usually referred to as being
heuristic, because they are the result of the complex, non-deterministic interaction
of trading agents in the game. Thus, our analysis begins with the computation
of the heuristic payoff table and, thereafter, we analyse our market games using
a two-population EGT analytical approach. This analysis is the novel step of our
model, and it covers the equilibrium computation and the dynamics analysis of the
market game. In the former, we describe the ideal static properties of the population
proportions using the different strategies in the system (i.e. the mixed-Nash equilibria
of the game). In the latter, we detail how to calculate the dynamics ṗ = (ṗ1, . . . , ṗSb

)
and q̇ = (q̇1, . . . , q̇Ss) of the game, which describe how the buyer and seller population
distributions, p = (p1, . . . , pSb

) and q = (q1, . . . , qSs
), change3. Here, because we are

considering very large populations, we can validate that the population distributions,
p and q, are equal to the mixed strategies of the buyers and sellers. Hereafter, we
will refer to these terms as the mixed strategies of the two populations.

2.1 Computing the Heuristic Payoff Table

The heuristic payoff table specifies the expected return to each agent as a function
of the heuristic strategies played by all agents. Now, for a two-population, normal-
formal game with Sb buyer strategies, Ss seller strategies, Ab buyers and As sellers,
we require

(
SAb

b × SAs
s

)
entries in the table. However, because the table size in-

creases exponentially with the number of strategies, some simplifications are neces-
sary to make the analysis tractable. In particular, Walsh et al. restrict their analysis
to symmetric mixed-Nash equilibrium when they assume that each agent from the
single population has the same mixed strategy and, hence, expects the same payoff
when playing the same pure strategy. In our case, when considering two populations,
the size of the payoff table then reduces considerably to

(
Ab+Sb−1

Ab

)
×

(
As+Ss−1

As

)
.

For example, for a market game of 10 buyers and 10 sellers, each endowed with 2

2 Note that there are other techniques that have been used in the literature to simplify
complex games such that they are more computationally tractable. Specifically, Wellman
et al. [12] have worked on empirical game-theory where they demonstrated how a complex
game can be reduced by iteratively selecting the best strategies in an evolutionary process
and reducing the number of strategies. However, in this paper, we are not interested in
how complex games can be simplified but rather on how we can analyse the complex
interactions of buyers and sellers. Indeed, we do not reduce the CDA games but only
assume symmetric payoff across buyers and across sellers. Such a technique of reducing
games could be used in our analysis when we need to consider a large set of strategies. In
such cases, the number of strategy profiles would explode as we increase the strategy set,
and we would then need to reduce the CDA game such that the anlysis is computationally
tractable.

3 subject to the constraints that
∑Sb

h=1
ph = 1 and

∑Ss

k=1
qk = 1.
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different strategies, the size of the payoff table reduces from 1.05× 106 to 121 (from
asymmetric to symmetric payoffs in each population).

For the exhaustive set of strategy profiles4, we calculate the different payoffs
(which is the most computationally intensive part of our analytical approach) to the
different strategies adopted by the players from the different populations in the mar-
ket. Because of the non-deterministic nature of the table, we require a statistically
significant number of independent runs for each profile. Thus, we considered 2500
runs and validated our results at the 95%-confidence-interval by running the non-
parametric Wilcoxon rank sum test [2] on the difference,

[
ub(eh, p, q)− ub(p, p, q)

]
,

between the actual and the expected payoff . We chose such a test because we cannot
ensure the normality of our data set and because we want to ensure statistical sig-
nificance of our dynamic analysis, particularly around mixed-Nash equilibria where
that difference is significantly smaller.

Given the heuristic payoff table (see [7] for an example), we can now proceed to
the equilibrium analysis.

2.2 Equilibrium Analysis

First, we describe how to calculate the mixed-Nash equilibrium given the heuristic
payoff table. As discussed in [3], it is possible to formulate our solution as the global
minimum of a real-valued function, v(p, q) (given in Equation 1), on a polytope,
whose fixed points approximate the mixed-Nash equilibria (pnash, qnash):

v(p, q) =
∑Sb

h=1(max
[
ub(eh, p, q)− ub(p, p, q), 0

]
)2 +∑Ss

k=1(max
[
us(ek, q, p)− us(q, q, p), 0

]
)2 (1)

In Equation 1, ub(eh, p, q) represents the expected payoff to a buyer adopting pure
strategy h when the other buyers adopt a mixed strategy p and the sellers a mixed
strategy q. ub(p, p, q) =

