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ABSTRACT
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Doctor of Philosophy

PERCEPTRON-LIKE LARGE MARGIN CLASSIFIERS

by Petroula Tsampouka

We address the problem of binary linear classification with emphasis on algorithms

that lead to separation of the data with large margins. We motivate large margin

classification from statistical learning theory and review two broad categories of large

margin classifiers, namely Support Vector Machines which operate in a batch setting

and Perceptron-like algorithms which operate in an incremental setting and are driven

by their mistakes. We subsequently examine in detail the class of Perceptron-like large

margin classifiers. The algorithms belonging to this category are further classified on

the basis of criteria such as the type of the misclassification condition or the behaviour

of the effective learning rate, i.e. the ratio of the learning rate to the length of the

weight vector, as a function of the number of mistakes. Moreover, their convergence

is examined with a prominent role in such an investigation played by the notion of

stepwise convergence which offers the possibility of a rather unified approach. Whenever

possible, mistake bounds implying convergence in a finite number of steps are derived

and discussed. Two novel families of approximate maximum margin algorithms called

CRAMMA and MICRA are introduced and analysed theoretically. In addition, in order

to deal with linearly inseparable data a soft margin approach for Perceptron-like large

margin classifiers is discussed. Finally, a series of experiments on artificial as well as

real-world data employing the newly introduced algorithms are conducted allowing a

detailed comparative assessment of their performance with respect to other well-known

Perceptron-like large margin classifiers and state-of-the-art Support Vector Machines.
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Chapter 0

Introduction

0.1 Overview

Machine learning deals with the problem of learning dependencies from data. The

machine (algorithm) is provided with a training set consisting of examples drawn in-

dependently from the same distribution. We distinguish three main learning problems:

the problems of classification (pattern recognition), regression and density estimation.

In the classification task the examples are given in the form of instance-label pairs with

the labels taking integer values which indicate which out of a certain number of classes

the instances belong to. In the regression task each instance is accompanied by a real

number related to it either through an unknown deterministic functional dependency

or in the most general case through a conditional probability. Finally, in the density

estimation task no additional information is provided to the machine other than the

instances themselves. In the training process the machine tries to infer a functional

relation mapping the input space of instances to the output space which is either the

set of discrete values that the labels take (in the classification task) or the set of real

numbers (in the regression task). In the density estimation task in which the machine is

looking for the underlying distribution governing the data no such mapping exists. Any

such function that the machine returns as an output is known as a hypothesis. In the

present work we will only be concerned with the binary classification problem in which

the labels can take only one out of two values.

The goal of the machine is to construct a hypothesis able to predict the labels of in-

stances which did not participate in the training procedure. If we impose no restriction

on the functions which the machine chooses its hypothesis from it might be that most

of the instances of an independent set will be wrongly classified by the hypothesis pro-

duced even though this hypothesis explains the training data satisfactorily. The above

situation can be remedied if the richness of the function class employed by the machine

is appropriately restricted. There are various classes of functions which the learning

1



Chapter 0 Introduction 2

algorithms draw their hypothesis from with the most prominent ones being the classes

of linear functions, polynomials and radial basis functions.

By embedding the data in an appropriate feature space via a nonlinear mapping we

can always use a machine employing the class of linear discriminants. The hyperplane

generated by the machine which performs the separation of the training examples in the

feature space corresponds to a nonlinear curve in the original space. In many learning

algorithms the mapping can be efficiently performed by the use of kernels. Therefore,

the treatment of classes which contain nonlinear functions can be considered a straight-

forward extension of the linear case whenever the kernel trick is applicable.

A broad categorisation of the algorithms could be done according to the learning model

that they follow. In the first category are those algorithms that follow the online model.

According to the online model learning proceeds in trials and the instances become

accessible one at a time. More specifically, in each trial the algorithm observes an

instance and makes a guess of its binary label. Then, the true label of the instance

is revealed and if there is a mismatch between the prediction and the actual label the

algorithm incurs a mistake. The algorithm maintains in every trial a hypothesis defining

the linear discriminant which is updated with every mistake. A natural extension of

online learning is the incremental or sequential setting of learning in which the algorithm

cycles repeatedly through the examples until no mistake occurs. The most prominent

algorithm in this category is the Perceptron [47]. In the second category belong the

algorithms which follow the batch learning model and which have access to all training

instances prior to the running of the algorithm. Well-known examples of algorithms in

the second category are the Support Vector Machines (SVMs) [9]. The SVMs solve an

optimisation problem with a quadratic objective function and linear constraints. SVMs

in contrast to Perceptrons minimise the norm of the weight vector defining the solution

hyperplane. This is actually equivalent to maximising the minimum distance (margin)

of the training instances from that hyperplane.

The algorithms that reach convergence find, in the linearly separable case, a hypothesis

consistent with the training data. However, even such solutions may fail to classify

correctly unseen (test) data. The ability of a hypothesis to classify correctly test data

is known as the ability to generalise. The generalisation ability of a linear classifier is

believed to be enhanced as the margin of the training instances from the hyperplane

solution becomes larger. This favours considerably algorithms like SVMs which find

solutions possessing large margin.

Although the Perceptron algorithm in contrast to SVMs does not insist on finding large

margin solutions its simplicity and its online mode of implementation render it very at-

tractive. For this reason a considerable amount of effort has been devoted to developing

and analysing online algorithms able to approximate the maximal margin hyperplane
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to any accuracy. Such algorithms include the Maximal Margin Perceptron [34], agg-

ROMMA [38] and ALMAp [21]. In order to obtain solutions with margin their misclas-

sification condition (i.e. the condition that decides whether a mistake occurs) becomes

stricter and is satisfied not only if the predicted label of the instance is wrong but also

in the case of correct classification with a lower than the desirable value of the margin.

Our work presented here follows the same line.

0.2 Contributions

Our main contributions are the following:

We developed Perceptron-like algorithms with margin in which the misclassification

condition is modified to require a fixed value of the margin. These new algorithms

are radically different from the previous approaches which implement a misclassification

condition relaxing with time (i.e. with the number of mistakes). With the condition kept

fixed two generic classes of algorithms emerged, the one leaving the length of the weight

vector determining the hypothesis hyperplane free to grow indefinitely and the other

keeping the weight vector normalised to a fixed length. The new algorithms converge to

a solution with a fixed value of the margin in a finite number of steps and may be used

as modules of more complex algorithmic constructions in order to approximately locate

the optimal weight vector. Additionally, we introduced stepwise convergence, the ability

of the algorithm to approach the optimum weight vector at each step, and making use

of it we developed a unified approach towards proving convergence of Perceptron-like

algorithms in a finite number of steps. This research led to [56].

We also introduced the “effective” learning rate, the ratio of the learning rate to the

length of the weight vector, and performed a classification of Perceptron-like algorithms

into four broad categories according to whether the misclassification condition is fixed

or relaxing with time and according to whether the effective learning rate is fixed or

decreasing with time. The classification revealed that the Perceptron with margin and

ALMA2 belong to the same category whereas the algorithms with fixed margin condition

that we described above cover both cases with respect to the behaviour of the effective

learning rate. Thus, the existence of algorithms with misclassification condition relaxing

with time and constant effective learning rate was left an open issue. Guided by this

observation we developed a novel class of algorithms called CRAMMAǫ which belong to

this last category and are parametrised by ǫ which determines the power of the number

of mistakes in the law according to which the misclassification condition is relaxed. We

proved that for a sufficiently small effective learning rate the new class of algorithms

converges in a finite number of steps and showed that under some conditions there

exists a limit of the parameters involved in which convergence leads to classification

with maximum margin. Moreover, in order to deal with linearly inseparable data a soft
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margin extension for Perceptron-like large margin classifiers was presented following the

approach of [17] and was shown to correspond to a partial optimisation of an appropriate

criterion. This research led to [57].

Finally, we constructed MICRAǫ,ζ an approximate maximum margin algorithm in which

both the effective learning rate and the misclassification condition are entirely controlled

by rules involving powers of the number of mistakes. Since the effective learning rate of

MICRA decreases with the number of mistakes there is no condition on its initial value

for convergence to occur. CRAMMA may be regarded as a limiting case of MICRA

with the parameter ζ controlling the rate of decrease of the effective learning rate set

to zero. We provided a theoretical analysis of MICRA and investigated the conditions

under which MICRA converges asymptotically to the optimal solution with maximum

margin. We also presented a variation of the standard sequential way of cycling through

the data which leads to considerable improvement in running times. An extensive com-

parative experimental investigation revealed that MICRA with ǫ≪ 1 and ζ ≃ 1 is very

competitive. This research led to [58].

0.3 Publications

This work has contributed to the following publications:

• Tsampouka, P., Shawe-Taylor, J.: Analysis of generic perceptron-like large margin

classifiers. ECML 2005, LNAI 3720 (2005) 750–758, Springer-Verlag

• Tsampouka, P., Shawe-Taylor, J.: Constant rate approximate maximum margin

algorithms. ECML 2006, LNAI 4212 (2006) 437–448, Springer-Verlag

• Tsampouka, P., Shawe-Taylor, J.: Approximate maximum margin algorithms with

rules controlled by the number of mistakes. In Proceedings of the 24th International

Conference on Machine Learning (2007) 903–910

0.4 Thesis Outline

The present thesis is organised as follows.

Chapter 1 contains an introductory discussion of data representation in the initial in-

stance space and in kernel-induced feature spaces. The properties characterising func-

tions which are kernels are described and examples of such functions are given.

Chapter 2 presents some elements of statistical learning theory in order to elucidate

the factors responsible for the generalisation ability of learning machines and provide

motivation for the large margin classifiers that will be described in subsequent chapters.
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Chapter 3 contains an introduction to Support Vector Machines and related techniques.

Chapter 4 contains a review of some well-known incremental mistake-driven algorithms.

The algorithms are presented in an order that depends on their ability to achieve margin.

Therefore, we begin with the standard First-Order and the Second-Order Perceptron and

subsequently we move to algorithms that succeed in obtaining some margin such as the

Perceptron with margin and the relaxation algorithmic procedures. Finally, algorithms

such as ALMAp, ROMMA and the Maximal Margin Perceptron that are able to reach

the solution with maximum margin are discussed.

In Chapter 5 we present in detail our work on Perceptron-like Large Margin Classifiers.

First we attempt a taxonomy of such algorithms. Subsequently, we introduce the notion

of stepwise convergence. Then, we proceed to the analysis of the generic Perceptron-like

algorithms with the standard margin condition and (a slight modification) of the ALMA2

algorithm followed by the Constant Rate Approximate Maximum Margin Algorithm

CRAMMAǫ, the Mistake-Controlled Rule Algorithm MICRAǫ,ζ and algorithms with

fixed margin condition.

Chapter 6 contains a soft margin extension applicable to all Perceptron-like classifiers.

Chapter 7 contains an experimental comparative study involving our algorithms and

other well-known large margin classifiers.

Finally, Chapter 8 contains the conclusion of the thesis.



Chapter 1

Kernel-Induced Feature Spaces

1.1 Data Representation

At the core of machine learning theory lies the problem of identifying which category

out of many possible ones an object belongs to. To this end a machine (algorithm) is

trained using objects from distinct classes in order to learn the properties characterising

these classes. After the training phase is completed an unknown object can be assigned

to one of the classes on the basis of its properties. The objects used for training are

called training points, patterns, instances or observations and will be denoted by x. The

different classes are distinguished by their label or target value y. In the present thesis

we will be concerned only with binary classification, thus restricting y to belong to the

set {1,−1}.

It is important to describe the procedure followed by a learning machine in order to

assign a label to an instance x with unknown label. The machine chooses y in such a

way that the newly presented point shows some similarity or dissimilarity to the points

that already belong to one of the classes. In order to assess the degree of similarity we

have to define a similarity measure. A commonly used similarity measure is the inner

product which, of course, necessitates a vector representation of the instances in some

inner product space. A first stage in the assignment of a label to a newly presented

instance involves the computation of the value of a function f(x) which maps the n-

dimensional input x into the real numbers. The function f usually assumes the linear

in x form

f(x) = w · x+ b =

n
∑

i=1

wixi + b . (1.1)

In the above relationship the n-dimensional vector w, called the weight vector, defines

the normal to a hyperplane that splits the data space into two halfspaces. The quantity

b called bias is related to the distance of the hyperplane from the origin. The test point

the label of which is to be determined is then given the label y = 1 (i.e. the point belongs

6
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to the positive class) if f(x) > 0, otherwise the label y = −1 is assigned to it (i.e. the

point belongs to the negative class). The parameters w and b defining the hyperplane

are determined by the training process.

Let us assume that the weight vector w can be expressed as a linear combination of the

l patterns contained in the training set

w =

l
∑

i=1

αiyixi ,

a representation which is by no means unique. This expansion in xi’s of the outcome

of the training procedure is called the dual representation of the solution. If w is

substituted back in (1.1) we obtain

f(x) =

l
∑

i=1

αiyixi · x+ b .

We observe that the label

y = sign(f(x))

of the test point x is evaluated using only inner products between the test point and the

training patterns. This elucidates the role of the inner product as a similarity measure.

1.2 Learning in the Feature Space

Even if the patterns already belong to some dot product space we may choose a nonlinear

mapping φ into a space H which from now on will be called the feature space. Since

the data admit a vector representation the embedding can be expressed as follows

x = (x1, . . . , xn) −→ φ(x) = (φi(x), . . . , φN (x)) .

Here n indicates the dimensionality of the original space, usually referred to as the input

space, whereas N denotes the dimensionality of the feature space. The components of

the vector φ(x) resulting from the mapping into the feature space are called features

to be distinguished from the components of the vector x which will be referred to as

attributes.

The question then that naturally arises is why should one proceed to a mapping into

another space? In the previous section we constructed a hyperplane that classifies the

training points into two classes and we used the hyperplane performing the separation to

determine the labels of the unseen test points. It may, however, happen that the points

are not linearly separable in the input space. In this case a nonlinear tranformation into

a feature space where classification is possible with a linear surface can ease the difficulty
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Figure 1.1: Linearly inseparable data in the input space can become linearly separable
by mapping them via φ into a higher dimensional feature space. Then a linear decision
boundary in the feature space yields a nonlinear curve in the input space.

(Fig. 1.1). There is also a possibility that the original vector representation of x includes

many irrelevant attributes. This may disorientate the training procedure from a solution

able to successfully predict the unknown labels. Such undesirable situations can be

avoided by an embedding of the data into an appropriate feature space which encodes a

prior knowledge about the problem and offers a representation with the suitable number

of features.

As an example of how to explicitly incorporate our prior knowledge in the feature map-

ping let us assume that the only relevant information about a given task is contained in

monomials of degree 2 formed out of the attributes of x. Then, taking for the sake of

simplicity the dimensionality of the input space to be equal to 2, we have the following

embedding

x = (x1, x2) −→ φ(x1, x2) = (x2
1, x

2
2, x1x2) .

In the case of an input space of dimensionality equal to n one can construct the feature

space of all possible monomials of degree exactly equal to d by an analogous procedure.

The dimensionality N of such a feature space is then given by the formula

N =

(

n+ d− 1

d

)

=
(n+ d− 1)!

d!(n− 1)!
.

It is apparent that a large number of attributes n in combination with a large value of

d will eventually lead to an explosion in the number of dimensions of the feature space

making the explicit construction of such a feature mapping computationally impractical.

1.3 Implicit Mapping via a Kernel

An inseparable problem can be rendered separable by an appropriate feature mapping.

This will enable us to use in that feature space algorithms that may already exist which

are able to compute separating hyperplanes. Such algorithms implemented in the feature
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space produce functions assigning labels to the unseen patterns which are of the type

f(x) =
N
∑

i=1

wi · φi(x) + b . (1.2)

Assuming again that the weight vector w admits a dual representation with respect to

the transformed training data (1.2) becomes

f(x) =
l
∑

i=1

αiyiφ(xi) · φ(x) + b . (1.3)

The previous relationship involves an explicit non-linear mapping φ from the space

X which the training data and the test point live in into the feature space H. The

function f(x) is constructed by a linear machine working in the feature space aiming at

classifying the training data by means of a hyperplane. The linear surface performing

the classification in H corresponds to a non-linear surface in the input space. Notice

that here the inner product of the transformed instances plays the role of the similarity

measure. Equation (1.3) suggests that explicit knowledge of the feature mapping would

be obsolete if one was able to compute directly the inner product involving the training

data and the test point in the feature space. The previous observation that only the

knowledge of the inner product suffices if we are interested in constructing appropriate

classification functions in the feature space motivates the following definition of the

kernel function.

Definition 1.1. A kernel is a function K : X x X → R, such that for all x, x′ ∈ X

K(x,x′) = φ(x) · φ(x′)

with φ a mapping from X to an inner product feature space H.

The kernel function K takes as arguments any two points x and x′ and returns a real

number measuring the similarity of their images in the feature space. Thus, the kernel

may be viewed as a similarity measure “transformed” by the feature mapping. This

becomes more obvious if we consider in the place of φ the identity function which

defines a kernel coinciding with the inner product in the input space

K(x,x′) = x · x′ .

We assumed earlier that the weight vector can be decomposed as a linear combination

of the transformed patterns thus giving rise to the dual representation. By taking into

account the definition of the kernel (1.3) can be equivalently rewritten as

f(x) =
l
∑

i=1

αiyiK(x,xi) + b . (1.4)
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The decision rule f(x) entails at most l kernel evaluations which are as many as the data

contained in the training set. A mere observation of (1.4) reveals that the introduction

of the kernel eliminates any complications in the computation of the decision rule f(x)

stemming from the possibly large dimensionality of the feature space. Therefore, the

number of operations involved in the evaluation of the kernel function are not necessarily

controlled by the number of features, thereby reducing the computational complexity of

the decision rule.

Let us attempt to illustrate how it is possible by constructing directly the kernel to

avoid the operations involved in the evaluation of the inner product in the feature space

associated with an explicit description of the feature mapping. For our demonstration

we choose to evaluate the square of the inner product in the input space and investigate

the possibility that it constitutes a kernel. Each vector participating in the inner product

is analysed in its components and the square of the product is computed as follows

(x · x′)2 =

(

n
∑

i=1

xix
′
i

)2

=

(

n
∑

i=1

xix
′
i

)





n
∑

j=1

xjx
′
j





=
n
∑

i=1

n
∑

j=1

xixjx
′
ix

′
j =

(n,n)
∑

(i,j)=(1,1)

(xixj)
(

x′ix
′
j

)

.

From the preceding analysis we can conclude that the square of the inner product con-

stitutes a kernel which performs a mapping into a feature space consisting of monomials

of degree exactly 2

φ(x) = (xixj)
(n,n)
(i,j)=(1,1) .

Notice that the features xixj for i 6= j appear twice leading to a double weight in

comparison to the weight of x2
i . In order to build a space the features of which are the

monomials up to degree 2 we have to add a constant parameter c to the inner product

before raising it to the second power. The resulting kernel is analysed as follows

(x · x′ + c)2 =

(n,n)
∑

(i,j)=(1,1)

(xixj)
(

x′ix
′
j

)

+

n
∑

i=1

(√
2cxi

)(√
2cx′i

)

+ c2 .

The transformation φ corresponding to the above kernel comprises as features in addition

to monomials of degree 2 monomials of degree 1 and 0 which are weighted according to

the parameter c.

1.4 Characterisation of Kernels

The procedure that we followed in the previous section for the construction of polynomial

kernels was to first carry out the inner product in the feature space by making use of the
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explicit mapping which was known to us and then infer from it how the same result could

be derived by employing only quantities associated with the input space. It would be

very useful, however, to identify the properties characterising a kernel since this would

enable us to directly construct kernels without even knowing the explicit form of the

feature mapping. From the definition of the kernel it is easily derived that every kernel

is symmetrical in its arguments

K(x,x′) = φ(x) · φ(x′) = φ(x′) · φ(x) = K(x′,x) .

A second property of kernels comes from the Cauchy-Schwarz inequality which yields

K2(x,x′) =
(

φ(x) · φ(x′)
)2 ≤ ‖φ(x)‖2

∥

∥φ(x′)
∥

∥

2
= K(x,x)K(x′,x′) .

Nevertheless, none of these properties suffice to ensure that the function under consid-

eration is indeed a kernel. A function is certainly a kernel only if it represents an inner

product defined in a feature space to which x ∈ X is mapped via φ. Hence, we have to

identify the conditions that guarantee the existence of such a mapping φ.

Let us consider a finite input space X = (x1,x2, . . . ,xl) and suppose K(x,x′) is a

symmetric function on X. Using this function we can construct a square matrix K the

entries (i, j) of which are filled with the values that the function K assumes for every

pair (xi,xj)

K = (K(xi,xj))
l
(i,j)=1 .

Since this matrix is furthermore symmetrical it can be decomposed as K = V ΛV T ,

where Λ is a diagonal matrix with elements the eigenvalues λi ofK and V an orthogonal

matrix with entries vij the columns of which are eigenvectors of K. Next we consider

the feature mapping φ which maps xi to a vector consisting of the ith component of all

eigenvectors scaled by the square root of the accordingly indexed eigenvalues

φ : xi −→ φ(xi) =
(

√

λ1vi1, . . . ,
√

λlvil

)

. (1.5)

In order to perform the above mapping we make the assumption that the eigenvalues

are non-negative. Looking at (1.5) we realise that with such a mapping we are able to

recover any entry kij of the matrix K if we work out the inner product φ(xi) · φ(xj)

φ(xi) · φ(xj) =
∑

t,r

δtr
√

λtvit

√

λrvjr =
∑

t,r

vitΛtrvjr =
(

V ΛV T
)

ij
= kij .

Here δij is Kronecker’s δ. This implies that K(x,x′) is indeed a kernel function corre-

sponding to the feature mapping φ. The constructed feature space with dimensionality

at most l is spanned by the l vectors φ(xi), i = 1, . . . , l which resulted from the mapping.

Let us assume now that K(x,x′) is a kernel function corresponding to a feature mapping

φ defined on X and consider a vector z written as the following linear combination of
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φ(xi)’s

z =
l
∑

i=1

visφ(xi) .

The squared norm of z is given by

‖z‖2 =

(

∑

i

visφ(xi)

)

·





∑

j

vjsφ(xj)



 =
∑

i,j

visvjskij

=
(

VTKV
)

ss
= Λss = λs .

Since such a squared norm of a vector is a non-negative quantity the eigenvalues of K

must be non-negative. The above discussion concerning the eigenvalues of K leads to

the following proposition.

Proposition 1.2. Let X be a finite input space with K(x,x′) a symmetrical function

with respect to its arguments. Then K(x,x′) is a kernel function if and only if the

matrix

K = (K(xi,xj))
l
(i,j)=1

is positive semi-definite.

In the above discussion that led to Proposition 1.2 we studied the eigenvalue problem of

a kernel matrix K constructed by the values that the kernel function assumes on every

possible pair drawn from a finite number of points. More specifically, we examined any

restrictions that may hold for the eigenvalues λs associated with the following eigenvalue

problem

Kvs = λsvs .

An extension of this eigenvalue problem in order to cover the case of an infinite input

space X is
∫

X
K(x,x′)ψ(x′)dx′ = λψ(x) .

This is an eigenvalue problem in an infinite dimensional space where the role of the

eigenvectors is played by the eigenfunctions ψ. In analogy with Proposition 1.2 the

following theorem [42] is concerned with the conditions that K should fulfill in order for

it to be a kernel function.

Theorem 1.3. (Mercer) Let X be a compact subset of R
n. Suppose K is a continuous

symmetric function such that the integral operator TK : L2(X)→ L2(X) defined by

(TKf)(x) =

∫

X
K(x,x′)f(x′)dx′

is positive, meaning that

∫

XxX
K(x,x′)f(x)f(x′)dxdx′ ≥ 0 (1.6)
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for all f ∈ L2(X). Here L2(X) is the space of measurable functions over X which are

square integrable. Let us denote by ψi ∈ L2(X) the normalised (‖ψi‖L2
= 1) orthogonal

eigenfunctions of TK associated with the eigenvalues λi ≥ 0. Then,

∞
∑

i=1

λi <∞

and K(x,x′) can be expanded as a uniformly convergent series

K(x,x′) =

∞
∑

i=1

λiψi(x)ψi(x
′) . (1.7)

Observe that the condition for positivity of the operator TK can be reduced to the

conditions for positive semi-definiteness of a kernel matrix K = (K(xi,xj))
l
(i,j)=1. In

order to obtain the latter we have to choose in the place of the functions f(x) appearing

in (1.6) a weighted sum of delta functions at the points xi, i = 1, . . . , l. The weights of

the delta functions will form a vector v for which

vTKv ≥ 0

holds true. We can assert the converse too, i.e. if the positivity of TK is violated then

we can approximate the integral appearing in (1.6) by a sum over a sufficiently large

number of appropriately chosen points which will be negative. This proves that Mercer’s

theorem provides the general conditions for a function to be characterised as a kernel

subsuming the specific case of a finite input space.

Mercer’s theorem suggests the feature mapping

x = (x1, . . . , xn) −→ φ(x) = (ψ1(x), . . . , ψj(x), . . . )

into the feature space H which is the Hilbert space l2(λ) of all sequences z = (z1, z2, . . . ,

zi, . . . ) such that

‖z‖2 =
∞
∑

i=1

λiz
2
i <∞ ,

where the inner product of sequences x and z is defined by

x · z =

∞
∑

i=1

λixizi .

This is so since the inner product of two feature vectors satisfies

φ(x) · φ(x′) =

∞
∑

i=1

λiψi(x)ψi(x
′) = K(x,x′) .
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In order for the kernel to be represented an infinite number of eigenfunctions may be

actually required or it may be the case that the infinite series reduces to a finite sum due

to the vanishing of λi for i sufficiently large. In the latter case involving a space of finite

dimensionality NH, where ψi’s form an orthonormal basis, K(x,x′) can be considered

as an inner product in R
NH . Since K(x,x′) = φ(x) ·φ(x′) the components entering the

inner product will be determined by the induced mapping φ on the points x

φ : x −→ (ψi(x))NH

i=1 .

Even when the induced space is of infinite dimensionality we can approximate the kernel

function K within some accuracy ǫ if a space of an appropriate dimensionality n is found

into which the points are mapped. If the eigenvalues λi, i = 1, . . . , n, . . . are sorted in a

non-increasing order and a mapping

φ : x→ (ψi(x), . . . , ψn(x))

is performed we can achieve that

|K(x,x′)− φ(x) · φ(x′)| < ǫ .

The features ψi entering (1.7) have the additional property that they are orthonormal.

It seems that the property of orthogonality is inherent in Mercer’s theorem and it is

related to the eigenfunctions of the integral operator TK constructed for the specific

kernel function. Note that this is not required and we may optionally allow mappings

that do not involve orthonormal features. To such a case belongs the kernel which

corresponds to all the monomials of second degree. In addition to the flexibility that we

have shown as far as the orthogonality is concerned we can also allow for a rescaling of

the features

x = (x1, . . . , xn)→ φ(x) = (b1φ1(x), . . . , bjφj(x), . . . ) ,

where by b1, . . . , bj , . . . we denote the rescaling factors. We can recover the relation

φ(x) · φ(x′) = K(x,x′) if we define an altered inner product

x · z =

∞
∑

j=1

λj

b2i
xjzj

where x,z denote any two points in the feature space. Employing the new definition we

obtain

φ(x) · φ(x′) =

∞
∑

j=1

λj

b2j
bjφj(x)bjφj(x

′) = K(x,x′) .

A dual representation of the solution vector w found by the learning machine leads to a
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decision rule f(x) written in terms of the values of the kernel function on pairs consisting

of the training points xi and the test point x

f(x) =

l
∑

i=1

αiyiφ(xi) · φ(x) + b =

l
∑

i=1

αiyiK(xi,x) + b .

If we define a vector ψ living in H to be a linear combination of φ(xi), i = 1, . . . , l

ψ =

l
∑

i=1

αiyiφ(xi) (1.8)

the decision rule f(x) can be equivalently expressed in the primal form

f(x) =

∞
∑

i=1

λiψiφi(x) + b

with (1.8) linking the primal with the dual representation. We should remark here that

the immediately preceding expression of f(x) which involves explicit mappings of the

training and test points in the feature space requires the summation of as many terms

as the dimensionality of the feature space as opposed to the dual representation which

contains only l terms. In order to choose which of the two representations suits us most

we have to weigh the size of the dataset against the dimensionality of the feature space.

As we discussed earlier there are situations where the infinite sum in the above equation

may be truncated without a significant error.

We conclude this section by pointing out that there is not a unique mapping of the data

that leads to a given kernel. Mappings that are associated with different feature spaces

even in terms of their dimensionality can result in the same kernel.

1.5 Examples of Kernels

The procedure described in Section 1.3 for constructing kernels associated with embed-

dings to feature spaces consisting of all the monomials of degree 2 can be extended to

kernels representing the inner product of vectors the components of which are monomials

of arbitrary degree d. Let us consider the dth order product (xj1xj2 . . . xjd
) constructed

by attributes of the point x in which the indices j1, j2, . . . , jd run over 1, . . . , n, where n

is the dimensionality of the original space. Next we form a vector φ(x) the attributes of

which are all the dth order products which result after exhausting the combinations on

the values of the indices j1, . . . , jd. We carry out the inner product φ(x) · φ(x′) which

yields
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φ(x) · φ(x′) =
∑

j1

· · ·
∑

jd

xj1xj2 . . . xjd
x′j1x

′
j2 . . . x

′
jd

=
∑

j1

xj1x
′
j1 · · ·

∑

jd

xjd
x′jd

=





∑

j

xjx
′
j





d

=
(

x · x′)d .

This means that the inner product of vectors under a mapping which transfers them to

a space formed by all the monomials of degree d corresponds to the kernel

K(x,x′) = (x · x′)d .

Since the surface that classifies the examples into two categories is a polynomial curve

we call this kind of kernels polynomial kernels. For d = 1 we obtain a special case of

a polynomial kernel which is the linear kernel K(x,x′) = x · x′. We have seen before

that a space the features of which are monomials up to degree 2 is endowed with the

inhomogeneous polynomial kernel K(x,x′) = (x · x′ + c)2. Generalising this result to a

space consisting of all the monomials up to degree d we end up with the following kernel

K(x,x′) = (x · x′ + c)d .

Apart from the polynomial kernels it is worth mentioning the general category of Radial

Basis Function (RBF) kernels. Their characteristic is that they are written in the form

K(x,x′) = g(d(x,x′)) ,

where g denotes a function taking as an argument a metric d on X and mapping it to the

space of nonnegative real numbers. The most common metric applied to the points x

and x′ is the Euclidean distance d(x,x′) = ‖x− x′‖ =
√

(x− x′) · (x− x′). A known

kernel falling into this category is the Gaussian kernel [2]

K(x,x′) = exp

(

−‖x− x
′‖2

σ2

)

,

where σ is a positive parameter. Since the value of the Gaussian kernel depends only

on the vectorial difference of 2 points it has the property of being translation invariant

implying that K(x,x′) = K(x + x0,x
′ + x0). All the above mentioned kernels share

the important property of being invariant under orthogonal transformations. Thus, if a

linear mapping of the form x → Ox takes place, where O is an orthogonal matrix for

which O−1 = OT holds, then K(x,x′)= K(Ox,Ox′). This property obviously holds

for the polynomial kernels since they involve inner products but also for the Gaussian

kernel for which the Euclidean distance is employed. Such a matrix O includes the case

of a rotation matrix. Consequently, if a rotation of the points is performed and either

a polynomial or a Gaussian kernel is employed with the additional assumption that the
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learning machine makes use of the training instances exclusively through a kernel we will

acquire the same solution as if no rotation was applied to the data. This property renders

the results of the learning procedure independent of the coordinate system employed as

long as the origin is kept fixed. An extensive treatment of kernels is provided in [48, 54].



Chapter 2

Elements of Statistical Learning

Theory

2.1 The General Inference Model

Pattern recognition can be viewed as a problem of extracting knowledge from empirical

data. The main approach until the 60’s for estimating functions using experimental

data was the parametric inference model which is based on the assumption that the

unknown functions can be appropriately parametrised. Then the experimental data

are used in order to determine the unknown parameters entering the model. Fisher

[16] was one of the pioneers in this direction who suggested the maximum likelihood

approach as a method of solving problems cast in this form. The original belief that these

methods could prove successful in real-world problems originated from the Weierstrass

approximation theorem stating that any continuous function defined in a finite interval

can be approximated to any level of accuracy by polynomials of an appropriate order.

This belief was further reinforced by the fact that whenever an outcome is the result of

a large number of interacting independent random factors the distribution underlying

their sum can be described satisfactorily by the normal law according to the Central

Limit Theorem.

The drawback of the parametric inference model, however, is that its efficiency is strongly

dependent on the dimensionality of the space which the data live in. In particular such

methods break down in cases involving high-dimensional data spaces. In such spaces

the existence of singularities in the function to be approximated is very probable. The

existence of only a small number of derivatives for such non-smooth functions demands

polynomials of degree increasing with the number of dimensions, if polynomial approx-

imator functions are used, in order to achieve an acceptable level of accuracy. This

phenomenon is characterised as “the curse of dimensionality”.

18
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In the opposite direction lies the general analysis of statistical inference initiated by

Glivenko, Cantelli and Kolmogorov. Glivenko and Cantelli proved that if one uses a very

large number of independent observations which follow some distribution then, indepen-

dently of the actual probability distribution governing the data, one can approximate it

to any desired degree of accuracy. Kolmogorov’s contribution was the establishment of

bounds concerning the rate of convergence to the actual distribution. This theory which

makes no assumption about the underlying distribution was called the general inference

model as opposed to the particular (parametric) one.

Both approaches have the common goal of finding the function that describes well unseen

data by exploiting only a finite data sample. A learning machine that takes as input

this sample of data and produces a function able to explain well unseen data is said to

have good generalisation ability.

By generalising the Glivenko-Cantelli-Kolmogorov results a theory was developed [60, 61]

which links the training procedure of the learning machine involving a finite training

sample with its ability to produce rules that work well on examples to be presented to it

in the future. According to this theory the only relevant quantity related to the training

process is the number of examples that the machine failed to explain based on the rule

that has been generated. These wrongly explained examples are characterised as training

errors. Central to this theory is the Empirical Risk Minimisation (ERM) principle which

associates the small number of training errors with the good generalisation ability of the

learning machine.

