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Abstract

A new method is proposed to estimate the optimal weighting parameter for combining
audio (speech) and visual (face) information in person identification, based on estimating
probability density functions (pdf’s) for classifier scores under Gaussian assumptions.
Performance comparisons with real and simulated data indicate that this method has
advantages in reducing bias and variance of the estimation relative to other methods tried,
so achieving a robust estimator of the optimal weighting parameter. Another contribution
is that we propose the bootstrap method to compare performances of different algorithms
for estimating the optimal weighting parameter, so providing a strict criterion in comparing
algorithms of this kind. Using simulated data, for which thepdf is controlled and known, we
show that the advantages of the method hold up when the underlying Gaussian assumption
is violated. The main drawback is that we have to choose an adjustable parameter, and it is
not clear how this should best be done.

Key words: Face recognition, speaker recognition, person identification, weighted sum
rule, bootstrapping

1 Introduction

There is an increasing interest in biometric person identification for commercial,
security, surveillance and other applications, but identification based on only one
modality is unlikely to achieve acceptable performance forpractical deployment.
A potential way to overcome this is to combine information from more than one
modality, and several important studies have confirmed thispotential (Xuet al.,
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 1992; Kittler et al., 1998; Toh and Yau, 2004). In this paper, we consider the
particular situation of audio-visual person identification where there are just two
sources of information: an audio signal (speech) and a videosignal (face).

It is widely agreed that the audio and visual modalities can be combined at
three different levels, is defined by Luceyet al. (2005) as early integration,
middle integration and late integration, respectively. For early integration, the
feature vectors of audio and visual signals are extracted separately, then vector
concatenation is employed to form a new feature vector, finally, this new feature
vector is used for recognition (Adjoudani and Benoı̂t, 1995; Luettin, 1997). For late
integration, the audio and visual classifiers are built separately, then fusion methods
are implemented to combine the scores generated by the audioand visual classifiers
(Kittler et al., 1998; Ben-Yacoubet al., 1999; Toh and Yau, 2004). Another level of
integration, namely middle integration, is also frequently used for combining audio
and visual modalities. Examples of this level of integration are multistream hidden
Markov models (Bengio, 2003; Fuet al., 2003; Luceyet al., 2005).

However, the most frequently-used methods appearing in theliterature are based
on late integration. This is because of two reasons. First, compared with early
integration and middle integration, late integration is simple. It does not take
into account the correlation and interaction of audio and visual signals, thus
circumventing the problem of synchronizing audio and visual signals. Instead, it
treats these two modalities separately, obtaining two separate classifiers, then pro-
cessing scores generated by these two classifiers. Second, late integration achieves
commensurate, if not better, recognition rates compared with early integration
and middle integration. Luceyet al. compared different approaches of the early
integration, middle integration and late integration, andfound that late integration
is superior in terms of classifier flexibility and its abilityto dampen independent
errors coming from either modality.

Of all the approaches based on late integration, the simplest use some fixed fusion
rule, e.g., the sum rule, product rule etc. (Kittleret al., 1998; Duin, 2002). The
scores generated by the audio and visual classifiers are combined by some fixed
functions, and training the combined classifier is not needed. It has been shown
that by using fixed rules, the performance of the person recognition system can
be greatly improved (Kittleret al., 1998; Erzinet al., 2005). Kittleret al. (1998)
attempted to build a theoretical framework for such fixed rules. Their experimental
results for combining the scores from three experts (two face experts and a text-
dependent speaker expert) showed that the sum rule outperformed the product rule.
A small revision to the fixed rules is to assign weighting parameter(s) to each
modality based on the performance of that modality: the so-called weighted sum
rule and weighted product rule. Various studies have shown that weighted sum and
product rules can perform better than fixed sum and product rules (Chibelushiet al.,
1993; Brunelli and Falavigna, 1995; Maisonet al., 1999; Wark, 2000; Sanderson
and Paliwal, 2003). Although various methods are proposed to choose weighting
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 parameters, there is not unanimous agreement on how to do this. Another approach
based on late integration is to regard the fusion problem as apattern recognition
problem. The scores generated by the audio and visual classifiers can be regarded
as features. The combined classifier needs to be built to fit these features (or scores)
into their correct classes. Several models which are frequently used in pattern
recognition can be used to build the combined classifier. Ben-Yacoubet al. (1999)
investigated support vector machines (SVMs), Bayesian classifiers, Fisher linear
discriminants, C4.5 classifiers and multilayer perceptrons for audio-visual classifier
combination, and found that SVM and Bayesian classifiers perform slightly better
than the others.

In the current work, we propose a means to choose the weighting parameter for
audio-visual person identification which is based on estimating the probability
density functions (pdf’s) for the classifier scores. We haveargued elsewhere (Hu
and Damper, 2006) that studying pdf’s should be the first stepin finding a good
fusion algorithm. The proposed approach is compared with three other well-
established techniques. Using the bootstrap method, we conclude that our approach
can both reduce the bias and variance, thus achieving a better estimation for the
optimal weighting parameter. Although the method is described and studied for
person identification, it has the potential to be generalized to the verification case,
as discussed in Section 8.

Our audio and visual classification techniques are deliberately very classical, in
order to focus on the issue of combining classifiers. The speaker identifier is based
on the Gaussian mixture model (Reynolds and Rose, 1995), andthe face identifier
is based on dynamic link architecture (Ladeset al., 1993). In this work, the two
sources are not synchronized. That is, the video information is a static image of the
speaker rather than an image sequence depicting lip movements etc. during speech
production. This is done to simplify the problem at this stage and to allow us to
concentrate on the issue of optimal weighting of the two sources of information.