∑Sb

i=1 ub(ei, p, q)pi is the average payoff to a buyer in the
market. Similarly, us(ek, q, p) is the expected payoff to a seller adopting pure strategy
k when all buyers adopt mixed strategy p and the rest of the sellers adopt mixed
strategy q. us(q, q, p) =

∑Ss

j=1 us(ej , q, p)qj is the average payoff to a seller in the
market. Now, when calculating the expected payoff of a buyer using a pure strategy
h, we consider a significant number of games where one buyer adopts pure strategy
h, (Nb−1) buyers adopt mixed strategy p and Ns sellers adopt mixed strategy q. The
individual profit of all agents using the pure buyer strategy h, is then averaged over
all the games as the required payoff. A similar procedure applies when calculating a
seller’s expected payoff.

The mixed-Nash equilibrium is calculated as the values that minimise function
v(p, q). Such a non-linear minimisation problem is non-trivial and, indeed, can be
computationally demanding. Thus, we use the non-linear minimisation algorithm
provided by the Matlab optimization toolbox to solve the problem of finding the
4 A strategy profile [ρb, ρs] defines the number of buyers ρb = (ρb

1, . . . , ρ
b
Sb

) and sellers
ρs = (ρs

1, . . . , ρ
s
Ss

) using the different buyer and seller strategies. An example of the 121
strategy profiles for the above 10 buyers and 10 sellers game would be [(1, 9), (2, 8)],
where we have 1 buyer using buyer strategy 1, 9 buyers using buyer strategy 2, 2 sellers
using seller strategy 1 and 8 using seller strategy 2.
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zero-points that minimise v(p, q). Furthermore, because the toolbox can only find
local minima, we repeatedly restart the algorithm at random points (p and q) until
no new minimum is found for 20 consecutive runs.

Having looked at the static perspective of our analysis of the market game, we
now consider the dynamic perspective.

2.3 Dynamics Analysis

To analyse the dynamics of the market game, we use the well-researched replicator
dynamics [11], which assumes that a trading agent will deviate to another strategy
if it can be more profitable by so doing. We chose the replicator dynamics as it has
been shown to be a good approximation to common agent learning models, such
as reinforcement learning [6], which we would typically find in such markets. The
following equations describe precisely how we calculate the dynamics, ṗh for pure
buyer strategy h and q̇k for pure seller strategy k:

ṗh =
[
ub(eh, p, q)− ub(p, p, q)

]
ph (2)

q̇k =
[
us(ek, q, p)− us(q, q, p)

]
qk (3)

To observe the dynamics of the game, we calculate trajectories (i.e. how the mixed
strategies change). In more detail, we start with any pair of mixed strategies (p, q),
and calculate the dynamics ṗ and q̇ given by Equations 2 and 3 respectively, as we
progress along a certain trajectory. It is interesting to note that, at the mixed-Nash
equilibrium, the dynamics of the two populations are zero, meaning that it does
not pay for a buyer or a seller to change to another mixed strategy. In this case,
a trajectory either converges or diverges from a mixed-Nash equilibrium. When we
have convergence, we say that the equilibrium is an evolutionarily stable strategy
and it is referred to as an attractor. Where we have divergence, the equilibrium is
unstable to small fluctuations and it is known as a saddle point. The region within
which all trajectories converge to a particular attractor is the basin of attraction of
that equilibrium. More formally,

Definition 1. A trajectory is the change in mixed strategy, starting from a par-
ticular mixed strategy, and following the replicator dynamics.

Definition 2. An attractor is a mixed-Nash equilibrium towards which replicator
dynamics (trajectories) converge.

Definition 3. A saddle point is a mixed-Nash equilibrium from which replicator
dynamics (trajectories) diverge.

Definition 4. A basin of attraction of a mixed-Nash equilibrium is the space of
mixed strategies from which trajectories will converge to that equilibrium. The area
of the basin corresponds to the probability that this equilibrium will be reached if we
assume that it is equally likely for an agent to start at any mixed strategy.

Definition 5. An evolutionarily stable strategy (or ESS) is a mixed-Nash
equilibrium which, if adopted by buyers and sellers, cannot be invaded by any com-
peting alternative strategy. An ESS is asymptotically stable in the replicator dynam-
ics, such that trajectories do not necessarily have to settle at the equilibrium (which
would be neutrally stable in that case) to be an ESS (see [11] for more details).
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When we analyse a game, we identify all the attractors and saddle points, as well
as the basins of attraction. The volume of the space covered by a basin is proportional
to the probability that a mixed-Nash equilibrium will be adopted. Thus, basins of
attraction provide insights into which equilibria are more likely to be adopted in the
market.

