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Abstract

A new method is proposed to estimate the optimal weightimgmater for combining
audio (speech) and visual (face) information in persontitieation, based on estimating
probability density functions (pdf's) for classifier scerender Gaussian assumptions.
Performance comparisons with real and simulated data dtelithat this method has
advantages in reducing bias and variance of the estimatiative to other methods tried,
so achieving a robust estimator of the optimal weightingapaater. Another contribution
is that we propose the bootstrap method to compare perfaesant different algorithms
for estimating the optimal weighting parameter, so prawdh strict criterion in comparing
algorithms of this kind. Using simulated data, for which fiu is controlled and known, we
show that the advantages of the method hold up when the yimdgbaussian assumption
is violated. The main drawback is that we have to choose arstatjle parameter, and it is
not clear how this should best be done.

Key words: Face recognition, speaker recognition, person identificatveighted sum
rule, bootstrapping

1 Introduction

There is an increasing interest in biometric person ideatiton for commercial,
security, surveillance and other applications, but ideatiion based on only one
modality is unlikely to achieve acceptable performancepi@ctical deployment.
A potential way to overcome this is to combine informatioonfr more than one
modality, and several important studies have confirmedgbtsntial (Xuet al.,
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1992; Kittler et al., 1998; Toh and Yau, 2004). In this paper, we consider the
particular situation of audio-visual person identificatiwhere there are just two
sources of information: an audio signal (speech) and a \sdgw@l (face).

It is widely agreed that the audio and visual modalities cancbmbined at
three different levels, is defined by Luceyt al. (2005) as early integration,
middle integration and late integration, respectivelyr Early integration, the
feature vectors of audio and visual signals are extractpdraeely, then vector
concatenation is employed to form a new feature vector,lyintilis new feature
vector is used for recognition (Adjoudani and Benoit, 199%ettin, 1997). For late
integration, the audio and visual classifiers are built spéy, then fusion methods
are implemented to combine the scores generated by theaudiidsual classifiers
(Kittler et al,, 1998; Ben-Yacoukt al., 1999; Toh and Yau, 2004). Another level of
integration, namely middle integration, is also frequgnged for combining audio
and visual modalities. Examples of this level of integnatawe multistream hidden
Markov models (Bengio, 2003; Fat al., 2003; Luce)et al,, 2005).

However, the most frequently-used methods appearing ititdrature are based
on late integration. This is because of two reasons. Fimnpared with early
integration and middle integration, late integration imgie. It does not take
into account the correlation and interaction of audio ansuai signals, thus
circumventing the problem of synchronizing audio and visignals. Instead, it
treats these two modalities separately, obtaining twors¢palassifiers, then pro-
cessing scores generated by these two classifiers. Seataategration achieves
commensurate, if not better, recognition rates comparel early integration
and middle integration. Lucegt al. compared different approaches of the early
integration, middle integration and late integration, &mehd that late integration
is superior in terms of classifier flexibility and its ability dampen independent
errors coming from either modality.

Of all the approaches based on late integration, the sitpsessome fixed fusion
rule, e.g., the sum rule, product rule etc. (Kittkgral,, 1998; Duin, 2002). The
scores generated by the audio and visual classifiers areigedhby some fixed
functions, and training the combined classifier is not ndeétehas been shown
that by using fixed rules, the performance of the person m&tog system can
be greatly improved (Kittleet al., 1998; Erzinet al,, 2005). Kittleret al. (1998)
attempted to build a theoretical framework for such fixeésull heir experimental
results for combining the scores from three experts (twe fxperts and a text-
dependent speaker expert) showed that the sum rule outmexddhe product rule.
A small revision to the fixed rules is to assign weighting pagger(s) to each
modality based on the performance of that modality: thealed weighted sum
rule and weighted product rule. Various studies have shbatweighted sum and
product rules can perform better than fixed sum and prodies (Chibelushet al.,
1993; Brunelli and Falavigna, 1995; Maisehal., 1999; Wark, 2000; Sanderson
and Paliwal, 2003). Although various methods are proposeshbose weighting



parameters, there is not unanimous agreement on how tosl@\tither approach
based on late integration is to regard the fusion problem @attarn recognition
problem. The scores generated by the audio and visual fd@ssian be regarded
as features. The combined classifier needs to be built teeBetheatures (or scores)
into their correct classes. Several models which are frefjueised in pattern
recognition can be used to build the combined classifier-Beoubet al. (1999)
investigated support vector machines (SVMs), Bayesiassiflars, Fisher linear
discriminants, C4.5 classifiers and multilayer perceifonaudio-visual classifier
combination, and found that SVM and Bayesian classifieroparslightly better
than the others.

In the current work, we propose a means to choose the weggpanameter for
audio-visual person identification which is based on edimgathe probability

density functions (pdf’s) for the classifier scores. We haxgued elsewhere (Hu
and Damper, 2006) that studying pdf's should be the first stdmding a good

fusion algorithm. The proposed approach is compared withetlother well-

established techniques. Using the bootstrap method, weumsthat our approach
can both reduce the bias and variance, thus achieving & lestimation for the

optimal weighting parameter. Although the method is désdiand studied for
person identification, it has the potential to be generdlipethe verification case,
as discussed in Section 8.