There are two main issues that this theory should address. The first involves the identifi-

cation of necessary and sufficient conditions under which the ERM principle is consistent.

Consistency of the ERM principle means that the estimated function is able to approach

the best possible solution within a given set of functions with an increasing number of

observations. The second issue involves quantitative criteria associated with the solution

found. For example, we would like to know what the probability of error on unknown

examples is when we have already estimated the function that minimises the training

errors in a dataset of a given size and how much this probability differs from the one

associated with the optimal choice among functions belonging to a given set.

The law of large numbers as established by Glivenko and Cantelli states that the fre-

quency of an event converges to its true probability for a very large number of observa-

tions. However, in its original form this law could not assert that for a given set of events

the sequence of probabilities of events with the smallest frequency converges to the small-

est possible value for this set. This theoretical gap was filled later by the uniform law of

large numbers. A prominent role in this theory is played by the Vapnik-Chervonenkis

(VC) dimension, which measures the richness of the class of functions implemented by

the learning machine. According to this theory consistency in distribution-independent

settings exists if the VC dimension is finite. The extension of Kolmogorov’s bounds on
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the rate of convergence led to bounds which depend on the VC dimension, the number of

training errors and the size of the dataset presented to the machine during the training

phase.

As the ERM principle suggests one should be interested in estimating a function that

makes a small number of errors on the training set because this would automatically

imply a small error rate on unseen data (test error). It is expected that if the learning

machine employed has at its disposal a large set of candidate functions then it becomes

easier to find the function that leads to the smallest possible training error. There exist

bounds that constrain the probability of error simultaneously for all the functions in the

set and involve quantities like the number of training errors and the VC dimension of

the set of functions. A larger VC dimension implies a greater ability of the functions

contained in the set to explain the data leading possibly to smaller training errors. The

presence of the VC dimension in the bounds can influence the minimum number of errors

on unseen data (i.e. the risk suffered). This is an interesting property of the bounds

which will be investigated at a later stage of our analysis.

2.2 Learning from Examples

The learning model that will be considered consists of three main parts:

1. The generator of the training instances.

2. The target function (supervisor) operating on the training instances.

3. The learning machine.

The generator is thought of as being a source the statistical properties of which remain

invariant during the procedure. Its role is to generate a number l of instances x belonging

to an n-dimensional space X which are independently drawn and identically distributed

(i.i.d.) according to some unknown distribution. The target function (supervisor), which

is unknown to us as well and remains the same as long as the training takes place, receives

these instances as input and produces an output y belonging to a space Y which is visible

to us. The learning machine tries to estimate the target function employing as the only

source of knowledge the instance-target pairs

(x1, y1), (x2, y2), . . . , (xl, yl) .

Based on these observations the machine attempts to construct a function that predicts

well the response of the target function when presented with samples coming from the

same distribution. At any stage of the procedure the machine can provide us with an

estimation of what the answer of the target function or oracle will be on the next instance.
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Nevertheless, one should distinguish the case of constructing a function performing well

on the data from the case of ending up with a function lying close to the target function

with respect to some metric. Obviously, the latter is a stronger requirement which

subsumes the case of imitating the behaviour of the oracle.

2.3 Minimising the Risk Functional

In the previous section we saw that during the training phase the learning machine

constructs a function which operates on the data. As a matter of fact the machine

chooses the appropriate member from a class of functions H ⊂ Y X referred to as the

hypothesis class. Y X denotes the set of all functions which map the input space X onto

the output space Y . The selection of the function f(x), which is called a hypothesis,

can be done according to some predetermined criteria. To make this more formal we

define the following functional

R = R(f(x)) ,

which depends on the set of admissible functions f(x). Among these the function f0(x)

has to be found which minimises R which for this reason will be referred to as the risk

functional. If we consider that the samples are generated according to a probability

distribution F (x, y) then the risk functional can be expressed as the expectation

R(f(x)) =

∫

L(y, f(x))dF (x, y) .

As we have mentioned before the probability distribution is unknown and minimisation

can be performed only by employing the empirical data available during the training

process. If we call A the algorithm implemented by the learning machine then for a

given sample z = (x, y) and a hypothesis class H we assume that A produces hypotheses

belonging to H, coded formally as A(z,H) ∈ H.

The function L(y, f(x)) appearing in the integral is known as the loss function and

is a measure of the discrepancy between the output produced by f and the target.

Additionally, we have to impose that the loss function be integrable for any f(x) ∈ H.

This loss function can be parametrised by a ∈ Λ allowing us to distinguish the admissible

functions belonging to the same hypothesis class. Notice that the set Λ which the

parameter a takes values from is connected to the admissible set of functions. In other

words we establish a correspondence a → fa between elements a of the set Λ and

functions fa ∈ H. Using Q(z, a) instead of L(y, f(x)) the risk functional R(fa) becomes

the function R(a)

R(a) =

∫

Q(z, a)dF (z) . (2.1)

The objective of the algorithm is to infer the specific a = a0 for which R(a) is minimised.
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In the literature we come across three basic problems, namely the problem of classifica-

tion, the problem of regression and finally that of density estimation. In the simplest

problem, that of classification, an instance is generated according to F (x). The supervi-

sor classifies the new instance to one of k classes according to the conditional probability

F (ω|x), where ω ∈ {1, 2, . . . , k}. For the special case of binary classification the number

of classes is fixed to two. In the regression problems there is a functional relationship or

more generally a stochastic dependency linking each x to a scalar y which takes values in

the range (−∞,∞). This dependency is described by the probability F (y|x) of y given

x. In the problem of density estimation we seek to determine the probability density

p(x, a0) among the set of admissible densities p(x, a), a ∈ Λ that corresponds to the

unknown distribution F (x) which generated the observed instances x. The difference

from the cases of classification and regression is that the supervisor providing the values

of y is missing, so z coincides with x.

Various loss functions have been proposed depending on the nature of the problem.

For example, for binary classification problems the 0-1 loss has been adopted which is

described by

L0−1(ω, φ(x, a)) =

{

0 if ω = φ(x, a)

1 if ω 6= φ(x, a) .

The argument φ(x, a) in the loss function denotes the prediction of the machine for

a given x on the basis of the function selected from the hypothesis class. The loss

function in the binary classification problem is a set of indicator functions that take

only two values, either zero or one. For regression the squared loss is commonly used

which is given by

L2(y, φ(x, a)) = (y − φ(x, a))2 .

The loss function in this case does not take values from a finite set but instead can be

equal to any nonnegative number. For the density estimation problem the loss function

L(x, φ(x, a)) = − ln p(x, a)

is used which takes values in the range (−∞,∞). Such a choice of the loss function

is motivated by the fact that the corresponding risk coincides, apart from a constant,

with the Kullback-Leibler (KL) distance between the approximate density p(x, a) and

p(x, a0). The minimum value of the risk R(a0) coincides with the entropy of the distri-

bution associated with p(x, a0).

As suggested by the ERM principle instead of minimising the risk function one can

minimise the empirical risk

Remp(a) =
1

l

l
∑

i=1

Q(zi, a) .
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For the special case of binary classification Q(zi, a) takes values from the set {0, 1}. Let

us assume that the minimum of the risk is attained at Q(z, a0) whereas the minimum of

the empirical risk at Q(z, al). We will consider Q(z, al) as an approximation of Q(z, a0)

and try to identify the conditions under which the former converges to the latter.

It is worth pointing out here that since the machine has a restricted set of functions at

its disposal the best that we can expect from the algorithm is to estimate a0 as

a0 = arg min
a∈Λ

R(a) .

Nevertheless, the best estimate lies among the set of all possible functions Y X mapping

the space X onto Y and for that estimate the risk acquires its minimum value Rmin.

Previously in our discussion we emphasised the importance of the richness of the hy-

pothesis class Λ described by the VC dimension as a decisive factor on which the gen-

eralisation ability of the machine depends. The choice of Λ brings forward a dilemma

known as the approximation-estimation or bias-variance dilemma. In order for this to

become apparent the difference of the risk due to any function corresponding to the

parameter a ∈ Λ and the minimum possible value of the risk Rmin has to be decomposed

as

R(a)−Rmin = (R(a) −R(a0)) + (R(a0)−Rmin) .

The second term on the r.h.s. is characterised as the approximation error. Apparently,

as the set of admissible functions is enlarged the feasibility of a function being closer

to the best estimate increases. The same does not apply for the first term called the

estimation error. In this case a larger hypothesis class means that the risk incurred by

any function in the set will be probably further away from the minimum risk incurred by

a0. Therefore, the most successful choice of Λ, that is, the one that contains aminimising

the l.h.s. can only result as a trade-off between the approximation and the estimation

error.

2.4 Consistency of the Learning Process

The quality of an algorithm A can be judged by its ability to converge to functions

(hypotheses) which lead to risks lying close to the minimum of the risk function attained

at a0 ∈ Λ. The algorithm should succeed in that task only by means of the training

sample made available to it. The construction of the hypothesis is suggested by the

appropriate induction principle which in our case is ERM. Through that principle A
produces a solution hypothesis al ∈ Λ, depending on the size l of the training set, which

leads to Q(z, al) from which an expected risk R(al) could have been estimated if the

distribution generating the sample was known. Thus, the expected risk R(al) has to

be assessed only through the error incurred on the finite empirical sample after the
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completion of the training procedure. There are two fundamental questions that can

be raised. What is the relation between the empirical risk and the expected risk for

the solution found? Is it possible for the expected risk to approach the smallest feasible

value for functions belonging to the set Λ? These matters will be addressed by the study

of the consistency of the ERM principle.

Definition 2.1. The principle of empirical risk minimisation is consistent for the set

of functions Q(z, a), a ∈ Λ and for the probability distribution function F (z) if the

following two sequences converge in probability 1 to the same limit

R(al)
l→∞

−→
P

inf
a∈Λ

R(a) (2.2)

Remp(al)
l→∞

−→
P

inf
a∈Λ

R(a) . (2.3)

The first of the two equations requires that in the limit of an infinite dataset size provided

to the machine the sequence of achieved risks on the basis of the functions constructed

tends to the minimum one. The second equation requires that in the same limit the

sequence of empirical risks estimated on the set of training data given to the machine

also tends to the same value.

From the Definition 2.1 it is evident that consistency is a property of the functions that

the machine implements and the distribution that generates the data. We would like

consistency to be achieved in terms of general criteria characterising the whole class

of admissible functions and not specific members of the class. However, even a set

of inconsistent functions can be rendered consistent by adding to it a function which

minimises the loss Q(z, a). Then, it is easily understood that the minimum of the

empirical risk is attained at this function which also coincides with the minimum of the

expected risk. In order to tackle such kind of situations we have to exclude functions

from the set of admissible ones that lead to trivial satisfaction of the consistency criteria.

This can be done by reformulating the definition of the ERM consistency as follows.

Definition 2.2. The ERM principle is strictly (non-trivially) consistent for the set of

functions Q(z, a), a ∈ Λ and for the probability distribution function F (z) if for any

nonempty subset Λ(c), c ∈ (−∞,∞) of this set of functions such that

Λ(c) =

{

a :

∫

Q(z, a)dF (z) ≥ c
}

the minimum of the empirical risks defined over any such subset Λ(c) tends to the

minimum expected risk for functions of this subset

inf
a∈Λ(c)

Remp(a)
l→∞

−→
P

inf
a∈Λ(c)

R(a) .

1Convergence in probability means that for all ǫ > 0 we have P {|R(αl) − infα∈Λ R(α)| > ǫ}
l→∞
−→ 0

and P {|Remp(αl) − infα∈Λ R(α)| > ǫ}
l→∞
−→ 0, respectively.
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If the ERM principle is strictly consistent then (2.2) of Definition 2.1 is automatically

fulfilled.

We now give an example in which the first limit in Definition 2.1 holds whereas the second

is violated. To illustrate this we consider the set of indicator functions Q(z, a), a ∈ Λ.

To our class belong only functions Q which take the value zero at a finite number of

intervals which as a total have measure ǫ and are equal to one elsewhere. The parameter

a distinguishes the functions Q according to the specific intervals at which their value is

equal to zero. If a number of examples z1,z2, . . . ,zl is supplied to a learning machine

working on the basis of ERM principle it will favour the solutions a for which the

functions Q become zero at the training points. Consequently, for this class of functions

we have

Remp(al) = inf
a∈Λ

1

l

l
∑

i=1

Q(zi, a) = 0 .

The expectation of the risk for any function in the set and therefore for the function al

constructed by the machine is given by

R(a) =

∫

Q(z, a)dF (z) = 1− ǫ . (2.4)

Combining the above two equations we obtain

inf
a∈Λ

R(a)−Remp(al) = 1− ǫ .

Furthermore, due to (2.4) it obviously holds that

R(al)− inf
a∈Λ

R(a) =

∫

Q(z, al)dF (z)− inf
a∈Λ

∫

Q(z, a)dF (z) = 0 .

We conclude that although the expectation of the risk converges to the smallest possible

in the set the same does not hold for the empirical risk. Therefore, for that class of

functions the ERM principle is not consistent.

The ERM consistency demands some asymptotic criteria that must be met in order

for the solution constructed in terms of empirical data to converge to the optimal one.

Notice that the optimal solution depends on the real distribution producing the data.

We can get some intuition about what is needed to satisfy the criteria by studying

another example in which an induction principle somewhat different from the ERM one

is used.

Once more we are interested in finding out whether the risk function can be optimised

(minimised) through the use of empirical data, but we now make the additional as-

sumption that the distribution function is absolutely continuous. In that case the risk
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function can be rewritten as follows

R(a) =

∫

Q(z, a)dF (z) =

∫

Q(z, a)p(z)dz ,

where p(z) is the density function corresponding to the distribution F (z). Further-

more, we demand that the loss function be uniformly bounded by a positive constant

B (|Q(z, a)| ≤ B). This is true in the binary classification since Q(z, a) are indicator

functions and take the value of either 1 or 0. Let us also assume that the density pl(z)

estimated from the data converges in probability to the true density p(z) in the L1

metric, i.e.
∫

|pl(z)− p(z)| dz
l→∞

−→
P

0 .

We also consider the empirical risk R⋆
emp

R⋆
emp(a) =

∫

Q(z, a)pl(z)dz (2.5)

associated with an induction principle different from the usual one. We would like to

emphasise that the above modified empirical risk is generally expected to be different

from Remp since the empirical density pl is not necessarily concentrated on the observed

data but may assume non-zero values elsewhere. As a result the integral in (2.5) does

not always reduce to a finite sum. With these assumptions and the requirement in mind

that Q be bounded we will prove that the function Q(z, al) which minimises R⋆
emp(a)

defined in terms of the estimator pl converges to the optimal one Q(z, a0) among all

functions minimising R(a). Constructing the supremum over all the functions in the

class we obtain

sup
a∈Λ

∣

∣

∣

∣

∫

Q(z, a)p(z)dz −
∫

Q(z, a)pl(z)dz

∣

∣

∣

∣

≤ sup
a∈Λ

∫

|Q(z, a)| |p(z)− pl(z)| dz

≤ B
∫

|p(z)− pl(z)| dz
l→∞

−→
P

0 . (2.6)

Thus, with the expectation taken over the actual distribution the expected risk converges

in probability for all functions in the class simultaneously to the risk with the expectation

now taken over the empirical probability estimator. From the previous relationship it

can be derived that for any ǫ and η there exists a number of examples l′(ǫ, η) such that

for any l > l′(ǫ, η) with probability 1− η
∫

Q(z, al)p(z)dz −
∫

Q(z, al)pl(z)dz < ǫ , (2.7)

−
∫

Q(z, a0)p(z)dz +

∫

Q(z, a0)pl(z)dz < ǫ . (2.8)
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hold. Since Q(z, al) is the minimiser of R⋆
emp the following is true

∫

Q(z, al)pl(z)dz ≤
∫

Q(z, a0)pl(z)dz . (2.9)

Combining (2.7), (2.8) and (2.9) we obtain that with probability 1− η
∫

Q(z, al)dF (z)−
∫

Q(z, a0)dF (z) < 2ǫ (2.10)

holds true. Summing up, we can assert that the minimisation of the induction principle

(2.5) under the condition of boundedness of Q(z, a) and the convergence of densities

guarantees that the risk estimated with Q(z, al) converges in probability to the smallest

possible in the limit of infinite data sample size. From (2.6) it is apparent that we do

not need the empirical density to converge to the true one, but it suffices instead that

sup
a∈Λ

∣

∣

∣

∣

∫

Q(z, a)p(z)dz −
∫

Q(z, a)pl(z)dz

∣

∣

∣

∣

l→∞

−→
P

0 .

If we are interested only in the binary classification, Q(z, a) are indicator functions and

the integral
∫

Q(z, a)p(z)dz can be interpreted as the probability P (Aa) of the event

Aa = {z : Q(z, a) = 1} with respect to the distribution density p(z). In an analogous

way the integral
∫

Q(z, a)pl(z)dz can be interpreted as the probability Q(Aa) of the

same event Aa only this time with respect to the empirical density pl. The following

theorem due to Scheffe relates the difference of densities in L1 metric to the supremum

of the difference of the corresponding probabilities:

Theorem 2.3. Let p(x) and q(x) be densities, let F be Borel sets of events A and let

P (A) =
∫

A p(x)dx and Q(A) =
∫

A q(x)dx be probabilities of the set A ∈ F corresponding

to these densities. Then

sup
A∈F
|P (A)−Q(A)| ≤ 1/2

∫

x
|p(x)− q(x)| dx .

An immediate consequence of the theorem is that convergence of densities in the L1

metric leads to convergence over the set of all events of the corresponding probabilities.

This implies that convergence of the densities is a stronger condition to impose than

convergence of the probabilities, especially if one is interested in the convergence over

a subset F ⋆ of the set F of events. Therefore, one should move in the direction of

identifying conditions under which this holds true. At this point we should note that

apart from asymptotic bounds one can acquire non-asymptotic ones as that of (2.10)

on the generalisation of the learning machine depending only on a finite number of

observations.

If the empirical risk minimisation principle is adopted instead of the one of (2.5) one can

examine by means of the Lebesgue integral in an analogous procedure as earlier whether
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the minimal value of the risk function (2.1) can be attained. For this to take place we

require that the loss functions be bounded and non-negative and furthermore that the

empirical risk estimator νl(A) of an event A converge in probability to the corresponding

true probability P (A)

sup
A∈F⋆

|P (A)− νl(A)|
l→∞

−→
P

0 .

Notice here that convergence holds for all the events belonging to a subset F⋆ of F .

Indeed, it can be proved that minimisation of the empirical risk produces a sequence

of values R(al) that tend in probability to the minimal value of the risk for increasing

numbers of observations.

2.5 Empirical Processes

From what has preceded a connection was revealed between the consistency of the em-

pirical risk minimisation principle and the convergence of the empirical risk estimator of

any event in a set to its true probability. We consider the sequence of random variables

ξl = sup
a∈Λ

∣

∣

∣

∣

∣

∫

Q(z, a)dF (z)− 1

l

l
∑

i=1

Q(zi, a)

∣

∣

∣

∣

∣

.

Here, we make again the hypothesis that a number of examples l were independently

generated by the same distribution F (z). We call this sequence which depends both on

F (z) and on the loss function Q(z, a) a two-sided empirical process. As we remarked in

the beginning of the section the relation to the consistency of ERM principle motivates us

to investigate the conditions under which the empirical process converges in probability

to zero, that is

P

{

sup
a∈Λ

∣

∣

∣

∣

∣

∫

Q(z, a)dF (z)− 1

l

l
∑

i=1

Q(zi, a)

∣

∣

∣

∣

∣

> ǫ

}

l→∞−→ 0 . (2.11)

The above relation describes the uniform convergence of means to their expectations.

It is called uniform because it is taken over the set of all admissible functions. One can

also consider the one-sided empirical process defined as

ξl
+ = sup

a∈Λ

(

∫

Q(z, a)dF (z)− 1

l

l
∑

i=1

Q(zi, a)

)

+

,

where

(u)+ =

{

u if u > 0

0 otherwise
.
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In analogy to the uniform two-sided convergence the uniform one-sided one takes place

if

P

{

sup
a∈Λ

(

∫

Q(z, a)dF (z)− 1

l

l
∑

i=1

Q(zi, a)

)

> ǫ

}

l→∞−→ 0 . (2.12)

If the set of Q(z, a), a ∈ Λ is chosen to be the set of indicator functions then the

relations (2.11) and (2.12) are interpreted as uniform convergence of frequencies to their

probabilities.

According to the law of large numbers if the set of admissible functions contains only

one element then the sequence of means converges always to the expectation of the

random variable for an increasing number of examples. Specialising this to the binary

classification which we are interested in we consider a hypothesis class containing a single

indicator function Q(z, a⋆) with a⋆ denoting here a fixed event. The Bernoulli theorem

verifies then that for l → ∞ the frequencies converge to the probability of the event

Aa⋆ = {z : Q(z, a⋆) > 0}

P {|P{Q(z, a⋆) > 0} − νl{Q(z, a⋆) > 0}| > ǫ} l→∞−→ 0

where νl{Q(z, a⋆) > 0} is used to denote the frequency of the event. In addition to the

previous asymptotic bound Chernoff’s inequality [12]

P {|P{Q(z, a⋆) > 0} − νl{Q(z, a⋆) > 0}| > ǫ} < 2 exp{−2ǫ2l}

yields bounds on the rate of convergence for a finite number of observations. The law of

large numbers can be easily generalised to the case where the hypothesis class consists

only of a finite number of functions N . Let Ak = {z : Q(z, ak) > 0}, k = 1, 2 . . . N

denote the set of N finite events. The uniform two-sided empirical process for finite

events in the Bernoulli scheme is written as

max
1≤k≤N

|P{Q(z, ak) > 0} − νl{Q(z, ak) > 0}| .

We can place upper bounds on the rate of convergence by application of Chernoff’s

inequality which gives that

P

{

max
1≤k≤N

|P{Q(z, ak) > 0} − νl{Q(z, ak) > 0}| > ǫ

}

≤
N
∑

k=1

P {|P{Q(z, ak) > 0} − νl{Q(z, ak) > 0}| > ǫ}

≤ 2N exp{−2ǫ2l} = 2exp

{(

lnN

l
− 2ǫ2

)

l

}

. (2.13)
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In order to derive convergence from (2.13) for any value of the parameter ǫ

lim
l→∞

lnN

l
→ 0

needs to hold. This is true for a finite number of elements N in the hypothesis class.

The difficulties arise when the set Q(z, a), a ∈ Λ includes an infinite number of elements

which is the case if a parametrises a functional space. The generalisation of the law of

large numbers in the functional space is essentially the uniform convergence of the means

to their expectations over the whole set of functions distinguished by the continuous

variation of the parameter a. The discussion in the previous section suggested that the

condition of uniform convergence is sufficient to guarantee the consistency of the ERM

principle. The role of uniform convergence is to enforce the empirical risk to be close

to the expected risk uniformly over all the functions in the set for a sufficiently large

number of examples.

2.6 The Key Theorem of Learning Theory

In our earlier discussion it turned out that under the assumption of uniform two-sided

convergence we can achieve the minimisation of the risk function through the minimi-

sation of the empirical risk. The key theorem [65] introduces the uniform one-sided

convergence as not only a sufficient but also as a necessary condition for the strict

consistency of ERM.

Theorem 2.4. Let Q(z, a), a ∈ Λ, be a set of functions that satisfy the condition

A ≤
∫

Q(z, a)dF (z) ≤ B .

Then for the ERM principle to be consistent, it is necessary and sufficient that the empir-

ical risk Remp(a) converge uniformly to the actual risk R(a) over the set Q(z, a), a ∈ Λ,

in the following sense:

lim
l→∞

P

{

sup
a∈Λ

(R(a)−Remp(a)) > ǫ

}

= 0, ∀ǫ > 0 .

We now turn to a discussion linking the one-sided with the two-sided convergence. In

an attempt to reveal the relation we decompose the two-sided uniform convergence into

the following two relations

lim
l→∞

P

{

sup
a∈Λ

(R(a)−Remp(a)) > ǫ

}

= 0 (2.14)
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or

lim
l→∞

P

{

sup
a∈Λ

(Remp(a)−R(a)) > ǫ

}

= 0 . (2.15)

From this decomposition we recognise the one-sided convergence as the one of the two

relations that must be satisfied for the validity of the two-sided convergence. It is

possible that the two-sided convergence does not hold because the part (2.15) is violated

but part (2.14) is valid leaving thus unaffected the one-sided convergence. Therefore

the conclusion is that two-sided convergence is only a sufficient condition for ERM

consistency. We can remark here that since we are interested only in the minimisation

of the empirical risk the (2.15) part of the two-sided convergence which corresponds to

the maximisation of the empirical risk can be violated.

2.7 Entropy and Other Related Concepts

The law of large numbers is valid in the case of a single event and can be readily

generalised for a finite number of events. For the uniform law of large numbers to be

applicable to functional spaces other tools are needed which will be constructed here.

The idea for proving convergence in the case when the hypothesis class H comprises

infinitely many events is based on the fact that not all of the events are distinguishable for

a given sample z1,z2, . . . ,zl. Two events are treated as different if at least one example

in the sample which belongs to one event does not belong to the other. The number of

distinguishable events, which are realised by equal in number effective functions selected

from the hypothesis class, depends both on the sample size l and on the form of the

functions in H and will be denoted by NΛ(z1, . . . ,zl).

In what follows we will be concerned only with indicator functions Q(z, a). Let us take

a sequence of vectors z1,z2, . . . ,zl produced independently by the same distribution.

We construct the following l-dimensional binary vector

q(a) = (Q(z1, a), Q(z2, a) . . . Q(zl, a)), a ∈ Λ

the components of which are the values of the loss functions at the points zk, k =

1, 2, . . . , l in the sequence. For a fixed choice of the parameter a = a⋆, q(a⋆) determines

one of the vertices of an l-dimensional unit cube. For the number NΛ(z1, . . . ,zl) of such

vertices it holds that

NΛ(z1, . . . ,zl) ≤ 2l .

The quantity 2l constitutes an upper bound on the number of different labellings that

can be given to the sample z1,z2, . . . ,zl by means of indicator functions. We define

HΛ(z1, . . . ,zl) = lnNΛ(z1, . . . ,zl)
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to be the random entropy of the set of indicator functions Q(z, a) and its expected value

with respect to F (z)

HΛ(l) = EHΛ(z1, . . . ,zl) =

∫

HΛ(z1, . . . ,zl)dF (z1, . . . ,zl)

to be the VC entropy of this set. The condition for ERM consistency turns out to be a

condition on the entropy due to the following theorem [60, 61]:

Theorem 2.5. Under some conditions of measurability on the set of indicator functions

Q(z, a), a ∈ Λ, a necessary and sufficient condition for uniform two-sided convergence

is
HΛ(l)

l
l→∞−→ 0 . (2.16)

We observe a similarity with the simplest model of finite events discussed in Section

2.5 where the factor lnN
l is substituted by HΛ(l)

l which measures the rate at which the

expectation of the diversity of effective functions increases with the number of examples

l. In analogy with the simplest model we need the entropy to grow at most sublinearly

with l in order to ensure uniform convergence.

We will proceed to the construction of two new concepts besides the VC entropy defined

over the data sample and the set of indicator functions Q(z, a). The first of them is the

annealed entropy given by

HΛ
ann(l) = lnENΛ(z1, . . . ,zl) .

The second concept is the growth function2 described by

GΛ(l) = ln sup
z1,...,zl

NΛ(z1, . . . ,zl) .

The following inequalities hold between the VC entropy, the annealed entropy and the

growth function

HΛ(l) ≤ HΛ
ann(l) ≤ GΛ(l) . (2.17)

Notice that the annealed entropy is an upper bound on the VC entropy due to the

concavity of the logarithmic function.

Equation (2.16) is an asymptotic condition on the VC entropy and does not say anything

about the rate of convergence. Two-sided uniform convergence alone cannot guarantee

a respectable rate of covergence of the obtained risks R(al) to the minimal one R(a0)

which for some function classes can be very slow. We say that the asymptotic rate is

fast if for any l > l0 the probability of the obtained risk to be larger than the minimum

2Other authors define supz1,...,zl
NΛ(z1, . . . , zl) as the growth function.
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one by an amount ǫ decreases exponentially as the number of examples grows

P

{

R(al)− inf
a∈Λ

R(a) > ǫ

}

< exp{−cǫ2l} .

It is possible to get some information on how fast the risk R(al) approaches the minimum

one by use of the annealed entropy. Indeed, the condition

lim
l→∞

HΛ
ann(l)

l
= 0 (2.18)

is sufficient for a fast asymptotic rate of convergence.

A third condition on the basis of the growth function constitutes a necessary and suffi-

cient condition for the consistency of ERM for any distribution F (z) and furthermore

guarantees the fast asymptotic rate. The condition is described by the equation below

lim
l→∞

GΛ(l)

l
= 0 . (2.19)

The growth function is the only measure of the representation ability of the functions

in a hypothesis class among the three ones discussed above which is independent of the

underlying distribution since it does not involve expectations like the VC entropy and the

annealed entropy do. The validity of (2.18) on the one hand and the violation of (2.19)

on the other implies the existence of distributions F (z) for which uniform convergence

does not hold.

2.8 Bounds on the Rate of Convergence

In what follows we are going to construct non-asymptotic bounds on the risk [60, 61, 67]

achieved by the machine in terms of the concepts introduced in the previous section.

The bounds based on the annealed entropy are distribution-dependent but they can

also be expressed in terms of the growth function which makes them independent of the

distribution. For the set of indicator functions we have:

Theorem 2.6. The inequality

P

{

sup
a∈Λ

∣

∣

∣

∣

∣

∫

Q(z, a)dF (z)− 1

l

l
∑

i=1

Q(zi, a)

∣

∣

∣

∣

∣

> ǫ

}

≤ 4 exp

{(

HΛ
ann(2l)

l
−
(

ǫ− 1

l

)2
)

l

}

(2.20)

holds true.
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Proof Sketch. In order to prove the above inequality we will double the size of our sample

of independent and identical observations

Z2l = z1, . . . ,zl,zl+1, . . . ,z2l .

For the set of indicator functions the empirical risk represents the frequency of the event

{z : Q(z, a) > 0}. Next we will define the random variables

ρΛ(Z2l) = sup
a∈Λ

∣

∣

∣

∣

∣

1

l

l
∑

i=1

Q(zi, a)−
1

l

2l
∑

i=l+1

Q(zi, a)

∣

∣

∣

∣

∣

and also

πΛ(Z1) = sup
a∈Λ

∣

∣

∣

∣

∣

∫

Q(zi, a)dF (z)− 1

l

l
∑

i=1

Q(zi, a)

∣

∣

∣

∣

∣

,

where Z1 denotes the first half z1, . . . ,zl of the sequence. The lemma that follows is a

fundamental step towards proving Theorem 2.6.

Lemma 2.7. The distribution of the random variable πΛ(Z1) is connected with the

distribution of ρΛ(Z2l) through the inequality

P
{

πΛ(Z1) > ǫ
}

≤ 2P

{

ρΛ(Z2l) > ǫ− 1

l

}

. (2.21)

By observation of the above inequality we can assert that if one estimates a convergence

rate for the r.h.s. of (2.21) that approaches 0 as the sample size l tends to infinity the

same holds for the l.h.s. of (2.20). We will omit the proof of the lemma and we will

continue by attempting to place an upper bound on the r.h.s. of (2.21). Initially we set

ǫ⋆ = ǫ− 1
l . The r.h.s. of (2.21) can be written as

P
{

ρΛ(Z2l) > ǫ⋆

}

=

∫

Z
2l
θ
[

ρΛ(Z2l)− ǫ⋆
]

dF (Z2l) ,

where θ(u) denotes the step function of u that takes either the value of 1 if u > 0 or 0 if

u ≤ 0. In the sequel we consider all the different permutations of the sample Z2l which

are (2l)! in total with each one of them denoted as TiZ
2l, i = 1, . . . , (2l)!. Since the

event θ[ρ− ǫ⋆] in the previous relation depends on Z2l and its measure is estimated on

the basis of the joint distribution F (Z2l) we can assert that the integral is independent

of the different permutations performed on the sample. Therefore we are in a position

to write

P
{

ρΛ(Z2l) > ǫ⋆

}

=

∫

Z
2l

∑(2l)!
i=1 θ

[

ρΛ(TiZ
2l)− ǫ⋆

]

(2l)!
dF (Z2l) . (2.22)

Notice also that

θ
[

ρΛ(TiZ
2l)− ǫ⋆

]

= θ

[

sup
a∈Λ

∣

∣

∣

∣

∣

1

l

l
∑

i=1

Q(zi, a)−
1

l

2l
∑

i=l+1

Q(zi, a)

∣

∣

∣

∣

∣

− ǫ⋆
]
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= sup
a∈Λ

θ

[∣

∣

∣

∣

∣

1

l

l
∑

i=1

Q(zi, a)−
1

l

2l
∑

i=l+1

Q(zi, a)

∣

∣

∣

∣

∣

− ǫ⋆
]

= sup
a∈Λ

θ
[

ρ̃Λ(TiZ
2l, a)− ǫ⋆

]

. (2.23)

Once more we should stress that although a in Q(z, a) varies continuously in fact the

discriminating ability of the hypothesis class is restricted. The number of a’s that lead

to different events {z : Q(z, a) > 0} depends on the type of the member functions and

the sample size. Hence, with the assumption that we are dealing with effective functions

finite in number we can keep one representative function a⋆ from each cluster containing

equivalent functions and form a new hypothesis class Λ⋆. This enables us to discard

the continuous variable a and put in its place a⋆ which takes values from a finite set of

elements. Therefore, we have

sup
a∈Λ

θ
[

ρ̃Λ(TiZ
2l, a)− ǫ⋆

]

= sup
a⋆∈Λ⋆

θ
[

ρ̃Λ(TiZ
2l, a⋆)− ǫ⋆

]

≤
∑

a⋆∈Λ⋆

θ
[

ρ̃Λ(TiZ
2l, a⋆)− ǫ⋆

]

.

(2.24)

By substituting (2.23) back in the integrand of (2.22) we obtain

∑(2l)!
i=1 θ

[

ρΛ(TiZ
2l)− ǫ⋆

]

(2l)!
=

∑(2l)!
i=1 supa∈Λ θ

[

ρ̃Λ(TiZ
2l, a)− ǫ⋆

]

(2l)!