The remainder of this paper is organized as follows. The construction of the
speaker and face classifiers is briefly discussed in Sections2 and 3, respectively.
The proposed method is described in Section 4. The performance of the proposed
method is then compared to that of three competitor methods using real speech
and video data in Section 5. In Section 6, the statistical technique of bootstrapping
is used to improve the estimates obtained. However, proper interpretation of the
comparison is still uncertain because the actual value of the optimal weighting
parameter is unknown. Hence, in Section 7 we repeat the comparison with
simulated data for which the optimal weight is precisely known. Based on these
comparisons, Section 8 concludes that the proposed method provides a robust
estimator of the optimal weighting parameter for combiningclassifiers, and outlines
our future work to generalize the method to person verification.
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 2 Speaker Identification

We use cepstral coefficients derived from a mel-frequency filterbank to represent
the features for speaker identification. Speaker modellingis based on the Gaussian
mixture model (GMM) introduced for speaker recognition by Reynolds and Rose
(1995). A Gaussian mixture density is a weighted sum ofM component densities:

p(Ex|λ) =
M
∑

i=1

pi bi (Ex) (1)

whereEx is a D-dimensional random vector,bi (Ex) is the component density of the
i th mixture andpi is the weight of thei th mixture. Each component density is a
D-variate Gaussian function of the form:

bi (Ex) = 1

(2π)D/2|6i |1/2
exp

{

−1

2
(Ex − Eµi )

T6−1
i (Ex − Eµi )

}

with mean vectorEµi and covariance matrix6i . The mixture weights satisfy the
constraint

∑M
i=1 pi = 1. The complete Gaussian mixture density is parameterized

by the mean vectors, covariance matrices and mixture weights from all component
densities. These parameters are collectively representedas the 3-tuple:

λ = {pi , Eµi , 6i } i = 1, 2, . . . , M

GMMs for each speakerk are trained (i.e., the parameters ofλk are estimated) using
the EM (expectation-maximisation) algorithm (Dempsteret al., 1977).

Suppose there areK speakers to be identified. Thenλk, k = 1, 2, . . . , K , is the
model corresponding to thekth enrolled speaker. The goal of speaker identification
is to find the one among theseK models that best matches the test data represented
by a sequence ofF frames,X = {Ex1, Ex2, . . . , ExF }. In making the decision, we use
the following frame-base weighted likelihood distance measure between the test
data and thekth speaker model:

dk = 1

F

F
∑

f =1

log p( Ex f |λk)

in which p( Ext |λk) is given by (1). The normalisation byF is necessary as each
token will, in general, have a different length and, therefore, a different number
of frames.
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 The task of a classifier is to assign an input sequenceX to one of K classes:
ω1, ω2, . . . , ωK . In this paper,X represents the input of both audio and video
modalities. We can then identify speakers according to the rule:

decideX ∈ ωs if s = arg max
i

di

The GMM algorithm is applied after intra- and inter-word silence is automatically
removed. A simple silence-removal technique based on combining information of
sound intensity and zero crossing rate is used. This is a version of the algorithm due
to Rabiner and Sambur (1975), originally designed for detection of the endpoints
of isolated words but modified here for the removal of word-internal silence. This
algorithm sets two sound intensity thresholds: an upper thresholdI1 and a lower
thresholdI2 (I1 > I2). It also sets a zero crossing rate threshold,Z1. First, the
algorithm marks the data whose intensity is higher than the upper thresholdI1 as
‘speech points’. Then it extends the boundary of the speech points to points which
have higher intensity than the lower intensity thresholdI2. After this, the algorithm
further extends the boundary of the speech points to those whose zero crossing
rates exceedZ1. All the other data, not marked as speech points, are removed
as ‘silence’. By appropriately setting these three thresholds, the algorithm can
successfully remove silence in most cases. This is found to improve performance
relative to retaining periods of silence (Hu and Damper, 2005).

3 Face Identification

The face identification system is based on the dynamic link architecture (DLA) of
Ladeset al. (1993). The input face image is represented as a set of nodes,each of
which contains 40 Gabor wavelet coefficients. Following theauthors of the original
paper, we call a node and the 40 Gabor wavelet coefficients affiliated with it a ‘jet’,
and we call all the jets in one image a ‘graph’. The graph on a training image
is defined as a ‘model graph’; and the graph on a testing image is defined as an
‘image graph’. During storage, all the model graphs are formed and are labelled
with jets from a subgrid centred over the training images to be stored. During
identification, matching takes place by the adaptive formation of an image graph to
match best a given model graph. The matching process is basedthroughout on one-
to-one links between jets in the model graph and the image graph. The process of
image-graph formation is controlled by a cost function which favours similarity of
corresponding jets and which penalizes metric deformation. The quality of different
matches between a model graph and an image graph can be evaluated using the
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 following score function:

S(M, I ) =
Nn
∑

i=1

S1(Mni , Ini ) − λ

Ne
∑

j =1

S2(Mej , Iej ) (2)

whereMni represents thei th jet of the model graph; andIej represents thej th edge
of the image graph;Nn, Ne are the number of jets and edges, respectively.

The first term of the score function,S1(Mni , Ini ), measures the similarity of jets in
the model graph and the image graph. Suppose the 40 Gabor wavelet coefficients
affiliated with thei th jet of the model graph are represented by the vectorJ(Mni );
and correspondingly we defineJ(Ini ) as the wavelet coefficients affiliated with
the i th jet of the image graph. Then,

S1(Mni , Ini ) = J(Mni ) · J(Ini )

‖J(Mni )‖‖J(Ini )‖

The second term,S2(Mej , Nej ), calculates the metric deformation between the
model graph and the image graph. Suppose thej th edge connects thepth node
and theqth node. We useEMp and EMq to represent the position vectors of thepth
andqth nodes in the model graph; andEI p and EIq to represent the position vectors of
the pth andqth nodes in the image graph. Then the second term can be written as:

S2(Mej , Nej ) = ‖( EMp − EMq) − ( EI p − EIq)‖

Because an ideal match of the model graph and the image graph should have
large similarity values (S1) and small distortion values (S2), equation (2) will have
a higher value for a good match and a lower value for a poor match. Suppose
there areK classes for a face identification system, which correspondsto K
model graphsM1, M2, . . . , MK respectively. The task of a face identification
system is to assign an input image graphI to one of theseK classes according
to the following rule:

decideX ∈ ωs if s = arg max
i

S(Mi , I )

Face recognition can be divided into two steps (Wiskottet al., 1997). First, the
face region of an image should be automatically determined.Second, the detected
face region should be sent to an identification system and theidentification result
obtained. We call the first step ‘face detection’ and the second ‘face identification’.
In our work, we use a coarse graph which consists of 16 nodes for face detection.
This coarse graph finds the best-fitting position (the position which maximizes
the similarity scoreS1) by scanning around the whole image. Then a more
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(a) (b)

Fig. 1. Typical example of use of DLA for face detection and identification: (a) A coarse
graph for face detection; (b) A complex graph for face identification.

complex graph is placed on the detected best-fitting position. Its nodes are then
adjusted to improve the similarity score further, thus finding accurate positions of
facial features. One can see from Figure 1 that, in general, the matching finds
face features quite accurately. But mismatches occur: for example, the nodes
in (b) are not exactly positioned on the two corners of the mouth. After having
extracted the nodes on the testing image, identification is possible with relatively
little computational effort by comparing an image graph to all model graphs by
equation (2) and picking the one with the highest score. Refer to Ladeset al. for
more details of the DLA method.