Our audio and visual classification techniques are delibraery classical, in

order to focus on the issue of combining classifiers. Thelsgadentifier is based
on the Gaussian mixture model (Reynolds and Rose, 1995)harfdce identifier

is based on dynamic link architecture (Laddsal, 1993). In this work, the two
sources are not synchronized. That is, the video informasia static image of the
speaker rather than an image sequence depicting lip movsm@ienduring speech
production. This is done to simplify the problem at this stagnd to allow us to
concentrate on the issue of optimal weighting of the two sesiof information.

The remainder of this paper is organized as follows. The tcocison of the
speaker and face classifiers is briefly discussed in Secfi@rsl 3, respectively.
The proposed method is described in Section 4. The perfarenaithe proposed
method is then compared to that of three competitor methsagyueal speech
and video data in Section 5. In Section 6, the statisticéiregie of bootstrapping
is used to improve the estimates obtained. However, properpretation of the
comparison is still uncertain because the actual value e@fohtimal weighting
parameter is unknown. Hence, in Section 7 we repeat the atsopawith
simulated data for which the optimal weight is precisely \wnoBased on these
comparisons, Section 8 concludes that the proposed metlovides a robust
estimator of the optimal weighting parameter for combirglagsifiers, and outlines
our future work to generalize the method to person verificati



2 Speaker Identification

We use cepstral coefficients derived from a mel-frequentsrifibink to represent
the features for speaker identification. Speaker modekitgised on the Gaussian
mixture model (GMM) introduced for speaker recognition bgyRolds and Rose
(1995). A Gaussian mixture density is a weighted suriviafomponent densities:

M
p(XIA) =D pibi(X) (1)
i=1

whereX is a D-dimensional random vectds; (X) is the component density of the
ith mixture andp; is the weight of theth mixture. Each component density is a
D-variate Gaussian function of the form:

bi (X) =

1 1 > > \T -1, -
(27[)D/2|Zi|1/2eXp[_E(X_M) Z:i (X—,Ui)

with mean vectorj and covariance matriZ;. The mixture weights satisfy the
constraintZ“i'\":l pi = 1. The complete Gaussian mixture density is parameterized
by the mean vectors, covariance matrices and mixture wefghrn all component
densities. These parameters are collectively represastdte 3-tuple:

l:{plaﬁlazl} i:1525'-'3M

GMNMs for each speakérare trained (i.e., the parametersigfare estimated) using
the EM (expectation-maximisation) algorithm (Dempsteal., 1977).

Suppose there ar€ speakers to be identified. Thép, k=1, 2, ..., K, is the
model corresponding to theh enrolled speaker. The goal of speaker identification
is to find the one among thegemodels that best matches the test data represented
by a sequence df frames,X = {X1, X, ..., Xg}. In making the decision, we use
the following frame-base weighted likelihood distance suga between the test
data and th&th speaker model:

F
1 -
dh= = fzﬂlog P(Xt | Ak)

in which p(x;|Ak) is given by (1). The normalisation bl is necessary as each
token will, in general, have a different length and, therefa different number
of frames.



The task of a classifier is to assign an input sequeXc® one of K classes:
w1, w2, ...,wK. In this paper,X represents the input of both audio and video
modalities. We can then identify spealsaccording to the rule:

decideX e ws if s = arg maxj;
|

The GMM algorithm is applied after intra- and inter-wordesite is automatically
removed. A simple silence-removal technique based on aunminformation of
sound intensity and zero crossing rate is used. This is &oveo$the algorithm due
to Rabiner and Sambur (1975), originally designed for deteof the endpoints
of isolated words but modified here for the removal of wortdinal silence. This
algorithm sets two sound intensity thresholds: an uppestioldl; and a lower
thresholdl, (11 > I2). It also sets a zero crossing rate threshdg, First, the
algorithm marks the data whose intensity is higher than pgpeuthresholds as
‘speech points’. Then it extends the boundary of the speeutipto points which
have higher intensity than the lower intensity thresheldAfter this, the algorithm
further extends the boundary of the speech points to thossevhero crossing
rates exceed;. All the other data, not marked as speech points, are removed
as ‘silence’. By appropriately setting these three thrishahe algorithm can
successfully remove silence in most cases. This is founthpwave performance
relative to retaining periods of silence (Hu and Damper, 3200

3 Face ldentification

The face identification system is based on the dynamic liokigecture (DLA) of
Ladeset al. (1993). The input face image is represented as a set of nedels,of
which contains 40 Gabor wavelet coefficients. Followingah#hors of the original
paper, we call a node and the 40 Gabor wavelet coefficienlisiegtl with it a ‘jet’,
and we call all the jets in one image a ‘graph’. The graph oramitng image
is defined as a ‘model graph’; and the graph on a testing imagefined as an
‘image graph’. During storage, all the model graphs are &trand are labelled
with jets from a subgrid centred over the training images éostored. During
identification, matching takes place by the adaptive foromadf an image graph to
match best a given model graph. The matching process is Hasemjhout on one-
to-one links between jets in the model graph and the imagehgiehe process of
image-graph formation is controlled by a cost function vahfavours similarity of
corresponding jets and which penalizes metric deformalibe quality of different
matches between a model graph and an image graph can betesiaisang the



following score function:

Nn Ne
SM, 1) =>" S (M, In) = 2D S(Me;, ley) (2)
i=1 =1

whereMp, represents thith jet of the model graph; and; represents thgth edge
of the image graphiNn, Ne are the number of jets and edges, respectively.