≤
∑

a⋆∈Λ⋆

∑(2l)!
i=1 θ

[

ρ̃Λ(TiZ
2l, a⋆)− ǫ⋆

]

(2l)!
. (2.25)

In order to derive the last inequality we made use of (2.24). Each term in the sum over

a⋆’s on the r.h.s. of (2.25) represents the ratio of the number of different orderings for

which
∣

∣

∣

∣

∣

1

l

l
∑

i=1

Q(zi, a
⋆)− 1

l

2l
∑

i=l+1

Q(zi, a
⋆)

∣

∣

∣

∣

∣

> ǫ⋆

is true to the total number of such orderings. Our goal in what follows is to estimate

the different ways in which the mistakes are divided between the two empirical risks

corresponding to the first l and the last l examples so that the absolute value of their

difference is greater than ǫ⋆. Let us assume thatm is the total number of points zj among

z1, . . . ,zl,zl+1, . . . ,z2l for which a mistake occurs with respect to the given function a⋆.

For these zj ’s Q(zj , a
⋆) = 1 holds. Only some of the permutations contribute to different

results since only the examples in each one of the risks for which Q(zj, a
⋆) = 1 play a

role and not the different orderings of these examples within each empirical risk. That

means that among the (2l)! permutations we have only C l
2l leading to different results,

where C l
2l denotes the combinations of 2l elements taken l at a time. Thus, if we choose

one representative from each such permutation the sum in the nominator of the r.h.s. of

(2.25) can be expressed as the number of representative permutations times (2l)!/C l
2l.

Let us define sets of representative permutations that give rise to exactly k mistakes

in the first l examples. The cardinality of each such set for a given k results from the

combination of m mistakes taking k at a time and fixing the rest l− k by choosing from
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those 2l −m in total which are mistake-free. Thus, we obtain

Γ =

∑(2l)!
i=1 θ

[

ρ̃Λ(TiZ
2l, a⋆)− ǫ⋆

]

(2l)!
=
∑

k

((2l)!/C l
2l)C

k
mC

l−k
2l−m

(2l)!
=
∑

k

Ck
mC

l−k
2l−m

C l
2l

for those k that satisfy
{

k :

∣

∣

∣

∣

k

l
− m− k

l

∣

∣

∣

∣

> ǫ⋆

}

.

One can show that for Γ the following bound holds

Γ ≤ 2 exp
{

−ǫ2⋆l
}

.

Substituting the upper bound on Γ back in (2.25) yields

∑

a⋆∈Λ⋆

∑(2l)!
i=1 θ

[

ρ̃Λ(TiZ
2l, a⋆)− ǫ⋆

]

(2l)!
< 2

∑

a⋆∈Λ⋆

exp
{

−ǫ2⋆l
}

= 2NΛ(z1, . . . , z2l) exp
{

−ǫ2⋆l
}

. (2.26)

If we substitute (2.26) in (2.22) we get

P
{

ρΛ(Z2l) > ǫ⋆

}

< 2ENΛ(z1, . . . , z2l) exp
{

−ǫ2⋆l
}

= 2exp

{(

HΛ
ann(2l)

l
− ǫ2⋆

)

l

}

from which by use of Lemma 2.7 the theorem is proved.

In order for uniform two-sided convergence to take place for any value of the parameter

ǫ, i.e. (2.20) to approach 0 as l →∞, (2.18) must be satisfied. This implies due to the

inequality (2.17) the validity of (2.16) which is a sufficient and necessary condition for the

consistency of ERM. Since HΛ
ann(l) ≤ GΛ(l) the previous bound can straightforwardly

be rewritten in terms of the growth function

P

{

sup
a∈Λ

∣

∣

∣

∣

∣

∫

Q(z, a)dF (z)− 1

l

l
∑

i=1

Q(zi, a)

∣

∣

∣

∣

∣

> ǫ

}

≤ 4 exp

{(

GΛ(2l)

l
−
(

ǫ− 1

l

)2
)

l

}

.

(2.27)

Notice that (2.19) is a necessary and sufficient condition for distribution-free uniform

two-sided convergence. From bounds of the type of (2.27) we can extract information

about the generalisation ability of the learning machine. In particular we can deduce

• The risk R(al) defined on the basis of the solution al found by the learning machine

working under the ERM principle in terms of the empirical risk achieved.

• How close R(al) is to the minimal possible infa∈ΛR(a) for the set of functions

implemented by the machine.
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To do this let us set

4 exp

{(

GΛ(2l)

l
−
(

ǫ− 1

l

)2
)

l

}

= η ,

where η is a parameter in the interval (0, 1). Solving the above equation with respect to

ǫ we obtain

ǫ =

√

GΛ(2l)− ln η
4

l
+

1

l
.

The bound of (2.27) can be stated equivalently as follows: With probability 1 − η

uniformly for all the functions in the set a ∈ Λ the inequality

∫

Q(z, a)dF (z)− 1

l

l
∑

i=1

Q(zi, a) ≤
√

GΛ(2l)− ln η
4

l
+

1

l

is true. Since the previous relation is true for all a ∈ Λ it is also true for the value a = al

minimising the empirical risk after l points have been processed by the machine. Hence,

it holds that

R(al) ≤ Remp(al) +

√

GΛ(2l)− ln η
4

l
+

1

l
. (2.28)

Inequality (2.28) places an upper bound on R(al) which approaches the minimum value

attained by Remp with an increasing number of points given the consistency of ERM.

If a0 denotes the value that minimises the risk by use of Chernoff’s inequality for the

single event Aa0 = {z : Q(z, a0) > 0} we get

P

{

1

l

l
∑

i=1

Q(zi, a0)−
∫

Q(z, a0)dF (z) > ǫ

}

≤ exp{−2ǫ2l} .

By a procedure analogous to the one applied to (2.27) the above inequality implies that

with probability 1− η

∫

Q(z, a0)dF (z) ≥ 1

l

l
∑

i=1

Q(zi, a0)−
√

− ln η

2l
(2.29)

is true. Furthermore, we know that since al is the minimiser of the empirical risk the

following inequality holds

1

l

l
∑

i=1

Q(zi, a0)−
1

l

l
∑

i=1

Q(zi, al) ≥ 0 .

Combining the previous relation with (2.28) and (2.29) we obtain that with probability

1− 2η

R(al)−R(a0) ≤
√

GΛ(2l)− ln η
4

l
+

1

l
+

√

− ln η

2l
. (2.30)
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Again it is obvious that with the assumption of ERM consistency R(al) approximates

infaR(a) in the limit l→∞.

2.9 The VC Dimension

Until now we have constructed distribution-free bounds on the rate of convergence of

R(al) to infa∈ΛRemp(a) and of R(al) to infa∈ΛR(a) based on the growth function GΛ(l).

However, we cannot estimate the value of the growth function given the dataset size and

the admissible functions of the hypothesis class. The following theorem will provide us

with an upper bound on the growth function [60, 61] leading to constructive bounds on

the rate of convergence.

Theorem 2.8. The growth function of a set of indicator functions Q(z, a), a ∈ Λ either

satisfies the equality

GΛ(l) = l ln 2

or is bounded by the inequality

GΛ(l)

{

= l ln 2 if l ≤ h
≤ ln

(

∑h
i=0C

i
l

)

≤ ln
(

el
h

)h
= h

(

1 + ln l
h

)

if l > h
,

where h is the largest integer for which

GΛ(h) = h ln 2 .

The theorem says that the growth function can be either linear or at most logarithmic

in l as a result of the second branch of GΛ(l). That means that it cannot scale with

l slower than linearly but faster than logarithmically. For example GΛ(l) cannot be

lp, with 0 < p < 1. The quantity h characterises the ability of the functions in the

hypothesis class to explain the data and is called the VC dimension of a set of indicator

functions [60, 61]. There exists an alternative definition of the VC dimension which is

connected to the procedure of estimating it thus leading to constructive bounds.

Definition 2.9. The VC dimension of a set of functions Q(z, a), a ∈ Λ, is equal to the

largest number h of points z1 . . . ,zl that can be separated into two different classes in all

the 2h possible ways using functions from this set. We say then that the VC dimension

is the maximum number of points that can be shattered by the set of functions.

One remark that we can add in connection with the above definition is that if for any

l there exists a set of l points that can be shattered by the functions in the hypothesis

class then the VC dimension is infinite.
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For the case where the VC dimension is finite the growth function grows at most loga-

rithmically with the sample size for l > h. If we use this upper bound in the place of

the growth function we end up with a constructive bound on the rate of convergence

P

{

sup
a∈Λ

∣

∣

∣

∣

∣

∫

Q(z, a)dF (z)− 1

l

l
∑

i=1

Q(zi, a)

∣

∣

∣

∣

∣

> ǫ

}

≤ 4 exp

{(

h(1 + ln(2l/h))

l
−
(

ǫ− 1

l

)2
)

l

}

. (2.31)

It can be easily seen that for a finite VC dimension the growth function increases slower

than linearly resulting in liml→∞GΛ(l)/l → 0 which is the condition for distribution-free

uniform two-sided convergence. The following theorem [62] states something stronger

regarding the role of the VC dimension in the uniform convergence.

Theorem 2.10. The finiteness of the VC dimension is not only a sufficient but also a

necessary condition for uniform convergence of the frequencies of events Aa = {z : Q(z, a)

= 1} to their probabilities for any distribution F (z).

Proof. For the validity of our claim it suffices to disprove uniform convergence for a

specific distribution. Given that the VC dimension is infinite the equality

NΛ(z1, . . . ,zl) = 2l

holds for some set Z l = z1, . . . ,zl. Uniform convergence will fail if for any l and ǫ < 1

there exists a distribution F (z) such that

sup
a∈Λ

∣

∣

∣

∣

∣

∫

Q(z, a)dF (z)− 1

l

l
∑

i=1

Q(zi, a)

∣

∣

∣

∣

∣

> 1− ǫ .

is true with probability one. We fix an arbitrary sample Z l of size l which we expand

by a set Z⋆ = zl+1, . . . ,zn consisting of n − l points, where n is chosen to be n > l/ǫ.

The sample Z l ∪Z⋆ is generated by a uniform distribution concentrated only on the n

points, i.e. the probability of any such point is P (zi) = 1/n. Even after expanding the

dataset the functions Q(z, a) are still able to shatter the new dataset. This enables us

to choose out of all the possible dichotomies realised by the functions of the class the

one dichotomy which corresponds to Q(z, a⋆) taking the value of zero on the points of

the subset Zl and one on the rest of them contained in the subset Z⋆. Formally, this

implies that

1

l

l
∑

i=1

Q(zi, a
⋆) = 0

and at the same time that

∫

Q(z, a⋆)dF (z) =
n− l
n

> 1− ǫ
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since Q(z, a⋆) = 1 only for z ∈ Z⋆. Hence, with probability one it holds that the

supremum over all functions in the set is greater than 1 − ǫ for any l rendering the

finiteness of the VC dimension a necessary condition for uniform convergence.

It is important to point out that one should not confuse the VC dimension with the

number of free parameters appearing in a function because this can be proved totally

wrong. For example, on the one hand, there can be a class of functions the members

of which differ only in one parameter but which, nevertheless, possess an infinite VC

dimension. On the other hand one can think of a class of functions which, although

described by a high number of free parameters, have a low VC dimension.

A case where the VC dimension can be easily estimated by the number of free parameters

involves any hypothesis class that contains indicator functions linear in their parameters

ak

Q(z, a) = θ

(

n
∑

k=1

akφk(z)

)

, ak ∈ R ,

where a is a vector with components ak, k = 1, . . . , n. The terms φk(z) entering the

expression of Q(z, a) are linearly independent functions of the sample elements z. The

VC dimension of this set of functions equals the number n of free parameters. Ap-

plication of this case can be considered the class of zero-threshold hyperplanes in the

n-dimensional space implemented by a learning machine in the classification task. If we

consider hyperplanes possessing some bias the free parameters are increased by one and

so is the VC dimension of the set.

For the class of indicator functions non-linear in their parameters the VC dimension can

be less than or even exceed the number of parameters. A typical example of the latter

case is the following set of indicator functions

Q(z, a) = θ (sin az) , z ∈ (0, 2π), a ∈ (0,∞)

the VC dimension of which is infinite.

2.10 The Structural Risk Minimisation Principle

Let us turn to the study of (2.31) that provides us with the rate of convergence of the

empirical risk to the expected one by means of the VC dimension. From this relation-

ship, following the procedure that led to (2.28) from (2.27), one can assert that with

probability 1− η for all functions parametrised by a ∈ Λ

R(a) ≤ Remp(a) +

√

h(1 + ln(2l/h)) − ln η
4

l
+

1

l
. (2.32)
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The upper bound on the expected risk R(a) is formed by the sum of two contributions,

the one coming from Remp(a) and the other from a term involving the ratio l/h. It

is not obvious by mere observation that a minimisation of Remp(a) as dictated by the

ERM principle will lead to the tightest bound on R(a). We can easily verify that if we

are dealing with large sample sizes with respect to the VC dimension h the lowest value

that the r.h.s. can attain is determined mainly by Remp. Thus, the suggestion of ERM

principle that we should try to find the function that classifies the training set with the

minimum number of errors seems to be in the right direction since it proves decisive in

the determination of the generalisation ability of the machine.

On the other hand if it happens that the ratio l/h is not large then the second summand

on the r.h.s. of (2.32), called the confidence interval, plays an important role and the

solution that gives the minimum guaranteed risk does not necessarily coincide with the

one that comes from the ERM principle. Reducing the VC dimension of the hypothesis

class reduces the contribution of the confidence interval but it is reasonable to expect

that it increases the training error. Thus, the construction of (2.32) leaves one with the

freedom to control the generalisation ability of the learning machine by adjusting two

opposing factors namely, the number of training errors on the one hand and the capacity

of the function class on the other. Surely, in our attempt for simultaneous minimisation

over both terms the bound (2.32) provides us with a quantitative criterion on the basis

of which a compromise between the two can be accomplished.

This new criterion called the Structural Risk Minimisation (SRM) principle [62], in

contrast to the ERM principle, suggests the minimisation of the bound over both the

empirical risk and the confidence interval which is controlled by the capacity of the

hypothesis class. Let us define a structure on the set S of functions Q(z, a), a ∈ Λ.

Consider the nested subset of functions

S1 ⊂ S2 ⊂ · · · ⊂ Sk · · · ,

where Sk = {Q(z, a) : a ∈ Λk}. The union of all subsets is denoted by S⋆ = ∪kSk. The

subsets are constructed in a way such that the VC dimension of the set Sk of functions

is nondecreasing with increasing index k

h1 ≤ h2 ≤ · · · hk ≤ · · · .

We are interested only in classification tasks. This restricts the functions in each element

Sk of the structure to the indicator functions {Q(z, ak) ∈ {1, 0}, ak ∈ Λk}. Addition-

ally, for the structure to be admissible we need the VC dimension of each element in

the structure to be kept finite and the set S⋆ to be everywhere dense in the set S in

the L1 metric. According to the SRM principle given a number of observations one

should choose the element from the structure that yields the minimum guaranteed risk.
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The policy imposed by this principle to discover the element of the structure with the

appropriate capacity that leads to the minimisation of the risk justifies its name.

As in the case of the ERM principle, analogous questions of consistency are raised also

in connection with the SRM principle. For example, is it possible for the risk estimated

on the basis of the function chosen according to this principle from an element Sk of the

structure to converge to the minimum one in S? And if this happens what would be a

bound on the rate of convergence?

From (2.30) by setting in the place of the growth function GΛ(2l) its upper bound

written in terms of the VC dimension assumming 2l > hk and fixing η = 1/l2 we obtain

that with probability 1− 2/l2

R(ak
l )−R(ak

0) =

∫

Q(z, ak
l )dF (z) − inf

a∈Λk

∫

Q(z, a)dF (z)

≤
√

2 ln l

2l
+

√

√

√

√

hk

(

ln 2l
hk

+ 1
)

+ 2 ln 2l

l
+

1

l
. (2.33)

We recognise in the place of the upper bound the confidence interval. The term R(ak
l )

denotes the risk with respect to a solution found within the functions of the k-th element

of the structure whereas R(ak
0) signifies the minimum risk attainable for functions in the

same element. The term on the l.h.s. of the previous relation can be decomposed as

R(ak
l )−R(ak

0) = R(ak
l )−R(a0) +R(a0)−R(ak

0) .

With a little rearrangement this automatically transforms (2.33) into a relation bounding

the rate of convergence V (l) = R(ak
l )−R(a0)

V (l) ≤ rk +

√

2 ln l

2l
+

√

√

√

√

hk

(

ln 2l
hk

+ 1
)

+ 2 ln 2l

l
+

1

l
, (2.34)

where rk = R(ak
0)−R(a0).

One can show that if one imposes rules for the choice of the appropriate element Sk of

the structure that depend on the number l of observations then for l tending to infinity

the risk R(ak
l ) approaches the smallest one R(a0) in the whole structure. Let us denote

by k(l) the rule based on the number of observations that discriminates between the

subsets of the structure. In terms of the new notation (2.34) becomes

V (l) ≤ rk(l) +

√

2 ln l

2l
+

√

√

√

√

hk(l)

(

ln 2l
hk(l)

+ 1
)

+ 2 ln 2l

l
+

1

l
. (2.35)

In order for consistency of the SRM to hold we need V (l) to tend to 0 for an increasing

number of observations. Indeed, if the element containing the minimiser function a0



Chapter 2 Elements of Statistical Learning Theory 43

of the expected risk is found liml→∞ rk(l) = 0 due to the density of S⋆ in S. So for

convergence to take place we need additionally the second term to tend to 0 for l →∞
or equivalently

lim
l→∞

hk(l) ln l

l
= 0,

a condition which reminds us of liml→∞GΛ(l)/l = 0 for consistency of the ERM principle

to hold. The term rk(l) of (2.35) known as the rate of approximation is related to the

deviation of the best approximation in Sk(l) from the smallest possible. It is reasonable

to expect that as we move to subsets with larger capacity the deviation will become

smaller. On the other hand the second term entering (2.35) known as the estimation

error measures the deviation of the risk computed on the basis of a function in Sk(l)

from the smallest possible in Sk(l). We anticipate that as k(l) increases the larger this

deviation becomes. Therefore, we come to the conclusion that the rate of convergence

is governed by two opposing factors.

2.11 The ∆-Margin Hyperplane

The SRM principle motivates us to consider sets of decision rules of increasing complexity

measured in terms of the VC dimension which in the case of linear classification depends

linearly on the dimensionality of the feature space. If one would like to apply the SRM

principle to a classification task one should attempt to construct a structure the elements

of which are endowed with a variable VC dimension parametrised appropriately. On the

basis of our analysis so far the dimensionality is the only such available parameter. As

we discussed in Chapter 1 the use of kernels enables us to employ linear decision rules

in feature spaces of dimensionality much larger than the one of the original instance

space. However, this high dimensionality renders the SRM principle obsolete because

the confidence interval would most probably dominate the r.h.s. of (2.35) instructing us

to choose the element of the structure with the smallest cardinality. This is not always

in agreement with experimental results indicating that there are cases where the use of

kernels is beneficial since it enhances the generalisation ability of the machine. Thus,

we are motivated to construct structures the elements of which have a VC dimension

depending on an additional parameter. As such a parameter one may use the so-called

margin of the decision rule a notion to which we now turn.

The points x belonging to a hyperplane can be described by the equation

u · x+ b = 0 ,
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where u is the unit vector perpendicular to the hyperplane, whereas b controls the

normal distance of the hyperplane from the origin. We call such a hyperplane a ∆-

margin separating hyperplane if it assigns a label y to an instance x as follows:

y =















1 if u · x+ b ≥ ∆

0 if |u · x+ b| < ∆

-1 if u · x+ b ≤ −∆ .

The classification of an instance is considered correct if the prediction of the label as

described above coincides with the true label. As it appears from the previous relation-

ship in order for the instances to be classified correctly it does not suffice to have them

on the correct side of the hyperplane but they further need to lie at a distance, called

margin, of at least ∆ > 0 from it.

In a attempt to investigate the applicability of the SRM principle to structures the

elements of which are ∆-margin hyperplanes it remains further to be seen how the

VC dimension depends on ∆. Bounds on the VC dimension of ∆-margin separating

hyperplanes were obtained by Vapnik [66, 67]. In particular, for ∆-margin hyperplanes

possessing no bias the following theorem holds.

Theorem 2.11. Suppose X⋆ is a subset of the input space contained in a sphere of

radius R centred at the origin of the feature space. The set of zero-threshold ∆-margin

separating hyperplanes defined on X⋆ has VC dimension h satisfying

h ≤ min

([

R2

∆2

]

, n

)

.

We give a proof along the lines of [5, 14].

Proof. Let us assume that there are r points xi shattered by the ∆-margin hyperplanes.

Then, for all the possible assignments of labels yi to xi we have

yi (u · xi) ≥ ∆ ∀i . (2.36)

By summing up (2.36) over i

u ·
r
∑

i=1

yixi ≥ r∆

and noticing that

u ·
r
∑

i=1

yixi ≤
∥

∥

∥

∥

∥

r
∑

i=1

yixi

∥

∥

∥

∥

∥

we get

r∆ ≤
∥

∥

∥

∥

∥

r
∑

i

yixi

∥

∥

∥

∥

∥

. (2.37)
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Let us assume that the labels yi ∈ {−1,+1} accompanying the points are randomly

generated and drawn independently from a uniform distribution. The variables to which

we give such statistical properties are sometimes known as Rademacher variables. Taking

the expectation of ‖∑r
i yixi‖2 over all the possible labellings of the data and exploiting

the linearity of the expectation E, we obtain

E

∥

∥

∥

∥

∥

r
∑

i=1

yixi

∥

∥

∥

∥

∥

2

=
r
∑

i=1

E



yixi ·
r
∑

j=1

yjxj



 =
r
∑

i=1

E



yixi ·









r
∑

j 6=i

yjxj



+ yixi









=

r
∑

i=1









∑

i6=j

E(yixi · yjxj)



+E(yixi · yixi)





=

r
∑

i=1

E ‖yixi‖2 . (2.38)

The last inequality comes from the fact that the Rademacher variables are independent

and have zero mean. Since ‖yixi‖ = ‖xi‖ ≤ R (2.38) becomes

E

∥

∥

∥

∥

∥

r
∑

i=1

yixi

∥

∥

∥

∥

∥

2

≤ rR2

from where we may deduce that for a specific assignment of labels

∥

∥

∥

∥

∥

r
∑

i=1

yixi

∥

∥

∥

∥

∥

2

≤ rR2 (2.39)

is true. Combining (2.37) and (2.39) we obtain

r∆ ≤
∥

∥

∥

∥

∥

r
∑

i

yixi

∥

∥

∥

∥

∥

≤
√
rR

from where

r ≤ R2

∆2
.

Taking into account that for hyperplanes passing through the origin the maximum num-

ber of points shattered does not exceed the dimensionality n of the feature space the

bound of Theorem 2.11 follows.

There exists a similar bound on the VC dimension for ∆-margin hyperplanes possessing

bias in which R is the radius of the smallest sphere enclosing the data but not necessarily

centred at the origin.
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Theorem 2.12. The set of ∆-margin separating hyperplanes defined on a subset X⋆ of

the input space has VC dimension h satisfying

h ≤ min

([

R2

∆2

]

, n

)

+ 1 ,

where R is the radius of the smallest sphere centred at some point of the feature space

which contains X⋆.

It is obvious that this alternative bound on the VC dimension can be significantly tighter

than the one appearing in Theorem 2.11. The proof following [67] is different than the

one presented earlier and relies mainly on geometrical arguments.

Proof. For r points xi shattered by the class of linear classifiers with bias let us consider

all the possible realisations of two-category classification problems and the corresponding

convex hulls formed by the examples belonging to the two classes. There are 2r possible

labellings which will be denoted by T1, . . . , T2r . Let ρ(Ti) be the distance between the

convex hulls formed if the assignment Ti of the labels is chosen. It is apparent that we

can interpret the minimum distance mini ρ(Ti) separating the convex hulls constructed

according to the various labellings as twice the maximum of the margins that the set of

r examples possesses from the decision rules belonging to the class. We demand that

min
i
ρ(Ti) > 2∆ . (2.40)

The VC dimension h of the class of ∆-margin hyperplanes is the maximum number r of

points that can be shattered by the functions contained in that class.

As we mentioned previously the VC dimension of indicator functions linear in their

parameters equals the number n + 1 of such free parameters. Since the classification

with non-zero margin is a special case of classification, for linear classifiers with bias the

maximum number r of points shattered satisfies

r ≤ n+ 1 . (2.41)

In the following we will attempt to obtain a tighter bound than the above. For a

given number of points confined within a ball of radius R we expect that there exists a

special arrangement of them that leads to the maximisation of the margin for all possible

dichotomies. Our subsequent argument relies on the almost obvious assumption that the

above arrangement of the points is a symmetrical one. Such a symmetrical construction

can be realised if we place the r points on an r− 1 regular simplex the vertices of which

lie on the surface of the minimal enclosing sphere of radius R. This is proved formally in

[27]. If we come up with an explicit formula giving us the dependence of mini ρ(Ti) on r

for such an arrangement and solve (2.40) with respect to r we will obtain an upper bound
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on the VC dimension h possibly tighter than the one of (2.41). Explicit calculations on

a regular simplex give

min
i
ρ(Ti) =











2R√
r−1

for r even

2R√
r−1

√

r2

r2−1
for r odd .

(2.42)

For a number of points r > 10 the two expressions become almost equal which enables

us to use for simplicity only the first of them. Therefore, (2.40) in combination with

(2.42) and taking into account the trivial bound (2.41) yields

r ≤ min

([

R2

∆2

]

, n

)

+ 1 .

By making use of the non-asymptotic bound (2.32) we can assert that

Corollary 2.13. The probability Perror that a test point will not be separated correctly

by the ∆-margin hyperplane is bounded from above with probability 1− η as follows

Perror ≤
m

l
+

√

h (1 + ln 2l)− ln η
4

l
+

1

l
. (2.43)

Here m is the number of points that were not classified correctly by the ∆-margin hyper-

plane and h is constrained by Theorem 2.12.

Notice that for the validity of the above statement one must ensure that in the proce-

dure that gave rise to the ∆-margin hyperplane only functions from an appropriately

restricted class should be employed. However, such an a priori restriction of the class

of functions may be very difficult in practice since the class of ∆-margin hyperplanes

depends crucially on the dataset. As a consequence, meaningful choices of the parameter

∆ become possible only a posteriori.

2.12 Concluding Remarks

From the discussion in the present chapter it follows that minimisation of the number

of errors in the training set although desirable cannot by itself guarantee good gener-

alisation for the solution produced by a learning machine. An important role in the

generalisation ability of a learning machine is played by the capacity of the class of func-

tions employed by it which is described in terms of several measures, such as the VC

dimension, and controls the confidence interval term. We saw that this capacity can be

seriously reduced even for very high dimensional feature spaces if hyperplanes separating

the data with large margin are used, thereby leading to a substantial suppression of the
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confidence interval term. These considerations give us additional motivation for seeking

large margin solution hyperplanes on top of the common belief based on intuition that

such hyperplanes might be preferable. In the following chapters we describe two broad

categories of algorithms sharing the same objective of obtaining large margin solutions,

namely Support Vector Machines and Perceptron-like large margin classifiers.



Chapter 3

Support Vector Machines

3.1 The Motivation behind Support Vector Machines

Corollary 2.13 used in conjunction with Theorem 2.12 suggested that a separation hy-

perplane possessing some margin if combined with a low training error may result in a

better generalisation ability. Moreover, at a second reading Theorem 2.12 reveals that

even if the number of dimensions in the space in which the machine works is high its

generalisation ability may not be affected if it tries to find solutions characterised by

a large margin. This results in a restriction of the capacity of the function class im-

plemented by the machine thus preventing overfitting. We will proceed to the study

of learning machines that taking advantage of the findings of statistical learning theory

were designed to pursue the optimisation of the aforementioned factors (low training

error, large margin) which control the generalisation ability. These learning machines

are referred to as Support Vector Machines (SVMs) [9, 66, 67, 14, 48].

SVMs can also be implemented efficiently in feature spaces built by applying nonlinear

transformations to the original space in which the points live. The remarkable thing is

that the dimensionality of the induced feature spaces does not hinder at all the efficiency

of SVMs since the whole algorithmic procedure takes place in dual formulation. Their

ability to make exclusive use of kernels enables them to circumvent any implementational

burdens and to run even in feature spaces with an enormous number of dimensions.

Another advantage of SVMs coming from the fact that they are formulated in terms

of positive semi-definite kernels is that they have a guaranteed convergence to a glob-

ally optimal solution. Other pattern recognition algorithms like neural networks [7] in

contrast to SVMs come up with solutions which are trapped in local minima.

49
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3.2 Separating Hyperplanes

The class of functions that SVMs employ is the class of hyperplanes defined by

w · x+ b = 0, w ∈ X, b ∈ R , (3.1)

which for any test point x ∈ X induce the corresponding decision function ŷ(x) =

sgn(w · x+ b) taking values from the set {1,−1}. The solution is uniquely determined

if the weight vector w and the bias b are specified by the learning algorithm. In the

beginning we will consider those datasets that can be split into two classes by using

a hyperplane and will defer the inseparable case for later. We will assume that all

the hyperplanes we refer to are able to provide at least a mere separation of the data.

Among all the possible hyperplanes we can distinguish the single pair (w, b) that induces

a solution with a maximal distance from the nearest points called maximum geometric

margin. Usually we omit the qualification geometric and we call it just margin. We

can rescale the pair (w, b) by multiplying (3.1) with a constant factor and still describe

the same hyperplane. Exploiting this freedom we rescale (w, b) so that the points lying

closest to it satisfy the following relationship

min
i=1,...,l

|w · xi + b| = 1 . (3.2)

Let us for the moment regard xi not as some training pattern but rather as an arbitrary

vector satisfying (3.2). Then, we can treat (3.2) as an equation describing two separate

hyperplanes. The one defined by w · xi + b = 1 lies in the region of the points x

characterised as positive ones (ŷ(x) = 1) and the other defined by w · xi + b = −1 lies

in the region of points belonging to the negative class (ŷ(x) = −1). Each of these two

equations defines a hyperplane parallel to the one described by (3.1) at a distance equal

to the margin that the training points possess from the solution hyperplane. If the index

i is used to indicate those training patterns that are closest to the separating hyperplane

then (3.2) can be rewritten as

yi (w · xi + b) = 1 . (3.3)

A hyperplane for which the pair (w, b) is normalised such that (3.3) holds is said to

be written in canonical form. The decision rule f(x) = w · x + b responsible for the

assignment of a label to any data point x when multiplied by its label y measures

another kind of margin which is called the functional margin. Moreover, the sign of

yf(x) computed for the example (x, y) signifies correct classification when positive and

wrong classification when negative. After bringing the hyperplane in the canonical form

we divide (3.3) by ‖w‖ so that in the place of w its direction u appears. Then the r.h.s.
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of the resulting equation represents the geometric margin γ of the dataset

γ = yi

(

u · xi +
b

‖w‖

)

=
1

‖w‖ . (3.4)

In analogy to the above margin of the dataset which is the minimum distance the

positions of the points have from the separating hyperplane (3.1) we can define the

margin γ(x, y) of any point (x, y) to be equal to the distance of that point from the

separating hyperplane. The margin γ(x, y) is obtained from the relationship

γ(x, y) = y

(

u · x+
b

‖w‖

)

.

The positivity of γ(x, y) indicates that an instance is correctly classified with respect

to the separating hyperplane. The margin of a misclassified point coincides with the

negative of its distance from the hyperplane. Furthermore, if the positivity of γ(x, y)

holds for every training example (x, y) with respect to some hyperplane then the training

set is linearly separable. From the relation (3.4) giving the margin for the points closest

to the hyperplane it is apparent that the margin is larger if (3.3) is satisfied with lower

values of the norm of w. Assuming that the functional margin of the closest points to

the separating hyperplane is normalised to unity we can look for solutions possessing

larger geometric margin by seeking hyperplanes with weight vectors w of lower norm.

In the linearly separable case with margin of at least γ and for the class of γ-margin

hyperplanes a worst case bound follows directly from Corollary 2.13 by setting m = 0

and substituting the VC dimension h by its upper bound of Theorem 2.12. We also

assume that the dimensionality of the space is so high that the term depending on the

margin prevails in the determination of the upper bound on h. Thus, with probability

1− η the probability of an unseen pattern to give rise to a mistake due to its failure to

be classified with margin of at least γ satisfies

Perror <

√

√

√

√

([

R2

γ2

]

+ 1
)

(1 + ln 2l)− ln η
4

l
+

1

l
. (3.5)

From a mere inspection of (3.5) it is easily understood that we can improve the predic-

tive ability of our training machine if we seek hyperplanes possessing margins near the

maximum one. It is worth pointing out that a bound like the one of (3.5) without the

square root on the r.h.s. could be derived by assuming from the beginning that there

are no errors in the training set instead of setting the number of training errors to zero

in (2.43).

Generalisation bounds depending on the margin were also derived in [50]. More specifi-

cally the following theorem holds.
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Theorem 3.1. Syppose inputs are drawn independently according to a distribution whose

support is contained in a ball in R
n centred at the origin of radius R. If we succeed in

correctly classifying l such inputs by a canonical hyperplane with ‖w‖ = 1/γ and with

|b| ≤ R, then with confidence 1 − η the generalisation error will be bounded from above

by

ǫ(m,γ) =
2

l

(

k log2

(

8el

k

)

log2(32l) + log2
8l

η

)

,

where k = [577R2/γ2].

Both (3.5) and Theorem 3.1 are applicable only if we somehow are able to make sure

that only functions from the restricted class of γ-margin hyperplanes were considered

as acceptable solutions by the machine. This might necessitate that a value of the

margin smaller than the one corresponding to the solution found may be employed in

the generalisation bounds. In the special case that we know before running that the

classifier will find the solution with maximum margin this may be substituted in the

above bounds even if the exact value of this margin is not known a priori.