4 Proposed Method

After obtaining identification scores of both the audio and video classifiers, the
next step is to combine these with a view to obtaining better identification results.
Some well-known simple fixed rules for combining the set of base classifiers, such
as product rule, sum rule, maximum rule, minimum rule and median rule, are
described by Kittleret al. (1998). However, fixed rules can be sub-optimal (Duin,
2002) and there exist rules which need a training set to adjust parameters so as to
obtain better identification. One popular example is the weighted sum rule, which
we use here.

Of course, an alternative to training (i.e., finding the weights empirically) is to try
to determine the weights from theory, based on some assumptions. The obvious
problem which arises is that, frequently, no analytically-soluble formulation can be
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 found, even with dramatically-strong simplifying assumptions. In this work, we
present a method for estimating the (single) optimal weightfor combining our
two classifiers under Gaussian assumptions and compare it with results obtained
using the actual audio-visual identification system, as well a selection of competitor
systems described in the literature. We refer to the former method as ‘proposed’ and
to the latter as ‘empirical’. The reader should note that a form of ‘training’ is still
required for the proposed method, as we have to estimate the moments of some
Gaussian distributions from training data.

4.1 Theoretical Development

Suppose each of the audio and video classifiers consists ofK discriminant
functions, f 1(X), f 2(X),. . . , f K (X). The decision rule in terms of discriminant
functions is:

decideX ∈ ωs if s = arg max
i

f i (X) (3)

Here, X represents the input of both audio and video modalities. We denote
by f 1

1 (X), f 2
1 (X), . . . , f K

1 (X) the scores obtained from the video classifier
(face identification), and byf 1

2 (X), f 2
2 (X), . . . , f K

2 (X) the scores obtained from
the audio classifier (speaker identification). Our aim is to find a weighting
parameterα ∈ [0, 1] to combine optimally these two sets of scores using the
weighted sum rule. This gives a new set of score functions:

f k
comb(X, α) = α f k

1 (X) + (1 − α) f k
2 (X) k = 1, 2, . . . , K (4)

The notation f k
comb(X, α) indicates that the combined scores depend not only

on the input dataX but also on the weighting parameterα. In what follows,
however, we simplify the notation for discriminant functions by dropping argu-
mentsX andα, exceptwhen it is necessary to distinguish among different values
of these arguments.

The weighting parameterα in equation (4) should be selected according to the
relative reliability of the two classifiers. The most directway to do this is to
optimizeα so as to maximize the identification rate on some training data (Maison
et al., 1999; Duin, 2002), but this carries the danger of over-fitting, so reducing the
ability to generalize to unseen test data. Several methods can be used to prevent
over-fitting. For example, Ney (1995) used the smoothed error rate as the cost
function for optimizing the parameterα, and Brunelli and Falavigna (1995) used
the normalized ratio of the first- to the second-best integrated score to calculateα.
A common property of these two methods is that both use the information of the
probability densities of the scores obtained by the two classifiers. In this paper, we
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 propose a method for choosing the weighting parameterα that directly maximizes
the correct identification rate, i.e., the probability of correct identification by the
combined system, from score distributions.

The first step is to normalize the scores of the training data.We use the so-called
z-score normalisation technique, which is calculated usingthe arithmetic mean and
standard deviation of the given data. Refer to Jainet al. (2005) for an overview of
score normalisation techniques in multimodal biometric systems.

The z-score normalisation process can be divided into two steps.In the first step,
all scores of both audio and video classifiers have their meansubtracted and the
result is then divided by their variance:

f k
m(Xi ) = f k

m(Xi )−µm
σm

: with µm =
∑I

i=1
∑K

k=1 f k
m(Xi )

I × K

andσm =
∑I

i=1
∑K

k=1

(

f k
m(Xi ) − µm

)2

I × K

(5)

Here,I is the number of training data,K is the number of classes, andm ∈ {1, 2}.

The second step of normalisation is to make the correct score(i.e., that for
the correct person) zero. This gives us a known reference point from which to
assess scores, and simplifies the derivation of an appropriate mathematical model
under Gaussian assumptions—see below. If we set the weighting parameterα to

a constant value, we can obtain the combined scoresf 1
comb, f 2

comb, . . . , f K
comb by

equations (4) and (5). The second step of the normalisation process is:

if X ∈ wi thenFk
comb = f k

comb− f i
comb k = 1, 2, . . . , K (6)

Equation (6) is used to make the correct score zero. We can seefrom the
decision rule, equation (3), that these two steps of normalisation do not change the
identification result because the new scores in (6) are obtained only by subtracting
and dividing the same number from the original scores, whichdoes not influence
the rank of the scores.

After normalisation, the next step is to estimate the probability distribution of the
scores. We assume that the values of the score functions are independent. That is:

P
(

F1
comb, . . . , F i−1

comb, F i+1
comb, . . . , F K

comb|X ∈ wi

)

=
K
∏

k=1,k 6=i

P
(

Fk
comb|X ∈ wi

)

The reason whyk 6= i is that, after the normalisation,F i
comb always equals zero

if X ∈ wi . We denote the correct identification rate (the probabilityof correct
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 identification) whenX ∈ wi as Ci (α). Since F i
comb ≡ 0 when X ∈ wi after the

normalisation process, we can calculateCi (α) on the basis of equation (3) as:

Ci (α) =
K
∏

k=1,k 6=i

P
(

Fk
comb < 0|X ∈ wi

)

(7)

4.2 Probability Density Estimation

To calculate the probabilityP
(

Fk
comb < 0|X ∈ wi

)

for eachk = 1, 2, . . . , K , we
first have to estimate the probability distributionP

(

Fk
comb|X ∈ wi

)

from the
training data in the form of a Gaussian mixture model. But a problem of sparse
data arises when we try to model the distribution this way. Inessence, it is hard to
estimate the density of a multi-modal data distribution reliably.