3 Application to a Market Mechanism

Having detailed our analytical model, we now apply it to the CDA game, chosen for
being one of the most popular and widely adopted market mechanisms in financial
institutions and for its applications to market-based control, where decentralised
allocation of scarce resource is required. Also, related work on the CDA has used
Walsh et al.’s model [4, 8], and through the analysis given by our model, we intend
to demonstrate the shortcomings of such previous applications of their model.

Our analysis is feasible for any number of buyers and sellers and for any number
of strategies. However, a visual representation of the trajectories of the replicator
dynamics and the equilibria is only possible when considering at most a set of two
strategies in either population (because we can effectively plot the replicator dynam-
ics in a two-dimensional space) and so this is the case to which we limit ourselves
here. In this section, we first detail the CDA game and the agent strategies before
undertaking the actual analysis of the strategic interactions of buyers and sellers.

3.1 The CDA Game

To allow valid comparisons, we consider the same model of the CDA mechanism
as in the papers mentioned above. Specifically, in such a model, buyers and sellers
are allowed to submit bids and asks respectively. The market clears continuously
whenever a transaction is possible, and at all times during the game we have an
outstanding bid (highest uncleared bid) and an outstanding ask (lowest uncleared
ask). The market mechanism is principally a set of market protocols that define the
type of bids and asks allowed and the clearing rules that are in operation. For the
model we consider here, single-unit bids or asks (offers to buy or sell a single unit of
a good) are allowed, with the market clearing at the average of the accepted bid and
ask. The CDA market protocol also includes the NYSE spread-improvement rule
that states that a bid or an ask will be accepted in the market only if it improves
upon the outstanding bid or ask previously submitted.

To run such a market game, we developed a discrete-time simulator implementing
the buyers and sellers with their different strategies, and the market with its proto-
cols and clearing rules. At the beginning of a trading day, the buyers and sellers are
endowed with a number of limit prices corresponding to the units to buy or sell. Each
trading day lasts 1000 time steps and, at each time step, an agent is randomly trig-
gered to submit a bid or an ask. Furthermore, for the purpose of these simulations,
we consider an arbitrary dynamic scenario with 10 buyers and 10 sellers, lasting 20
trading days with a market shock (a sudden change in the demand and the supply)
on day 11. Specifically, by specifying the trading agents’ limit prices, we can induce
different market demand and supply. Here, we have a shock with an asymmetric de-
mand and supply (with a flat supply and with buyers’ and sellers’ limit prices drawn
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from two uniform distributions, Ub = U(1.5, 4.5) and Us = U(2.8, 3.2)) changing to a
symmetric demand and supply (with Ub = U(1.5, 4.5) and Us = U(1.5, 4.5)). While
the choice of the scenario is not fundamental to the analysis, we wish to demon-
strate that an analysis is feasible even in such complex and dynamic environments
(we observe similar trends for a wide variety of scenarios in [7]).

We now describe the strategies with which the buyers and sellers are endowed.

3.2 The CDA Strategies

We will consider the state of the art GDX [5] and AA strategies [7] (the latter is
an extended version of the RB strategy [9]). In this context, the choice of strategies
is not central to this analysis. Rather, our principal aim is to demonstrate how our
EGT model can be used to evaluate the efficiency of strategies in marketplaces.
Nevertheless, we do need to describe these strategies in more detail.

The GDX strategy is an extended version of the GD strategy, which adopts an
expected-profit maximising approach. Specifically, it calculates a belief that a bid
or an ask will be accepted in the market, based on the past market information.
This belief is then extrapolated over the space of feasible bids or asks, and the
bid or the ask that maximises the expected profit is submitted in the market. The
GDX extension adds a new dimension to the strategy, namely time. Specifically,
it calculates the number of bidding opportunities that the agent still has left and
further strategises with the knowledge that the agent can be more profitable if it
waits longer. The expected profit is now calculated to factor in this number of
bidding opportunities and a discount factor associated with the bid or ask. Based
on the simulations in [5], we use a discount factor of 0.9, which was empirically
demonstrated to be the most efficient.