Apart from the theoretical arguments we can rely on our intuition in order to find reasons

why the maximum margin is indeed a good property of the solution hyperplanes. Let us

train our machine on a set of points and consider a test set which is generated from the

training set by adding some noise bounded in norm by the quantity r. This means that

the resulting test patterns cannot exceed the boundary surfaces of spheres of radius r

centred at the training points. If the margin γ that separates the closest points from

the hyperplane is greater than r then all the test points will be classified correctly. A

larger margin allows a higher level of noise as this is measured by r without incurring

any error and even higher if we are willing to accept a low test error.

3.3 The Optimal Margin Hyperplane

We have expressed earlier the hyperplanes which pass through the points lying closest

to the separating hyperplane in the form (3.3). If we make the assumption that we have

at least one example in each category in order for the binary classification to have a

meaning then we may come up with two such hyperplanes passing through at least two

examples belonging to different classes. This implies that a separating hyperplane can

be found with these examples having a functional margin with respect to it given by

γ(xi, yi) = yi (w · xi + b) = 1 .

The index i denotes here only the examples from both categories which are closest to

the hyperplane. Moreover, for all the examples (xi, yi), i = 1, . . . , l in the dataset we
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Figure 3.1: The optimal hyperplane is the one bisecting the segment that connects
the closest points of the convex hulls of the two classes. By requiring the scaling to
be such that the point(s) closest to the hyperplane satisfy |w · xi + b| = 1 we obtain a
hyperplane in canonical form. The maximum margin γ equals 1/ ‖w‖.

can assert that the following inequality holds true

yi (w · xi + b) ≥ 1 .

In order to achieve a low generalisation error we have to determine a solution with

maximum margin. This is equivalent to seeking a hyperplane with minimum ‖w‖ which

at the same time manages to classify all the points of the training set with functional

margin greater or equal to 1 (Fig. 3.1).

The above way of stating the problem of finding separating hyperplanes with maxi-

mum margin prompts us to proceed to a formulation in terms of optimisation theory.

Specifically, the optimisation problem can be stated formally as follows:

minimisew,b
1

2
‖w‖2 ,

subject to yi (w · xi + b) ≥ 1 for all i = 1, . . . , l .

We call this formulation the primal optimisation problem. We observe that the objective

function 1
2 ‖w‖

2 is a strictly convex function of w, hence the primal problem admits

a unique solution. The qualification “primal” stems from the fact that the original

quantities (w, b) defining the solution hyperplane enter the expression as opposed to an

equivalent expression which will be described shortly. Because the problem is hard to

solve in its primal form we follow a procedure that transforms it into an equivalent form

[41]. We begin by writing down the corresponding Lagrangian in a primal form

L(w, b,α) =
1

2
‖w‖2 −

l
∑

i=1

αi [yi(w · xi + b)− 1] , (3.6)
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where αi ≥ 0 are parameters known as the Lagrange multipliers which are in the fol-

lowing considered as the components of a vector a. By differentiating L(w, b,α) with

respect to w and b we get

∂L(w, b,α)

∂w
= w −

l
∑

i=1

yiαixi = 0 , (3.7)

∂L(w, b,α)

∂b
=

l
∑

i=1

yiαi = 0 . (3.8)

Solving (3.7) with respect to w and substituting back to (3.6) we obtain the dual form

of the Langrangian

L(α) =
1

2

l
∑

i,j=1

yiyjαiαjxi · xj −
l
∑

i,j=1

yiyjαiαjxi · xj +

l
∑

i=1

αi

=

l
∑

i=1

αi −
1

2

l
∑

i,j=1

yiyjαiαjxi · xj . (3.9)

Note here that the primal variables w and b have been totally eliminated from the

expression of the Lagrangian. Its dual form is written exclusively in terms of the variables

αi, i = 1, . . . , l which for this reason are called dual variables. The new optimisation

problem in terms of the dual variables is stated as follows

maximiseα L(α) ,

subject to

l
∑

i=1

αiyi = 0 ,

αi ≥ 0 i = 1, . . . , l .

After determining the solution α⋆ of the dual problem in terms of the parameters α⋆
i

the optimum weight vector w⋆ which is the unknown quantity of the primal problem

can be derived from (3.7). Solving with respect to w⋆ we obtain w⋆ =
∑l

i=1 α
⋆
i yixi

from which it is clear that the solution weight vector can be represented as a linear

combination of the training patterns. Recall that this was a sufficient condition in order

for the decision rule to be evaluated by means of a kernel. The other parameter which

remains to be specified is the bias b⋆ of the hyperplane. The bias will be evaluated using

the primal constraints since b does not enter the dual formulation. In this attempt we

employ exclusively the active constraints, which are the ones satisfied by the solution as

equalities, by solving each one of them with respect to b⋆. Since there will be more than

one active constraints we perform an average over all the values b⋆ found

b⋆ =

∑s
i=1 (yi −w⋆ · xi)

s
,
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where s denotes the number of active constraints.

We will argue in the following that the dual Lagrangian (3.9) is a concave function

of α. The Hessian matrix formed by taking the second order partial derivatives of

−L(α) with respect to αi and αj consists of the entries 1
2 (yixi · yjxj)

(l,l)
(i,j)=(1,1). If the

labels accompanying the points are ignored this matrix corresponds to the simplest of the

kernels, the linear one, which is positive semi-definite. We can incorporate the labels into

the initial mapping transformation φ(xi) = xi and obtain a new mapping φ′(xi) = yixi

which yields a kernel matrix identical to the Hessian one. Since the Hessian matrix

resulting from the Lagragian has entries which can be expressed as inner products of the

embedded in some feature space H training points under the mapping φ′ : xi → H it

is proved to be positive semi-definite. Therefore L(α) has a unique maximum attained

possibly for more than one different realisations of α since the dual objective is not

strictly concave in contrast to the strict convexity of the primal one.

We stressed before that we aspire to solve the primal optimisation problem through the

formulation of the dual one which appears easier. It is not obvious, however, that the

objective functions corresponding to the primal and dual problems have the same optimal

value. In the sequel we will attempt to address this issue and give the conditions under

which equality of the objectives may be possible. In general if (w, b) is a pair satisfying

the constraints of the primal problem with objective f(w, b) and α is a set of l values

satisfying the constraints of the dual problem with objective L(α) = infw,b L(w, b,α) it

holds that

f(w, b) ≥ L(α) . (3.10)

Under the restrictions imposed on (w, b) and α to lie in the feasibility region of the

primal and the dual problem, respectively the value of the dual objective is always

bounded from above by the value of the primal. This relationship holding between the

two formulations of the optimisation problem is known as the weak duality theorem

[41]. This difference that exists between the f(w, b) and L(α) measures something

that is known as the duality gap. If we come up with values (w⋆, b⋆) and α⋆ such

that f(w⋆, b⋆) = L(α⋆) then the duality gap will vanish. Nevertheless, we still do not

know if there are values of the primal and the dual variables for which equality in the

objectives can be achieved. Let us denote by gi(w, b) = 1 − yi(w · xi + b) ≤ 0 the

inequality constraints of the primal optimisation problem which in our case stem from

the requirement for correct classification of the points by the canonical hyperplane. It

is easily proved that since

L(α) = inf
w,b

L(w, b,α) ≤ L(w, b,α) = f(w, b) +

l
∑

i=1

αigi(w, b) ≤ f(w, b) (3.11)

candidate values for the vanishing of the duality gap are surely the ones that minimise

the primal Lagrangian since in this case the first inequality in (3.11) becomes an equality.
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We will discuss very shortly the additional condition under which the second inequality

becomes equality. This can happen for α⋆ solving the dual problem since this is the

only value for which (3.10) could hold as an equality. By forcing L(α⋆) to attain a

maximum we are able to approach and possibly reach the minimum value f(w⋆, b⋆). The

next theorem known as the strong duality theorem [41] provides us with the guarantees

needed for the dual optimisation problem to have the same objective as the primal. The

theorem states that

Theorem 3.2. Given an optimisation problem with convex domain Ω ⊂ Rn

minimisew,b f(w, b) ,

subject to gi(w, b) ≤ 0 for all i = 1, . . . , l ,

where gi are affine functions, then the duality gap is zero.

Apparently these rather mild conditions are satisfied by our primal optimisation prob-

lem. Given that the two problems can admit the same objective value for the solutions

of the primal and the dual optimisation problem, (3.11) indicates that this can take

place only if
∑l

i=1 αigi(w, b) = 0. The Kuhn-Tucker theorem [36] states the conditions

for a point (w⋆, b⋆) to be the optimum solution of the primal problem.

Theorem 3.3. Given an optimisation problem like the one appearing in Theorem 3.2

the sufficient and necessary conditions for a regular point (w⋆, b⋆) to be the optimum

solution when f(w, b) is a convex function with continuous first order partial derivatives

and gi affine constraints are the existence of dual variables α⋆ ≥ 0 such that (w⋆, b⋆)

which belongs to the feasibility region of the primal problem (gi(w
⋆, b⋆) ≤ 0, i = 1 . . . , l)

satisfies
∂L(w⋆, b⋆,α⋆)

∂w
= 0,

∂L(w⋆, b⋆,α⋆)

∂b
= 0 ,

α⋆
i gi(w

⋆, b⋆) = 0, i = 1, . . . , l .

In our case, binary classification with maximum margin, f(w, b) = 1
2 ‖w‖

2 satisfies the

requirements of convexity with respect to w and continuity of the first order derivatives.

The l additional constraints taking the form

α⋆
i [1− yi(w

⋆ · xi + b⋆)] = 0 i = 1, . . . , l

constitute the Karush-Kuhn-Tucker (KKT) complementarity conditions [29]. At each

step of the optimisation procedure the intermediate values of (w, b) before solution is

reached and the optimum (w⋆, b⋆) one can be inside the feasible region defined by some

of the constraints and on the boundary surfaces of the feasible region regarding some

others. In the former case we say that the corresponding constraints are inactive whereas

in the latter the constraints are characterised as active ones. The dual variables linked
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to constraints being inactive, i.e. holding for points (xi, yi) which are not lying on the

canonical hyperplanes, assume the value αi = 0. On the contrary, for points which

satisfy the relationship yi(w · xi + b) = 1 corresponding to active constraints the dual

variables are allowed by the KKT conditions to satisfy αi ≥ 0. As a consequence only

these patterns participate eventually in the expansion of the solution weight vector w⋆

in terms of the training points

w⋆ =
s
∑

i=1

α⋆
i yixi

where s designates the number of examples for which α⋆
i > 0. The larger the value of a

parameter α⋆
i is, the higher is the influence of the corresponding pattern on the solution.

The examples connected to positive dual variables are called support vectors because the

direction and the bias of the hyperplane can be exclusively determined by them. The

rest of the examples have no impact on the determination of the hyperplane and if they

were identified they could have been discarded at no cost regarding the approximation

to the optimal solution.

3.4 Soft Margin Hyperplanes

Until now we made the assumption that the training set is linearly separable and we are

seeking separation with maximum margin. By studying (2.43) yielding the probability

that an unseen point is wrongly classified by the ∆-margin hyperplane we discover that

maximum margin classification is not always the most favourable approach regarding

generalisation. In particular we can fix a ∆-margin hyperplane with ∆ exceeding the

existing margin γ at the expense of a few margin errors if this can reduce the worst case

prediction regarding the probability of a margin mistake. In the inseparable case we

are left with no choice except considering a zone around a given hyperplane extending

at a distance ∆ inside the regions which characterise an example either as positive or

as negative. The thickness of this zone works as a substitute of the margin which, of

course, does not exist and will be called a margin as well. It should be clear from the

context when we attribute to the margin its usual meaning and when its relaxed one.

The success in the choice of ∆ will be assessed after conducting margin queries on test

data. The bound of (2.43) can also in this case provide us with some theoretical insights

which if combined with the margin errors done on an independent test set can guide us

through the procedure of specifying ∆. In order to treat inseparable datasets we have

to make some modifications in the formulation of the original optimisation.

Ideally we would like to achieve a solution with a margin of at least ∆ but also with

the minimum possible number of mistakes. We give the opportunity to the constraints

of the primal optimisation problem encountered earlier to hold as equalities by relaxing
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Figure 3.2: The slack variables for a classification problem.

them through the introduction of some non-negative quantities ξi, i = 1, . . . , l

yi (w · xi + b) ≥ 1− ξi, i = 1, . . . , l . (3.12)

The variables ξi, i = 1, . . . , l denoted compactly as ξ, are called slack variables [55, 6]

(Fig. 3.2). All we have to do now in order to complete the statement of our optimisation

problem is to set the objective J to

J =

l
∑

i=1

ξσ
i ,

where σ is a positive parameter tending to zero and impose the additional constraint

on the margin written formally as ‖w‖2 ≤ ∆−2. The minimisation of the objective

corresponds obviously to a minimisation performed on the number of margin mistakes.

Since the above optimisation problem is computationally intractable we allow for a

relaxation of it. Specifically, we do not require the construction of a ∆-margin hyperplane

but we pursue instead the margin maximisation in a criterion involving a penalty for

the margin mistakes as well. Thus, in addition to the usual term 1
2 ‖w‖

2 a new term

enters this criterion which is proportional to the previously mentioned objective with the

parameter σ fixed to strictly positive values. This new concept of optimal hyperplane is

called the soft-margin optimal hyperplane [13] and is determined by the minimisation

of the following criterion J

J =
1

2
‖w‖2 +

C

σ

l
∑

i=1

ξσ
i

subject to the constraints (3.12). The free parameter C determines the trade-off between

the maximisation of the margin and the minimisation of the sum of ξσ
i . In the sequel

we distinguish two commonly encountered cases according to the value of σ.
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First we treat the case where σ = 1 known as the 1-norm optimisation problem. The

problem can be solved by applying techniques analogous to those used for finding the

maximum margin in the separable case. In particular we construct the corresponding

Lagrangian which after eliminating the primal variables (w, b, ξ) assumes a dual form

L(α) identical with that of (3.9). The problem which we are asked to solve is the

maximisation of L(α) under the constraints
∑l

i=1 αiyi = 0 and

0 ≤ αi ≤ C .

Observe that the previous constraint forces the variables αi to lie between 0 and C and

that is why it is called the box constraint [13]. The KKT complementarity conditions

for this problem are

αi [yi(w · xi + b)− 1 + ξi] = 0, i = 1, . . . , l , (3.13)

ξi(αi − C) = 0, i = 1, . . . , l .

The first of them implies that the αi’s are zero for the inactive constraints whereas from

the second we conclude that slack variables ξi have non-zero values only for αi = C.

These αi’s correspond to examples which violate the margin requirement 1/ ‖w‖. The

examples for which 0 < αi < C are lying at a distance 1/ ‖w‖ from the separating

hyperplane and have zero slacks. Furthermore, they satisfy the constraints (3.12) as

equalities enabling us to use them in order to determine the only unknown quantity,

namely b given that the slacks vanish.

We turn now to the case where σ = 2 known as the 2-norm optimisation problem.

Following the same procedure as before we obtain the dual Lagrangian L(α) free from

the primal variables

L(α) =

l
∑

i=1

αi −
1

2

l
∑

i,j=1

yiyjαiαjxi · xj −
1

2C

l
∑

i=1

α2
i

written equivalently as

L(α) =

l
∑

i=1

αi −
1

2

l
∑

i,j=1

yiyjαiαj

(

xi · xj +
1

C
δij

)

, (3.14)

where δij is Kronecker’s δ. The KKT complementarity conditions assume the same form

as in (3.13). From (3.14) we can see that L(α) remains essentially the same as the dual

Lagrangian occuring in the maximisation of the margin in the separable case except for

the term 1
C δij . The term (xi · xj) as we have commented before corresponds to the

linear kernel and could have been substituted by any kernel. We can incorporate 1
C δij
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into the kernel by weighting its diagonal by the quantity 1/C [52, 53, 14]

K ′(x,x′) = K(x,x′) +
1

C
δxx′

and solve the maximum margin problem.

Generalisation bounds involving the 1-norm or the 2-norm of the slack vector ξ were

derived in [51, 52, 53].

3.5 Implementation Techniques

The maximum margin classification problem stated formally in terms of the optimisa-

tion theory leaves us with an objective function to be optimised subject at the same

time to a set of constraints. There is a number of techniques that solve the quadratic

optimisation problem associated with the formulation of the SVMs. However, implemen-

tation difficulties often arise especially if large datasets are involved. This is due to the

fact that such techniques demand the kernel matrix to reside permanently in memory

leading to a scaling of the memory requirements quadratic in the size of the dataset. To

tackle the inefficiency of the standard quadratic programming packages employed for the

SVM optimisation task alternative implementations were proposed which were proved

in practice to be less time consuming and memory wasteful.

One of the first attempts in this direction was presented in [45]. The idea was to

decompose the full optimisation problem into smaller ones and solve each one of them

separately. Such techniques became known as decomposition methods. The algorithms

following the decomposition approach attempt at each iteration to maximise the dual

objective by adjusting only part of the dual variables. This implies that only a subset

of the original constraints is taken into account which is called the active or working

set while the rest of the variables remain fixed. This strategy is an improvement of an

older technique known as chunking [64]. In chunking as the name suggests a chunk of

the training set is used and training is performed using an off-the-shelf optimiser. The

solution found to this subproblem is then used to test the validity of the constraints

imposed on the rest of the dataset. The M points that violate the KKT conditions the

most are added to the support vectors that determine the last hypothesis in order to

form the new chunk on which the generic SVM will be trained. The parameter M which

is fixed by the user determines the growth rate of the chunk. The procedure is repeated

until no point is found for which the KKT conditions are violated. It is reasonable to

expect that at every iteration new support vectors will be added leading to an increase

of the chunk size without of course excluding the possibility that it may decrease as

well. Nevertheless, there will be situations where this scenario will be impractical due to

memory restrictions since no considerations are taken to keep the size of the subset that

is provided to the optimiser within some limits. The problem of uncontrollable growth
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of the training subsets leading to an increase in the demand for memory resources can

be handled successfully in the decomposition methods since the size of the subset fed

to the learning machine is kept fixed throughout the whole procedure. In the sequel we

are going to study two widely known algorithms which make use of the decomposition

strategy.

We begin with the Sequential Minimal Optimisation (SMO) algorithm devised by Platt

[46]. The SMO is an extreme application of the decomposition method where the working

set size is fixed to 2. This choice is justified by the fact that an optimisation problem

consisting of only two points admits an analytical solution. From the equality constraint
∑l

i yiαi = 0 enforced by the presence of a bias term b in the expression of the hypothesis

hyperplane it is obvious that if one of the dual variables is modified then another one

should also change in order for the equality constraint to hold. Therefore, a working set

of size 2 is the minimum active set that can be employed in terms of a decomposition

method. We defer for later the description of the criteria according to which two of the

Lagrange multipliers, say α1 and α2, are selected to form the active set and will turn for

the moment to their update. Since the rest of the multipliers are kept fixed the equality

constraint yields

y1α1 + y2α2 = y1α
old
1 + y2α

old
2 , (3.15)

where αold
1 and αold

2 denote the values of the multipliers under consideration before the

update takes place. Let us define the quantity Ei = w · xi + b− yi. Notice that in the

case of a wrong classification of the point xi by the current hypothesis −yiEi coincides

with the value of the slack variable ξi. Then, we restate the dual objective function in

a form consisting of terms depending only on one of the dual variables, say α2, taking

part in the active set and a constant term C ′ incorporating the contributions of the

remaining multipliers which are unchanged during the iteration

L(α) =
1

2
ηα2

2 +
(

y2(E
old
1 − Eold

2 )− ηαold
2

)

α2 + C ′ ,

where η = 2k12 − k11 − k22 = −(x1 − x2) · (x1 − x2) = −‖x1 − x2‖2 ≤ 0. The terms

k11, k12 and k22 denote the corresponding entries of the kernel matrix K. Taking the

derivative of L(α) with respect to α2 we obtain

∂L(α)

∂α2
= ηα2 +

(

y2(E
old
1 − Eold

2 )− ηαold
2

)

. (3.16)

Since ∂2L(α)
∂2α2

= η ≤ 0 the value of α2 for which (3.16) vanishes gives an unconstrained

maximum of the objective. Solving ∂L(α)
∂α2

= 0 with respect to α2 yields the new value

of the multiplier

αnew
2 = αold

2 +
y2(E

old
2 − Eold

1 )

η
.

We treat the general case of imperfect separation by use of the 1-norm penalty on the

slack variables. The 2-norm optimisation problem can be handled as a special case of
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the 1-norm one by adding a positive constant to the diagonal of the kernel matrix and

choosing a parameter C large enough to prevent any of the multipliers from reaching it.

In the case of the 1-norm soft margin optimisation αnew
2 is not free to assume any value

but is clipped when it exceeds the maximum allowable value V or when it is less than

the minimum feasible one U . If y1 6= y2

U = max(0, αold
2 − αold

1 ), V = min(C,C − αold
1 + αold

2 ) ,

whereas if y1 = y2

U = max(0, αold
1 + αold

2 − C), V = min(C,αold
1 + αold

2 ) .

After αnew
2 is clipped αnew

1 can be obtained by (3.15)

αnew
1 = αold

1 + y1y2

(

αold
2 − αnew

2

)

.

There is a number of heuristics according to which we can pick the two multipliers that

provide a substantial contribution to the maximisation of the dual objective. First of all

we have to select the first multiplier α1 to be optimised from those that violate the KKT

conditions. The example corresponding to α1 is chosen preferably amongst the examples

(xi, yi) which lie on the supporting hyperplanes (0 < αi < C). If no such example can

be found then one sweep through all the examples takes place. The second example

is chosen based on the maximisation of the |E2 − E1| criterion entering the update of

α2 initially among the non-boundary examples. If the search proves futile in the sense

of not delivering a significant progress to the maximisation of the objective every such

example is tested ignoring the criterion. If this fails too the search is repeated using the

whole training set. The algorithm teminates if values of the multipliers are found which

satisfy the KKT conditions to a specified tolerance level.

A special case of the SMO algorithm is the kernel Adatron [18, 19] the origins of which

can be traced back in early work [3] on statistical physics of learning. If we set the bias b

to zero or to a fixed value we can eliminate the equality constraint from the optimisation

problem. This enables us to update only with respect to one example at a time according

to the rule

αnew
2 = αold

2 +
y2E

old
2

η
,

where η = −k22. The newly produced value αnew
2 is subsequently clipped in order to

satisfy the box constraints forcing it to lie in the interval [0, C].

Another established algorithm falling into the category of decomposition methods is

SVM light [28]. In constrast to SMO where we encounter the smallest possible active set

SVM light employs a generalised version of the decomposition strategy involving q free

variables which are subject to alterations during each iteration. The working set of size

q is selected with criteria that yield a satisfactory progress towards maximisation of the
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Lagrangian. To this end the algorithm of Zoutendjik [69] provides the q points which

will form the working set for each iteration. A generic quadratic programming method

such as the algorithm of Hildreth [26] or the interior point method [59] can play the role

of the nucleus which will carry out the optimisation of this reduced working set.

In order to speed up the procedure one could try to guess which are the points of the

original dataset which might not end up being support vectors and which are the ones

that might end up being misclassified (αi = C) when the optimisation finishes. SVM light

employs a set of heuristics in order to identify at early stages of the optimisation proce-

dure such points the multipliers of which are set to the value 0 or C, accordingly. Since

the multiplyers αj corresponding to these points remain fixed during the process we can

eliminate them and draw active sets from the rest of the points. Of course, no mech-

anism can ensure from the beginning that these points will keep playing the same role

till the end. For this reason the excluded variables are checked after convergence and

if necessary optimisation on the full set is performed. This procedure which attempts

to reduce the size of the original problem is known as shrinking. For the algorithm to

terminate criteria based on the KKT optimality conditions are used.



Chapter 4

Incremental Algorithms

4.1 Introduction

The algorithms that we consider here are driven by their mistakes. By this we mean

that their linear hypothesis is updated each time a training example fails (succeeds) to

satisfy a certain classification (misclassification) condition. Mistake-driven algorithms

are naturally placed in an online setting in which the machine examines only one example

at a time. This distiguishes them from algorithms like SVMs which operate in the so-

called batch mode according to which the whole dataset is known to the machine from

the beginning. In the online setting the learning proceeds in trials. At each trial the

algorithm is presented with an instance xi and attempts to predict its label. If there is

a discrepancy between the predicted and the true label yi a mistake occurs which forces

subsequently the hypothesis to be updated. Such algorithms do not reconsider from

scratch their response to future instances on the basis of the examples made available to

them until that point but, instead, they incrementally update their internal state. In the

online setting there is no distinct training and testing phase as training can go on for ever.

The goal is to minimise over a long sequence of trials the discrepancy occuring between

the predicted and the true labels as this is measured by an appropriately chosen loss

function. There are numerous papers following this scenario for analysing algorithms in

this setting. Kivinen and Warmuth [32] present a comprehensive overview of techniques

bounding the loss incurred by algorithms belonging both to the Perceptron [47] and the

Winnow family [40]. A comparative study involving the Perceptron and the Winnow

algorithms is provided in [31]. In the present work, on the contrary, we are interested

in an adaptation of the online setting which is usually called the incremental setting.

In this scenario the training phase is clearly distinguishable from the testing one. The

dataset, finite in size, is cyclically presented to the algorithm in rounds (epochs) until

no mistake occurs. The property of the algorithms to come up after a finite number

of mistakes with a hypothesis from the concept class which perfectly explains the data

signifies their abiltity to converge. The goal of the incremental scenario is to identify

64
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whether an algorithm is able to converge and to place upper bounds on the number of

mistakes made before a consistent classifier is constructed. On the basis of the form

of their update rule the algorithms are classified into two broad categories, namely the

additive and the multiplicative families. In the present thesis we will be exclusively

concerned with the additive family of algorithms the most prominent representative of

which is the Perceptron algorithm.

In the present chapter we review some well-known algorithms belonging to the additive

family starting with algorithms aiming at a mere separation of the data and gradually

moving towards algorithms able to provide solutions possessing large margins. No proofs

of convergence or derivations of mistake bounds are provided here. Such an analysis of

Perceptron-like large margin classifiers is the subject of the next chapter.

4.2 The Augmented Space

As discussed many times so far the parameters that control the choice of the hypothesis

in the linear case are the weight vector w that determines the direction of the hyperplane

and the bias b. Moreover, the distance of the hyperplane from the origin is |b|/‖w‖. The

linear function that performs the binary classification of the training instances xk has

the following form

f(xk) = w · xk + b .

In the case that f(xk) > 0, xk belongs to the first class and is characterised as a

positive example whereas if the inverse inequality holds xk belongs to the second class

and is characterised as a negative one. To each example a label yk is associated taking

values from the set {−1, 1} which indicates the category to which it belongs. Notice

that the function f(xk) can be elegantly written as the inner product of the augmented

weight vector a = [w w0] (where w0 = b/ρ0) with the augmented training instance

yk = [xk ρ0] both belonging to a space augmented by one additional dimension [15] in

which all instances have the additional coordinate ρ0. If a reflection in the augmented

space with respect to the origin of the negatively labelled yk’s is assumed we have

ykf(xk) = a ·yk > 0 for all the training patterns. Thus, there is no need to discriminate

between positive and negative examples and the use of the labels becomes obsolete.

Let us consider a hyperplane characterised by an augmented weight vector a. The

geometric margin of the dataset in the original space with respect to this hyperplane

is min
k
{a · yk}/‖w‖. The corresponding margin in the augmented space with respect

to hyperplanes passing through the origin is min
k
{a · yk}/‖a‖. Obviously, the above

margin in the augmented space is smaller than the geometric margin in the original

space since ‖a‖ ≥ ‖w‖.
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4.3 The Perceptron Algorithm

The most well-known primal space iterative algorithm which is used for binary classifi-

cation of linearly separable data is the Perceptron algorithm [47]. The Perceptron uses

an additive rule to update the previous hypothesis each time a “mistake” occurs. At

each trial a new instance is received by the algorithm which afterwards proceeds to a

guess concerning its label based on the current hypothesis. Each time the classification

(misclassification) condition at ·yk > 0 (at ·yk ≤ 0) is violated (satisfied) the algorithm

fails to make a successful guess. Such a mistake causes a to be updated in the following

way

[wt+1 w0t+1] = [wt w0t] + ηyk [xk ρ0] ,

where η denotes the learning rate and determines the degree to which the old solution

is affected by the update. In the case of the Perceptron algorithm the learning rate

plays no role if the weight vector is initialised to zero. This can be easily justified by

the fact that the different values of the learning rate lead only to a rescaling of the

hypothesis weight vector. This is true bearing in mind that the algorithm considers the

training points as incorrectly classified based only on the direction of the weight vector.

So for reasons of simplicity η might as well be set equal to 1. Here the subscript t is

meant to indicate that the function f is t-dependent through the time dependence of

the weight vector. Apparently, the values of ft(yk) that are considered correct are only

the positive ones since, due to the reflection, yk incorporates the information carried

by the label. If the notation of the augmented space is adopted the update rule can be

written compactly as

at+1 = at + yk . (4.1)

Notice that if the original space is considered without any embedding of the data in the

augmented space the Perceptron algorithm constructs hyperplanes that pass through

the origin. In other words it is a zero-threshold algorithm which chooses solutions that

possess zero bias. The trick of moving the data in an augmented space leads again to

hyperplanes with zero bias in this space which nevertheless possess some bias in the

original space. Observe that the hypotheses constructed by the Perceptron algorithm

are linear combinations of the training examples with positive coefficients.

The update rule of the Perceptron algorithm can be considered as a result of a gradient

descent procedure. The function on which the gradient search is based is called the

Perceptron criterion function and in an online setting is described by

Jp(at) = (−at · yk)+ , (4.2)

where (α)+ = max(α, 0). We can easily see that Jp is positive only for those yk that

are misclassified by at and measures their functional margin with respect to the current
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hyperplane. The new value of at+1 is calculated then by

at+1 = at −∇atJp(at)

which coincides with (4.1).

An advantage of the Perceptron and related algorithms is the existence of upper bounds

[44] on the number of updates which guarantee convergence in a finite number of steps.

In the Perceptron case the bound on the number of mistakes is given by

t ≤
(

R

γd

)2

.

It depends solely on the maximum zero-threshold margin γd and the radius R of the

minimum sphere centred at the origin that contains the training examples.

4.4 The Second-Order Perceptron Algorithm

Apart from the standard Perceptron algorithm there also exist other algorithms compet-

ing with it in the task of separating the data into two classes the bounds of which exhibit

a more attractive behaviour depending on the case. As such a prominent example we

will briefly review and comment on the properties of the Second-order Perceptron algo-

rithm [10] which can be viewed as an incremental variant of the Whitened Perceptron

[10]. The algorithm might be considered as an adaptation to online binary classifica-

tion of the ridge regression and its analysis is inspired by an instance of Vovk’s general

aggregating algorithm [68] which is called the Forward algorithm in [4].

The Second-order Perceptron extends the well-known Perceptron algorithm by taking

into consideration second order data information such as the correlation matrix of the

training patterns. This algorithm exploits the inherent geometrical properties of the

data. As the authors of [10] argue this algorithm has better mistake bounds in some

cases and exhibits an improved generalisation ability compared to that of the classical

Perceptron algorithm in the experiments conducted. The cases which are shown to be

advantageous for the Second-order Perceptron include settings in which the data are

not scattered evenly in the volume of a hypersphere centred at the origin but mostly

reside along certain directions. These directions are linked to the dominant eigenvectors

of the dataset correlation matrix. The bounds and the performance of the standard

Perceptron algorithm are ruled by the quantity
(

R
γd

)2
. If X is a matrix the columns

of which are the patterns contained in the sequence S = {y1,y2, . . . ,yK}, then the

correlation matrix M is given by M = XXT . We have changed notations from vector

dot product to matrix notation. The superscript T designates the transpose of a vector

or a matrix. The margin is defined by γd = min
k
uTyk, where u is the unit norm weight
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vector normal to the hyperplane which separates the data with margin γd. Since

Kγd
2 ≤

K
∑

k=1

(

uTyk

)2 ≤
K
∑

k=1

‖yk‖2 = Tr(M)

the worst case estimate of the time needed for convergence of the Perceptron algorithm

is bounded from below by a quantity involving the trace of M . Moreover, points lying

near the separating hyperplane and close to the surface of the minimum enclosing sphere

influence the behaviour of the algorithm most. Consider the case in which an example

lies near the optimum separating hyperplane and its length is close to R. Then, if

this point is misclassified by the current hypothesis weight vector it is possible that

the resulting new hypothesis moves further from the optimum direction u instead of

approaching it. This happens because, although the Perceptron update rule forces the

quantity at · u to increase at every step t, it does not guarantee the same for ut · u
which can in fact decrease. The implication of this is that the current hypothesis weight

vector overshoots the feasible solution region, a situation in which the algorithm might

be misled causing a slowing down of the convergence procedure.

As an example of how an appropriate transformation of the data could improve the time

bound of an algorithm over the one of the standard Perceptron we shall mention the

Whitened Perceptron algorithm. This variant differs from the standard one in that it

needs the whole sequence of examples in advance in order to proceed to the following

mapping of the data

{y1,y2, . . . ,yK} →
{

M−1/2y1,M
−1/2y2, . . . ,M

−1/2yK

}

,

where M−1/2 is called the whitening transform. The existence of M−1/2 is guaranteed

due to the positive definiteness of M . This mapping results in a correlation matrix

which is the identity matrix In with n being the dimensionality of the space of the

patterns. The new instances even after the transformation remain linearly separable.

The transformed data can be separated by a hyperplane with normal vector z = M1/2u.

This can be easily verified by constructing the product zTM−1/2yk = uTyk which is

definitely positive since the optimal direction u classifies all yks correctly with margin

at least γd. Then, the margin that the transformed data possess with respect to z is

at least γ′d = γd/ ‖z‖ = γd/
∥

∥M1/2u
∥

∥. Therefore an upper bound on the number of

mistakes t for the Whitened Perceptron is given in analogy to the standard Perceptron

by

t ≤ 1

γd
2

max
k

(

yT
kM

−1yk

) (

uTMu
)

.