Our approach to this problem is to break the available training data up into
‘sections’, and to treat each of these as a unimodal Gaussian, and then to combine
them. Suppose there areM training data available for deciding the weighting
parameterα. Among theseM files, there areM1 files belonging to classω1,
M2 files belonging to classω2, . . . , and finallyMK files belonging to classωK

(M1 + M2 + . . . + MK = M).

We denote theMi training data belonging to classωi as X1, X2, . . . , XMi . The
Gaussian mixture is then:

P
(

Fk
comb|X ∈ wi

)

= 1

Mi

Mi
∑

j =1

1√
2π A

exp

(

−(Fk
comb− µk j )

2

2A2

)

(8)

whereA is a parameter controlling the variance(s).

The component meansµk j are obtained asµk j = Fk
comb(X j , α), j = 1, 2, . . . , Mi .

From this, we see that the means of the mixture components arethe scores of the
training data. WhenA is large, the variance of each mixture component is large;
when it is small, the variance is small. In the extreme case when A becomes zero,
the probability density shrinks to a series of impulse functions.

Figure 2 demonstrates an example of estimating probabilitydensity functions using
equation (8). The probability density function to be estimated is Gaussian with zero
mean and standard deviation of one. It can be seen that in thisspecific example, the
true density function is better estimated whenA has a greater value, but this is not
always the case. Other distributions may favour smaller rather than greaterA. To
estimate the probability density distribution using equation (8) with finite data, we
have to choose a suitable value ofA and it is not clear how this should be done.
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(a) Mi = 5, A = 1
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(b) Mi = 5, A = 0.5
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(c) Mi = 5, A = 0.1

Fig. 2. Probability density estimation using equation (8).The distribution to be estimated
is Gaussian distribution with zero mean and standard deviation of one (as indicated by the
dashed lines). In this example,Mi = 5, which means that five sample points are drawn
from this distribution. Using equation (8), we can obtain the estimated distributions (solid
lines) with A = 1, 0.5 and 0.1 in (a), (b) and (c), respectively.

However, Bishop (1995, pp. 54–55) proves that when the data are infinite, the
expectation of the estimated probability density using theabove method will
converge to the true probability density. Figure 3 demonstrates the convergence
procedure when the number of data increases.
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(a) Mi = 10, A = 0.1
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(b) Mi = 100, A = 0.1
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(c) Mi = 1000,A = 0.1
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(d) Mi = 10000,A = 0.1

Fig. 3. An example to illustrate how the estimated density function (solid lines) reaches the
true density function (dashed lines) when increasingMi . The parameterA is fixed at 0.1
andMi = 10, 100, 1000 and 10000 in (a), (b), (c) and (d), respectively.

4.3 Estimating Correct Identification Rate

Using the estimated pdf, we can now calculate the probability thatFk
comb(X) < 0 as:

P
(

Fk
comb(X, α) < 0 | X ∈ wi

)

= 1

Mi

Mi
∑

j =1

1√
2π A

0
∫

−∞
exp

(

−(Fk
comb(X, α) − µk j )

2

2A2

)

d
[

Fk
comb(X, α)

]

= 1

Mi

Mi
∑

j =1

8
(

−µk j

A

)

where8(x) is the integral of the Gaussian distribution:

8(x) =
x
∫

−∞

1√
2π

exp

(

−x2

2

)

dx
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 From equation (7), we can finally obtainCi (α), which is the correct identification
rate for a specifiedα whenX ∈ wi , as:

Ci (α) = 1

M K−1
i

K
∏

k=1,k 6=i





Mi
∑

j =1

8
(

−µk j

A

)





The overall correct identification rate, denotedC(α), is given as:

C(α) =
K
∑

i=1

Ci (α)P(X ∈ wi ) (9)

whereP(X ∈ wi ) can be estimated asMi
M with Mi equal to the number of training

data that belong to classωi , andM equal to the total number of training data. Thus,
we have transformed the problem of choosing weighting parameterα for combining
two classifiers to a problem of maximising the correct identification rateC(α):

decideα = αopt if α = arg max
α

C(α)

Once the weighting parameterα is selected using our proposed method, we assume
it does not change when it is applied to the test data. Such an assumption is based on
a more general assumption that the training data and the testdata are independently
drawn from the same probability distribution. However, this assumption may not
hold in practice, especially when unexpected environmental noise has dramatically
changed the probability distribution of the test data. In this situation, it is preferable
to use adaptive methods to adjust the weighting parameter(s) (Wark et al., 1999;
Wark, 2000; Sanderson and Paliwal, 2003). In this paper, we still assume that
the probability distribution of the training data and test data is the same, so that
the optimal weighting parameter remains the same for the training and test data,
because our focus is on accurate estimation of the parameterunder this condition.

5 Results Using Real Data

The database used to test the performance of the proposed method is XM2VTS
(Messeret al., 1999). This database, specifically intended for research into multi-
modal person identification, is issued by the Centre for Vision, Speech and Signal
Processing at the University of Surrey, UK. It contains 4 recordings of 295 subjects
taken over a period of four months. Each recording contains aspeaking head shot
and a rotating head shot, although these are not used here. For each person, static
facial images are also provided. The database contains high-quality color images,
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 32 kHz 16-bit sound files, video sequences and a 3D model. We use the data (video
and audio) for 74 people (51 male, 23 female). Each person provides 24 speech
files, which were recorded during 4 sessions (6 files for each session), and 8 static
images (2 for each session).

The silence removal method for the speaker identification has been discussed in
Section 2. We set the upper sound intensity thresholdI1 to be 0.5 times the
average sound intensity of the speech file, and the lower intensity thresholdI2

to be 0.2 times this average intensity value. The zero crossing rate thresholdZ1

was set to the average zero crossing rate of the speech file. Careful examination of
our results suggest that, in most cases, these settings are reasonable and correctly
remove silence while retaining the speech.