The first term of the score functiofy (My,;, I, ), measures the similarity of jets in
the model graph and the image graph. Suppose the 40 Gaboletvewefficients
affiliated with thei th jet of the model graph are represented by the vet{iy, );
and correspondingly we defing(l,,) as the wavelet coefficients affiliated with
theith jet of the image graph. Then,

B J(Mni)"](lni)
Si(Mn;, In) = 1I (M) T3 (T

The second term&(Me;, Ne;), calculates the metric deformation between the
model graph and the image graph. Supposejtheedge connects thpth node
and theqth node. We usMp and Mq to represent the position vectors of thth
andgth nodes in the model graph; aﬁ@and I; to represent the position vectors of
the pth andgth nodes in the image graph. Then the second term can bemaitte

S(Me;, Ne,) = |(Mp — Mg) — (Ip — )

Because an ideal match of the model graph and the image graphdshave
large similarity values$ ) and small distortion valuesy), equation (2) will have
a higher value for a good match and a lower value for a poor im&appose
there areK classes for a face identification system, which correspdaadk
model graphsMi, My, ..., Mk respectively. The task of a face identification
system is to assign an input image gradpto one of these&K classes according
to the following rule:

decideX € ws if s = argmaxS(M;, |)
|

Face recognition can be divided into two steps (Wislatal, 1997). First, the
face region of an image should be automatically determiS8edond, the detected
face region should be sent to an identification system andithdification result
obtained. We call the first step ‘face detection’ and the sécface identification’.

In our work, we use a coarse graph which consists of 16 noddade detection.
This coarse graph finds the best-fitting position (the pasitvhich maximizes
the similarity scoreS;) by scanning around the whole image. Then a more



(@) (b)

Fig. 1. Typical example of use of DLA for face detection andntification: (a) A coarse
graph for face detection; (b) A complex graph for face idargtion.

complex graph is placed on the detected best-fitting positis nodes are then
adjusted to improve the similarity score further, thus fimdaccurate positions of
facial features. One can see from Figure 1 that, in gendralntatching finds
face features quite accurately. But mismatches occur: xamgle, the nodes
in (b) are not exactly positioned on the two corners of the tmoAfter having
extracted the nodes on the testing image, identificatiomssiple with relatively
little computational effort by comparing an image graph lioneodel graphs by
equation (2) and picking the one with the highest score. Refeadeset al. for
more details of the DLA method.

4 Proposed Method

After obtaining identification scores of both the audio andew classifiers, the
next step is to combine these with a view to obtaining betteniification results.
Some well-known simple fixed rules for combining the set cfebelassifiers, such
as product rule, sum rule, maximum rule, minimum rule and iaredule, are
described by Kittleet al. (1998). However, fixed rules can be sub-optimal (Duin,
2002) and there exist rules which need a training set to agarameters so as to
obtain better identification. One popular example is thegivieid sum rule, which
we use here.

Of course, an alternative to training (i.e., finding the virsgempirically) is to try
to determine the weights from theory, based on some assomspfihe obvious
problem which arises is that, frequently, no analyticairble formulation can be



found, even with dramatically-strong simplifying assuraps. In this work, we
present a method for estimating the (single) optimal wefghtcombining our
two classifiers under Gaussian assumptions and comparé¢hitr@sults obtained
using the actual audio-visual identification system, a$ avstlection of competitor
systems described in the literature. We refer to the fornethod as ‘proposed’ and
to the latter as ‘empirical’. The reader should note thatrenfof ‘training’ is still
required for the proposed method, as we have to estimate ¢neemts of some
Gaussian distributions from training data.

4.1 Theoretical Development

Suppose each of the audio and video classifiers consist& afiscriminant
functions, f1(X), f2(X),...,fK(X). The decision rule in terms of discriminant
functions is:

decideX e ws if s = argmaxf! (X) (3)
|

Here, X represents the input of both audio and video modalities. \&eotk

by f1(X), f2(X),..., ff(X) the scores obtained from the video classifier
(face identification), and by;(X), f2(X), ..., fX(X) the scores obtained from
the audio classifier (speaker identification). Our aim is twdfa weighting
parameter € [0, 1] to combine optimally these two sets of scores using the
weighted sum rule. This gives a new set of score functions:

flomp(X.0) = aff () + @~ a) T5(X)  k=1,2...,K %)

The notation fX (X, a) indicates that the combined scores depend not only
on the input dataX but also on the weighting parameter In what follows,
however, we simplify the notation for discriminant funet®by dropping argu-
mentsX anda, exceptwhen it is necessary to distinguish among different values

of these arguments.

The weighting parametet in equation (4) should be selected according to the
relative reliability of the two classifiers. The most diregay to do this is to
optimizea so as to maximize the identification rate on some training @dtison

et al, 1999; Duin, 2002), but this carries the danger of ovemfittiso reducing the
ability to generalize to unseen test data. Several methadse used to prevent
over-fitting. For example, Ney (1995) used the smoothedregate as the cost
function for optimizing the parameter, and Brunelli and Falavigna (1995) used
the normalized ratio of the first- to the second-best integracore to calculate.