Observing the bound we can say that this can be significantly smaller than
(

R
γd

)2
if either

the patterns are very correlated since yT
kM

−1yk becomes then small or u is strongly

correlated with a nondominant eigenvector of M .
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The Second-order Perceptron algorithm can be considered as an incremental variant of

the Whitened one. The algorithm maintains a n-row matrixXt−1 at time step t−1 which

initially is empty. Each time t a new instance is received by the algorithm an augmented

matrix St = [Xt−1 yk] is built. Since the negatively labelled points yk are reflected in

the augmented space with respect to the origin correct classification of yk is designated

by
(

aT
t yk

)

> 0, where at =
(

αIn + StS
T
t

)−1
vt−1. An α multiple of the identity matrix

In is added to the correlation matrix StS
T
t in order to bypass the impossibility to invert

StS
T
t in the case that it is singular. If there is a mismatch between the predicted and the

true label of the pattern then an update of vt−1 similar in form to that of the standard

Perceptron algorithm takes place vt = vt−1 + yk with v0 = 0 and Xt becomes Xt = St.

The parameter α which cannot be deduced ahead of running affects considerably the

performance of the algorithm. In a way it captures the information about the existence

of specific directions along which the data are scattered and how well aligned is the

solution vector to the normal to these directions. Notice that St contains only those

patterns which are associated with mistaken past trials. This is also the main difference

with the Forward algorithm in which St keeps track of all patterns seen so far by the

algorithm.

We shall now turn to some theoretical properties of the Second-order Perceptron algo-

rithm. It is proved that the number of mistakes made on a finite sequence of examples

is bounded from above by

t ≤ inf
γ>0

min
‖u‖=1





Dγ(u;S)

γ
+

1

γ

√

√

√

√

(

α+ uTXtXT
t u
)

n
∑

i=1

ln(1 + λi/α)



 , (4.3)

where λ1, λ2, . . . , λn are the eigenvalues of XmX
T
m which consists only of the m points

that were wrongly classified during the trials. The infimum with respect to the free

parameter γ is taken in order to make the bound tighter. The quantity Dγ(u;S) =
∑

k

Dγ(u;yk) is the sum of hinge losses Dγ(u;yk) = max{0, γ−uTyk} for every pattern

in the sequence. If we consider the linearly separable case this bound, which can embody

a repeated recycling through the patterns until convergence of the algorithm, reduces to

t ≤





1

γd

√

√

√

√

(

α+ uTXtXT
t u
)

n
∑

i=1

ln(1 + λi/α)



 . (4.4)

The term λu = uTXtX
T
t u can be small as in the case of the Whitened Perceptron

if u is aligned with the eigenvector associated with min
i
λi. In the limit α → ∞ the

bounds (4.3) and (4.4) give the known mistake bounds characterising the behaviour of

the Perceptron in the inseparable and the separable case [22], respectively bearing in

mind that
∑

i λi ≤ tR2.

Next we proceed to an investigation of the bounds (4.3) and (4.4) in order to find
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the values of α which make the Second-order Perceptron more advantageous than the

standard one. By bringing the aforementioned bounds in a form that can be directly

compared with the ones holding for the Perceptron we may conclude that if λu < r
2

with r = R2t
n then the choice α = rλu/(r − 2λu) favours the Second-order Perceptron.

On the other hand if λu ≥ r
2 there is no finite value of α for which the bound of the

Second-order Perceptron becomes better and its performance approaches that of the

standard Perceptron only for α→∞.

In practice it is impossible to know λu since we ignore the optimal direction u, so we

can proceed alternatively in two ways. The first one is to let α increase with every

mistaken trial t following the rule αt = cR2t with c > 0 adjusted empirically. The

linear dependence of αt on t is justified from the following observation. The value

of λu appearing in (4.3) and (4.4) is bounded from above and below (for the linearly

separable case) by terms linear in the number of mistakes. It can be shown that the

minimal speed of growth of the bounds can be ensured with α growing linearly with

t. The second scenario eliminates α and enforces the need to introduce in the place of
(

αIn + StS
T
t

)−1
the pseudoinverse

(

StS
T
t

)+
which exists in all cases.

4.5 The Perceptron Algorithm with Margin

It is generally believed that the larger the margin of the dataset the greater is the

generalisation of the learning machine [66, 50]. However, all the incremental algorithms

that were discussed until now produce hyperplanes that ensure the mere separation of

the data if the set is linearly separable. None of the algorithms with a misclassification

condition of the form at ·yk ≤ 0 described so far were able to guarantee a fraction of the

maximum margin that the dataset possesses. The most obvious and immediate way to

enforce the generation of solutions that possess even a slight proportion of the margin

is to change the condition.

The Perceptron algorithm in its original form cannot guarantee a minimum margin,

a drawback which can be eliminated by a slight modification of its misclassification

condition [15] to

at · yk ≤ b,

where b is a positive constant (not to be confused with the bias which in this formulation

is incorporated in the augmented vectors). In this case the condition not only demands

correct classification of the points but also ensures that this is done with some positive

margin. This allows the standard Perceptron algorithm to achieve at least a known frac-

tion of the maximum margin [35] if certain requirements are fulfilled which is, however,

achieved at a larger computational cost. These requirements depend on the parameters

of the algorithm which are the threshold b of the misclassification condition and the
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learning rate η of the update rule which in this case cannot be set to an arbitrary value

with no effect on the solution produced.

4.6 Relaxation Procedures

Besides Jp(at) other criterion functions can be constructed, the minimisation of which

can be achieved by the choice of a solution vector at. A typical example is

Jq = (at · yk)
2 ,

where again yk denotes the example that was misclassified by the zero threshold condi-

tion. The main advantage of this function over (4.2) is that its gradient is differentiable

allowing at to approach more smoothly a solution vector. However, there is also the

danger that at be trapped in the region near the hyperplane that just separates the data.

Thus, in spite of the time spent the algorithm may converge to a solution possessing

zero margin. We can avoid this awkward situation by modifying the criterion function

to

Jr =
1

2

(at · yk − b)2
‖yk‖2

.

In this case yk corresponds to a training pattern that satisfies a misclassification condi-

tion at ·yk ≤ b analogous to that of the Perceptron with margin. This modification forces

the algorithm to keep running until a solution that possesses some margin is found. The

division with the norm of the training pattern attenuates the effect that long examples

lying near the separating hyperplane have on Jr. The gradient descent algorithm that

results from this criterion function is known as the relaxation rule [1, 15] and its update

is described by

at+1 = at + η
b− at · yk

‖yk‖2
yk

for those yk that fail to exceed the predetermined margin b. This correction rule is

justified since it has also a simple geometrical interpretation demonstrated in Fig 4.1.

Let us examine only the quantity rk = (b− at · yk) / ‖yk‖. The term at ·yk appearing in

rk describes the locus of (the endpoints of) all the weight vectors that define hyperplanes

which separate the pattern yk with margin less than b. This locus is a hyperplane normal

to yk at a distance (at · yk) /‖yk‖ from the origin. The quantity rk can be viewed as

the distance that separates the weight vectors of the locus from the hyperplane which

is the locus {at : at · yk = b} of the weight vectors that just satisfy the misclassification

condition. Notice that this hyperplane is also normal to the misclassified point and

parallel to the locus with margin less than b. Its distance from the origin is equal to

b/‖yk‖. It is pretty obvious that if η is set to unity then with a single update the point

can be corrected, thus “relaxing” the tension created by at · yk ≤ b. If η < 1 more

than one updates are needed to correct the point. The value of η controls the number of
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Figure 4.1: The weight vector at needs to cover the distance rk in order to just violate
the constraint at · yk > b. If η = 1 at moves exactly to the hyperplane at · yk = b.

the updates the algorithm should spend if it insisted repeatedly on classifying correctly

that single pattern. The conditions η < 1 and η > 1 are known as underrelaxation and

overrelaxation, respectively.

4.7 The Approximate Large Margin Algorithm

Although the Perceptron algorithm with margin has the property of achieving some

margin which was missing from the original one, its apparent drawback is that it cannot

theoretically guarantee convergence to solutions possessing the maximum margin. This

shortcoming is not present in other algorithms which also build upon the idea of an

analogous modified condition.

The Approximate Large Margin Algorithm (ALMAp) [21], which belongs to the category

of the p-norm Perceptrons [25], is accompanied with theoretical guarantees of achieving

solutions of near maximum margin with respect to the p-norm. The subscript p which

takes values in the interval [1,∞) is associated with the p-norm ‖xk‖p of the training

patterns. If the p-norm is used for xk then its dual q is used for the norm for the weight

vectors that the algorithm produces. The norms p and q are dual if they are related as

follows
1

p
+

1

q
= 1 . (4.5)

For example, if the 1-norm is used for the weight vectors then its dual ∞-norm should

be employed for ‖xk‖p (‖x‖∞ = limp→∞(
∑n

i=1 |xi|p)1/p = maxi |xi|). The 2-norm as

(4.5) indicates is self-dual. Notice that ALMAp as constructed by Gentile works only for

data that lie on the surface of a unit sphere. However, the normalisation of the data to

unit length certainly alters the original topology of the data and the value of the margin.

ALMAp can approximate the maximum margin hypothesis within any desired level of

accuracy by using parameters appropriately tuned. ALMAp is based on the model of



Chapter 4 Incremental Algorithms 73

online learning with a series of mistaken trials determining the final weight vector. The

initial value of at is set to zero. The misclassification condition is modified as in the

case of the Perceptron algorithm with margin to accommodate a positive threshold and

assumes the form

at · y′k ≤ (1− α)γt .

The misclassification condition involves the normalised instances which are denoted by

y′k = yk/ ‖yk‖p. The α parameter appearing in the condition is associated with the

fraction of the margin attained by the algorithm while γt decreases with the number of

mistakes made following the rule

γt = B
√

p− 1
1√
t
.

B is a positive quantity fixed ahead of running by the user. The ALMAp algorithm

employs an intermediate update rule each time a mistake occurs which is given by

a′t = g−1(g(at) + ηty
′
k) .

The function g maps vectors with a given q-norm to vectors with the same p-norm.

The mapping g = (g1, g2, . . . , gn) : Rn → Rn, with n the dimensionality of the instance

space, is given by

gi(a) =
sign(ai)|ai|q−1

‖a‖q−2
q

. (4.6)

From (4.6) it is apparent that the function gi modifies appropriately each one of the

components ai of the weight vector a in such a way that the resulting weight vector

g(a) has a p-norm equal to ‖a‖q, where p and q are a pair of dual norms. The inverse

transform g−1(a) is performed in an analogous manner and is obtained by substituting

in (4.6) p in the place of q. We should mention that for p = q = 2 both g(a) and g−1(a)

yield the identity function. In such a case the intermediate update rule of ALMA2

reduces to the one of the ordinary Perceptron. However, the learning rate ηt in contrast

to that of the Perceptron is reduced explicitly with time according to

ηt =
C√
p− 1

1√
t
,

where C is a positive parameter. The weight vector a′t given in the intermediate update

rule should be normalised to unit length whenever its norm exceeds unity. Thus, the

final value at+1 of the weight vector at the end of the trial is computed by

at+1 =
a′t

max{1, ‖a′t‖q}
.

This normalisation has as a consequence that ‖at‖q never exceeds the boundaries of

the unit ball. The norm of the weight vector in the Perceptron algorithm increases “on
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the average” with time whereas the learning rate remains fixed to a constant value.

As the result of the above, the patterns found misclassified later in the sequence have

less influence on the construction of the hypothesis hyperplane than the misclassified

examples that occurred earlier. The impact that the growth of the weight vector has

on the significance of later updates in the determination of the solution is imitated in

ALMAp by the explicit reduction of the learning rate while preventing the norm of

the weight vector to exceed unity. By choosing the parameter values B =
√

8/α and

C =
√

2 it can be proved that the parameter α determines the guaranteed fraction of

the maximum directional margin achieved by ALMAp, that is for any α a proportion

1− α of the maximum margin is secured. Specifically, if α is set to 1 it corresponds to

an algorithm that does not require any margin at all while as α tends to zero the whole

margin is recovered.

Experiments showed that ALMA2 performs well in problem settings where the instance

space is sparse and a dense target vector is involved. However, when the situation

is reversed meaning that the target hyperplanes have only a few relevant components

the ability of ALMA2 to learn quickly degrades as the number of relevant attributes

decreases. We can evade this deterioration in the performance if p > 2 is used. Gentile

and Littlestone in [20] observed that by setting p = 2 lnn ALMAp is made similar

to multiplicative algorithms such as the Winnow [40] and the Weighted Majority [37]

algorithms. The use of this norm allows ALMAp to share the same benefits as the

aforementioned algorithms with respect to the rate of convergence when pursuing sparse

target vectors.

4.8 The Relaxed Online Maximum Margin Algorithm

Another very well-known algorithm addressing the problem of finding the maximum

margin hyperplane is the aggressive variant of the Relaxed Online Maximum Margin

Algorithm (ROMMA) [38] which is implemented in an incremental setting. Before we

proceed to its presentation it would be useful to discuss what would be the ideal online

maximum margin algorithm. Assuming linear separability of the dataset, the ideal on-

line maximum margin algorithm considers a modified version of the objective function

appearing in the SVM formulation. Specifically, instead of minimising the norm of the

weight vector ‖at‖ subject to the constraints (at · yk) ≥ 1 for all k in the sequence

of examples, it would choose to minimise ‖at‖ subject to the constraints (at · yk) ≥ 1

for all the patterns yk that have previously been seen by the algorithm. The ROMMA

algorithm in order to employ a simple update rule relaxes the above constraints in a

fashion that attempts to preserve the online mode of the ideal maximum margin algo-

rithm. Each time a new training example is presented to the algorithm the condition

at · yk ≤ 0 for incorrect classification of yk is checked. In the case that a prediction
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mistake occurs the algorithm proceeds to an update of the current hypothesis at. Orig-

inally a1 = 0 and after the first trial which is certainly successful the algorithm sets

a to be the shortest weight vector a2 that satisfies {a : a · yk1
≥ 1}. Here yk1

is

the first misclassified example which coincides with the first example in the sequence.

When a second prediction mistake occurs in connection with the second misclassified

example, say yk2
, the new hypothesis follows again the ideal online maximum margin

paradigm and a3 is determined as the shortest a which fulfills the combined constraint

{a : a · yk1
≥ 1} ∩ {a : a · yk2

≥ 1}. In order for the algorithm to keep at most

two constraints at every step it proceeds differently from that point on. After the next

prediction mistake a4 is determined to be the shortest a ensuring that

{a : a3 · a ≥ ‖a3‖} ∩ {a : a · yk3
≥ 1}

holds. Generalising the procedure for any subsequent step t we call the constraint

Ht = {at+1 : at · at+1 ≥ ‖at‖} the old constraint whereas {at+1 : at+1 · yk ≥ 1} is

referred to as the new constraint. Both of them must be satisfied together with the

requirement for the shortest a possible at the t-th update involving the pattern yk

which has caused the prediction mistake. The old constraint gives a kind of inertia

regarding changes in the solution since the feasible weight vectors are preferably chosen

from solutions in the vicinity of the old one in order to keep their norm small. So the

old constraint represents the tendency for conservativeness and determines the extent

to which the old solution contributes to the new weight vector.

From the discussion above it is obvious that the algorithm needs only to solve a quadratic

programming problem with two constraints. We will complement the description of the

algorithm with an investigation of how an appropriate solution can be found satisfying

the above constraints without resorting to quadratic optimisation. In fact, this will

provide us with an efficient way of implementing the algorithm with the mere use of a

simple update rule. It can be proved that both the new and the old constraint, with the

latter holding after the first mistaken trial, are binding constraints. This means that

they hold as equalities {at+1 : at+1 ·yk = 1} and {at+1 : at ·at+1 = ‖at‖}. Each of these

constraints describes a hyperplane which is the locus of (the endpoints of) all the weight

vectors that satisfy each one of the abovementioned equalities. Only the weight vector

that ends at the intersection of both hyperplanes ensures the simultaneous satisfaction

of both constraints. The update rule is given by the solution of the system consisting of

the two constraints written compactly as

Aat+1 = b ,

where A =

(

aT
t

yT
k

)

and b =

(

‖at‖
1

)

. It is presumed in this notation that the vector

at+1 multiplies separately each entry of the column vector A. Notice that in the general

case the system is underdetermined since it has only two equations and n unknowns
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with n being the dimensionality of the instance space. In this occasion the solution that

minimises the squared error is also the one with the smallest norm and is given by

at+1 = AT
(

AAT
)−1

b

=

(

‖yk‖2 ‖at‖2 − (at · yk)

‖yk‖2 ‖at‖2 − (at · yk)
2

)

at +

(

‖at‖2 (1− (at · yk))

‖yk‖2 ‖at‖2 − (at · yk)
2

)

yk .

Apart from the ROMMA algorithm that we just briefly analysed there exists a variant

of it which claims to achieve a predefined δ approximation of the maximum margin

(0 < δ ≤ 1). This variant is called aggressive ROMMA. Its name is justified by the fact

that an update takes place not only after a prediction mistake but also after any trial in

which at · yk ≤ 1− δ. In this case in contrast to the simple ROMMA the old constraint

may not be active. This means that there exist trials in which only at+1 · yk = 1 has to

be satisfied by the at+1 with the shortest length and this is ensured if

at+1 =
yk

‖yk‖2
. (4.7)

The old constraint is not binding provided the inequalities

1− δ ≥ at · yk ≥ ‖yk‖2 ‖at‖2 (4.8)

are satisfied. This condition comes from the substitution of (4.7) in the old constraint

which if we want it to be automatically satisfied (4.8) should hold. Otherwise, we apply

the same update as in ROMMA.

4.9 The Maximal Margin Perceptron

The incremental algorithms that we discussed until now follow the approach of updating

the weight vector that determines the separating hyperplane each time one of the training

patterns satisfies the misclassification condition. The update performed on the weight

vector changes its direction in a way that tends to leave the misclassified pattern on

the correct side of the hyperplane with a margin at least as large as the one required

by the condition. The condition is lowered as the algorithm progresses, usually due to

an increasing norm of the weight vector, and this allows the algorithm to eventually

converge to a solution possessing a positive margin. A different approach to the large

margin classification problem would be to look for the segment corresponding to the

minimum distance between the convex hulls of the positively and negatively labelled

patterns. By approximately locating the points of the two convex hulls that are closest

to each other and taking the line segment that connects them leads in a straightforward

manner to the determination of the margin and to the construction of the solution
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hyperplane by just performing an orthogonal bisection of this line segment. This is

the underlying idea behind the Maximal Margin Perceptron (MMP) [34] which builds

upon previous work in control theory [23, 43]. A similar direction is also adopted in [30]

which, nevertheless, considers learning only in a batch mode and involves more than one

patterns in the determination of the update rule.

The MMP algorithm receives, as usual, a training sample consisting of l examples

(x1, y1), . . . , (xl, yl) with a subset X+ of them being positively labelled and a subset

X− being negatively labelled. After the training phase is over the algorithm outputs

the parameters (w, b) which define the solution hyperplane. At every step t of the train-

ing procedure two weight vectors, namely w+
t and w−

t , are kept which are the position

vectors of two points belonging to the convex hulls coX+ and coX− of the positive

and negative examples, respectively. As such, these points are determined by convex

combinations of the training patterns

w+
t =

∑

i∈I+

αt,ixi w−
t =

∑

i∈I−

αt,ixi ,

where I+ and I− denote the set of indices of the positive and negative examples,

respectively. For the variables 0 ≤ αt,i ≤ 1, i = 1, . . . , l it additionally holds that
∑

i∈I+ αt,i =
∑

i∈I− αt,i = 1. We denote by αt the whole sequence αt,i, i = 1, . . . , l for

a fixed step t of the algorithm. Variables, instead, without the subscript t refer to their

values after the algorithm has converged. The vectors w+ and w− are called support

centers of the hyperplane since the solution hyperplane is perpendicular to the weight

Figure 4.2: The support centers w−
⋆ ∈ coX−, w+

⋆ ∈ coX+ determining the optimal
hyperplane are the positions of the points of the convex hulls lying closest to each other.
The optimal hyperplane is perpendicular to w⋆ and bisects the line segment [w−

⋆ ,w
+
⋆ ].
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vector w

w = w+ −w− =

l
∑

i=1

αiyixi .

The bias is also determined from the support centers through the relation

b = −‖w
+‖2 − ‖w−‖2

2
.

As shown in Fig. 4.2 the optimal solution w⋆ is given by the vector that connects the

positions w−
⋆ ∈ coX−, w+

⋆ ∈ coX+ of the points of the convex hulls lying closest to

each other

‖w⋆‖ =
∥

∥w+
⋆ −w−

⋆

∥

∥ = min(w+,w−)∈(coX+×coX−)

∥

∥w+ −w−∥
∥ .

The margin achieved by a hyperplane (w, b) defined by the pair of support centers

(w+,w−) is given by γ(w+,w−) ≡ mini yi(w · xi + b)/ ‖w‖. Obviously, γ(w+,w−)

is less than the margin γ = ‖w⋆‖
2 ≤ ‖w‖

2 corresponding to the optimal solution w⋆.

Combining all the above we have

γ(w+,w−) ≤ γ ≤ ‖w‖
2

. (4.9)

From (4.9) by taking into account the definition of γ(w+,w−) we can easily deduce that

for every suboptimum wt it holds that

max
i
yi

(

w
(yi)
t − xi

)

·wt > 0 .

Notice that w
(yi)
t refers to w+

t ( w−
t ) if yi = +1 (yi = −1). Let us define the new

quantities G(αt; i) and H(αt; i) which have to be reevaluated at every step

G(αt; i) ≡ yi

(

w
(yi)
t − xi

)

·wt ,

H(αt; i) ≡
∥

∥

∥w
(yi)
t − xi

∥

∥

∥ .

The margin achieved at a given step t is determined by

γ(w+
t ,w

−
t ) =

‖wt‖
2
− maxiG(α; i)

‖wt‖
. (4.10)

As the optimum margin is approached the second summand of (4.10) tends to zero.

The goal of the MMP algorithm is to find the points belonging to the convex hulls of

the positive and negative examples that give rise to the minimum distance between the

hulls. Since the distance at every step of the algorithm is described by ‖wt‖ we need

update rules that will ensure that

‖wt+1‖2 ≤ ‖wt‖2 − θ2 . (4.11)
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The term −θ2 on the r.h.s. of (4.11) was added in order to guarantee that at every step

of the algorithm ‖wt‖ will decrease. Inequality (4.11) holds at every step if we apply

the following two mutually exclusive updating schemes to the sequence αt. We consider

MMP in an incremental setting which requires examining only one example xi at a time.

If G(αt; i) ≥ 0 and xi 6= w
(yi)
t the IncreaseStep scheme is applied which involves setting

αt+1,j =

{

τ0δij +(1− τ0)αt,j if j ∈ I(yi)

αt,j otherwise
,

where δij is Kronecker’s delta and τ0 = min
(

1, G(αt;i)
H2(αt;i)

)

> 0. If G(αt; i) < 0 and

xi 6= w
(yi)
t then the DecreaseStep scheme is applied which involves setting

αt+1,j =

{

−τ0βt,iδij + (1 + τ0βt,i)αt,j if j ∈ I(yi)

αt,j otherwise
,

where βt,i =
αt,i

1−αt,i
and τ0 = min

(

1, −G(αt;i)
βt,iH2(αt;i)

)

> 0. For the IncreaseStep update the

term θ2 entering (4.11) is determined by

θ2 = θincr (αt; i) = min

(

G2(αt; i)

H2(αt; i)
, G(αt; i)

)

> 0 ,

whereas in the case of a DecreaseStep it is given by

θ2 = θdecr (αt; i) = χ(αt,i)min

(

G2(αt; i)

H2(αt; i)
,−βt,iG(αt; i)

)

> 0

with χ(αt,i) = 1 if 0 < αi,t < 1 and χ(αt,i) = 0 otherwise.

For the previous updates geometric justifications exist which we will try to briefly illu-

minate. We stressed earlier that at every step only one example xi is examined. With

respect to xi one virtual example x̃i can be defined by x̃i ≡
∑

i6=j∈I(yi) αjxj/(1 − αi)

which will prove useful in the following. From its definition it is obvious that x̃i is

equivalent to the support center w
(yi)
t with the contribution of xi being removed and

the rest of the multipliers being rescaled in order to ensure that their sum equals 1.

In each updating scheme we consider the line segment [xi, x̃i] connecting xi with x̃i.

Whenever an update takes place the new support center w
(yi)
t+1 is shifted towards either

xi or x̃i depending on which of the two points the support center w
(−yi)
t is closest to.

More specifically, the new support center w
(yi)
t+1 is always the position of the trace of the

normal projection of w
(−yi)
t onto the line segment [xi, x̃i] whenever this trace lies within

the segment. Otherwise, the new support center is set to the endpoint of the segment

lying closest to this trace. If the condition is fulfilled for IncreaseStep to take place then

w
(yi)
t+1 approaches xi and this causes the corresponding multiplier in the dual represen-

tation of w
(yi)
t to increase up to 1, otherwise w

(yi)
t+1 moves away from xi and this causes

the corresponding multiplier to decrease and even vanish. It is apparent that when the
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DecreaseStep updating scheme is active unlearning occurs for any example possessing

margin greater than ‖wt‖
2 , a quality that is indicated by the validity of G(αt; i) < 0.

By unlearning we mean the weakening of the contribution of the specific example in the

dual expansion of the corresponding support center. So, it is possible that the final ex-

pression of the support center may not depend on such examples. The above discussion

is summarised in Fig. 4.3.

A. B.

C. D.

Figure 4.3: Geometric illustration of the basic updates. If the projection falls within
the segment [xi, x̃i] either the IncreaseStep (Figure A.) or the DecreaseStep (Figure

C.) takes place with τ0 < 1. Otherwise w
(yi)
t+1 is shifted either to xi (Figure B.) or x̃i

(Figure D.).

Now that we have defined the update rules we are in a position to state the basic MMP

algorithm which can be applied in an incremental setting. The basic MMP algorithm

examines every example in turn in order to confirm whether

θincr(αt; i) ≥ ‖wt‖2 θ2
0 (4.12)

holds true in which case an IncreaseStep update will follow or whether

θdecr(αt; i) ≥ ‖wt‖2 θ2
0 (4.13)

is valid which will trigger a DecreaseStep update. In both cases 0 < θ0 < 1 is a free

parameter. The conditions (4.12) and (4.13) impose a minimum progress determined

by θ2
t = ‖wt‖2 θ2

0 towards the minimisation of the norm of the weight vector ‖wt‖. The

examples are recycled repeatedly until no example is found which satisfies either one of
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the above conditions forcing subsequently the algorithm to exit. There is also a bound

asserting that the algorithm will make no more updates than

tmax ≤
2

θ2
0

ln
D

2γ
,

where D = maxi,j ‖xi − xj‖ is the diameter of the dataset. Upon exit of the algorithm

the margin γ′ attained satisfies

γ′ ≥ γ −Dθ0 . (4.14)

By adjusting the parameter θ0 we can approximate the maximum margin to any desired

level of accuracy and in the limit that θ0 → 0 the whole margin is obtained. In order to

have a fraction 1 − ǫ of the maximum margin guaranteed ahead of running we need to

set θ0 = γǫ
D as can be seen by substituting the above θ0 back in (4.14) which yields

γ′ ≥ γ(1− ǫ) .

However, this is impossible due to the lack of knowledge regarding the value of the

maximum margin γ ahead of running.

In an attempt to circumvent this drawback a new stopping criterion is introduced which

allows the algorithm to exit after it has secured a given fraction of the maximum margin.

From (4.10) and the fact that ‖wt‖ ≥ ‖w⋆‖ we get

γ(w+,w−)

γ
≥ 2γ(w+,w−)

‖wt‖
= 1−max

i

2G(αt; i)

‖wt‖2
.

From the previous inequality it is apparent that the quantity maxi
2G(αt;i)

‖wt‖2 plays the

role of the approximation accuracy ǫ. This motivates the construction of an algorithm

in which the examples are recycled as long as

max
i

2G(αt; i)

‖wt‖2
> ǫ .

We can choose to perform the updates in an online manner by upgrading the support

centers for all points in turn irrespective of the validity of (4.12) and (4.13). Another

possibility that might lead to a speed up of the convergence procedure is to perform

updates in a batch manner to which we now turn. This version of the basic algorithm

is known as the greedy MMP. In the greedy MMP, instead of naively processing each

example presented to the algorithm sequentially, we can choose to implement any one

of the three following scenarios: perform update 1) on the point that leads to the

maximum decrease dw2 ≡ ‖wt‖2 − ‖wt+1‖2, 2) on the example with index it+1 =

arg maxj(θincr(αt; j), θdecr(αt; j)) or 3) on the example that maximises G(αt; i). The

main difference from the basic MMP algorithm is that we may require a specific fraction

of the maximum margin ahead of running.



Chapter 5

Analysis of Perceptron-Like Large

Margin Classifiers

5.1 Preliminaries

In what follows we make the assumption that we are given a training dataset which, even

if initially not linearly separable can, by an appropriate feature mapping into a space of

a higher dimension [2, 9, 66, 48, 54] be classified into two categories by a linear classifier.

This higher dimensional space in which the patterns are linearly separable will be the

considered space. By adding one additional dimension and placing all patterns in the

same position at a distance ρ in that dimension we construct an embedding of our data

into the augmented space. The advantage of this embedding is that the linear hypothesis

in the augmented space becomes homogeneous. Thus, only hyperplanes passing through

the origin in the augmented space need to be considered even for tasks requiring bias.

Throughout our discussion a reflection with respect to the origin in the augmented space

of the negatively labelled patterns is assumed in order to allow for a uniform treatment of

both categories of patterns. Also, we use the notation R = max
k
‖yk‖ and r = min

k
‖yk‖,

where yk is the kth augmented pattern. Obviously, R ≥ r ≥ ρ.

The relation characterising optimally correct classification of the training patterns yk

by a weight vector u of unit norm in the augmented space is

u · yk ≥ γd ∀k . (5.1)

The quantity γd, which we call the maximum directional margin [56], is defined as

γd = max
u′:‖u′‖=1

min
k
{u′ · yk}

82
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and is obviously bounded from above by r. The maximum directional margin determines

the maximum distance from the origin in the augmented space of the hyperplane normal

to u placing all training patterns on the positive side and coincides with the maximum

margin in the augmented space with respect to hyperplanes passing through the origin

if no reflection is assumed. In the determination of this hyperplane only the direction

of u is exploited with no reference to its projection onto the original space. As a

consequence the maximum directional margin is not necessarily realised with the same

weight vector that gives rise to the maximum geometric margin γ in the original space.

Notice, however, that the existence of a directional margin means that there exists a

geometric margin at least as large as the directional one.

5.2 Relating the Directional to the Geometric Margin

It is possible to place an upper bound on the optimal geometric margin of a training set

in terms of the optimal directional one, thereby leading to an estimate of the optimal

geometric margin. If we denote by a = [w w0] a weight vector in the augmented space

that classifies the patterns correctly and yk = [xk ρ0], the geometric margin γ(a) of the

set is

γ(a) =
1

‖w‖min
k
{w · xk + w0ρ0} =

1

‖w‖min
k
{a · yk} =

‖a‖
‖w‖γd(a) , (5.2)

where γd(a) is the corresponding directional margin. Notice that |w0|ρ/‖w‖ (with ρ =

|ρ0|) is the distance from the origin of the hyperplane normal to w which cannot exceed

Rx = max
k
‖xk‖. Hence, |w0|/‖w‖ ≤ Rx/ρ. We now observe that

‖w‖ ≤
√

‖w‖2 + w2
0 = ‖a‖

but also

‖a‖ =

√

‖w‖2 + w2
0 ≤ ‖w‖

√

1 +
R2

x

ρ2
= ‖w‖ R

ρ

given that R2 = ρ2 +R2
x. Then, (5.2) leads to

γd(a) ≤ γ(a)

but also to

γ(a) ≤ R

ρ
γd(a) .

In the case that the weight vector a is the optimal one aopt maximising the geometric

margin taking into account that γd = max
a

γd(a) ≥ γd(aopt) and setting γ ≡ γ(aopt) we

obtain

γ ≤ R

ρ
γd . (5.3)
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Moreover, we have that γ = γ(aopt) = max
a

γ(a) ≥ max
a

γd(a) = γd, i.e.

γd ≤ γ . (5.4)

Combining (5.3) and (5.4) we finally get

1 ≤ γ

γd
≤ R

ρ
. (5.5)

In the limit ρ → ∞, R/ρ → 1 and from (5.5) γd → γ. Thus, with ρ increasing the

optimal directional margin γd approaches the optimal geometric one γ [56].

5.3 Taxonomy of Perceptron-Like Large Margin Classifiers

We concentrate on algorithms that update the augmented weight vector at by adding a

suitable positive amount in the direction of the misclassified (according to an appropriate

condition) training pattern yk. The general form of such an update rule is

at+1 =
at + ηtftyk

Nt+1
, (5.6)

where ηt is the learning rate which could depend (usually explicitly) on the number

t of updates that have taken place so far and ft an implicit function of the current

step (update) t, possibly involving the current weight vector at and/or the current

misclassified pattern yk, which we require to be positive and bounded, i.e.

0 < fmin ≤ ft ≤ fmax . (5.7)

We also allow for the possibility of normalising the newly produced weight vector at+1

to a desirable length through a factor Nt+1. For the Perceptron algorithm ηt is constant,

ft = 1 and Nt+1 = 1. Each time the predefined misclassification condition is satisfied

by a training pattern the algorithm proceeds to the update of the weight vector. Thus,

t (also called “time”) keeps track of the number of updates which coincides with the

number of mistakes (satisfactions of the misclassification condition). In the present

section we adopt the convention of initialising t from 1.

A sufficiently general form of the misclassification condition is

ut · yk ≤ C(t) , (5.8)

where ut is the weight vector at normalised to unit length and C(t) > 0 if we require

that the algorithm achieves a positive margin. If a1 = 0 we treat the first pattern in

the sequence as misclassified. We distinguish two cases depending on whether C(t) is
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bounded from above by a strictly decreasing function of t which tends to zero or remains

bounded from above and below by positive constants.

In the first case the minimum directional margin required by such a condition becomes

lower than any fixed value provided t is large enough. Algorithms with such a condition

have the advantage of achieving some fraction of the unknown existing margin provided

they converge. Examples of such algorithms are the well-known standard Perceptron

algorithm with margin [15, 35, 39, 56], ALMA2 [21], CRAMMA [57] and MICRA [58].