For each test speech file, we randomly select three files whichare not from the
same session as the training set, then test this file with the trained GMM model. This
train-3/test-1 strategy is applied to the 24 files for each speaker and 24 identification
results are obtained. For training the Gaussian mixture model, we use mel-
frequency cepstral coefficients as features (Davis and Mermelstein, 1980). The
magnitude spectrum from a 20 ms short-time segment of speechis pre-emphasized
and processed by a simulated mel-scale filterbank, then the log-energy filter outputs
are cosine transformed to produce the cepstral coefficients. We use the first 20 co-
efficients, excluding the zeroth coefficient, plus the first 20 delta coefficients as
the feature set. This process occurs every 10 ms, producing 100 feature vectors per
second. Gaussian mixture density functions consisting of 64 component densities
are used in this work.

In building the face classifier, for each image, we use the 6 images in the
other 3 sessions as the training set, and then test that image. Such a strategy is
applied to all 8 images of each person, obtaining 8 identification results. For each
of the 4 sessions, we randomly select 2 of the 6 speaker identification results and
then combine them with the 2 face identification results for that session.

Figure 4 shows the empirical correct identification rateCe(α) as α increases
from 0 to 1, with a 0.01 increment on each trial. This is done byfirst determining
the individual scores of both the audio and video classifier,then calculating the
combined scores using equation (4), and finally using these for identification. Let us
first define the indicator functionTk(Xi ) as 0 whenXi /∈ ωk, and 1 whenXi ∈ ωk:

Tk(Xi ) =







0 : Xi /∈ ωk

1 : Xi ∈ ωk

(10)
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Fig. 4. The empirical correct identification rate using the test data, withα varying
from 0 to 1.

ThenCe(α) is defined as follows:

Ce(α) = 1

M

M
∑

i=1

Tk̂(Xi ), wherek̂ = arg
K

max
k=1

f k
comb(Xi , α) (11)

The identification rate for the video classifier is 81.93%, and for the audio
classifier it is 90.37%. The combined classifier achieves thehighest identification
rate (98.31%) whenα equals 0.22. However, the empirical identification rateCe(α)

is not a very suitable function to determine the weighting parameterα because of
its non-smooth nature, making it difficult to identify a clear peak corresponding to
the optimum.

We can also obtain a similar curve,Cprop(α), by estimating the correct identification
rate, as proposed in Section 4. Because for the proposed method the scores for both
classifiers are normalized by equation (5), some adjustments need to be done to
eliminate the effect of normalisation. Recall equation (4), the combination function,
is as follows.

f k
comb(X, α) = α f k

1 (X) + (1 − α) f k
2 (X) k = 1, 2, . . . , K

If we replace the original scoresf k
1 (X) and f k

2 (X) with the normalized scores

f k
1 (X) = f k

1 (X)−µ1
σ1

and f k
2 (X) = f k

2 (X)−µ2
σ2

, the weighting parameterα also needs
to be changed correspondingly to obtain the same effect. Supposeα is changed
to α′, equation (4) can be rewritten as follows:

f k
comb(X, α′) = α′ f k

1 (X) + (1 − α′) f k
2 (X)

= α′ f k
1 (X) − µ1

σ1
+ (1 − α′)

f k
2 (X) − µ2

σ2
k = 1, 2, . . . , K
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 To obtain the same effect, we must have:

α

1 − α
=

α′
σ1

1−α′
σ2

Thus, we obtain

α′ = σ1α

σ2 + (σ1 − σ2) α

In order to makeCprop(α) comparable toCe(α), we must defineCprop(α) as follows:

Cprop(α) = C(α′) α′ = σ1α

σ2 + (σ1 − σ2) α

whereC(α′) is defined as in equation (9).

Figure 5 illustrates the obtained correct identification curves whenA = 0.001,
A = 0.01 and A = 0.1. When A takes a relatively large value, the curve is
smoothed relative to the empirical correct identification curve, and the peak
of Cprop(α) whenα varies from 0 to 1 can be more clearly observed.

We can see from Figure 5 that the estimated correct identification rate is always
smaller than the true correct identification rate. This is because the estimated score
distribution as in equation (8) does not precisely reflect the true distribution. From
Figure 6, we observe that even if all the scores for estimation are below 0, the
estimated probability that the score is greater than zero isstill 0.02.

That is, in this special case, the estimated identification rate is 2% smaller than
the true correct identification rate. If we add up all these score distributions as
in equations (7) and (9), we can also expect the estimated identification rate to
be smaller than the true identification rate. We can further estimate that when
A becomes larger, the estimated identification rate will be even smaller. This is
why the values ofCprop(α) are different whenA takes different values. But we
can see from the above results that this problem does not interfere the process of
deciding the weighting parameterα, because we only need to find theα that gives
the maximum value ofCprop(α).

6 Further Results Using Bootstrapping

The empirical identification curve in Figure 4 shows that themaximal identification
rate is achieved whenα = 0.22, while all the three identification rate curves in
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(a) A = 0.001

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

α

Cprop(α)

(b) A = 0.01

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

α

Cprop(α)

(c) A = 0.1

Fig. 5. The correct identification rateCprop(α) using the proposed method asα varies
from 0 to 1: (a)A = 0.001; (b)A = 0.01: (c) A = 0.1.

F
k

comb

P(F
k

comb)

Fig. 6. The estimated probability density off k
comb(X, α) when A = 0.5 and

f k
comb(X1, α) = −3.48, f k

comb(X2, α) = −2.54, f k
comb(X3, α) = −2.02,

f k
comb(X4, α) = −1.56, f k

comb(X5, α) = −1.34 and f k
comb(X6, α) = −0.50. It indicates

that even if all the scores for estimation are below 0, the estimated probability that the
score is greater than 0 is 0.02.
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 Figure 5 using the proposed method indicate that the optimalα is 0.24. Our
intuition told us that the estimation by the proposed methodis more accurate
because it provides a smooth curve, thus reducing the possibility of over-fitting.
In this section, we use the bootstrap method to indicate that, compared with the
empirical method and other frequently-used methods, the proposed method per-
forms well in reducing the variance of the estimated optimalweighting parameter,
thus suggesting a more accurate estimation.