A common property of these two methods is that both use tlwnrdtion of the
probability densities of the scores obtained by the twosti@ss. In this paper, we



propose a method for choosing the weighting parametbat directly maximizes
the correct identification rate, i.e., the probability ofrezt identification by the
combined system, from score distributions.

The first step is to normalize the scores of the training dA&ause the so-called
z-score normalisation technique, which is calculated ugiegrithmetic mean and
standard deviation of the given data. Refer to &ial. (2005) for an overview of
score normalisation techniques in multimodal biometrstens.

The z-score normalisation process can be divided into two slephe first step,
all scores of both audio and video classifiers have their nsedtracted and the
result is then divided by their variance:

_ S Dy TRXD)

k
FROK) = TmXD=sm - it =
m( |) - HUm | x K

L (KO = )

andom = < K
X

(5)

Here,l is the number of training dat& is the number of classes, ande {1, 2}.

The second step of normalisation is to make the correct s@ae that for
the correct person) zero. This gives us a known referencet frmm which to
assess scores, and simplifies the derivation of an apptepnathematical model
under Gaussian assumptions—see below. If we set the weggpérametens to
a constant value, we can obtain the combined scdggs, f2.y ---» fip DY
equations (4) and (5). The second step of the normalisatmeeps is:

if X € w; thenFX

com

o= X fl k=12,...,K (6)

comb —  'comb

Equation (6) is used to make the correct score zero. We canfrege the
decision rule, equation (3), that these two steps of nogatin do not change the
identification result because the new scores in (6) are médzonly by subtracting
and dividing the same number from the original scores, whimés not influence
the rank of the scores.

After normalisation, the next step is to estimate the praipallistribution of the
scores. We assume that the values of the score functionsdepandent. That is:

K
L Fi-L pitl .,Fc'émb|Xewi): [T P(FX.X e w)

1
P (F comb ' comb - -
k=1,k£i

comb * *

The reason whk # i is that, after the normalisatiork; = always equals zero
if X € wj. We denote the correct identification rate (the probabititycorrect



identification) whenX € w; as Cj(a). Since Fcomb_ 0 when X € w; after the
normalisation process, we can calcul@téx) on the basis of equation (3) as:

Ci(a) = H P (F&. < 01X € wi) (7)
k=1,k#i

4.2 Probability Density Estimation

To calculate the probability? (Fcomb <0|X € wj) for eachk =1,2,..., K, we
first have to estimate the probability dlstrlbutld?n(F ol X € wi) from the
training data in the form of a Gaussian mixture model. But @ofam of sparse
data arises when we try to model the distribution this waydsence, it is hard to
estimate the density of a multi-modal data distributioretsi.

Our approach to this problem is to break the available tnginilata up into
‘sections’, and to treat each of these as a unimodal Gayssidrthen to combine
them. Suppose there aid training data available for deciding the weighting
parametera. Among theseM files, there areM; files belonging to clasg,
M- files belonging to classa, ..., and finallyMg files belonging to classg
(M1—|— Mo+...+ Mk = M).

We denote theVi; training data belonging to class as Xi, Xo, ..., Xu,. The
Gaussian mixture is then:

(Féomn— #k})?
P X E —_— 8
( combl € U)| MI . /_27L'A ex ( 2A2 (8)

whereA is a parameter controlling the variance(s).

The component means; are obtained agyj = Fcomb(xj,a), =12, ..., M.
From this, we see that the means of the mixture componenth@igcores of the
training data. WherA is large, the variance of each mixture component is large;
when it is small, the variance is small. In the extreme casenwhbecomes zero,

the probability density shrinks to a series of impulse fiong.

Figure 2 demonstrates an example of estimating probalbgibgity functions using
equation (8). The probability density function to be estieads Gaussian with zero
mean and standard deviation of one. It can be seen that isgadfic example, the
true density function is better estimated wh&ihas a greater value, but this is not
always the case. Other distributions may favour smalldrerathan greateA. To
estimate the probability density distribution using egqua(8) with finite data, we
have to choose a suitable valueAfnd it is not clear how this should be done.
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2 4 6 8

) Mj =5,A=01

Fig. 2. Probability density estimation using equation @)e distribution to be estimated
is Gaussian distribution with zero mean and standard dewiaf one (as indicated by the
dashed lines). In this exampl&); =5, which means that five sample points are drawn
from this distribution. Using equation (8), we can obtaia #stimated distributions (solid
lines) withA=1,0.5 and 01 in (a), (b) and (c), respectively.

However, Bishop (1995, pp.54-55) proves that when the daardinite, the
expectation of the estimated probability density using #eve method will
converge to the true probability density. Figure 3 dematst the convergence
procedure when the number of data increases.
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k k
2 4 6 8 Fcomb 8 6 4 4 6 8 Fcomb
(@ M; =10,A=0.1 (b) M; = 100,A = 0.1
!::(Fckomblx € U)i) E(Fckomb|x € wi)
k k
% -6 4 4 6 8 Fcomb 8 6 4 4 6 8 Fcomb
(c) M; = 1000,A = 0.1 (d) M; = 10000,A = 0.1

Fig. 3. An example to illustrate how the estimated densihcfion (solid lines) reaches the
true density function (dashed lines) when increadimg The parameteA is fixed at 01
andM; = 10,100 1000 and 10000 in (a), (b), (c) and (d), respectively.