In the standard Perceptron algorithm with margin the misclassification condition takes

the form

ut · yk ≤
b

‖at‖
, (5.9)

where c1(t− 1) ≤ ‖at‖ ≤ c2
√
t− 1 with b, c1, c2 positive constants (see Section 5.5). In

the ALMA2 algorithm the misclassification condition is

ut · yk ≤
b

‖at‖
√
t
, (5.10)

in which c3
√
t− 1 ≤ ‖at‖ ≤ R with b, c3 positive constants (see Section 5.6). Notice the

striking similarity characterising the behaviour of C(t) in the Perceptron and ALMA2

algorithms.

In the second case the condition amounts to requiring a directional margin, assumed to

exist, which is not lowered arbitrarily with t. In particular, if C(t) is equal to a constant

β [56] (5.8) becomes

ut · yk ≤ β (5.11)

and successful termination of the algorithm leads to a solution with margin larger than

β. Obviously, convergence is not possible unless β < γd. In this case an organised search

through the range of possible β values is necessary.

An alternative classification of the algorithms with the perceptron-like update rule (5.6)

is according to the dependence on t of the “effective” learning rate [57]

ηeff t ≡
ηtR

‖at‖
(5.12)

which controls the impact that an update has on the current weight vector. More

specifically, ηeff t determines the update of the direction ut

ut+1 =
ut + ηeff tftyk/R

‖ut + ηeff tftyk/R‖
. (5.13)

Again we distinguish two categories depending on whether ηeff t is bounded from above

by a strictly decreasing function of t which tends to zero or remains bounded from

above and below by positive constants. We do not consider the case that ηeff t increases
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indefinitely with t since, as we will argue in the next section, we do not expect such

algorithms to converge always in a finite number of steps.

In the first category belong the Perceptron algorithm with both the standard misclas-

sification condition (5.9) and the fixed directional margin one of (5.11) [56] in which ηt

remains constant and ‖at‖ is bounded from below by a positive linear function of t. Also

to the same category belongs the ALMA2 algorithm in which ηt decreases as 1/
√
t and

MICRA. The similarity of the standard Perceptron with margin and ALMA2 algorithms

with respect to the behaviour of ηeff t is apparent if we consider the bounds obeyed by

‖at‖ in these two cases. Moreover, in both algorithms ηeff t is proportional to C(t).

As an example of algorithms belonging to the second category we mention algorithms

with the fixed directional margin condition of (5.11), ‖at‖ normalised to the target

margin value β and fixed learning rate [56]. To the same category also belongs the

CRAMMA algorithm.

In summary, the misclassification condition of a perceptron-like algorithm could, roughly

speaking, either be “relaxed” with the number of updates (i.e. with t) or remain prac-

tically constant. Similarly, the effective learning rate could either be reduced with t or

remain practically constant. Thus, we are led to four broad categories of algorithms.

In subsequent sections we shall present an analysis of the algorithms mentioned above

which are representative but sufficiently general cases belonging to all of these categories.

5.4 Stepwise Convergence

A very desirable property of an algorithm is certainly progressive convergence at each

step meaning that at each update ut moves closer to the optimal direction u. This, of

course, does not imply convergence to u even in an infinite number of steps. Let us

assume that

ut · u > 0 . (5.14)

Because of (5.14) the criterion for stepwise angle convergence [56], namely

∆ ≡ ut+1 · u− ut · u > 0 ,

can be equivalently expressed as a demand for positivity of D

D ≡ (ut+1 · u)2 − (ut · u)2 = 2ηeff tft(ut · u)
∥

∥

∥
ut + ηeff tft

yk

R

∥

∥

∥

−2A
R

, (5.15)

where use has been made of (5.13) and A is defined by

A ≡ yk · u− (ut · u)(yk · ut)−
ηeff tft

2R

(

‖yk‖2 (ut · u)− (yk · u)2

(ut · u)

)

. (5.16)
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Positivity of A leads to positivity of D on account of (5.7) and (5.14) and consequently

to stepwise convergence. Actually, as we shall prove shortly, convergence occurs in a

finite number of steps provided that after some time A becomes bounded from below

by a positive constant and ηeff t remains bounded from above and below by positive

constants or decreases indefinitely but not faster than 1/t. Following this rather unified

approach one can examine whether an algorithm enters sooner or later the stage of

stepwise convergence and terminates successfully in a finite number of steps [56].

We now prove that under the conditions just stated stepwise convergence leads to con-

vergence in a finite number of steps. From our assumptions it follows that there is a

t0 such that for t ≥ t0, A ≥ A1 and η1/t ≤ ηeff t ≤ η2, where A1, η1, η2 are posi-

tive constants. As a consequence, taking into account (5.7) and using the inequality

‖x+ y‖ ≤ ‖x‖+ ‖y‖ we have

‖ut + ηeff tftyk/R‖ ≤ 1 + η2fmax .

Moreover, (ut ·u) is an increasing function of t for t ≥ t0 due to the positivity of A. All

the above considerations lead to

D ≥ 2
η1

t
fmin(ut0 · u)(1 + η2fmax)

−2A1

R
≡ D1

t
.

Thus,

(ut+1 · u)2 − (ut · u)2 ≥ D1

t
.

A repeated application of the above inequality (t+ 1− t0) times yields

(ut+1 · u)2 − (ut0 · u)2 ≥ D1

t
∑

m=t0

m−1 ≥ D1

∫ t

t0

m−1dm = D1 ln
t

t0

from where the bound

t ≤ t0 exp{D−1
1 }

on the number of steps t until convergence is obtained.

Finally, we are going to discuss the behaviour of the algorithms with an effective learning

rate growing indefinitely with t. We make the assumption that the algorithm converges

after entering a stage of stepwise convergence in a finite number of steps. Given that the

above assumption holds for t larger than a critical value tc, ut ·u will increase sufficiently

such that
(

‖yk‖2 (ut · u)− (yk · u)2/(ut · u)
)

becomes positive. Multiplication of such

a positive term with a sufficiently large ηeff t will then make A negative contradicting our

assumption. In any other case the algorithm having an effective learning rate growing

with t should converge “accidentally” in a finite number of steps without entering the

stage of stepwise convergence.
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5.5 Generic Perceptron-Like Algorithms with the Stan-

dard Margin Condition

We first consider an algorithm with the general update rule (5.6), constant learning rate

ηt = η and Nt+1 = 1. The misclassification condition is assumed to have the standard

form

at · yk ≤ b (5.17)

equivalent to (5.9) with the convention that t is initiallised from zero. We also assume

that at is initially set to zero, i.e. a0 = 0. A pseudocode describing its implementation

is given in Fig. 5.1.

As we shall see shortly (see (5.19) below) the length of the weight vector at is bounded

from below by a positive linear function of t and consequently both the function C(t) =

b/ ‖at‖ of (5.8) (see (5.9)) and the effective learning rate ηeff t = ηR/ ‖at‖ are bounded

from above by a positive function linear in 1/t which vanishes in the limit t→∞.

In order to analyse such algorithms we calculate an upper bound on the number of

updates until a solution is found, thereby extending Novikoff’s theorem [44, 39]. From

the difference of the inner products of u with the weight vector at at successive time

steps we have

at+1 · u− at · u = ηftyk · u ≥ ηfminγd . (5.18)

A repeated application of (5.18) t times, taking into account that a0 = 0, implies

‖at‖ ≥ at · u ≥ ηfminγdt , (5.19)

which gives us a lower bound on ‖at‖. By calculating the difference of the squared norms

of the weight vectors in consecutive steps we obtain

‖at+1‖2 − ‖at‖2 = η2f2
t ‖yk‖2 + 2ηftyk · at ≤ η2f2

maxR
2 + 2ηfmaxb . (5.20)

Require: A linearly sep-
arable augmented training
set with reflection assumed
S = (y1, . . . ,yl)
Input: η, b
Initialisation:

t = 0, a0 = 0

repeat until no update
made within the for loop

for k = 1 to l do

if at · yk ≤ b then

at+1 = at + ηftyk

t← t+ 1

Figure 5.1: Generic Perceptron-like algorithm with the standard margin condition.
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A repeated application of (5.20) t times, taking into account that a0 = 0, leads to the

following upper bound on ‖at‖

‖at‖ ≤
√

(η2f2
maxR

2 + 2ηfmaxb)t . (5.21)

Combining (5.19) and (5.21) we get a squeezing relationship

ηfminγdt ≤ at · u ≤ ‖at‖ ≤
√

(η2f2
maxR

2 + 2ηfmaxb)t

from which the following bound on the number of updates for convergence is derived

t ≤ tN ≡
f2
max

f2
min

R2

γ2
d

(

1 +
2

ηfmax

b

R2

)

. (5.22)

It would be interesting to estimate the margin that the algorithm is able to achieve. By

substituting Novikoff’s time tN into (5.21) we obtain a time-independent upper bound on

‖at‖, namely ‖atN‖ = ηfminγdtN, which, in turn, provides a lower bound βmin = b/‖atN‖
on the directional margin β = b/‖at‖ appearing in (5.9). Thus, the guaranteed fraction

(i.e. the lower bound on the fraction) of the maximum directional margin γd that the

algorithm is able to achieve is

fb =
βmin

γd
=
fmin

fmax

(

2 + ηfmax
R2

b

)−1

=
1

2

fmin

fmax

(

1− f2
max

f2
min

R2

γ2
d

t−1
N

)

. (5.23)

The above guaranteed fraction of γd acquires a maximum of 1
2

fmin
fmax

≤ 1
2 for b≫ ηR2 [35]

or tN ≫ R2

γ2
d
.

We next turn to a discussion of stepwise convergence. From (5.19) it is clear that for

t > 0 (5.14) holds. Also, yk ·u appearing in A of (5.16) is definitely positive due to (5.1)

whereas ‖at‖ becomes larger with time because of (5.19), thereby making eventually the

term of A linear in ηeff t negligible. Moreover, (5.9) shows that the term (ut ·u)(yk ·ut)

is suppressed with time. Thus, for time t larger than a critical time tc positivity of A
and consequently of D (of (5.15)) is accomplished. By placing bounds on the terms in

A using (5.1), (5.17) and (5.19) we obtain

A ≥ γd −
1

2ηfminγdt

(

2b+ ηfmax(R
2 − γ2

d)
)

. (5.24)

From the above inequality the time sufficient for stepwise convergence to begin is

tc ≡
1

2

fmax

fmin

R2

γ2
d

(

1 +
2

ηfmax

b

R2
− γ2

d

R2

)

<
1

2

fmin

fmax
tN .

Therefore, unless the algorithm terminates much before Novikoff’s time bound is ex-

hausted it will definitely enter the phase of stepwise convergence. Given that, on ac-

count of (5.19) and (5.21), ηeff t = ηR/ ‖at‖ for t > 0 is bounded from above and does
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not decrease with t faster than 1/t stepwise convergence leads to an alternative proof of

convergence in a finite number of steps.

In our analysis so far we required that the function ft appearing in the update rule of

(5.6) be bounded as in (5.7) in order for the algorithm to converge. However, although

a positive and bounded ft is a sufficient condition for convergence it is by no means a

necessary one. To illustrate the above statement we consider the function

ft =
bu − at · yk

‖yk‖2

with bu even slightly larger than the parameter b of the misclassification condition of

(5.17). This update is a minor modification of the well-known relaxation algorithm with

margin [15] in which bu = b so that ft is allowed to vanish. We observe that

fmin =
bu − b
R2

> 0

leading to a lower bound on ‖at‖ as in (5.19). In contrast, no upper bound fmax

exists since ft can increase indefinitely if at · yk is negative and large in absolute value.

Nevertheless, we can obtain an upper bound on ‖at‖ as we shall see shortly. To this

end we calculate the difference of the squared norms of the weight vectors in consecutive

steps

‖at+1‖2 − ‖at‖2 = 2η(2− η)bu − at · yk

‖yk‖2
{

bu
2− η −

1

2
(bu − at · yk)

}

(5.25)

and we notice that the r.h.s. of the above equation has a maximum with respect to the

quantity (bu − at · yk) for

(bu − at · yk)max =
bu

2− η ,

provided 0 < η < 2. Substituting this value in (5.25) we obtain

‖at+1‖2 − ‖at‖2 ≤
η

(2− η)
b2u
r2

where r = min
k
‖yk‖. Then a repeated application of the above inequality t times, taking

into account that a0 = 0, leads to the upper bound

‖at‖2 ≤
η

(2− η)
b2u
r2
t . (5.26)

Combining (5.19) and (5.26) we get the squeezing relationship

ηfminγdt ≤ at · u ≤ ‖at‖ ≤
bu
r

√

η

2− η t
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from which the following time bound for convergence is derived

t ≤ 1

η(2 − η)

(

bu
bu − b

)2 R4

r2γd
2
.

5.6 The ALMA2 Algorithm

Here we briefly review the ALMA2 algorithm [21] slightly modified in order to accom-

modate patterns which are not normalised to unit length. The update rule is the one of

(5.6) with ft = 1 and ηt = η/
√
t assuming that the starting value of t is 1. The length

of the newly produced weight vector at+1 is subsequently normalised to R through the

factor Nt+1 only if it exceeds that value. The misclassification condition is given by

at · yk ≤
b√
t

(which is equivalent to (5.10)) and the initial value of the weight vector is set to a1 = 0.

A description of the algorithm in pseudocode appears in Fig. 5.2.

As we shall see shortly (see (5.30) below) for t > 1 the length of the weight vector

at is bounded from below by a positive increasing function of t and consequently both

the function C(t) = b/(‖at‖
√
t) of (5.8) (see (5.10)) and the effective learning rate

ηeff t = ηR/(‖at‖
√
t) are bounded from above by a positive decreasing function of t

which vanishes in the limit t→∞.

Next we proceed to a proof of convergence of the ALMA2 algorithm along the lines of

[21]. Taking the inner product of (5.6) with the optimal direction u, employing (5.1)

Require: A linearly sep-
arable augmented training
set with reflection assumed
S = (y1, . . . ,yl)
Define: R = max

k
‖yk‖

Input: α, η

Fix: b1 = 1−α
α

(

1
η + 3η

2

)

R2

Initialisation:

t = 1, a1 = 0

repeat until no update
made within the for loop

for k = 1 to l do

if at · yk ≤ bt then

a′t = at + η√
t
yk

at+1 = a′tR/max(R, ‖a′t‖)
t← t+ 1

bt = b1/
√
t

Figure 5.2: The Approximate Large Margin Algorithm ALMA2.
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and repeatedly applying the resulting inequality we have

R ≥ ‖at+1‖ ≥ at+1 · u =
at · u+ ηtyk · u

Nt+1
≥ at · u
Nt+1

+
ηtγd

Nt+1

≥ a1 · u
Nt+1Nt · · ·N2

+ γd

(

ηt

Nt+1
+

ηt−1

Nt+1Nt
+ · · · + η1

Nt+1Nt · · ·N2

)

. (5.27)

For the normalisation factor Nm+1 we can derive the inequality

N−1
m+1 ≥ (1 + 2A/m)−

1
2 ≡ rm ,

where

A = η
(

η/2 + b/R2
)

,

which if substituted in (5.27) and given that a1 · u = 0 leads to

R

γd
≥ ‖at+1‖

γd
≥

t
∑

m=1

ηm

t
∏

j=m

rj =

t
∑

m=1

ηmrm

t
∏

j=m+1

rj ≥
η√

2A+ t

t
∑

m=1

t
∏

j=m+1

rj

≥ η√
2A+ t

t
∑

m=1

(m

t

)A
≥ η√

2A+ t

1

tA

∫ t

0
mAdm =

η√
2A+ t

t

A+ 1
.

(5.28)

In (5.28) we made use of

ηmrm =
η√

2A+m
≥ η√

2A+ t

and

− ln

t
∏

j=m+1

rj =
1

2

t
∑

j=m+1

ln

(

1 +
2A

j

)

≤
t
∑

j=m+1

A

j
≤ A

∫ t

m

dj

j
= ln

(

t

m

)A

.

Thus, from (5.28) we obtain the relation

R ≥ ‖at+1‖ ≥ at+1 · u ≥
ηγd

A+ 1

t√
2A+ t

. (5.29)

From (5.29) one can easily show that ‖at‖ satisfies the inequalities

c3
√
t− 1 ≤ ‖at‖ ≤ R , (5.30)

where c3 = ηγd

(

(A+ 1)
√

2A+ 1
)−1

, which we referred to in Section 5.3. From (5.29)

one also gets the bound

t ≤ tb ≡
(

A+ 1

η

)2(R

γd

)2

+ 2A . (5.31)
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Noticing that

(

γdR

b

)2

(tb + 1) ≤ R4

b2

(

(

A+ 1

η

)2

+ 2A+ 1

)

≤ R4

b2

(

A+ 1

η
+ η

)2

,

using (5.10) and given that ‖at‖ ≤ R one can show that the fraction of the directional

margin achieved satisfies

f ≥ 1

γd

b/R√
tb + 1

≥ 1− α ,

where α ∈ (0, 1] is related to the parameters η and b as follows

b

R2
=

1− α
α

(

1

η
+

3

2
η

)

. (5.32)

Thus, we have proved the following theorem.

Theorem 5.1. The ALMA2 algorithm of Fig. 5.2 converges after at most

1

4α2

(

2

η
+ (3− 2α)η

)2(R

γd

)2

+
1

α

(

2 + (3− 2α)η2
)

− 2

mistakes to a zero-threshold hyperplane with directional margin of at least (1− α)γd.

We can partially optimise the value of η by minimising the dominant term proportional

to (R/γd)2 on the r.h.s. of (5.31) keeping fixed either b or α. In the former case we

obtain the value η =
√

2 (also employed in [21]) whereas in the latter we obtain the

value

η =

√

2

3− 2α
.

Once η is fixed b is determined from (5.32).

We next turn to a discussion of stepwise convergence. From (5.29) it is clear that for

t > 1 (5.14) holds. Also, yk · u appearing in A of (5.16) is definitely positive due to

(5.1) whereas the term of A linear in ηeff t becomes eventually negligible due to the

supression of the effective learning rate with time. Moreover, (5.10) shows that the term

(ut · u)(yk · ut) is suppressed with time. Thus, for time t larger than a critical time tc

positivity of A and consequently of D (of (5.15)) is accomplished. By placing bounds

on the terms in A using (5.1), (5.10), (5.29) and the inequality
√

1 + x ≤ 1 + x/2 we

obtain

A ≥ γd −
(A+ 1)

√
2A+ t− 1

ηγd(t− 1)
√
t

(

b+
1

2
ηR2

)

≥ γd −
R2(A+ 1)

√
2A+ t− 1

ηγd(t− 1)
√
t− 1

A

η

= γd −
R2(A+ 1)

η2γd

A

(t− 1)

√

2
A

t− 1
+ 1 ≥ γd −

R2(A+ 1)

η2γd

A

(t− 1)

(

A

t− 1
+ 1

)

.
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The critical time tc is determined by setting the r.h.s. of the last inequality equal to

zero
A

(tc − 1)

(

A

tc − 1
+ 1

)

=
η2

A+ 1

(γd

R

)2
≡ ω . (5.33)

Then, using the inequality
√

1 + x ≥ 1 + x/2− x2/8 for x ≥ 0, we have

A

(tc − 1)
=

1

2

(

−1 +
√

1 + 4ω
)

≥ ω(1− ω) .

One can easily see that ω cannot exceed 2. Let us first assume that ω ≤ 1/2. Then,

using the inequality (1− x)−1 ≤ 1 + 2x for 0 ≤ x ≤ 1/2, we obtain

tc ≤
(A+ 1)A

η2

(

R

γd

)2

+ 2A+ 1 = tb + 1− 1

ω
< tb .

In the case that 1/2 ≤ ω ≤ 1

A

(tc − 1)
≥ 1

2

(

−1 +
√

3
)

≥ 1

3

or

tc ≤ 3A+ 1 = 2A+ (A+ 1) ≤ tb

since A+ 1 ≤
(

A+1
η

)2 (
R
γd

)2
given that 1/ω ≥ 1. Finally, in the case that 1 ≤ ω ≤ 2

A

(tc − 1)
≥ 1

2

(

−1 +
√

5
)

≥ 1

2

from where

tc ≤ 2A+ 1 < tb

since A+1
η ≥

(

η
2 + 1

η

)

≥
√

2. We conclude that unless the algorithm terminates much

before the time bound tb is exhausted, it will definitely enter the phase of stepwise

convergence. Given that ηeff t = ηR/(‖at‖
√
t) for t > 1, on account of (5.29), is bounded

from above by a positive constant and does not decrease with t faster than 1/t, stepwise

convergence leads to convergence in a finite number of steps.

5.7 The Constant Rate Approximate Maximum Margin

Algorithm CRAMMAǫ

We consider algorithms with the general update rule (5.6) and constant effective learning

rate ηeff t = ηeff in which the misclassification condition takes the form of (5.8) with

C(t) =
β

tǫ
, (5.34)
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where β and ǫ are positive constants. We additionally make the choice ft = 1. Finally,

we assume that u1, the initial value of ut, is chosen to be the unit vector in the direction

of the first training pattern in order for (5.14) to hold. This is true since according to the

update (5.13) ut is a linear combination with positive coefficients of the training patterns

yk all of which have positive inner products with the optimal direction u because of our

assumption of the existence of a positive directional margin. Since the above C(t) does

not depend on ‖at‖ and given that the update (5.13) of ut depends on ‖at‖ only through

ηeff the algorithm does not depend separately on ηt and ‖at‖ but only on their ratio i.e.

on ηeff .

Let us begin our analysis with a short discussion of stepwise convergence which will

indicate the necessity of imposing constraints on ηeff . It is not difficult to see that (5.1),

(5.8) and (5.34) lead to a lower bound on the relevant quantity A of (5.16)

A ≥ γd −
β

tǫ
− 1

2
ηeffR . (5.35)

By requiring that the r.h.s. of (5.35) be positive we derive a sufficient condition for the

onset of stepwise convergence

ηeff < 2
γd − β/tǫ

R
. (5.36)

Taking the limit t→∞ on the r.h.s. of (5.36) we obtain the constraint

ηeff < 2
γd

R

on the constant effective learning rate ηeff in order for the algorithm to eventually enter

the stage of stepwise convergence. By regarding (5.36) as a constraint on t we obtain

the critical time tc

tc ≡
(

2γd
R − ηeff

β

)− 1
ǫ

for the onset of stepwise convergence. Obviously, the further ηeff is from 2γd
R the earlier

the stepwise convergence will begin.

Although only ηeff plays a role we still prefer to think of it as arising from a weight

vector normalised to the constant value β

‖at‖ = β

and a learning rate having a fixed value as well

ηt = η .

This is equivalent to normalising the weight vector to the variable margin value C(t)

that the algorithm is after, assuming at the same time a variable learning rate ηt = η/tǫ.

Having in mind the meaning of the directional margin in the augmented space the
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Require: A linearly separable
augmented training set with re-
flection assumed S = (y1, . . . ,yl)
Define:

For k = 1, . . . , l
R = max

k
‖yk‖ , ȳk = yk/R

Input: ηeff , β1 (= β/R)
Initialisation:

t = 1, u1 = ȳ1/ ‖ȳ1‖

repeat until no update
made within the for loop

for k = 1 to l do

if ut · ȳk ≤ βt then

ut+1 =
ut+ηeff ȳk

‖ut+ηeff ȳk‖
t← t+ 1

βt = β1/t
ǫ

Figure 5.3: The Constant Rate Approximate Maximum Margin Algorithm
CRAMMAǫ.

geometric interpretation of such a choice becomes clear: The algorithm is looking for

the hyperplane tangent to a hypersphere centred at the origin of the augmented space

of radius ‖at‖ equal to the target margin value C(t) which leaves all the augmented

(with a reflection assumed) patterns on the positive side. The t-independent value of

the learning rate η might also be considered as dependent on (a power of) β, i.e.

η = η0

(

β

R

)1−δ

,

where η0, δ are positive constants. Thus, we are led to an effective learning rate which

scales with β
R like

ηeff = η0

(

β

R

)−δ

. (5.37)

The above algorithm with constant effective learning rate ηeff and misclassification con-

dition described by (5.8) and (5.34) involving the power ǫ of t will be called the Constant

Rate Approximate Maximum Margin Algorithm CRAMMAǫ [57] and is presented in Fig.

5.3. A justification of the qualification of the algorithm as an “Approximate Maximum

Margin” one stems from the following theorem.

Theorem 5.2. The CRAMMAǫ algorithm of Fig. 5.3 converges in a finite number of

steps provided ηeff < 1
2

(√

1 + 8γd
R − 1

)

. Moreover, if ηeff is given a dependence on β

through the relation ηeff = η0

(

β
R

)−δ
the directional margin γ′d achieved by the algorithm

tends in the limit β
R →∞ to the maximum one γd provided 0 < ǫδ < 1.

Proof. Taking the inner product of (5.13) with the optimal direction u we have

ut+1 · u =
(

ut · u+ ηeff
yk · u
R

)∥

∥

∥ut + ηeff
yk

R

∥

∥

∥

−1
. (5.38)

Here
∥

∥

∥ut + ηeff
yk

R

∥

∥

∥

−1
=

(

1 + 2ηeff
yk · ut

R
+ η2

eff

‖yk‖2
R2

)− 1
2
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from where, by using the inequality (1 + x)−
1
2 ≥ 1− x/2, we get

∥

∥

∥
ut + ηeff

yk

R

∥

∥

∥

−1
≥ 1− ηeff

yk · ut

R
− η2

eff

‖yk‖2
2R2

.

Then, (5.38) becomes

ut+1 · u ≥
(

ut · u+ ηeff
yk · u
R

)

(

1− ηeff
yk · ut

R
− η2

eff

‖yk‖2
2R2

)

.

Thus, we obtain for ∆ ≡ ut+1 · u− ut · u

R

ηeff
∆ ≥ yk·u−(ut·u)(yk·ut)−

ηeff

2R

(

‖yk‖2 ut · u+ 2(yk · u)(yk · ut)
)

− η
2
eff

2R2
‖yk‖2 yk·u .

By employing (5.1), (5.14) and (5.34) we get a lower bound on ∆

∆ ≥ ηeff

(

γd

R
− ηeff

2
− η2

eff

2

)

− ηeff (1 + ηeff)
β

R
t−ǫ . (5.39)

From the misclassification condition it becomes obvious that convergence of the algo-

rithm is impossible as long as β/tǫ > γd. Therefore we may assume that

t > t0 ≡
(

β

γd

) 1
ǫ

. (5.40)

A repeated application of (5.39) (t− [t0]) times yields

ut+1 · u− u[t0]+1 · u ≥ ηeff

(

γd

R
− ηeff

2
− η2

eff

2

)

(t− [t0])− ηeff (1 + ηeff)
β

R

t
∑

m=[t0]+1

m−ǫ

with [t0] denoting the integer part of t0. By employing the inequality

t
∑

m=[t0]+1

m−ǫ ≤
∫ t

t0

m−ǫdm+ t−ǫ
0 =

t1−ǫ − t1−ǫ
0

1− ǫ + t−ǫ
0

and taking into account (5.14) we finally obtain

1 ≥ ηeff

(γd

R

)

χ (t− t0)− ηeff (1 + ηeff)
β

R

(

t1−ǫ − t1−ǫ
0

)

1− ǫ − ω . (5.41)

Here

χ ≡
(

1− ηeff

2
(1 + ηeff)

R

γd

)

and ω ≡ ηeff (1 + ηeff)
γd

R
.

Let us define the new variable τ ≥ 0 through the relation

t = t0 (1 + τ) =

(

β

γd

)
1
ǫ

(1 + τ) . (5.42)
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In terms of τ (5.41) becomes

1

ηeff

(

β

R

)− 1
ǫ (γd

R

)( 1
ǫ
−1)

(1 + ω) ≥ χτ − (1 + ηeff )
(1 + τ)1−ǫ − 1

1− ǫ . (5.43)

Let g(τ) be the r.h.s. of the above inequality. Since χ > 0, given that ηeff obeys

the constraint ηeff < 1
2

(√

1 + 8γd
R − 1

)

, it is not difficult to verify that g(τ) (with

τ ≥ 0) is unbounded from above and has a single extremum, actually a minimum, at

τmin = (1 + ηeff)
1
ǫ χ− 1

ǫ −1 > 0 with g(τmin) < 0. Moreover, the l.h.s. of (5.43) is positive.

Therefore, given that g(0) = 0 there is a single value τb of τ where (5.43) holds as an

equality which provides an upper bound on τ

τ ≤ τb (5.44)

satisfying τb > τmin > 0. Combining (5.42) and (5.44) we obtain the bound on the

number of updates

t ≤ tb ≡
(

β

γd

) 1
ǫ

(1 + τb) (5.45)

proving that the algorithm converges in a finite number of steps. From (5.45) and taking

into account the misclassification condition we obtain a lower bound β/(tb + 1)ǫ on the

margin γ′d achieved. Thus, the fraction f of γd that the algorithm achieves satisfies

1 ≥ f ≡ γ′d
γd
≥ fb ≡

β/γd

(tb + 1)ǫ =
(

1 + τb + t−1
0

)−ǫ
. (5.46)

Let us assume that β
R →∞ in which case from ηeff = η0

(

β
R

)−δ
we have that ηeff → 0.

Consequently χ→ 1, ω → 0 and (5.43) becomes

1

η0

(

β

R

)−( 1
ǫ
−δ) (γd

R

)( 1
ǫ
−1)
≥ τ − (1 + τ)1−ǫ − 1

1− ǫ . (5.47)

Provided ǫδ < 1 the l.h.s. of the above inequality vanishes in the limit β
R → ∞. Then,

since τmin vanishes as well, the r.h.s. of the inequality becomes a strictly increasing

function of τ and (5.47) obviously holds as an equality only for τ = 0. Therefore,

τb → τmin → 0 as
β

R
→∞ . (5.48)

Combining (5.46) with (5.48) and noticing that t−1
0 → 0 as β

R → ∞ we conclude that

f → 1 or

γ′d → γd as
β

R
→∞ .

Remark 5.3. In the case ǫ = 1
2 by solving the quadratic equation derived from (5.43) we

obtain explicitly an upper bound tb on the number of updates and a lower bound fb on



Chapter 5 Analysis of Perceptron-Like Large Margin Classifiers 99

the fraction f of the margin that the algorithm achieves. They are the ones of (5.45)

and (5.46), respectively with

τb =







1 + ηeff

χ
+

√

(

1 + ηeff

χ
− 1

)2

+ η−1
eff

(

β

R

)−2 γd (1 + ω)

χR







2

− 1 . (5.49)

As β
R → ∞, ηeff = η0

(

β
R

)−δ
→ 0, χ → 1 and ω → 0. Then, τb → 0 given that

η−1
eff

(

β
R

)−2
= η−1

0

(

β
R

)δ−2
→ 0 if 0 < δ < 2. This demonstrates explicitly the statement

of Theorem 5.2. Explicit bounds tb and fb are also obtainable for ǫ = 2.

We now turn to special cases which are not covered by Theorem 5.2.

ǫδ = 1 :

If ǫδ = 1 the l.h.s. of (5.47) becomes 1
η0

(γd
R

)( 1
ǫ
−1) which does not vanish in the limit

β
R → ∞. Therefore, τb tends to a non-zero value depending on η0. If, however, η0 ≫
(γd

R

)( 1
ǫ
−1) the bound τb can become very small leading to a guaranteed fraction of the

margin achieved very close to 1.

ǫ = δ = 1 : In this case as ǫ→ 1 (5.47) becomes

1

η0
≥ τ − ln(1 + τ) .

For η0 = 1 we obtain the bound τb ≃ 2.15 leading to a fraction of the maximum

margin f ≥ (1 + τb)
−1 ≃ 0.32. By choosing larger values of η0 we can make the

value of the guaranteed fraction approach unity. In this particular case, however, it is

possible to obtain better bounds on the number of updates leading to larger estimates

for the guaranteed fraction of the margin by different proof techniques. Following the

technique of [21], provided the inequalities η0

(

1 + η2
0R

2/β2
)−1 ≤ 1 and η0 < βγd/

√
6R2

are satisfied, we can obtain for ǫ = 1 the upper bound

t ≤ 2

η0

β

γd

(

1 +
η0γd

β

)(

1 +
η2
0R

2

β2

)

+
8

3

(

R

γd

)2(

1 +
η0γd

β

)2(

1 +
η2
0R

2

β2

)2

+ 1 (5.50)

on t and the lower bound

f ≥ η0

2

{

(

1 +
η0R

β

)(

1 +
η2
0R

2

β2

)

+
4

3

η0R
2

βγd

(

1 +
η0R

β

)2(

1 +
η2
0R

2

β2

)2

+
η0R

β

}−1

(5.51)

on the fraction f of the margin achieved. In the limit β
R →∞ we see that f ≥ η0

2 which

saturating the constraint on η0 could become f ≥ 1
2 . By imposing the more relaxed
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constraint η0

(

1 + η2
0R

2/β2
)−1 ≤ 2 we can show that in the limit β

R →∞

f ≥ 2η0

3



1 +

√

1 +
8

3

γ2
d

R2





−1

. (5.52)

In this limit the constraint on η0 allows η0 values as large as 2. This fact combined with

the observation that the ratio γd/R can be made very small by placing the patterns at

a larger distance from the origin in the augmented space leads to a guaranteed fraction
2
3 of the margin for the largest allowed value of η0. Thus, our earlier conclusion that for

ǫ = δ = 1 the guaranteed fraction of the margin achieved as β
R → ∞ increases with η0

is confirmed by this alternative technique. A proof of the above statements is provided

in Appendix A.

5.8 The Mistake-Controlled Rule Algorithm MICRAǫ,ζ

From our discussion in Section 5.3 it becomes obvious that a Perceptron-like algorithm

with the additive update (5.6) is uniquely determined by the functions C(t), ηeff t and

ft. In particular, it does not depend on ‖at‖ as long as the above functions are ‖at‖-
independent. If this is the case the update (5.6) of at can be replaced by the update

(5.13) of ut. Our purpose here is to examine the sufficiently large subclass of such

algorithms with ft = 1 and C(t), ηeff t inversely proportional to powers of t which counts

the number of mistakes and determine sufficient conditions under which algorithms in

the above subclass converge asymptotically to the optimal solution hyperplane. Such an

investigation can be regarded as a generalisation of our earlier analysis of CRAMMA.