The publication in 1979 of Bradley Efron’s first article on bootstrap methods was
a major event in statistics, at once synthesising some of theearlier resampling
ideas and establishing a new framework for statistical analysis. It has been
shown that bootstrap methods often perform better than traditional methods in
many applications. The reader is referred to Davison and Hinkley (1997) for
a detailed discussion.

The bootstrapping is performed as follows. As indicated in Section 5, there are
8 face identification results and 24 speaker identification results for each person.
In each bootstrap process, we randomly select 8 speaker identification results out
of these 24, then combine them with the 8 face identification results, and obtain
estimates of the optimalα by both the empirical and proposed methods. The boot-
strap process is repeatedN times (i.e., repeating the sampling of 8 from 24 files), so
obtainingN estimates of the optimalα, one for each process, which are represented
asα1

opt, α2
opt, . . . , αN

opt. The mean and variance ofαopt can be calculated as follows:

αopt =
1

N

N
∑

i=1

αi
opt

σαopt =
1

N − 1

N
∑

i=1

(

αi
opt − αopt

)2

We have tested four methods for choosing the optimal weighting parameter using
the bootstrap method:

(1) the empirical method based on actual identification results;
(2) the proposed method based on pdf estimation;
(3) smoothed error rate estimation; and
(4) a genetic algorithm, as proposed by Lam and Suen (1995).

The first two have already been described. The smoothed errorrate estimation
method was first used by Ney (1995), and subsequently in audio-visual speaker
identification by Maisonet al. (1999). This method shares some similarities
with our method (2) as proposed in this paper, which is also a smoothing
technique for the correct identification curve. Instead of finding the value ofα
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 that maximizesCe(α), the smoothed error rate estimation method finds theα that
maximizesCsmooth(α) defined as follows:

Csmooth(α) = 1

M

M
∑

i=1

k
∑

k=1

Tk(Xi )
exp

{

η f k
comb(Xi , α)

}

∑K
j =1 exp

{

η f j
comb(Xi , α)

}

Here M is the total number of training data,K is the total number of classes and
Tk(Xi ) has been defined in equation (10). We note here that it dependson choosing
a parameterη that when large reduces the smoothed error rate to the empirical one.

Lam and Suen’s method attempts to find the optimal weighting parameters using
a genetic algorithm. This method assigns a weighting parameter to each classifier,
making the fusion function as follows:

f k
comb(X, α1, α2) = α1 f k

1 (X) + α2 f k
2 (X)

Then the fitness function which the genetic algorithm needs to maximize is set as:

Cga(α1, α2) = 1

M

M
∑

i=1

Tk̂(Xi ), wherek̂ = arg
K

max
k=1

f k
comb(Xi , α1, α2)

whereM is the number of training data,K is the number of classes, andTk(Xi ) is
defined as in equation (10).

The genetic algorithm is used to search for theα1 and α2 which maxi-
mize Cga(α1, α2). Our settings of parameters is slightly different from the
original paper. The population size is 20. The fractions of crossover and
migration are 0.8 and 0.2, respectively. Because we used the default settings
of the Matlab GA function, the reader can refer to the Matlab function
ga(fitnessfcn,nvars) for the settings of other parameters. The reader
may refer to the MathWorks’ websitehttp://www.mathworks.com/ for an
introduction to Matlab software.

The GA algorithm runs for 100 generations and picks theα1 andα2 which yield
the largest value ofCga(α1, α2). To make the GA method comparable with other
methods, the optimal weighting coefficientα is then found as α

1−α
= a1

a2
.

Table 1 shows the meansαopt and variancesσαopt of these four methods using
200 bootstrap iterations (N = 200). We have used a range ofA values for the
proposed method and, similarly, a range ofη values for the smoothed error rate
estimation method. Those shown in table are the sub-ranges over which good
estimates (i.e., low variances) were obtained.
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Method αopt σαopt

Empirical 0.2548 0.0545

Genetic Algorithm 0.2685 0.0547

Proposed

A = 0.001 0.2478 0.0419

A = 0.002 0.2464 0.0421

A = 0.005 0.2470 0.0425

A = 0.01 0.2480 0.0400

A = 0.02 0.2665 0.0386

A = 0.05 0.2488 0.0358

A = 0.1 0.2635 0.0308

A = 0.2 0.3001 0.0355

Smoothed Error Rate

η = 5 0.2664 0.0552

η = 10 0.3598 0.0388

η = 15 0.3051 0.0373

η = 20 0.2879 0.0388

η = 25 0.2798 0.0411

η = 30 0.2766 0.0424

η = 35 0.2683 0.0475

η = 40 0.2667 0.0486

Table 1
The means and variances of the four methods for estimating the optimal weighting
parameterαopt with the real speech and video data.

We can see from the table that the four methods provide similar means. The
proposed method and the smoothed error rate method give generally smaller
variances than the other two methods (although this is of course achieved with
the advantage of an adjustable parameter). The proposed method appears to give a
rather smaller variance than the smoothed error rate method, but this is uncertain.

7 Results with Simulated Data

Table 1 indicates that the proposed method performs slightly better in reducing the
estimation variance, but it does not show that this method isalso good at reducing
the estimation bias, i.e., ifαopt estimated by this method is close to the true value
of the optimal weighting parameter. With the real data used in the previous section,
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 this question can not be answered because this true value is unknown.

In this section, we try to answer this question in some aspects. First, we construct
simulated data with a known probability distribution, so the true value of the
optimal weighting parameter can be exactly calculated. Finally, we use the
bootstrap method withN = 200 to estimate the optimal weighting parameter, and
see how close the estimated optimal weighting parameter is to the true value
of that parameter. The idea of using simulated data to test classifier combination
methods was proposed by Kittler and Alkoot (2003), and has become a benchmark
approach. Here will will also use simulated data to test our method of choosing
weighting parameters.