The AA strategy is an improved version of the RB strategy. In particular, it
has a short and a long-term learning mechanism that adapt its bidding behaviour
to the changing market conditions. The short-term mechanism updates the agent’s
bidding aggressiveness to immediately respond to short-term market fluctuations.
The agent’s long-term mechanism, on the other hand, learns its aggressiveness model
(which determines how the degree of aggressiveness translates to a bid or an ask to
submit in the market) to adapt to long-term changes in market conditions and to
enable the agent to perform efficiently in dynamic environments, such as the one
under consideration here.

Given the market mechanism and strategies, we now analyse the buyers’ and
the sellers’ strategic interactions using our two-population EGT model, before we
compare this with the corresponding one-population analysis.

3.3 The Analysis

We analyse how buyer and seller behaviours change assuming they can choose be-
tween the two strategies. First, we generate our heuristic payoff table (which requires
several hours of simulations for each of the exhaustive set of the 121 strategy profiles
given the 2500 runs of 20 trading days each for each profile), and we then go on to
perform the actual EGT analysis for our dynamic scenario with the GDX and AA
strategies.
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As we are considering a set of only 2 strategies in either population, we can plot
the replicator dynamics, (ṗ1, q̇1), as vectors at different (p1, q1) in a two-dimensional
figure. In such cases, the horizontal axis represents the buyer population proportion,
p1, and the vertical axis represents the seller population proportion q1. Then, the
different vertices correspond to different pure buyer and seller strategies. An exam-
ple of such an EGT analysis is given in figures 1 and 2 (for 10 buyers and 10 sellers).
The former plot gives the replicator dynamics of the analysis, with its shading de-
noting the magnitude of the dynamics, (|ṗ1| + |q̇1|), given the mixed strategies of
the buyers and sellers. As the magnitude of the dynamics decreases (and the shad-
ing is darker), there is less and less incentive to deviate to another strategy, until
the magnitude is 0 at a mixed-Nash equilibrium, at which point it does not pay to
deviate to another buyer or seller strategy. The latter plot gives the magnitude of
the buyers’ and sellers’ dynamics, with a mixed-Nash equilibrium occurring when
the magnitude of both dynamics is 0. We consider these magnitudes to compare the
buyers’ and sellers’ payoff difference when deviating to the more efficient strategy.
Furthermore, we also consider the market efficiency at the different mixed strategies
and, specifically, at the mixed-Nash equilibrium (see Figure 3 for an example). This
replicator dynamics is rational from a selfish agent’s perspective as it deviates to the
most profitable strategy when it attempts to maximise its individual profit. How-
ever, from the market designer’s perspective, maximising social welfare (i.e. market
efficiency) is the objective. But, because the market designer cannot specify the
behaviour of the market (i.e the behaviour of every buyer and seller), it can only
influence the market efficiency by designing the structure of the market mechanism,
which, in turn, influences the market behaviour. Now, the ESS is not reached in-
stantaneously but rather as the result of an online learning process and the market
designer is interested in how the market efficiency changes during that process to
finally settle at the ESS. Thus, the market designer can use such an analysis of ef-
ficiency to identify how market efficiency evolves as well as the evolutionarily stable
efficiency (i.e. the efficiency at the ESS) which would be insightful in modifying the
structure of the mechanism to maximise its evolutionary stable efficiency. Formally:

Definition 6. The evolutionarily stable efficiency is the market efficiency (ana-
loguous to the average population fitness in the evolutionary computing literature) at
the evolutionarily stable strategy.

In the CDA game we consider, we have three attractors A (at pure strategy AA
for the buyer and seller), B (at pure strategy GDX for the buyer and seller) and
C (at pure strategy GDX for the buyer and pure strategy AA for the seller), and
two saddle points D and E. Specifically, the area of the basin of attraction of A is
0.78, that of B is 0.12 and that of C is 0.10. Based on this, we can infer that there
is a 78% chance that AA will eventually be adopted by all buyers and sellers in the
market, a 12% chance that GDX will eventually be adopted by all buyers and sellers
and, finally, a 10% chance that all buyers will adopt GDX and all sellers will adopt
AA. Furthermore, if we aggregate these results, there is a 12% chance that GDX will
eventually be adopted by all buyers and sellers, and a 10% chance that, eventually,
all buyers will adopt GDX and all sellers will adopt AA. We can further infer that
there is a 88% chance the sellers will adopt AA, a 12% chance they will adopt GDX,
and there is a 78% chance the buyers will adopt AA and a 22% chance they will
adopt GDX.
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Fig. 1. The replicator dynamics for the market with 10 buyers and 10 sellers. Here, we have
three attractors: A at (1,1), B at (0,0) and C at (0,1) and two saddle points: D at (0.19,1)
and E at (0,0.40). The dotted line denotes the boundary between the basins of attraction.