We consider algorithms having an update rule given by (5.13) with ft = 1, an effective

learning rate

ηeff t =
η

tζ
(5.53)

and a misclassification condition

ut · yk ≤
β

tǫ
. (5.54)

Here η, ζ, β and ǫ are positive constants. The case ζ = 0, corresponding to a constant

effective learning rate, was treated in Section 5.7. We assume that the initial value

u1 of ut is the unit vector in the direction of the first training pattern. Then, (5.14)

holds since on account of (5.13) ut is a linear combination with positive coefficients

of the training patterns yk all of which have positive inner products with the optimal

direction u because of (5.1). Obviously, the algorithm is ‖at‖-independent. The above

(family of) algorithm(s) parametrised in terms of the exponents ǫ and ζ will be called

the Mistake-Controlled Rule Algorithm MICRAǫ,ζ [58] and is summarised in Fig. 5.4.
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Require: A linearly sep-
arable augmented training
set with reflection assumed
S = (y1, . . . ,yl)
Define:

For k = 1, . . . , l
R = max

k
‖yk‖ , ȳk = yk/R

Fix: η, β1 (= β/R)
Initialisation:

t = 1, u1=ȳ1/ ‖ȳ1‖, ηeff1 = η

repeat until no update
made within the for loop

for k = 1 to l do

if ut · ȳk ≤ βt then

ut+1 =
ut+ηeff tȳk

‖ut+ηeff tȳk‖
t← t+ 1

βt = β1/t
ǫ, ηeff t = η/tζ

Figure 5.4: The Mistake-Controlled Rule Algorithm MICRAǫ,ζ .

We begin again our analysis with a short discussion of stepwise convergence. It is not

difficult to see that (5.1), (5.53) and (5.54) lead to a lower bound on A of (5.16)

A ≥ γd −
β

tǫ
− η

tζ
R

2
. (5.55)

By requiring that the r.h.s. of (5.55) be positive one determines the critical time tc

for the onset of stepwise convergence. In addition convergence occurs always in a finite

number of steps only if

0 < ζ ≤ 1

since in this case ηeff t = η/tζ does not fall with t faster that 1/t.

Theorem 5.4. The MICRAǫ,ζ algorithm of Fig. 5.4 converges in a finite number of

steps provided ζ ≤ 1. Moreover, if η is given a dependence on β through the relation

η = η0

(

β
R

)−δ
the directional margin γ′d that the algorithm achieves tends in the limit

β
R →∞ to the maximum directional margin γd provided 0 < ǫδ + ζ < 1.

Proof. Taking the inner product of (5.13) with the optimal direction u, expanding

‖ut + ηeff tyk/R‖−1 and using the inequality (1 + x)−
1
2 ≥ 1− x/2 we have

ut+1 · u =
(

ut · u+ ηeff t

yk · u
R

)

(

1 + 2ηeff t

yk · ut

R
+ η2

eff t

‖yk‖2
R2

)− 1
2

≥
(

ut · u+ ηeff t
yk · u
R

)

(

1− ηeff t
yk · ut

R
− η2

eff t

‖yk‖2
2R2

)

.

Thus, we obtain for ∆ ≡ ut+1 · u− ut · u

R

ηeff t

∆ ≥ yk · u− (ut · u)(yk · ut)−
ηeff t

2R

(

‖yk‖2 ut · u+ 2(yk · u)(yk · ut)
)

−η
2
eff t

2R2
‖yk‖2 yk · u .
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By employing (5.1), (5.54) and (5.14) we get a lower bound on ∆

∆ ≥ ηeff t

(

γd

R
− ηeff t

2
− η2

eff t

2

)

− ηeff t (1 + ηeff t)
β

R
t−ǫ . (5.56)

From the misclassification condition it becomes obvious that convergence of the algo-

rithm is impossible as long as β/tǫ > γd. Therefore we may assume that

t > t0 ≡
(

β

γd

) 1
ǫ

.

A repeated application of (5.56) (t − [t0]) times, where [t0] denotes the integer part of

t0, yields

ut+1 · u− u[t0]+1 · u ≥ η
γd

R

t
∑

m=[t0]+1

m−ζ − η2

2

t
∑

m=[t0]+1

m−2ζ − η3

2

t
∑

m=[t0]+1

m−3ζ

−η β
R

t
∑

m=[t0]+1

m−(ζ+ǫ) − η2 β

R

t
∑

m=[t0]+1

m−(2ζ+ǫ) .

By employing the inequalities

t
∑

m=[t0]+1

m−θ ≥
∫ t

t0+1
m−θdm ≥ t1−θ − t1−θ

0

1− θ − t−θ
0

and
t
∑

m=[t0]+1

m−θ ≤
∫ t

t0

m−θdm+ t−θ
0 =

t1−θ − t1−θ
0

1− θ + t−θ
0

for θ > 0 and taking into account (5.14) we finally obtain

1 ≥ ηγd

R

(

t1−ζ − t1−ζ
0

1− ζ

)

− η2

2

(

t1−2ζ − t1−2ζ
0

1− 2ζ

)

− η3

2

(

t1−3ζ − t1−3ζ
0

1− 3ζ

)

− η β
R

(

t1−(ζ+ǫ) − t1−(ζ+ǫ)
0

1− (ζ + ǫ)

)

− η2 β

R

(

t1−(2ζ+ǫ) − t1−(2ζ+ǫ)
0

1− (2ζ + ǫ)

)

− ω . (5.57)

Here

ω ≡ γd

R
ηt−ζ

0

(

2 + ηt−ζ
0

)

+
1

2
η2t−2ζ

0

(

1 + ηt−ζ
0

)

> 0 .

Let us define the new variable τ ≥ 0 through the relation

t = t0 (1 + τ) =

(

β

γd

) 1
ǫ

(1 + τ) . (5.58)
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In terms of τ (5.57) becomes

(

ηt1−ζ
0

)−1 (γd

R

)−1
(1+ω) ≥ g(τ) ≡ (1 + τ)1−ζ − 1

1− ζ −(1 + τ)1−(ζ+ǫ) − 1

1− (ζ + ǫ)

− R

2γd
ηt−ζ

0

(1 + τ)1−2ζ − 1

1− 2ζ
− R

2γd
η2t−2ζ

0

(1 + τ)1−3ζ − 1

1− 3ζ
− ηt−ζ

0

(1 + τ)1−(2ζ+ǫ) − 1

1− (2ζ + ǫ)
.

(5.59)

Notice that for ζ = 1 the first term of g(τ) becomes ln(1+τ). Since 0 < ζ ≤ 1, g(τ) (with

τ ≥ 0) is unbounded from above. Moreover, its derivative g′(τ) satisfies the relation

(1 + τ)ζg′(τ) = 1− (1 + τ)−ǫ − R

2γd
ηt−ζ

0 (1 + τ)−ζ − R

2γd
η2t−2ζ

0 (1 + τ)−2ζ

−ηt−ζ
0 (1 + τ)−(ζ+ǫ) .

The r.h.s. of the above equation is a monotonically increasing function of τ which is

negative at τ = 0 and tends to 1 as τ →∞. Therefore g′(τ) has a single root at τ = τmin

which corresponds to a minimum of g(τ) with g(τmin) < 0. Moreover, the l.h.s. of (5.59)

is positive. Thus, given that g(0) = 0, there is a single value τb of τ where (5.59) holds

as an equality which provides an upper bound on τ

τ ≤ τb (5.60)

satisfying τb > τmin > 0. Combining (5.58) and (5.60) we obtain the bound on the

number of updates

t ≤ tb ≡
(

β

γd

)
1
ǫ

(1 + τb) (5.61)

proving that the algorithm converges in a finite number of steps. From (5.61) and taking

into account the misclassification condition (5.54) we obtain a lower bound β/(tb+1)ǫ on

the margin γ′d achieved. Thus, the fraction f of γd that the algorithm achieves satisfies

1 ≥ f ≡ γ′d
γd
≥ fb ≡

β/γd

(tb + 1)ǫ =
(

1 + τb + t−1
0

)−ǫ
. (5.62)

Let us assume that β
R →∞ in which case from η = η0

(

β
R

)−δ
and given that 0 < ǫδ+ζ <

1 we have ηt1−ζ
0 ∼

(

β
R

)
1−ζ−ǫδ

ǫ → ∞ whereas ηt−ζ
0 ∼

(

β
R

)− ζ+ǫδ
ǫ → 0. Consequently the

l.h.s. of (5.59) vanishes in the limit β
R → ∞ whereas its r.h.s. (i.e. g(τ)) becomes a

strictly increasing function for τ > 0 (i.e. τmin → 0) since (1+τ)ζg′(τ) = 1−(1+τ)−ǫ > 0.

Obviously, (5.59) holds as an equality only for τ = 0. Therefore,

τb → τmin → 0 as
β

R
→∞ . (5.63)
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Combining (5.62) with (5.63) and noticing that t−1
0 → 0 as β

R → ∞ we conclude that

f → 1 or

γ′d → γd as
β

R
→∞ .

Remark 5.5. In the case that ζ+2ǫ = 1 with 1
2 < ζ < 1 it is possible to obtain explicitly

an upper bound tb on the number of updates and a lower bound fb on the fraction f

of the margin that the algorithm achieves. First we observe that since 1 − 2ζ, 1 − 3ζ

and 1 − (2ζ + ǫ) are negative it is allowed to set the terms (1 + τ)1−2ζ , (1 + τ)1−3ζ

and (1 + τ)1−(2ζ+ǫ) to zero in the r.h.s. of (5.59). Then, the resulting less restrictive

inequality with ζ expressed in terms of ǫ becomes

A2 ≥ ((1 + τ)ǫ − 1)2 , (5.64)

where

A2 =
2ǫ

η

(

β

R

)−2 γd

R
(1 + ω) +

ǫη

1− 4ǫ

(

β

R

)2− 1
ǫ (γd

R

) 1
ǫ
−3

+
ǫη2

2− 6ǫ

(

β

R

)4− 2
ǫ (γd

R

) 2
ǫ
−5

+
2ǫη

1− 3ǫ

(

β

R

)2− 1
ǫ (γd

R

) 1
ǫ
−2

.

Notice that ǫ < 1
4 if 1

2 < ζ < 1. By solving the equation derived from (5.64) we obtain

explicitly the bounds tb and fb. They are the ones of (5.61) and (5.62), respectively

with

τb = (1 + |A|)
1
ǫ − 1 .

In the present case 0 < ǫδ+ζ < 1 is equivalent to 2− 1
ǫ < δ < 2. Then, with η = η0

(

β
R

)−δ

as β
R →∞ we get |A| → 0 leading to τb → 0. This demonstrates explicitly the statement

of Theorem 5.4. It is worth emphasising, however, that |A| may be small even if β
R is

not large if γd
R and ǫ are sufficiently small.

Example: If ǫ = ζ = 1
2 and moreover δ = 0, i.e. η does not depend on β, ǫδ + ζ = 1

2

and the condition of Theorem 5.4 is satisfied. Therefore such an algorithm attains

asymptotically as β
R → ∞ the maximum directional margin. The above algorithm

is a version of ALMA2 in which the weight vector instead of being confined within

a ball centred at the origin is normalised to a constant length which remains fixed

during the asymptotic procedure. Thus, ALMA2 can be thought of as belonging to the

MICRA family. Then, the analysis of [21] confirms our conclusion regarding asymptotic

convergence to the optimal solution hyperplane in this special case. In the case, instead,

that ǫ = ζ = 1
2 but δ = 1, i.e. η = η0

(

β
R

)−1
, ǫδ + ζ = 1 and the condition of Theorem

5.4 is violated. This case would correspond to a version of ALMA2 with the parameter

b entering the misclassification condition set to b = β2 and the weight vector normalised

to the constant length β which, however, does not remain fixed during the asymptotic

procedure β
R → ∞. Since the condition of Theorem 5.4 is violated we are unable to
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prove asymptotic convergence of such an algorithm to the maximal margin solution.

The same conclusion is reached if the proof technique of [21] is employed which gives a

lower bound

fb =

(

1 +
1

η0
+

3

2
η0
R2

β2

)−1

on the fraction of the maximum directional margin achieved by the algorithm. As
β
R →∞ we get fb → η0

(1+η0) < 1. We see that a “slight” modification of the asymptotic

procedure is able to affect the ability of a Perceptron-like algorithm to attain the solution

with maximum margin. We believe that the inability in some cases of the Perceptron

algorithm with margin, in contrast to ALMA2, to approach the maximal margin solution

is due to such “slight” differences between the two algorithms regarding the asymptotic

procedure.

Efficient Implementation: A completely equivalent formulation of MICRA is ob-

tained if the update rule (5.6) with ft = Nt+1 = 1 and ηt = ‖at‖ ηeff t/R is employed

and the misclassification condition (5.54) is reexpressed as at · yk ≤ ‖at‖β/tǫ. Such

a formulation apart from bearing a close resemblance to the Perceptron algorithm has

the additional advantage of being computationally more efficient. A pseudocode imple-

menting this formulation is given in Fig. 5.5.

Require: A linearly separable aug-
mented training set with reflection
assumed S = (y1, . . . ,yk, . . . ,yl)

Fix: η, β

Define: R = max
k
‖yk‖ , qk = ‖yk‖2 ,

η̄ = η/R

Initialisation: t = 1, a1 = y1,

‖a1‖ = ‖y1‖ , η1 = ‖a1‖ η̄,
β1 = ‖a1‖ β

repeat until no update made within the
for loop

for k = 1 to l do

ptk = at · yk

if ptk ≤ βt then

at+1 = at + ηtyk

‖at+1‖ =

√

‖at‖2 + ηt (2ptk + ηtqk)

t← t+ 1

ηt = ‖at‖ η̄/tζ , βt = ‖at‖β/tǫ

Figure 5.5: An efficient implementation of MICRAǫ,ζ.

5.9 Algorithms with Fixed Directional Margin Condition

In this section we examine algorithms in which the misclassification condition assumes

the form of (5.11) which amounts to requiring a minimum directional margin that is

not lowered with the number of updates [56]. The condition (5.11) involving only the

direction of the weight vector motivates new positive and bounded functions ft like

the functions ft = 1 − β
ut·yk

‖yk‖2
and ft =

βu−ut·yk

‖yk‖ with βu > β in addition to the
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commonly used ft = 1. Convergence of such algorithms requires that β < γd. Since

γd is not known these algorithms will be useful only as components of a more complex

algorithmic implementation exploring efficiently the range of allowed values of β.

5.9.1 Generic Perceptron-Like Algorithms with Fixed Margin Condi-

tion

Here we consider algorithms with the general update rule (5.6), constant learning rate

ηt = η and Nt+1 = 1. A pseudocode describing their implementation is given in Fig.

5.6. We begin with a discussion of stepwise convergence. A repeated application of

(5.18) assuming that at is initially set to zero leads again to (5.19). As a consequence

for t > 0 (5.14) is once more recovered. Therefore, positivity of D of (5.15) is equivalent

to stepwise convergence. Placing a lower bound on the ηeff t-independent part of A of

(5.16), using (5.1) and (5.11), we obtain

yk · u− (ut · u)(yk · ut) ≥ γd − β , (5.65)

which is definitely positive. Furthermore, because of (5.19) the terms of A linear in ηeff t,

which are not necessarily positive, become less important with time leading to positivity

of A and consequently of D for t larger than a critical time tc. Thus, we can place a

lower bound on A
A ≥ γd − β −

1

2

fmax

fmin

1

γdt
(R2 − γ2

d) . (5.66)

From (5.66) the estimated time sufficient for the onset of stepwise convergence is

tc ≡
1

2

fmax

fmin

R2

γ2
d

(

1− γ2
d

R2

)

(

1− β
γd

) . (5.67)

It is obvious that for t > tc A is bounded from below by a positive constant. Moreover,

since we initially set the weight vector to zero, at is entirely generated by the first t

updates and its norm satisfies the obvious bound

‖at‖ ≤ ηfmaxRt . (5.68)

Require: A linearly sep-
arable augmented training
set with reflection assumed
S = (y1, . . . ,yl)
Input: β
Initialisation:

t = 0, a0 = 0

repeat until no update
made within the for loop

for k = 1 to l do

if ut · yk ≤ β then

at+1 = at + ηftyk

t← t+ 1

Figure 5.6: Generic Perceptron-like algorithm with fixed margin condition.
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Thus, ηeff t does not fall with t faster than 1/t. Moreover, for t > 1 ηeff t is bounded from

above because of (5.19). Therefore all the conditions are satisfied in order for stepwise

convergence to lead to convergence in a finite number of steps.

We now proceed to a derivation of a time bound. Our procedure will be to provide

a tighter upper bound on ‖at‖ than the one of (5.68) which together with the lower

one of (5.19) will finally be combined in a Novikoff-like squeezing relationship. For the

derivation of an upper bound we first use (5.6) to obtain

‖at+1‖2 = ‖at‖2
(

1 + 2
ηft

‖at‖
yk · ut +

(

ηft

‖at‖

)2

‖yk‖2
)

.

Taking the square root and using the inequality
√

1 + x ≤ 1 + x/2 we have

‖at+1‖ ≤ ‖at‖
(

1 +
ηft

‖at‖
yk · ut +

1

2

(

ηft

‖at‖

)2

‖yk‖2
)

.

We now observe that the difference of ‖at‖ at successive time instants satisfies the

inequality

‖at+1‖ − ‖at‖ ≤ ηfmaxβ +
η

2

f2
max

fmin

R2

γd

1

t
.

Here we have made use of (5.11) and (5.19). A repeated application of the above

inequality (t−N) times gives

‖at‖ − ‖aN‖ ≤ ηfmaxβ(t−N) +
η

2

f2
max

fmin

R2

γd

(

1

N
+

1

N + 1
+ · · · + 1

t− 1

)

. (5.69)

Replacing ‖aN‖ by its obvious upper bound from (5.68) and employing the inequality

n2
∑

k=n1

1

k
≤
∫ n2

n1

dk

k
+

1

n1
= ln

n2

n1
+

1

n1

we get the upper bound

‖at‖ ≤ ηfmax

{

RN + β(t−N) +
1

2

fmax

fmin

R2

γd

(

ln
t− 1

N
+

1

N

)}

(5.70)

on ‖at‖. Squeezing ‖at‖ between its lower bound of (5.19) and its upper bound of (5.70)

we obtain a relation

t−N
CN + ln

√
t− 1

≤
(

fmax

fmin

R

γd

)2(

1− fmax

fmin

β

γd

)−1

(5.71)

constraining the growth of t. Here

CN = N
fmin

fmax

γd

R

(

1− fmin

fmax

γd

R

)

− 1

2

(

lnN − 1

N

)

.
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Minimising the upper bound of (5.70) with respect to N we obtain the optimal value

Nopt =

[

1

2

fmax

fmin

R

γd

(

1− β

R

)−1
]

+ 1 ,

where [x] denotes the integer part of x. We would like to point out that unless fminγd−
fmaxβ is positive (5.71) does not lead to an upper bound on t. However, this failure of

obtaining an upper bound on the number of steps does not reflect lack of convergence

which has already been proved independently. Of course, for the perceptron-like algo-

rithm of this type where ft = 1 we have an upper bound for all β less than γd which

interestingly enough has a dependence on the difference γd − β. The same difference

appears in the expression for the critical time tc of (5.67) irrespective of the function ft

employed. Another interesting property of all algorithms of this class, provided a0 = 0

and ft depends on at only through ut, is their independence from the learning rate η,

a property shared by the perceptron algorithm with zero margin. This can be justified

by the fact that a rescaling of η results in a rescaling of at by the same factor which

does not affect either the hyperplane normal to at or the classification condition. This

independence from η is apparent in both (5.67) and (5.71).

5.9.2 Algorithms with Constant Effective Learning Rate and Fixed

Margin Condition

Here we examine algorithms with the fixed directional margin condition in which the

effective learning rate ηeff t remains constant. One possible realisation of such algorithms

is obtained if we keep the length of the weight vector fixed assuming a constant learning

rate but in the following we will not make such an assumption. Thus, in order to avoid

using the length of the weight vector we will only employ (5.13) as an update rule

assuming that ft does not depend on ‖at‖. We demand that ut · u > 0 for all t which

requires an appropriate choice of the initial condition. We choose the initial unit vector

u0 in the direction of one (or a linear combination with positive coefficients) of the yk’s.

For definiteness we choose the direction of the first training pattern. Then, due to the

Require: A linearly separable aug-
mented training set with reflection
assumed S = (y1, . . . ,yl)
Define:

For k = 1, . . . , l
R = max

k
‖yk‖ , ȳk = yk/R

Input: β̄ (= β/R) , ηeff

Initialisation: t = 0, u0 = ȳ1/ ‖ȳ1‖

repeat until no update
made within the for loop

for k = 1 to l do

if ut · ȳk ≤ β̄ then

ut+1 =
ut+ηeffftȳk

‖ut+ηeffftȳk‖
t← t+ 1

Figure 5.7: Constant effective learning rate algorithm with fixed margin condition.
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form of the update rule and the positivity of ft the weight vector is a linear combination

with positive coefficients of the training patterns. Therefore, since according to (5.1) yk

satisfies yk · u > 0 the same is true for ut. A pseudocode description of the algorithms

under consideration appears in Fig. 5.7.

Positivity of ut · u allows us to use positivity of D of (5.15) as a criterion for stepwise

convergence. Taking a closer look at A of (5.16) reveals that the ηeff -independent term

remains positive throughout the algorithm. For the term linear in ηeff which has no

definite sign we conclude that an appropriate choice of ηeff can render it smaller than

the ηeff -independent one, thereby leading to stepwise convergence from the first step of

the algorithm. More specifically, by placing lower bounds using (5.1) and (5.11) we have

for A
A ≥ γd − β −

ηefffmax

2R
(R2 − γ2

d) . (5.72)

Positivity of A and D is achieved for values of ηeff smaller than the critical value ηeffc

ηeffc ≡
2

fmax

(γd − β)R
(

R2 − γ2
d

) . (5.73)

Taking into account (5.14) and (5.72) and given that ηeff is constant stepwise convergence

from the first step implies convergence in a finite number of steps.

After having shown that the algorithm converges step by step our next move will be to

place an upper bound on the number of updates.

Taking the inner product of (5.13) with the optimal direction u, expanding
∥

∥

∥
ut + ηeffft

yk

R

∥

∥

∥

−1

and using the inequality (1 + x)−
1
2 ≥ 1− x/2 we have

ut+1 · u =
(

ut · u+ ηeffft
yk · u
R

)

(

1 + 2ηeffft
yk · ut

R
+ η2

efff
2
t

‖yk‖2
R2

)− 1
2

≥
(

ut · u+ ηeffft
yk · u
R

)

(

1− ηeffft
yk · ut

R
− η2

efff
2
t

‖yk‖2
2R2

)

.

Thus, we obtain for ∆ = ut+1 · u− ut · u

R

ηeffft
∆ ≥ yk · u− (ut · u)(yk · ut)−

ηeffft

2R

(

‖yk‖2 ut · u+ 2(yk · u)(yk · ut)
)

−η
2
efff

2
t

2R2
‖yk‖2 yk · u .

We now observe that ∆ can be bounded from below by a constant

∆ ≥ ηefffmin

{

γd − β
R

− 1

2
ηefffmax

(

1 +
2β

R

)

− 1

2
η2
efff

2
max

}

. (5.74)
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Here we made use of (5.1) and (5.11). A repeated application of (5.74) gives

ut · u− u0 · u ≥
fmin

fmax

{

γd − β
R

(ηefffmax)−
1

2

(

1 +
2β

R

)

(ηefffmax)
2 − 1

2
(ηefffmax)

3

}

t.

By observing that ut · u− u0 · u < 1 since u0 · u > 0 we obtain the time bound

t <
fmax

fmin

{

γd − β
R

(ηefffmax)−
1

2

(

1 +
2β

R

)

(ηefffmax)
2 − 1

2
(ηefffmax)

3

}−1

. (5.75)

The above time bound can be optimised with respect to the parameter ηeff . The resulting

optimal value of ηeff is approximately given by

ηeffopt =
1

fmax

(γd − β)

R

(

1 +
2β

R

)−1

.

Substituting the optimal value of ηeff into (5.75) we obtain the optimised time bound

t < tb1 ≡ 2
fmax

fmin

R2

(γd − β)2

(

1 +
2β

R

)

(

1− γd − β
R

(

1 +
2β

R

)−2
)−1

. (5.76)

From the above expression we observe that our time bound tb1 is analogous to the one

of the Perceptron without margin with the main differences being a factor of 2 and the

replacement of γ2
d by (γd − β)2.

It is possible to proceed to a derivation of an upper bound on t following the Novikoff-like

technique of [21]. Taking the inner product of (5.13) (with the denominator of its r.h.s.

being denoted Nt+1) with the optimal direction u, employing (5.1), (5.7) and repeatedly

applying the resulting inequality we have

ut · u =
ut−1 · u+ ηeffft−1yk · u/R

Nt
≥ ut−1 · u

Nt
+
ηefffminγd/R

Nt

≥ u0 · u
NtNt−1 · · ·N1

+
ηefffminγd

R

(

1

Nt
+

1

NtNt−1
+ · · ·+ 1

NtNt−1 · · ·N1

)

.

(5.77)

For the normalisation factor Nm we can derive the inequality

N−1
m ≥

(

1 + η2
efff

2
max + 2ηefffmax

β

R

)− 1
2

≡ r

which combined with (5.77) yields

1 >
ηefffminγd

R

t
∑

m=1

rm =
ηefffminγd

R
r
1− rt

1− r (5.78)
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given that ut · u ≤ 1 and u0 · u > 0. Equation (5.78) can be easily rewritten as

rt > 1− R

ηefffminγd

(

1

r
− 1

)

. (5.79)

Since the l.h.s. of (5.79) is a monotonically decreasing function of t tending to 0 as

t → ∞ an upper bound on t is obtainable only if the r.h.s. of (5.79) is positive or

equivalently if ηeff satisfies the inequality

ηeff < 2
(fminγd − fmaxβ)R

f2
maxR

2 − f2
minγ

2
d

. (5.80)

Provided (5.80) is satisfied (5.79) gives the upper bound

t < tb2 ≡ −
ln
(

1− (ηefffminγd)−1R
(

r−1 − 1
)

)

ln r−1
(5.81)

on the number t of updates. From (5.80) it is apparent that this Novikoff-like proof

technique does not lead to a proof of convergence in a finite number of steps unless

fminγd > fmaxβ. An analogous phenomenon was observed in Section 5.9.1 when again a

Novikoff-like technique was employed. In contrast, proof techniques relying on stepwise

convergence do not give rise to such restrictions. In the case ft = 1 the bound (5.80) on

ηeff coincides with the critical value of (5.73). If we assume ft = 1 we see that as β → γd

the bound of (5.80) tends to 0 linearly with γd−β. Taking the limit ηeff → 0 in (5.81) we

obtain tb2 → −(ηeffβ/R)−1 ln((γd − β)/γd) implying that in the limit β → γd, assuming

ηeff ∼ (γd − β)/R, the bound tb2 behaves like tb2 ∼ (γd − β)−1γ−1
d R2 ln((γd − β)−1γd).

An analogous behaviour is exhibited by the bound (5.71) in Section 5.9.1. The bound

tb1 of (5.76), instead, goes to infinity like (γd − β)−2R2.

5.9.3 Mistake-Controlled Rule Algorithms with Fixed Margin Condi-

tion

Require: A linearly separable
augmented training set with re-
flection assumed S = (y1, . . . ,yl)
Define:

For k = 1, . . . , l
R = max

k
‖yk‖ , ȳk = yk/R

Input: β̄ (= β/R) , η

Initialisation:

t = 1, u1 = ȳ1/ ‖ȳ1‖ , ηeff1 = η

repeat until no update
made within the for loop

for k = 1 to l do

if ut · ȳk ≤ β̄ then

ut+1 =
ut+ηeff tftȳk

‖ut+ηeff tftȳk‖
t← t+ 1

ηeff t = η/tζ

Figure 5.8: Mistake-controlled rule algorithm with fixed margin condition.
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For the sake of completeness we consider in the present section algorithms with the fixed

margin misclassification condition of (5.11) and an effective learning rate given explicitly

as the inverse of a power of the number of mistakes, i.e.

ηeff t =
η

tζ
. (5.82)

Here η, ζ are positive constants and moreover

ζ ≤ 1 . (5.83)

Since both (5.11) and (5.82) do not involve the length of the weight vector and provided

ft is also ‖at‖-independent we may use (5.13) as an update rule. Additionally, we

assume that the initial unit length weight vector u1 is chosen in the direction of one of

the yk’s such that ut ·u > 0 for all t. A pseudocode description of the algorithms under

consideration appears in Fig. 5.8.

For a proof of convergence of the present class of algorithms we rely on arguments based

on the notion of stepwise convergence. Positivity of ut · u allows us to use positivity

of D of (5.15) as a criterion for stepwise convergence. Taking a closer look at A of

(5.16) reveals that the ηeff t-independent term remains positive throughout the algorithm.

Furthermore, because of (5.82) the terms of A linear in ηeff t, which are not necessarily

positive, become less important with time leading to positivity of A and consequently

of D for t larger than a critical time tc. More specifically, using (5.1), (5.11) and (5.82)

we can place a lower bound on A

A ≥ γd − β −
η

tζ
fmax

2R
(R2 − γ2

d) . (5.84)

Requiring positivity of the r.h.s. of (5.84) the estimated time sufficient for the onset of

stepwise convergence is

tc ≡
(

ηfmax

2

(

R2 − γ2
d

)

(γd − β)R

) 1
ζ

. (5.85)

Taking into account (5.14) and (5.84) and given that ηeff t does not decrease with t faster

than 1/t because of (5.83) stepwise convergence implies convergence in a finite number

of steps.

5.9.4 Algorithmic Implementations

In this section we briefly present algorithmic implementations which exploit the algo-

rithms with fixed directional margin condition in order to find solution hyperplanes with

almost optimal directional margin.

Our first implementation makes repeated use of the fixed directional margin algorithms

only. In each round of its application the algorithm looks for a fixed unrelaxed directional
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margin β according to the classification condition ut · yk > β. Each round lasts until

the condition is satisfied by all the training patterns or until an upper bound on the

number of checks over the training set is reached. The range of values that β can

take and therefore the interval that the algorithm should search extends from 0 to

r = min
k
‖yk‖. The search can be performed efficiently by using a procedure similar

to the Bolzano-bisection method. Initially a margin β = r
2 is asked for with a step

parameter being set to r
2 . If the algorithm comes up with a solution vector a satisfying

the imposed margin constraint without exhausting the upper number of checks the round

is considered successful. The weight vector a is stored as the best solution found so far

and is exploited as the initial value a0 of the next trial. This way the procedure of

finding a better solution in a subsequent round is speeded up substantially since such

an a probably lies closer to a weight vector which gives rise to a larger margin than

the weight vector a0 = 0 (or a0 = y1/ ‖y1‖) and thus constitutes a better guess as an

initial condition. One could also envisage using the final weight vector of an unsuccessful

previous round as the initial weight vector of a subsequent one until the first successful

trial is reached. At the end of each trial the step is divided by 2. In the case that a trial

ends successfully the target value of the margin β in the next round is calculated by

adding to the previous one the present step otherwise β is reduced by the same amount.

Therefore, on the condition that the upper number of checks is set to a sufficiently large

value, the procedure guarantees that the deviation of the margin β from the maximum

one is reduced by a factor of 2 in each round. The algorithm is terminated when the

step reaches a certain predefined desirable level, thereby determining dynamically the

number of rounds.

A second possibility is to first use the standard Perceptron algorithm with margin in

order to obtain a solution with a guaranteed fraction of the existing directional margin

given by (5.23) and then attempt to incrementally boost 1 the margin found this way

by repeatedly employing the fixed directional margin condition algorithms. The initial

condition of each round of boosting will be the final weight vector of the previous round

and the step by which the target margin increases will be determined as a fraction of

the margin found in the first stage. The algorithm ends with the first unsuccessful trial.

An analogous boosting procedure could follow a first stage of successful employment of

the Bolzano-bisection method.

Finally, a third possibility is to use the algorithms of Section 5.9.1 in an incremental way.

Such an implementation assumes the existence of a certain minimum value of the margin

from which the algorithm starts searching incrementally. An estimate of an upper bound

of the margin, which will be useful in determining the step of the incremental search,

can be obtained by running a standard Perceptron algorithm and employing Novikoff’s

time bound (5.22). Thus, even if the Perceptron algorithm does not converge after M

mistakes the directional margin γd is bounded from above by
√

(R2 + 2b/η) /M .

1Boosting in this context should not be confused with the one of [49].



Chapter 6

Linearly Inseparable Feature

Spaces

6.1 Introduction

Until now we made the assumption that the training patterns are linearly separable with

margin γd in the augmented feature space with respect to hyperplanes passing through

the origin. This enabled us to use the Perceptron-like algorithms of Chapter 5 to achieve

separation of the data with some positive margin. Separability in the feature space may

be achieved through the introduction of kernels [2, 9, 66, 48, 54] which map the data into

a higher dimensional space. If the number of dimensions of that space is large enough

the capacity of the hypothesis functions viewed in the original space is sufficiently high in

order for the data to be separated. However, this procedure has the danger of overfitting

the data leading to poor generalisation. In the case that the patterns are not linearly

separable the algorithms of Chapter 5 are not able to converge to a solution but oscillate

continually in their effort to correct instantaneously a misclassified pattern.

An old technique that bypasses this difficulty and is applicable to both linearly separable

and linearly inseparable data is the one of the minimum squared error. This is done

by seeking the hyperplane that separates the patterns with a fixed functional margin

a · yk = 1, ∀k. This amounts to solving the system of linear equalities that are induced

by the linear constraints imposed by each one of the patterns. In its general form this

system does not have a solution in the ordinary sense since it can be overdetermined

but it may still accept a solution that minimises the squared error
∑

k (a · yk − 1)2.

However, this procedure cannot guarantee a vanishing training error in the separable

case.

Another way of dealing with situations where the data are not linearly separable in the

feature space is to employ techniques which instead of insisting on finding the maximal

114
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margin hyperplane following the so-called hard margin policy they adopt a more tolerant

point of view represented by the so-called soft margin. The hard margin is determined

only by those training patterns lying closest to the separating hyperplane. In the soft

margin approach, instead, all the patterns which fail to satisfy a target margin value

with respect to a given hyperplane play a role. Thus, optimality could lead to a few

points failing to meet the margin requirement or even being misclassified as long as the

distance of the majority from the hyperplane exceeds the predefined margin value.