Consider aK -class problem. We need to construct theK scores of an inputX
which belongs to a specific class, say,X ∈ ωk, wherek ∈ {1, 2, . . . , K }. First,
we generateK random numbers, each of which is uniformly distributed in the
range [0, 200]. We usen1, n2, . . . , nK to represent theseK numbers. We choose
nk as the maximum of theseK numbers (nk = max{n1, n2, . . . , nK }), since it is
reasonable to assume that the highest score will be obtainedfor the correct class.
Next we generate anotherK random numbers,σ1, σ2, . . . , σK , each of which is
uniformly distributed in the range [0, σmax]. Hereσmax is a controlling parameter.
The scoresf 1(X), f 2(X), . . . , f K (X) are generated as follows.

For eachk ∈ {1, 2, . . . , K }, f k(X) is a random sample drawn from a normal
distribution with meannk and varianceσk. We construct two classifiers, denoted
Classifier 1 and Classifier 2. For Classifier 1, we set itsσmax to 10; and for
Classifier 2, we set itsσmax to 20. Thus, Classifier 1 is a strong classifier and
Classifier 2 is a weak classifier. For both , we setK to 74, equal to the number
of classes in the audio-visual speaker identification task.For each class, we
generate 8 sets of scores from Classifier 1, and 24 sets of scores from Classifier 2,
which is also the same as the audio-visual speaker identification task. Using the
bootstrap method, we then obtain the means and variances of the four methods.
Since the simulated data are generated from a known distribution, we can also
accurately calculate the true optimal weighting parameter, αtrue, by using all the
parametersn1, n2, . . . , nK andσ1, σ2, . . . , σK . For simplicity, the details of how
to calculateαtrue are omitted here. We mention only that we can accurately
calculateαtrue since the score distributions are known.

Table 2 shows the estimated means and variances for normally-distributed simu-
lated data using the four methods. Here,αtrue = 0.650. It can be observed that the
means of the empirical, genetic algorithm and proposed methods are closer toαtrue

than the smoothed error rate method, but the proposed methodgives much smaller
variance than the empirical and genetic algorithm methods.However, we need
to remember that the simulated data are generated with a Gaussian distribution,
so conforming to the major assumption underlying our proposed method. Thus,
we have also carried out performance comparisons with data with a rectangular
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Method αopt σαopt

Empirical 0.6509 0.0428

Genetic Algorithm 0.6510 0.0399

Proposed

A = 0.001 0.6494 0.0350

A = 0.002 0.6499 0.0344

A = 0.005 0.6494 0.0303

A = 0.01 0.6520 0.0298

A = 0.02 0.6520 0.0277

A = 0.05 0.6491 0.0180

A = 0.1 0.6185 0.0089

A = 0.2 0.5719 0.0058

Smoothed Error Rate

η = 5 0.5225 0.0045

η = 10 0.5750 0.0047

η = 15 0.6070 0.0078

η = 20 0.6269 0.0113

η = 25 0.6358 0.0124

η = 30 0.6436 0.0159

η = 35 0.6436 0.0159

η = 40 0.6436 0.0159

Table 2
The means and variances of four methods for estimatingαopt on simulated data generated
to have a Gaussian distribution. Hereαopt = 0.650.

(uniform) distribution. This should show our method at maximum disadvantage
relative to the competitors.

As before, the sets of random numbers were generated from which we obtain
nk andσk. A uniform distribution in the range(nk−σk, nk+σk) was then generated.
The results in Table 3 for the data with uniform distributionshow that the proposed
method holds up well in the face of violation of the underlying assumption of
normally-distributed data. The optimal weighting parameter is estimated with very
low bias and low variance, certainly relative to the empirical and GA methods.
Performance is slightly but noticeably better than the smoothed error rate method.

It is not suitable to use the empirical method directly to decide the optimal
weighting parameter, because it gives very high variance. Abetter solution is to
calculate the average of the optimal weighting parameters by using the bootstrap
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Method αopt σαopt

Empirical 0.7324 0.0492

Genetic Algorithm 0.7368 0.0529

Proposed

A = 0.001 0.7359 0.0419

A = 0.002 0.7367 0.0413

A = 0.005 0.7346 0.0385

A = 0.01 0.7343 0.0306

A = 0.02 0.7327 0.0220

A = 0.05 0.7270 0.0176

A = 0.1 0.7177 0.0224

A = 0.2 0.7541 0.0519

Smoothed Error Rate

η = 5 0.6106 0.1486

η = 10 0.7043 0.0525

η = 15 0.7135 0.0314

η = 20 0.7182 0.0255

η = 25 0.7224 0.0235

η = 30 0.7256 0.0234

η = 35 0.7256 0.0234

η = 40 0.7256 0.0234

Table 3
The means and variances of four methods for estimatingαopt on simulated data generated
with a uniform distribution. Hereαopt = 0.727.

method. In situations where the training data are sparse, sothat it is difficult to use
the bootstrap method, the proposed method is highly recommended.

The main drawback of the proposed method is that we have to choose a suitable
value of A and it is not clear how this should be done. Of course, the smoothed
error rate technique shares this kind of problem, in that we have to fix a suitable
value ofη.

8 Conclusions and Future Work

This paper provides a method to estimate the optimal weighting parameter for
fusion of scores in audio-visual person identification. It is based on estimation
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 of probability density functions for the scores under a Gaussian assumption. By
use of bootstrapping, the performance of this method can be strictly analysed and
compared with other methods. Using simulated data, such that the pdf is known,
results indicate that this method has advantages in reducing the bias and variance
of the estimation. The method is shown to perform well even when the underlying
Gaussian assumption is violated. The main problem is in choosing a suitable value
of smoothing parameterA. It is not clear at present how this should best be done.

The validity of the proposed method is based on two assumptions. First, the
bootstrapping method as discussed in Section 6 is based on the assumption that
the performances of the audio classifier and the visual classifier are independent.
Intuitively, such an assumption is true because we have little information to
imagining a person’s face when only listening to his/her voice, and vice versa.
Our future work will investigate whether the bootstrappingmethod is valid when
the two modalities are strongly correlated. Another assumption is that, as discussed
in Section 4.3, the training and the test data are drawn independently from a fixed
probability distribution; thus, the optimal weighting parameter remains unchanged.
Although this assumption is very common in theoretical pattern recognition studies
(Vapnik, 1998), it may not be valid in practice. Thus, adaptive methods for choosing
weighting parameter(s) may be preferable in practical situations.