4.3 Estimating Correct Identification Rate

Using the estimated pdf, we can now calculate the probgfiiat FX  (X) < 0 as:

P (FX (X, ) < 0] X € wj)

0
4 1 1 (Fckomb(xa a) — :ukj)z K
Y Z V27 A / eXp(_ 22 d [Feomy(X. @)]

12



From equation (7), we can finally obta@j («), which is the correct identification
rate for a specified whenX e wj, as:

1 K M; Lk
Ci(a) = K1 H Z ® (_T)
i k=Llka \j=1

The overall correct identification rate, denotéh), is given as:

K
C(a) = > Ci(0)P(X € wy) 9

i=1

whereP (X € wj) can be estimated d%'( with M; equal to the number of training
data that belong to clags, andM equal to the total number of training data. Thus,
we have transformed the problem of choosing weighting patam for combining
two classifiers to a problem of maximising the correct idk@tion rateC(a):

decidea = agptif a = argmaxC(a)

Once the weighting parameteiis selected using our proposed method, we assume
it does not change when it is applied to the test data. Sucksamgption is based on
a more general assumption that the training data and theatstare independently
drawn from the same probability distribution. Howeverstassumption may not
hold in practice, especially when unexpected environmeiae has dramatically
changed the probability distribution of the test data. Is #iituation, it is preferable
to use adaptive methods to adjust the weighting parame@ak et al., 1999;
Wark, 2000; Sanderson and Paliwal, 2003). In this paper, tleassume that
the probability distribution of the training data and teatalis the same, so that
the optimal weighting parameter remains the same for theitigaand test data,
because our focus is on accurate estimation of the paraoader this condition.

5 Results Using Real Data

The database used to test the performance of the proposéddnstXM2VTS
(Messeret al, 1999). This database, specifically intended for researtchmulti-
modal person identification, is issued by the Centre fordvisSpeech and Signal
Processing at the University of Surrey, UK. It contains drdmgs of 295 subjects
taken over a period of four months. Each recording contaseaking head shot
and a rotating head shot, although these are not used hereaé€lo person, static
facial images are also provided. The database containsdguiglity color images,

13



32 kHz 16-bit sound files, video sequences and a 3D model. Wthegata (video
and audio) for 74 people (51 male, 23 female). Each persoviqe® 24 speech
files, which were recorded during 4 sessions (6 files for eashign), and 8 static
images (2 for each session).

The silence removal method for the speaker identificatianlbdeen discussed in
Section 2. We set the upper sound intensity thresHeldo be 0.5 times the
average sound intensity of the speech file, and the lowensitiethresholdl,
to be 0.2 times this average intensity value. The zero argssite threshold;
was set to the average zero crossing rate of the speech filfuCaxamination of
our results suggest that, in most cases, these settingsasenable and correctly
remove silence while retaining the speech.

For each test speech file, we randomly select three files wanemot from the

same session as the training set, then test this file witmahreed GMM model. This

train-3/test-1 strategy is applied to the 24 files for eacakpr and 24 identification
results are obtained. For training the Gaussian mixture elmode use mel-

frequency cepstral coefficients as features (Davis and Mistein, 1980). The

magnitude spectrum from a 20 ms short-time segment of spe@ch-emphasized
and processed by a simulated mel-scale filterbank, theonghenergy filter outputs
are cosine transformed to produce the cepstral coefficiévgsise the first 20 co-
efficients, excluding the zeroth coefficient, plus the firBtdelta coefficients as
the feature set. This process occurs every 10 ms, produbiddehture vectors per
second. Gaussian mixture density functions consistinglat@nponent densities
are used in this work.

In building the face classifier, for each image, we use the @ges in the
other 3 sessions as the training set, and then test that infSagh a strategy is
applied to all 8 images of each person, obtaining 8 identioaresults. For each
of the 4 sessions, we randomly select 2 of the 6 speaker fbatibn results and
then combine them with the 2 face identification results ait session.

Figure 4 shows the empirical correct identification r&lglo) as a increases
from O to 1, with a 0.01 increment on each trial. This is donditsf determining
the individual scores of both the audio and video classifieen calculating the
combined scores using equation (4), and finally using trasdéntification. Let us
first define the indicator functiofk(X;) as 0 whenX; ¢ wg, and 1 whenX; € w:

0 @ X € w
Tk(Xi) = . « (10)
. i € Wk
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Fig. 4. The empirical correct identification rate using tlsttdata, witha varying
fromOto 1.

ThenCe(a) is defined as follows:

M
1 ~ K

Ce(a) = M E T (Xi), wherek = argrpix fgomb(xi , Q) (12)
i=1 B

The identification rate for the video classifier is 81.93%d dor the audio

classifier it is 90.37%. The combined classifier achieveshifkest identification

rate (98.31%) when equals 0.22. However, the empirical identification @)

is not a very suitable function to determine the weightingapeetera because of
its non-smooth nature, making it difficult to identify a algeeak corresponding to
the optimum.