When we consider the trajectories when GDX buyers are in the minority (right-
hand part of the dynamics plot), we observe that the sellers nearly always deviate
to AA. As GDX becomes more popular among buyers (with trajectories flowing
towards the left, i.e. GDX), sellers now deviate to either GDX or AA (shown by the
trajectories flowing either to the top at AA or to the bottom at GDX), depending in
which basin of attraction they are. When we consider the magnitude of the buyers’
and the sellers’ dynamics (Figure 2), we observe that the latter is larger than the
former, specifically when AA buyers are in the majority (when p1 is close to 1).
This implies that there is, then, a fast convergence of the seller’s strategy to AA,
suggesting that AA sellers are most profitable when competing against AA buyers
and the strategies quickly evolve to AA. Furthermore, we observe that there is
significantly less economic incentive to deviate to another strategy when GDX is in
the majority (shown by the lower magnitude of the buyers’ and sellers’ dynamics).
Thus, it takes longer for the strategy to evolve to either the mixed-Nash equilibrium
B or C.

Furthermore, as discussed in Section 1, such an analysis allows the market de-
signer to observe how the behaviours of the buyers and sellers evolve. Now, because
the market efficiency changes as the behaviours change, the market designer is in-
terested in how efficient the market will eventually be. To this end, we also calculate
the efficiency of the market given the different buyers’ and sellers’ behaviours (see
Figure 3). In particular, we observe that stable outcomes (attractors A, B and C) of
the game are not the most efficient (which is at mixed strategy X — see Figure 3).
Such an analysis therefore enables the market designer to observe how the market
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Fig. 2. Magnitude of the buyers’ and sellers’ dynamics for the market with 10 buyers and
10 sellers.

efficiency changes with the co-evolving behaviours of the buyers and sellers, as well
as the evolutionarily stable efficiency of the market at the ESS. The designer can
use such insights to decide how effective is the market protocol (which defines how
buyers and sellers interact and which is the only aspect of the marketplace that he
can change), and how to modify it to maximise the evolutionarily stable efficiency
of the marketplace.

3.4 Comparison with Walsh et al.’s Model

We have previously argued that our two-population model offers better insights into
the behaviour of the CDA (and other mechanisms where agents have more than one
role). Now, in order to see this directly, we compare the two in a given scenario.
Specifically, the EGT plot using the two-population model is the scenario we con-
sidered above (for 10 buyers and 10 sellers) and the corresponding one-population
model is given in Figure 4. Note that such a comparison is possible as we use the
same set of strategies for buyers and sellers in our two-population model. Here, as we
are considering the same two strategies that an agent can choose from, the dynamics
are given by a one-dimensional plot, where GDX is the pure strategy at 0 and AA
is the pure strategy at 1. We begin by reviewing the one-population model. Here,
the replicator dynamics, ẋ = (ẋ1, ..., ẋS), describe how the population distribution5

x changes (where x = (x1, x2, ..., xS), x ∈ ∆ is an element of a unit-simplex ∆,∑S
j=1 xj = 1 and S is the number of strategies an agent can select from). In this

case, ẋ and the mixed-Nash equilibrium xnash are calculated as follows:

ẋj =
[
u(ej , x)− u(x, x)

]
xj (4)

xnash = arg min
x∈∆

S∑
j=1

(
max

[
u(ej , x)− u(x, x), 0

])2
(5)

5 Note that because buyers and sellers are assumed to adopt the same behaviour, p = x
and q = x.
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Fig. 3. Efficiency of the market with 10 buyers and 10 sellers. A, B and C are the attractors.
Mixed strategy X at (0.92,1) is the behaviour that gives the highest market efficiency.

where u(x, x) =
∑S

j=1 u(ej , x)xj is the average payoff of an agent in a population
with distribution x.

Fig. 4. The one-population EGT analysis for the market with 10 buyers and 10 sellers. We
have two attractors: A′ at 1 and B′ at 0 and a saddle point: C′ at 0.30.