It should be noted that, although our method is developed forthe identification
task, it can be applied to verification. For verification, a similar approach can
be taken for choosing the optimal weighting parameter basedon minimising the
equal error rate (EER), instead of maximising the correct identification rate for
the identification case. One of our future works is to generalize this method
to person verification.

References

Adjoudani, A. and Benoı̂t, C. (1995). Audio-visual speech recognition compared
across two architectures. InProceedings of the 4th European Conference on
Speech Communication and Technology, volume 2, pages 1563–1567, Madrid,
Spain.

Ben-Yacoub, S., Abdeljaoued, Y., and Mayoraz, E. (1999). Fusion of face and
speech data for person verification.IEEE Transactions on Neural Networks,
10(5), 1065–1074.

Bengio, S. (2003). Multimodal authentication using asynchronous HMMs. In
Proceedings of the 4th International Conference on Audio- and Video-based
Biometric Person Authentication, pages 770–777, Guildford, UK.

Bishop, C. M. (1995).Neural Networks for Pattern Recognition. Clarendon Press,
Oxford, UK.

Brunelli, R. and Falavigna, D. (1995). Person identification using multiple cues.

24



 

 

 

ACCEPTED MANUSCRIPT 

 IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(10), 955–
966.

Chibelushi, C. C., Deravi, F., and Mason, J. S. (1993). Voiceand facial image
integration for speaker recognition. InIEEE International Symposium on Mul-
timedia Technologies and Future Applications, pages 155–161, Southampton,
UK.

Davis, S. and Mermelstein, P. (1980). Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences. IEEE
Transactions on Acoustics, Speech and Signal Processing, 28(4), 357–366.

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their
Application. Cambridge University Press, Cambridge, UK.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum-likelihood from
incomplete data via the EM algorithm.Journal of the Royal Statistical Society,
Series B, 39(1), 1–38.

Duin, R. P. W. (2002). The combining classifier: To train or not to train? In
Proceedings of 16th International Conference on Pattern Recognition, volume II,
pages 765–770, Quebec City, Canada.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of
Statistics, 7(1), 1–26.

Erzin, E., Yemez, Y., and Tekalp, A. M. (2005). Multimodal speaker identification
using adaptive classifier cascade based on modality reliability. IEEE Transac-
tions on Multimedia, 7(5), 840–852.

Fu, T., Liu, X. X., Liang, L. H., Pi, X., and Nefian, A. V. (2003). Audio-visual
speaker identification using coupled hidden Markov model. In Proceedings of
the IEEE International Conference on Image Processing, ICIP’03, volume 3,
pages 29–32, Barcelona, Spain.

Hu, R. and Damper, R. I. (2005). Fusion of two classifiers for speaker identification:
Removing and not removing silence. InProceedings of 8th International
Conference on Information Fusion, volume 1, pages 429–436, Philadelphia, PA.

Hu, R. and Damper, R. I. (2006). A ‘no panacea’ theorem for multiple classifier
combination. InInternational Conference on Pattern Recognition, (ICPR 2006),
Hong Kong, China. No pagination, Proceedings on CD-ROM.

Jain, A., Nandakumar, K., and Ross, A. (2005). Score normalization in multimodal
biometric systems.Pattern Recognition, 38(12), 2270–2285.

Kittler, J. and Alkoot, F. M. (2003). Sum versus vote fusion in multiple classifier
systems. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(1), 110–115.

Kittler, J., Hatef, M., Duin, R. P. W., and Matas, J. (1998). On combining classifiers.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226–
239.

Lades, M., Vorbruggen, J., Buhmann, J., Lange, J., von der Malsburg, C., and
Wurtz, R. (1993). Distortion invariant object recognitionin the dynamic link
architecture.IEEE Transactions on Computers, 42(3), 300–311.

Lam, L. and Suen, C. Y. (1995). Optimal combination of pattern classifiers.Pattern
Recognition Letters, 16(9), 945–954.

25



 

 

 

ACCEPTED MANUSCRIPT 

 Lucey, S., Chen, T., Sridharan, S., and Chandran, V. (2005).Integration strategies
for audio-visual speech processing: Applied to text-dependent speaker recogni-
tion. IEEE Transactions on Multimedia, 7(3), 495–506.

Luettin, J. (1997).Visual Speech and Speaker Recognition. PhD thesis, Department
of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK.

Maison, B., Neti, C., and Senior, A. (1999). Audio-visual speaker recognition
for video broadcast news: some fusion techniques. InProceedings of the
IEEE Workshop on Multimedia Signal Processing, pages 161–167, Copenhagen,
Denmark.

Messer, K., Matas, J., Kittler, J., Luettin, J., and Maitre,G. (1999). XM2VTSDB:
The extended M2VTS database. InProceedings of 2nd International Conference
on Audio and Video-based Biometric Person Authentication,AVBPA’99, pages
72–77, Washington, DC.

Ney, H. (1995). On the probabilistic interpretation of neural network classifiers
and discriminative training criteria.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(2), 107–119.

Rabiner, L. R. and Sambur, M. R. (1975). An algorithm for determining the
endpoints of isolated utterances.Bell Systems Technical Journal, 54(2), 297–
315.

Reynolds, D. A. and Rose, R. C. (1995). Robust text-independent speaker
identification using Gaussian mixture models.IEEE Transactions on Speech
and Audio Processing, 3(1), 72–83.

Sanderson, C. and Paliwal, K. K. (2003). Noise compensationin a person
verification system using face and multiple speech features. Pattern Recognition,
36(2), 293–302.

Toh, K.-A. and Yau, W.-Y. (2004). Combination of hyperbolicfunctions for
multimodal biometrics data fusion.IEEE Transactions on System, Man, and
Cybernetics: Part B Cybernetics, 34(2), 1196–1209.

Vapnik, V. N. (1998).Statistical Learning Theory. Wiley, New York, NY.
Wark, T. (2000). Multi-Modal Speech Processing for Automatic Speaker Recog-

nition. PhD thesis, School of Electrical and Electronic Systems Engineering,
Queensland University of Technology, Brisbane, Australia.

Wark, T., Sridharan, S., and Chandran, V. (1999). Robust speaker verification
via fusion of speech and lip modalities. InProceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP’99, volume 6,
pages 3061–3064, Phoenix, AZ.
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