We can also obtain a similar curv@,.p(a), by estimating the correct identification
rate, as proposed in Section 4. Because for the proposeddidth scores for both

classifiers are normalized by equation (5), some adjussneeed to be done to
eliminate the effect of normalisation. Recall equation {d¢ combination function,

is as follows.

fX WX a)=aff(X)+ QL —a)fX(X) k=1,2,...,K

If we replace the original scorei;lk(X) and fz"(X) with the normalized scores

K(x)_ —_ K(X)—

fX(X) = W and fX(X) = M the weighting parameter also needs
to be changed correspondingly to obtain the same effectp&aa is changed
to a’, equation (4) can be rewritten as follows:

X, a) = a TR0 + (L — o) £X(X)

fK(X) — fX(X) —
_ 1 (X) ﬂ1+(1_a,) 5 (X) — u2
o1 02

k=12,...,K

15



To obtain the same effect, we must have:

Thus, we obtain
, o10

o =
o2+ (01— 02) a

In order to makeC,op(a) comparable t€e(a), we must defin€,op(a) as follows:

010

o2+ (01— 02)a

Cprop(a) = C(OL/) a' =

whereC(a') is defined as in equation (9).

Figure 5 illustrates the obtained correct identificatiomves whenA = 0.001,
A =0.01 and A=0.1. When A takes a relatively large value, the curve is
smoothed relative to the empirical correct identificatiammve, and the peak
of Cprop(ar) Whena varies from 0 to 1 can be more clearly observed.

We can see from Figure 5 that the estimated correct identdicaate is always
smaller than the true correct identification rate. This isduse the estimated score
distribution as in equation (8) does not precisely refleettthe distribution. From
Figure 6, we observe that even if all the scores for estimadie below O, the
estimated probability that the score is greater than zesbli€.02.

That is, in this special case, the estimated identificataie rs 2% smaller than
the true correct identification rate. If we add up all thesersdistributions as
in equations (7) and (9), we can also expect the estimatedifidation rate to

be smaller than the true identification rate. We can furtlstimate that when
A becomes larger, the estimated identification rate will benesmaller. This is

why the values ofC(a) are different whenA takes different values. But we
can see from the above results that this problem does notargethe process of
deciding the weighting parameter because we only need to find thehat gives

the maximum value o€pop(a).

6 Further Results Using Bootstrapping

The empirical identification curve in Figure 4 shows thatrtieximal identification
rate is achieved whea = 0.22, while all the three identification rate curves in
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Fig. 5. The correct identification rat€pp(a) using the proposed method asvaries
from0to 1: (a)A = 0.001; (b)A = 0.01: (c)A=0.1.

P(F " one)
07

Fem

Fig. 6. The estimated probability density ofX .(X,a) when A=05 and
f& X, a) = =348, f& (Xs,a) = -254, fX (X30) = -202,
f& mp(Xas @) = —1.56, £ (Xs,a) = —1.34 and X (Xe, a) = —0.50. It indicates
that even if all the scores for estimation are below 0, thanegéd probability that the

score is greater than 0 isQ2.
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Figure 5 using the proposed method indicate that the optima 0.24. Our
intuition told us that the estimation by the proposed metiwdore accurate
because it provides a smooth curve, thus reducing the plitysds over-fitting.
In this section, we use the bootstrap method to indicate tuahpared with the
empirical method and other frequently-used methods, tbpgsed method per-
forms well in reducing the variance of the estimated optiwalghting parameter,
thus suggesting a more accurate estimation.

The publication in 1979 of Bradley Efron’s first article ondtstrap methods was
a major event in statistics, at once synthesising some oté#nker resampling
ideas and establishing a new framework for statistical el It has been
shown that bootstrap methods often perform better thantivadl methods in

many applications. The reader is referred to Davison andkleyn(1997) for

a detailed discussion.

The bootstrapping is performed as follows. As indicated éct®n 5, there are

8 face identification results and 24 speaker identificatesults for each person.

In each bootstrap process, we randomly select 8 speakdificiion results out

of these 24, then combine them with the 8 face identificatesults, and obtain
estimates of the optimal by both the empirical and proposed methods. The boot-
strap process is repeatBidimes (i.e., repeating the sampling of 8 from 24 files), so
obtainingN estimates of the optimal, one for each process, which are represented

02
as(zopt, opt> - opt The mean and variance @f; can be calculated as follows:

aopt— 2 ,aopt

N
Ooopt = 12 opt O‘ODt
i=1

We have tested four methods for choosing the optimal weigthtarameter using
the bootstrap method:

(1) the empirical method based on actual identificationltesu
(2) the proposed method based on pdf estimation;

(3) smoothed error rate estimation; and

(4) a genetic algorithm, as proposed by Lam and Suen (1995).

The first two have already been described. The smoothed eterestimation
method was first used by Ney (1995), and subsequently in auslial speaker
identification by Maisonet al. (1999). This method shares some similarities
with our method (2) as proposed in this paper, which is alsamaoshing
technique for the correct identification curve. Instead odlifig the value ot
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that maximizeCq(a), the smoothed error rate estimation method findssthieat
maximizeSCgsmoot{ @) defined as follows:

Mk ‘
1 exp{nfX, o(Xi, a
Csmoot{a) = M ZZTK(Xi) ” p{’? Combj ! )}
i=1k=1 ijl exp{nfcomb(xi,a)}

Here M is the total number of training dat& is the total number of classes and
Tk(Xj) has been defined in equation (10). We note here that it deencisoosing
a parameten that when large reduces the smoothed error rate to the ealprne.