From Figure 4, we observe two attractors A′ at 1 and B′ at 0, and a saddle
point C′ at 0.30. By considering the space of trajectories that converge to either
attractors, we infer that there is a 30% chance that all agents (buyers and sellers)
will eventually adopt the pure strategy GDX, while there is a 70% chance that all
agents will eventually adopt the pure strategy AA. We also observe that AA is more
efficient than GDX (as more and more agents adopt AA) when in the majority
(shown by the higher magnitude when close to 1, i.e. AA), while GDX is more
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efficient than AA when in the majority (shown by the higher magnitude when close
to 0, i.e. GDX). At the saddle point C′, the strategies are equally efficient and,
thus, it does not pay for an agent to deviate to another strategy. When we consider
market efficiency, we also observe that the agent’s behaviour that maximises the
social welfare is not necessarily evolutionarily stable (shown by the fact that the
efficiency at ESS B′ is lower than at C′). Thus, while the behaviour at C′ is better
than that at B′, from the market designer’s perspective, C′ is not a stable outcome,
and the behaviour will change (even if the market efficiency decreases whether the
agents select GDX or AA) and converge to an ESS.

As we would expect, this shows certain similarities with the dynamics of the two-
population model. Specifically, we also have two attractors at the pure strategies,
AA and GDX, but with a probability of 0.78 and 0.12 that they will be adopted
respectively. Thus, the one-population model incorrectly predicts the probabilities of
the outcomes and the eventual state of the market behaviour. Moreover, because the
one-population model cannot predict whether buyers and sellers will adopt different
strategies, it can miss different mixed-Nash equilibria and, in this case, it missed the
ESS at C. Now, the impact of using the wrong ESSs and probabilities is that the
market designer incorrectly predicts the evolutionary stable efficiency and its likeli-
hood. While it is possible that the one-population model predicts a high evolutionary
stable efficiency, it is possible that the market behaviour settles at an unpredicted
and very poor market efficiency (where buyers and sellers have different behaviours).
This is not desirable, and is exactly what the market designer must ensure never
occurs. Furthermore, the analysis of our two-population model explicitly shows that
the assumption that buyers and sellers adopt the same behaviour is wrong. If we
consider an example at x1 = 0.25 in the one-population model, we can see that in
this case, the agent deviates to GDX. In the two-population model, at p1 = 0.25 and
q1 = 0.25, the buyer deviates to GDX, while the buyer deviates to AA. Thus, buyers
and sellers do not necessarily adopt the same strategy and such a wrong assumption
simply cannot be made. This is a fundamental and intrinsic shortcoming of Walsh
et al.’s approach which this two-population model addresses.

In summary, the one-population model only considers the case where p = q. The
one-population analysis is really an approximation of the dynamics of this model
as the cross-section along the p1 = q1 axis in the two-population model. However,
because of this approximation along the one dimensional space (where buyers and
sellers deviate to the same strategy), it effectively misses all the possible phenomena
that occur in the two-dimensional space (specifically how buyers and sellers generally
deviate to different strategies). Furthermore, the observations that buyers and sellers
do indeed adopt different strategies when they are given the freedom to do so is proof
that our method is a more accurate predictor of behaviour. Indeed, we showed that
the assumption that buyers and sellers behave in a similar manner is flawed and
there is a whole space of dynamics that is overlooked in the original model.

4 Conclusions

With software agents becoming increasingly prevalent, a better understanding of
their interactions in marketplaces is highly desirable. To this end, we advance the
state of the art by developing a novel analytical model of marketplaces with mul-
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tiple buyers and sellers. Our model removes the key restriction of previous work
that agents must adopt the same strategy as both a buyer and a seller. In so doing,
our model provides a more insightful analysis in terms of buyers’ and sellers’ strate-
gic behaviours. To illustrate this, we showed how our model identified important
interactions in the CDA that Walsh et al.’s model could not.

For future work, we want to look at other double-sided market mechanisms with
multiple buyers and sellers (such as the call double auction). We also intend to look
at more general market games where we have players with two or more different
roles that are not necessarily buyer and seller. First, we intend to look at games
with multiple buyers and an auctioneer in which the buyers are endowed with a set
of buyer strategies and the auctioneer with a set of clearing strategies. Then, with
each type of player being rational and trying to maximise their economic efficiency,
our model will provide us with insight into how the market structure (determined by
the market clearing) and bidding behaviours would co-evolve. Second, we intend to
look at markets with buyers and sellers and additional players such as arbitrageurs
and observe how their different behaviours co-evolve in the marketplace.
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