Lam and Suen’s method attempts to find the optimal weightargupeters using
a genetic algorithm. This method assigns a weighting patembe each classifier,
making the fusion function as follows:

fX oKX, a1, a2) = a1 FE(X) + az fX(X)

Then the fitness function which the genetic algorithm needsdximize is set as:

M
1 A K

Cgalar, ap) = M E T (Xi), wherek = argrkn:alx fc‘f)mb(xi , 01, 002)
i=1 -

whereM is the number of training dat& is the number of classes, afmg(X;) is
defined as in equation (10).

The genetic algorithm is used to search for the and a2 which maxi-
mize Cga(ai, a2). Our settings of parameters is slightly different from the
original paper. The population size is 20. The fractions abssover and
migration are B and 02, respectively. Because we used the default settings
of the Matlab GA function, the reader can refer to the Matlaimction
ga(fitnessfcn, nvars) for the settings of other parameters. The reader
may refer to the MathWorks’ website t p: / / www. mat hwor ks. com’ for an
introduction to Matlab software.

The GA algorithm runs for 100 generations and picksdh@ndaz which yield
the largest value o€y4(a1, a2). To make the GA method comparable with other
methods, the optimal weighting coefficients then found ag*_ = g—;

Table 1 shows the mearg: and variances,,, of these four methods using
200 bootstrap iterationdN = 200). We have used a range Afvalues for the
proposed method and, similarly, a rangeno¥alues for the smoothed error rate
estimation method. Those shown in table are the sub-rangmswhich good
estimates (i.e., low variances) were obtained.
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Method Gopt Oaopt
Empirical 0.2548| 0.0545
Genetic Algorithm 0.2685| 0.0547

A =0.001| 0.2478| 0.0419
A =0.002 | 0.2464| 0.0421
A = 0.005 | 0.2470| 0.0425
A =001 | 0.2480| 0.0400
A =0.02 | 0.2665| 0.0386
A =0.05 | 0.2488| 0.0358
A=01 |0.2635| 0.0308
A=0.2 |0.3001| 0.0355
n=5 | 0.2664| 0.0552
n=10 |0.3598| 0.0388
n=15 |0.3051| 0.0373
n=20 |0.2879| 0.0388
n=25 |0.2798] 0.0411
n =30 |0.2766| 0.0424
n=35 |0.2683| 0.0475
n=40 |0.2667| 0.0486

Proposed

Smoothed Error Rate

Table 1
The means and variances of the four methods for estimatiegofitimal weighting
parametenqp; With the real speech and video data.

We can see from the table that the four methods provide similkeans. The
proposed method and the smoothed error rate method givaalgnsmaller
variances than the other two methods (although this is ofssoachieved with
the advantage of an adjustable parameter). The proposéddappears to give a
rather smaller variance than the smoothed error rate mghiubdhis is uncertain.

7 Results with Simulated Data

Table 1 indicates that the proposed method performs shigletiter in reducing the
estimation variance, but it does not show that this methadsis good at reducing
the estimation bias, i.e., ifo, €stimated by this method is close to the true value
of the optimal weighting parameter. With the real data usetié previous section,
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this question can not be answered because this true valn&newn.

In this section, we try to answer this question in some aspé&atst, we construct
simulated data with a known probability distribution, s ttiue value of the
optimal weighting parameter can be exactly calculatedallinwe use the
bootstrap method wittN = 200 to estimate the optimal weighting parameter, and
see how close the estimated optimal weighting parameteo ithe true value

of that parameter. The idea of using simulated data to tassifler combination
methods was proposed by Kittler and Alkoot (2003), and hasioe a benchmark
approach. Here will will also use simulated data to test oethod of choosing
weighting parameters.

Consider aK-class problem. We need to construct tkescores of an inpuX
which belongs to a specific class, s&,e wx, wherek € {1, 2, ..., K}. First,
we generat&K random numbers, each of which is uniformly distributed i th
range [Q 200]. We useny, no, ..., Nk to represent thes numbers. We choose
Nk as the maximum of thesk numbers ik = maxny, no, ..., Nk}), since it is
reasonable to assume that the highest score will be obténe¢lde correct class.
Next we generate anoth& random numberszi, o2, ..., ok, each of which is
uniformly distributed in the range [@a]. Here omax is a controlling parameter.
The scoresf1(X), f2(X), ..., fK(X) are generated as follows.

For eachk € {1,2,...,K}, fk(X) is a random sample drawn from a normal
distribution with meamy and variancesk. We construct two classifiers, denoted
Classifier 1 and Classifier 2. For Classifier 1, we setsiigax to 10; and for
Classifier 2, we set itsmax to 20. Thus, Classifier 1 is a strong classifier and
Classifier 2 is a weak classifier. For both , we Beto 74, equal to the number
of classes in the audio-visual speaker identification t&sk. each class, we
generate 8 sets of scores from Classifier 1, and 24 sets assfrom Classifier 2,
which is also the same as the audio-visual speaker idemiiicéask. Using the
bootstrap method, we then obtain the means and variancée dbuir methods.
Since the simulated data are generated from a known digbihuve can also
accurately calculate the true optimal weighting parameigg, by using all the
parametersiy, Ny, ..., Nk andoy, o2, ..., ok . For simplicity, the details of how
to calculateay,e are omitted here. We mention only that we can accurately
calculateny e since the score distributions are known.

Table 2 shows the estimated means and variances for nordisthjbuted simu-
lated data using the four methods. Hetg,e = 0.650. It can be observed that the
means of the empirical, genetic algorithm and proposed oadsthre closer taye
than the smoothed error rate method, but the proposed mgieglmuch smaller
variance than the empirical and genetic algorithm methbfdsvever, we need
to remember that the simulated data are generated with asfaaugistribution,
so conforming to the major assumption underlying our predosiethod. Thus,
we have also carried out performance comparisons with dataawectangular
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Method Gopt Oaopt
Empirical 0.6509| 0.0428
Genetic Algorithm 0.6510| 0.0399

A =0.001 | 0.6494| 0.0350
A = 0.002 | 0.6499| 0.0344
A = 0.005 | 0.6494| 0.0303
A =001 | 0.6520| 0.0298
A =0.02 | 0.6520| 0.0277
A =0.05 | 0.6491| 0.0180
A=01 |0.6185| 0.0089
A=0.2 |05719| 0.0058
n=5 | 0.5225| 0.0045
n=10 |0.5750| 0.0047
n=15 |0.6070| 0.0078
n=20 |0.6269| 0.0113
n=25 |0.6358|0.0124
n =30 |0.6436| 0.0159
n=35 |0.6436| 0.0159
n=40 |0.6436| 0.0159

Proposed

Smoothed Error Rate

Table 2
The means and variances of four methods for estimatiggon simulated data generated
to have a Gaussian distribution. Herg = 0.650.

(uniform) distribution. This should show our method at nmaxm disadvantage
relative to the competitors.

As before, the sets of random numbers were generated frommhwine obtain
Nk andaoy. A uniform distribution in the rangég —ok, Nk+ok) was then generated.
The results in Table 3 for the data with uniform distributgiow that the proposed
method holds up well in the face of violation of the undertyiassumption of
normally-distributed data. The optimal weighting paragnét estimated with very
low bias and low variance, certainly relative to the empiriand GA methods.
Performance is slightly but noticeably better than the simederror rate method.

It is not suitable to use the empirical method directly to idecthe optimal
weighting parameter, because it gives very high variancbeter solution is to
calculate the average of the optimal weighting parametgnssing the bootstrap
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Method Oopt | Oagpt
Empirical 0.7324| 0.0492
Genetic Algorithm 0.7368| 0.0529

A =0.001| 0.7359| 0.0419
A = 0.002 | 0.7367| 0.0413
A = 0.005 | 0.7346| 0.0385
A =001 | 0.7343| 0.0306
A =002 | 0.7327| 0.0220
A =0.05 | 0.7270| 0.0176
A=01 |0.7177| 0.0224
A=02 |0.7541| 0.0519
n=5 |0.6106| 0.1486
n=10 |0.7043| 0.0525
n=15 |0.7135| 0.0314
n=20 |0.7182| 0.0255
n=25 |0.7224| 0.0235
n =30 |0.7256| 0.0234
n=35 |0.7256| 0.0234
n=40 |0.7256| 0.0234

Proposed

Smoothed Error Rate

Table 3
The means and variances of four methods for estimatiggon simulated data generated
with a uniform distribution. Hereop: = 0.727.

method. In situations where the training data are spardbasa is difficult to use
the bootstrap method, the proposed method is highly recordete

The main drawback of the proposed method is that we have toseha suitable
value of A and it is not clear how this should be done. Of course, the medo
error rate technique shares this kind of problem, in that axeelto fix a suitable
value ofy.

8 Conclusions and Future Work

This paper provides a method to estimate the optimal weighparameter for
fusion of scores in audio-visual person identification.sltbiased on estimation
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of probability density functions for the scores under a Gaursassumption. By
use of bootstrapping, the performance of this method canrietiysanalysed and
compared with other methods. Using simulated data, sudhthbgdf is known,
results indicate that this method has advantages in regltlieenbias and variance
of the estimation. The method is shown to perform well evermine underlying
Gaussian assumption is violated. The main problem is in gihga suitable value
of smoothing parameteA. It is not clear at present how this should best be done.

The validity of the proposed method is based on two assumgtibirst, the
bootstrapping method as discussed in Section 6 is basedecsisfumption that
the performances of the audio classifier and the visual ibklrsare independent.
Intuitively, such an assumption is true because we have littformation to
imagining a person’s face when only listening to his/hercepiand vice versa.
Our future work will investigate whether the bootstrappmgthod is valid when
the two modalities are strongly correlated. Another asgiongs that, as discussed
in Section 4.3, the training and the test data are drawn entgntly from a fixed
probability distribution; thus, the optimal weighting paneter remains unchanged.
Although this assumption is very common in theoreticalgrattecognition studies
(Vapnik, 1998), it may not be valid in practice. Thus, adepthethods for choosing
weighting parameter(s) may be preferable in practicabsibns.

It should be noted that, although our method is developedheridentification
task, it can be applied to verification. For verification, enigar approach can
be taken for choosing the optimal weighting parameter basethinimising the
equal error rate (EER), instead of maximising the correeniiication rate for
the identification case. One of our future works is to gemsgathis method
to person verification.
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