The notion of soft margin first appeared in the context of linear programming [6] in order

to deal with inseparable data but became very popular with the advent of SVMs. As we

already discussed in Chapter 3 the σ-norm soft margin problem in the SVM formulation

is stated as the optimisation task

minimisew,b,ξk
‖w‖2 + C

l
∑

k=1

ξσ
k

subject to yk(w · xk + b) ≥ 1− ξk ∀k,

ξk ≥ 0 ∀k.

Here w is the weight vector and the quantity C appearing in the objective function is a

positive constant. The quantities ξk, as many as the training patterns, are called slack

variables [55] and are introduced in order to allow for violations of the margin condition

by some training patterns. Notice that in the above optimisation the patterns as well

as the weight vector are not augmented. For this reason there is a bias term b and the

labels yk accompany explicitly the patterns.

Freund and Shapire [17] have shown how a function of the margin distribution different

from the minimum margin one can be used to bound the number of mistakes of an online

Perceptron algorithm, thereby providing one possible extension of Novikoff’s theorem

for the inseparable case. Their proof technique, very similar to that of [33], extends the

instance space by as many dimensions as the number of patterns placing each pattern at

a distance |∆| from the origin in the corresponding dimension. As a result the training

set in the extended space becomes linearly separable. This technique was also used

in order to derive generalisation error bounds involving the new margin distribution

[52, 53]. An interesting result in this connection is the observation (see Section 3.4) that

the hard margin optimisation task in the extended space is equivalent to the soft margin

optimisation in the original instance space if the 2-norm of the slack variables (σ = 2 in

the above discussion) is employed [53].

In the sequel, following the approach of [17], we show how one moves in the direction of

minimising an objective function J involving the new margin distribution by making use

of Perceptron-like algorithms which, however, are seeking a hard margin in the extended
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space [57]. This may not be surprising in the light of the result just mentioned regarding

the equivalence between the hard margin optimisation in the extended space and the

soft margin one in the original space. Nevertheless, we hope that our analysis, which

does not rely on convex optimisation theory, will contribute to a better understanding of

what an algorithm running in the extended space actually achieves with respect to the

original space. We also provide some results which may be regarded as generalisations

of Novikoff’s theorem for the Perceptron algorithm with margin to the inseparable case.

The theorem of Freund and Shapire that we mentioned earlier belongs to this category

of results. Although our instance space prior to its extension is the augmented one in

the present chapter the instances yk are explicitly accompanied by their labels yk since

we found it convenient not to assume a reflection with respect to the origin.

6.2 A Soft Margin Approach for Perceptron-Like Large

Margin Classifiers

Theorem 6.1. Let ((y1, y1), . . . , (yl, yl)) be a sequence of l labelled instances, u a unit

vector and γ > 0. Define di = max{0, γ − yiu · yi} and set D =
√

∑

i d
2
i . In addition

define an extended instance space yext
i = (yi,∆δ1i, . . . ,∆δli) parametrised by ∆, where

δij is Kronecker’s δ.

1. Let Γ∆opt be the maximum margin in the extended space with respect to hyperplanes

passing through the origin. Then, for any u and γ,

1

Γ2
∆opt

≤ J (u, γ,∆) ≡ 1

γ2
+

1

∆2

(

D

γ

)2

. (6.1)

2. Assume that a zero-threshold algorithm converges in the extended space to a so-

lution vector aext which describes a hyperplane passing through the origin with

margin Γ∆. Let u = a/ ‖a‖ and γ = Γ∆

∥

∥aext
∥

∥ / ‖a‖, where a is the projection of

aext onto the original instance space. Then, employing such a u and γ provided

by the algorithm, we have

1

Γ2
∆opt

≤ J (u, γ,∆) ≤ 1

Γ2
∆

. (6.2)

Proof. 1. Notice that

J (u, γ,∆) =
Z2

γ2

with

Z =

√

1 +
D2

∆2
.
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Then, (6.1) is equivalent to γ/Z ≤ Γ∆opt which is proved in [17]. For the sake of

completeness we repeat the proof here. For an arbitrary unit vector u and any

γ > 0 let us consider the extended unit-length prediction vector

ud =
1

Z

(

u, y1
d1

∆
, . . . , yi

di

∆
, . . . , yl

dl

∆

)

. (6.3)

We have

yiud · yext
i =

1

Z
(yiu · yi + di) ≥

1

Z
(yiu · yi + (γ − yiu · yi)) =

γ

Z
(6.4)

which demonstrates that the extended prediction vector ud achieves a margin of

at least γ/Z. Obviously, if Γ∆opt is the maximum margin in the extended space

with respect to hyperplanes passing through the origin

γ

Z
≤ Γ∆opt . (6.5)

2. Let us assume that a zero-threshold algorithm converges in the extended space to

a weight vector aext

aext = ‖a‖
(

u, y1
d′1
∆
, . . . , yi

d′i
∆
, . . . , yl

d′l
∆

)

.

Here a is the projection of aext onto the original instance space and u is the unit

vector in the direction of a. Let Γ∆ be the margin achieved by

uext =
aext

‖aext‖ =
1

Z ′

(

u, y1
d′1
∆
, . . . , yi

d′i
∆
, . . . , yl

d′l
∆

)

,

where

Z ′ =

∥

∥aext
∥

∥

‖a‖ =

√

1 +
D′2

∆2

with D′ =
√

∑

i d
′2
i and let us define

γ = Γ∆Z
′ .

We have

yiu
ext · yext

i =
1

Z ′
(

yiu · yi + d′i
)

≥ Γ∆ =
γ

Z ′ (6.6)

from where

d′i ≥ γ − yiu · yi . (6.7)

The above inequality, taking into account the definition of di, leads to

|d′i| ≥ di ≥ 0 (6.8)
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and consequently to

Z ′ ≥ Z . (6.9)

Therefore, taking into consideration the definition of γ we obtain

γ

Z
≥ γ

Z ′ = Γ∆ . (6.10)

We see that the extended prediction vector ud of (6.3) constructed by making use

of u and γ which are obtained from the solution vector uext achieves a margin at

least as large as the one achieved by uext. The last inequality leads to

J (u, γ,∆) ≤ Γ−2
∆ (6.11)

given that Z2/γ2 = J (u, γ,∆). The proof is completed by combining (6.1) and

(6.11).

Remark 6.2. Let us assume that the zero-threshold algorithm is a Perceptron-like algo-

rithm with update rule

aext
t+1 = aext

t + ηftyky
ext
k ,

where ηft > 0, and initial condition aext
0 =

∑

k αkyky
ext
k with αk ≥ 0. From the above

initialisation, the update rule and the definition of the extended space we have that

d′i ≥ 0.

Remark 6.3. If the algorithm converges to the maximal margin hyperplane passing

through the origin in the extended space then Γ∆ = Γ∆opt. Moreover, (6.1) is equivalent

to γ/Z ≤ Γ∆opt which combined with (6.10) and given that Γ∆ = Γ∆opt gives Z ′ = Z

or D′ = D from where |d′i| = di follows taking into account (6.8). In addition, d′i ≥ 0.

Indeed, if d′i < 0 then di = 0 because of (6.7) and the definition of di. But in this case

d′i = di = 0 contradicting our assumption that d′i < 0. Thus, for the optimal extended

space solution d′i = di.

Remark 6.4. Setting w = u/γ, ξi = |d′i|/γ ≥ di/γ = max{0, 1 − yiw · yi} and C = ∆−2

yields
1

γ2
+

1

∆2

(

D′

γ

)2

= ‖w‖2 + C
∑

i

ξ2i .

We recognise the objective function of the primal form of the 2-norm soft margin op-

timisation problem in which the role of the constraints is played by (6.8) but the bias

term is missing since it is, at least partially, incorporated in the augmented weight vec-

tor w. If the optimal solution is found d′i = di and the “slack” variables ξi become

ξi = max{0, 1 − yiw · yi}.

Theorem 6.1 shows that minimisation of the objective function J is equivalent to finding

the maximum margin in the extended space. The u and γ for which the minimum
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Jmin is attained determine uniquely both the maximum margin Γ∆opt = J− 1
2

min and the

direction uext
opt of the optimal weight vector in the extended space which is given by (6.3).

Moreover, (6.2) provides an estimate of the deviation of the value of J achieved as a

result of an incomplete optimisation from Jmin if we have an estimate of the difference

between Γ∆ and Γ∆opt.

Theorem 6.5. Let ((y1, y1), . . . , (yl, yl)) be a sequence of l labelled instances out of

which the last (l − n) are separable by a zero-threshold hyperplane. Also let u be a

unit vector and γ > 0. Define di = max{0, γ − yiu · yi} and set D =
√

∑

i d
2
i . In

addition define an extended instance space parametrised by ∆ in which the i-th instance

is yext
i = (yi,∆δ1i, . . . ,∆δni).

1. Let Γ∆opt be the maximum margin in the extended space with respect to hyperplanes

passing through the origin. Then for any u and γ satisfying di = 0 for i > n

1

Γ2
∆opt

≤ J (u, γ,∆) ≡ 1

γ2
+

1

∆2

(

D

γ

)2

.

2. Assume that a zero-threshold algorithm converges in the extended space to a so-

lution vector aext which describes a hyperplane passing through the origin with

margin Γ∆. Let u = a/ ‖a‖ and γ = Γ∆

∥

∥aext
∥

∥ / ‖a‖, where a is the projection of

aext onto the original instance space. Then, employing such a u and γ provided

by the algorithm, we have di = 0 for i > n and

1

Γ2
∆opt

≤ J (u, γ,∆) ≤ 1

Γ2
∆

.

Proof. 1. Let us equivalently define the extended instance space such that the ex-

tended i-th instance becomes

yext
i = (yi,∆δ1i, . . . ,∆δni, 0δ(n+1)i, . . . .0δli) . (6.12)

Then, the argument is quite analogous to the one that led to the corresponding

statement in Theorem 6.1. The only difference is that (6.4), although for i ≤ n

holds as it is, for i > n has to be slightly reexpressed as follows

yiud · yext
i =

1

Z
(yiu · yi) =

1

Z
(yiu · yi + di) ≥

1

Z
(yiu · yi + (γ − yiu · yi)) =

γ

Z
.

Here use has been made of the fact that di = 0 for i > n.

2. Let us enlarge the extended instance space as in (6.12) and trivially embed the

solution vector found by the algorithm into this enlarged space. It immediately

follows that d′i = 0 for i > n. We may then repeat the arguments that led to

the corresponding statement in Theorem 6.1. The only difference is that (6.6),
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although for i ≤ n holds as it is, for i > n has to be slightly rewritten as

yiu
ext · yext

i =
1

Z ′ (yiu · yi) =
1

Z ′
(

yiu · yi + d′i
)

≥ Γ∆ =
γ

Z ′ .

Here we made use of the fact that d′i = 0 for i > n. From (6.8) follows that di = 0

for i > n given that d′i = 0 for i > n.

Theorem 6.5 shows that in the case that it is known that a subset of the dataset is

linearly separable it is possible by defining an appropriate minimally extended instance

space to obtain minimisation of the objective function J subject to the constraints that

the di’s corresponding to the instances which belong to the separable subset vanish.

We conclude this section with a well-known lower bound on the margin Γ∆opt of the

extended space which, in contrast to the bound (6.5), has the advantage of depending

only on ∆ and the number l of instances. Let uext = sign(∆)l−
1
2 (0, y1, y2, . . . , yl) be an

extended unit vector with vanishing projection onto the original instance space. It is

straightforward to see that

yiu
ext · yext

i =
|∆|√
l

meaning that uext achieves a margin of |∆|/
√
l. Thus,

Γ∆opt ≥
|∆|√
l
. (6.13)

6.3 Generalising Novikoff’s Theorem to the Inseparable

Case

The following theorem generalises the theorem of Freund and Shapire [17] to the case of

the Perceptron algorithm with margin.

Theorem 6.6. Let ((y1, y1), . . . , (yl, yl)) be a sequence of labelled instances with ‖yi‖ ≤
R. Also let u be a unit vector and γ > 0. Define di = max{0, γ − yiu · yi} and set

D =
√

∑

i d
2
i . Then the number of mistakes of the online Perceptron algorithm with

learning rate η and margin parameter b on this sequence is bounded by

(

√

R2 + 2b/η +D

γ

)2

.

Proof. The extended instances satisfy
∥

∥yext
i

∥

∥ ≤ Rmax with Rmax =
√
R2 + ∆2. More-

over, according to Theorem 6.1 for the maximum margin γmax in the extended space
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with respect to zero-threshold hyperplanes we have

1

γ2
max

=
1

Γ2
∆opt

≤ 1

γ2
+

1

∆2

(

D

γ

)2

.

Then the upper bound on the number of steps t until convergence of the Perceptron

algorithm in the extended space follows immediately by combining the above inequality

with Novikoff’s bound (5.22) (with fmax = fmin = 1)

t ≤ 1

γ2
max

(

R2
max +

2b

η

)

≤ 1

γ2

(

1 +
D2

∆2

)(

R2 + ∆2 +
2b

η

)

. (6.14)

The r.h.s. of (6.14) is optimised for ∆2 = D
√

R2 + 2b/η leading to the bound stated in

Theorem 6.6. The proof is completed by observing that the Perceptron makes exactly

the same mistakes in the original and in the extended space during the first epoch.

Remark 2.4. Setting b = 0 in Theorem 6.6 we obtain the theorem of Freund and

Shapire [17].

Theorem 6.7. Let ((y1, y1), . . . , (yl, yl)) be a sequence of labelled instances with ‖yi‖ ≤
R. Also let u be a unit vector and γ > 0. Define di = max{0, γ − yiu · yi} and set

D =
√

∑

i d
2
i . For each value of the parameter ∆ let

Jmin(∆) ≡ min
u,γ

{

1

γ2
+

1

∆2

(

D

γ

)2
}

.

The Perceptron algorithm with margin parameter b and learning rate η converges in an

extended space in which the i-th instance is yext
i = (yi,∆δ1i, . . . ,∆δli) in at most

Jmin(∆)

(

R2 + ∆2 +
2b

η

)

steps (updates) to a solution vector aext describing a zero-threshold hyperplane with

margin Γ∆. Let u = a/ ‖a‖ and γ = Γ∆

∥

∥aext
∥

∥ / ‖a‖, where a is the projection of

aext onto the original instance space. Then, employing such a u and γ provided by the

Perceptron algorithm, we have

Jmin(∆) ≤ 1

γ2
+

1

∆2

(

D

γ

)2

≤
(

2 +
η

b
(R2 + ∆2)

)2
Jmin(∆) .

Proof. The extended instances satisfy
∥

∥yext
i

∥

∥ ≤ Rmax with Rmax =
√
R2 + ∆2. More-

over, according to Theorem 6.1, 1/
√

Jmin(∆) is the maximum margin γmax in the ex-

tended space with respect to zero-threshold hyperplanes. Then the upper bound on the

number of steps t until convergence of the Perceptron algorithm in the extended space
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follows immediately from Novikoff’s bound (5.22) (with fmax = fmin = 1)

t ≤ 1

γ2
max

(

R2
max +

2b

η

)

.

Additionally, notice that

Γ∆ ≥ fbγmax =
fb

√

Jmin(∆)

or equivalently
1

Γ2
∆

≤ f−2
b Jmin(∆) . (6.15)

Here

fb =
(

2 +
η

b
R2

max

)−1
=
(

2 +
η

b
(R2 + ∆2)

)−1

is the guaranteed fraction of the maximum margin achieved by the Perceptron in the

extended space (see (5.23) with fmax = fmin = 1). Substituting (6.15) in (6.2) completes

the proof.

Theorem 6.6 gives an upper bound on the number of mistakes that the Perceptron

algorithm makes when running on the original linearly inseparable instance space during

the first epoch only. Theorem 6.7, instead, provides an upper bound on the number of

mistakes that the Perceptron algorithm makes when running until convergence on the

linearly separable extended instance space. It is important to realise, however, that

in this last case the bound involves the optimal value Jmin(∆) = min
u,γ
J (u, γ,∆) of the

quantity J (u, γ,∆) = γ−2+∆−2 (D/γ)2 which refers to the original linearly inseparable

instance space. Moreover, convergence of the Perceptron algorithm in the extended space

achieves an incomplete optimisation of the quantity J (u, γ,∆) in the original instance

space.
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Implementation and Experiments

In the present chapter we provide experimental results aiming at verifying our analysis

and assessing the ability of various algorithms described in previous chapters to achieve

fast convergence to a certain approximation of the optimal hyperplane in the feature

space where the patterns are linearly separable. First we perform a comparative study

involving only Perceptron-like algorithms (PLAs). Subsequently, we describe a variation

of the standard incremental scenario for such algorithms which enables us to reduce the

computational cost. Finally, we attempt a comparison of PLAs with SVMs in which

PLAs are represented by MICRA and SVMs by algorithms based on decomposition

methods. We conclude the chapter with a brief evaluation of our experimental results.

7.1 Comparative Study of PLAs

The algorithms that will be involved in our comparative study of PLAs are the stan-

dard Perceptron with margin, ALMA2, aggressive ROMMA, CRAMMAǫ, MICRAǫ,ζ

and some algorithmic implementations, discussed in Section 5.9.4, which involve the

fixed directional margin condition algorithms. For MICRA we use a β-independent η

(δ = 0) and ǫ, ζ values for which, in most cases, the analysis of Remark 5.5 applies.

Our goal in this comparison involving only PLAs will be to obtain a given value of the

margin in as few updates as possible.

Before we proceed we will try to be more specific about the algorithmic implementations

based on the algorithms of Section 5.9. One such algorithmic implementation that will

be considered uses a standard Perceptron algorithm with margin at a first stage in order

to obtain an estimate of the margin that the dataset possesses. This is followed at a

second stage by the constant effective learning rate algorithm of Section 5.9.2 (with

ft = 1) aiming at boosting the margin found by the Perceptron algorithm. The step in

the boosting stage is set as a certain fraction of the margin βp found by the Perceptron.

123
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Also, the effective learning rate in the boosting stage is chosen in the form ηeff = λβ/R

with the coefficient λ parametrising our ignorance about the relevant quantity γd − β.

Actually we employ a double boosting stage. When during the first such stage a certain

predefined maximum number of epochs is exceeded unsuccessfully the second stage with

an effective learning rate involving a smaller parameter λ takes place only once (i.e.

only for the value of the margin condition for which the first stage of boosting was

unsuccessful). The maximum number of epochs in the second stage of boosting is equal to

the one in the first. The algorithm terminates even if the second stage is successful. This

implementation will be denoted as “Perceptron+boosting”. Another implementation

uses a Bolzano bisection procedure in the first stage instead of the standard Perceptron

with margin employing again the algorithms of Section 5.9.2 (with ft = 1) both in the

Bolzano and the boosting stage with ηeff parametrised as above. In all the experiments

we set the minimum distance between the target margins in consecutive trials of the

Bolzano procedure to 0.0001. Also in the Bolzano stage we use the final weight vector

of an unsuccessful previous round as the initial weight vector of a subsequent round

until the first successful trial is reached. In this case we choose a single boosting stage.

In addition, the step of the boosting stage is fixed as a certain fraction of the largest

value βb of the margin condition for which the Bolzano bisection procedure is successful

(which is very close to the margin found by the Bolzano stage). This implementation will

be denoted as “Bolzano+boosting”. We also employ the algorithm with fixed margin

condition of Section 5.9.1 and an update rule involving the function ft =
βu−ut·yk

‖yk‖
with βu = 1.001β in an incremental way for a predefined number of steps with each

step involving a predefined maximum number of epochs. As we noted in Section 5.9.4

such an implementation assumes a certain minimum value of the margin from which

the algorithm starts searching incrementally and the knowledge of a reasonably good

upper bound on the margin in order to determine the step of the incremental search.

This algorithmic implementation will be denoted in the sequel as “Incremental”. The

experimental results that will be reported for the above algorithmic implementations do

not correspond to separate runnings of the algorithm but are obtained as intermediate

values during a single running on each dataset.

7.1.1 Separable Data

We first consider the case of linearly separable datasets. In such a case the feature space

in our experiments will be the initial instance space.

7.1.1.1 The Sonar Dataset

The dataset of the sonar classification problem of [24] consists of 208 instances each with

60 attributes obtainable from the UCI repository [8]. The dataset represents the sonar

signals bouncing off metal and rock cylinders. In all our experiments with this set the
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Table 7.1: Experimental results for the reduced sonar dataset. The directional margin
γ′d, the number of epochs (eps) and updates (upds) are given for ALMA2.

ALMA2 with η =
√

2

α 103γ′d eps upds

0.8 5.018 26,669 290,523

0.7 6.058 46,481 591,460

0.6 6.785 79,924 1,140,016

0.5 7.246 142,813 2,217,010

0.4 7.613 269,936 4,517,010

0.3 7.907 571,544 10,170,589

0.2 8.109 1,518,543 28,339,339

0.1 8.272 7,074,770 137,693,241

0.05 8.341 30,399,057 603,233,250

data are embedded in the augmented space at a distance ρ = 1 from the origin in the

additional dimension.

Table 7.2: Experimental results for the reduced sonar dataset. The directional margin
γ′d, the number of epochs (eps) and updates (upds) are given for the Perceptron and

CRAMMA0.5 with ηeff = 0.001( β
R

)−1.

Perceptron CRAMMA0.5

b
ηR2 103γ′d eps upds β

R 103γ′d eps upds

0.7 5.164 15,651 189,313 0.58 5.110 17,170 190,542

1.02 5.846 19,366 251,534 0.78 5.840 23,806 271,193

1.795 6.600 27,793 402,849 1.13 6.594 34,409 432,445

3.9 7.266 53,388 820,261 1.685 7.291 60,569 785,941

5.4 7.453 71,912 1,117,124 2 7.461 79,658 1,047,756

20 7.802 252,938 3,977,612 3 7.816 153,699 2,143,988

30 7.845 376,879 5,930,214 3.1 7.847 161,573 2,273,854

90 7.906 1,119,031 17,647,271 3.92 7.991 240,255 3,502,155

200 7.923 2,479,699 39,131,402 6.2 8.183 535,618 8,350,654

1000 7.934 12,372,127 195,358,932 30 8.367 10,011,400 186,826,387

First we analyse the training dataset of the sonar classification problem, consisting

of 104 instances, as selected for the aspect-angle dependent experiment in [24]. This

subset of the full sonar dataset will be called here the reduced sonar dataset. If the

choice ρ = 1 is made R ≃ 3.8121 and γd ≃ 0.00841. Our experimental results for

ALMA2, the Perceptron, CRAMMA0.5, agg- ROMMA and MICRA0.05,0.9 are presented

in Tables 7.1, 7.2 and 7.3. We see that ALMA2 is the slowest by far in every respect.

Also, MICRA0.05,0.9 is certainly the fastest as far as the number of updates is concerned

with agg-ROMMA needing fewer epochs in the vicinity of the maximum margin γd.

Moreover, the data suggest that the Perceptron is not able to obtain margins arbitrarily

close to the maximum one. CRAMMA0.5, instead, with an effective learning rate scaling

with β according to Theorem 5.2 (with δ = 1) shows no difficulty in approaching γd.

The same holds for MICRA0.05,0.9 since the condition of Theorem 5.4 is satisfied.
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Table 7.3: Experimental results for the reduced sonar dataset. The directional
margin γ′d, the number of epochs (eps) and updates (upds) are given for the algorithms
agg-ROMMA and MICRA0.05,0.9.

agg-ROMMA MICRA0.05,0.9 with η = 50

δ 103γ′d eps upds 103 β
R 103γ′d eps upds

0.5 5.055 15,336 210,228 2.4 5.242 11,422 104,925

0.4 5.839 19,661 307,344 2.8 5.902 15,215 140,633

0.3 6.558 25,937 466,874 3.2 6.629 20,854 200,516

0.2 7.278 37,648 778,412 3.6 7.303 33,956 331,057

0.1 7.851 63,503 1,546,595 4.04 7.864 74,309 706,274

0.08 7.992 75,049 1,865,629 4.165 8.004 98,110 939,695

0.05 8.187 108,123 2,716,711 4.43 8.192 199,378 1,932,165

0.01 8.367 700,361 14,079,715 4.95 8.367 1,153,031 11,610,899

Table 7.4: Experimental results for the reduced sonar dataset. The directional margin
γ′d, the number of epochs (eps) and updates per epoch (upds/ep) are given for the
CRAMMA1 algorithm with the parameter η0 taking the values η0 = 1, 2, 5 and δ = 1.

η0 = 1 η0 = 2 η0 = 5
β
R 103γ′d eps upds

ep 103γ′d eps upds
ep 103γ′d eps upds

ep

1000 6.70 36,815 15.6
2000 7.25 65,415 16.1
3000 7.47 94,909 16.2
5000 7.61 154,057 16.3 7.68 137,493 18.1
7000 7.67 212,595 16.4 7.81 187,984 18.2
10000 7.72 299,476 16.5 7.91 264,053 18.3
20000 7.78 593,527 16.5 8.03 517,399 18.4 8.08 465,477 20.3
40000 7.82 1,179,629 16.5 8.08 1,024,704 18.4 8.22 905,121 20.5
60000 7.83 1,766,427 16.5 8.10 1,531,253 18.4 8.27 1,346,366 20.6

Table 7.5: Experimental results for the reduced sonar dataset. The directional mar-
gin γ′d, the number of epochs (eps) and updates per epoch (upds/ep) are given for

CRAMMA1 with ηeff = 0.06( β
R

)−0.6.

β
R 1000 3000 5000 10000 20000 40000 60000 100000

103γ′d 6.69 7.45 7.67 7.93 8.10 8.22 8.26 8.31

eps 36,539 89,456 138,787 258,166 486,452 925,161 1,350,509 2,177,247

upds/ep 15.6 17.2 17.9 18.6 19.4 20.1 20.5 21.1

For values of ǫ ≥ 1 in CRAMMA ηeff can no longer scale with β like
(

β
R

)−1
if the

algorithm is to approach γd arbitrarily close. This is illustrated in Tables 7.4, 7.5 and

7.6. From Table 7.4 we see that if ǫ = δ = 1 the directional margin achieved by

CRAMMA approaches as β/R grows an upper bound which, however, becomes larger

as η0 becomes larger. This is in agreement with the analysis of the special cases following

Theorem 5.2. Also, from Tables 7.5 and 7.6 we see that CRAMMA with ǫ = 1 and ǫ = 2

is able to approach γd arbitrarily close if δ takes the sufficiently small values δ = 0.6 and

δ = 0.3, respectively (satisfying 0 < ǫδ = 0.6 < 1).
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Table 7.6: Experimental results for the reduced sonar dataset. The directional margin
γ′d, the number of epochs (eps) and updates per epoch (upds/ep) are given for the

CRAMMA2 algorithm with ηeff = 0.4( β
R

)−0.3.

β
R 106 107 108 109 1010 1011 1012 1013

103γ′d 1.03 3.66 5.52 6.69 7.37 7.80 8.10 8.27

eps 8,534 7,243 14,264 35,849 98,873 281,397 821,499 2,443,708

upds/ep 8.3 14.7 18.5 21.1 23.0 24.9 26.4 27.8

Table 7.7: The number of updates (upds) required to achieve γ′d ≃ 0.00819 in the
reduced sonar dataset with MICRA and ALMA2. For MICRA various ǫ, ζ values are
considered and the η values employed are given.

ǫ, ζ 0.005, 0.99 0.05, 0.9 0.1, 0.8 0.15, 0.7 0.2, 0.6 0.2, 0.5 0.5, 0.5
ALMA2

η 90 60 17 4.4 1.2 0.28 0.35

upds/106 1.53 1.86 2.32 2.89 3.57 3.74 7.54 53.4

We also present in Table 7.7 the number of updates required to achieve a margin γ′d ≃
0.00819 using MICRA with several ǫ, ζ values and ALMA2. For ALMA2 the accuracy

parameter α was set to α = 0.1527 (η =
√

2). From Table 7.7 it becomes clear that small

ǫ’s combined with relatively large ζ’s lead to faster convergence. This is also consistent

with our earlier observation that MICRA0.05,0.9 is faster than CRAMMA0.5.

Table 7.8: Experimental results for the reduced sonar dataset. The directional margin
γ′d, the number of epochs (eps) and updates (upds) are given for the Incremental, the
Perceptron+boosting and the Bolzano+boosting algorithms.

Incremental Perceptron+boosting Bolzano+boosting

103γ′d eps upds 103γ′d eps upds 103γ′d eps upds

1.022 2,264 48,041 3.298 9,046 72,812 5.978 36,589 573,185

2.009 3,007 60,211 4.006 9,335 73,781 6.201 42,996 619,457

3.005 4,174 79,858 5.087 10,223 78,238 6.866 73,478 848,233

4.011 5,541 105,006 5.826 11,867 88,409 7.087 87,580 959,582

5.006 7,788 157,705 6.560 17,841 143,310 7.309 104,515 1,085,093

6.005 11,545 256,814 7.272 35,361 301,791 7.529 131,117 1,279,072

7.001 18,961 482,340 7.631 62,856 536,125 7.756 176,242 1,628,747

8.000 42,069 1,271,432 7.999 110,609 942,704 7.974 246,622 2,156,854

In Table 7.8 we present the experimental results on the reduced sonar dataset for the

Incremental, the Perceptron+boosting and the Bolzano+boosting algorithms. In im-

plementing the Incremental scenario we first attempted successfully to find a solution

possessing a margin value of 0.0001 and subsequently starting from a value of 0.001

we proceeded in steps of 0.001. In the Perceptron+boosting scenario the relevant for

the Perceptron stage parameter b/(ηR2) was set to the value 0.1. Also, the step of

the boosting scenario was chosen as 0.2βp. The parameters λ controlling the effective

learning rates of the two boosting stages were set to the values 0.1 and 0.03, respec-

tively, whereas the maximum number of epochs in each step during the boosting stages



Chapter 7 Implementation and Experiments 128

was set to 30,000. In the Bolzano stage of the Bolzano+boosting scenario we set the

maximum number of epochs in each trial to 2,000 and the parameter λ controlling ηeff

to the value 0.5. The step of the boosting scenario was set to 0.05βb, λ was given the

value 0.1 and the maximum number of epochs in each boosting step was set to 50,000.

Comparing the results of Table 7.8 with the ones of Tables 7.1, 7.2 and 7.3 we observe

that the algorithmic implementations with fixed margin condition perform impressively

well for values of the margin up to 90-95% of the maximum. More specifically, the In-

cremental algorithm is faster than agg-ROMMA with respect to the number of epochs

whereas the Perceptron+boosting algorithm is as fast as MICRA with respect to the

number of updates. Of course, the approximate algorithmic implementations involving

the algorithms with fixed margin condition are not expected to be able to approach the

maximum margin solution with infinite accuracy.

Table 7.9: Experimental results for the full sonar dataset. The directional margin
γ′d, the number of epochs (eps) and updates (upds) are given for ALMA2.

ALMA2 with η =
√

2

α 104γ′d eps upds

0.9 4.827 590,503 6,983,057

0.8 6.948 1,369,844 17,109,556

0.7 8.117 2,661,057 36,675,901

0.6 8.921 4,754,748 73,573,111

0.5 9.514 8,741,022 146,643,468

0.4 9.888 17,352,052 302,755,125

0.3 10.189 38,633,099 689,442,423

0.2 10.435 105,851,542 1,932,030,238

We also analyse the full sonar dataset (208 instances, 60 attributes). If the choice ρ = 1

is made R ≃ 4.05347 and γd ≃ 0.00108. Our experimental results for ALMA2, the

Perceptron, CRAMMA0.5, agg- ROMMA and MICRA0.05,0.9 are presented in Tables

7.9, 7.10 and 7.11. We see that ALMA2 is again the slowest by far. Also, MICRA0.05,0.9

is now the fastest in every respect. It is also surprising that in the full sonar dataset,

unlike the case of the reduced one, the Perceptron performs better than CRAMMA for

larger values of the margin and seems now able to obtain margins arbitrarily close to the

maximum one. Nevertheless, CRAMMA0.5 encounters no difficulty in approaching γd

since the effective learning rate scales with β according to Theorem 5.2 (with δ = 1). It

is worth noticing the relatively poor performance of agg-ROMMA which becomes faster

than the Perceptron and CRAMMA only in the vicinity of the maximum margin γd.

In Table 7.12 we present the experimental results on the full sonar dataset for the

Incremental, the Perceptron+boosting and the Bolzano+boosting algorithms. In im-

plementing the incremental scenario we first attempted successfully to find a solution

possessing a margin value of 0.00001 and subsequently starting from a value of 0.0001245

we proceeded in steps of 0.0001. The choice 0.0001245 for the starting value was made

on purpose in order to obtain results facilitating comparison with the results obtained
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Table 7.10: Experimental results for the full sonar dataset. The directional margin
γ′d, the number of epochs (eps) and updates (upds) are given for the Perceptron and

CRAMMA0.5 with ηeff = 0.0009( β
R

)−1.

Perceptron CRAMMA0.5

b
ηR2 104γ′d eps upds β

R 104γ′d eps upds

0.1 3.013 317,236 3,768,696 0.15 3.566 252,880 2,913,907

0.21 4.782 373,765 4,959,623 0.212 4.952 231,481 3,299,900

0.25 5.054 403,845 5,427,076 0.25 5.271 252,482 3,733,395

0.35 6.014 447,728 6,523,043 0.33 6.111 312,643 4,803,955

0.565 7.185 586,319 8,979,027 0.46 7.208 425,100 6,830,466

0.856 8.096 762,101 12,424,800 0.64 8.100 624,641 10,270,636

1.33 8.841 1,098,515 18,192,933 0.85 8.858 941,508 15,303,304

1.6 9.084 1,272,066 21,453,825 1 9.143 1,203,891 19,669,949

2.45 9.573 1,796,255 31,840,232 1.3 9.607 1,829,201 30,251,396

6.5 10.251 4,304,174 79,697,293 2.4 10.250 5,431,100 90,383,282

16 10.526 10,241,501 191,253,084 3.8 10.502 12,735,868 215,412,511

100 10.692 62,640,551 1,173,868,363 10 10.687 81,646,924 1,438,684,876

Table 7.11: Experimental results for the full sonar dataset. The directional margin
γ′d, the number of epochs (eps) and updates (upds) are given for the agg-ROMMA and
MICRA0.05,0.9 algorithms.

agg-ROMMA MICRA0.05,0.9 with η = 150

δ 104γ′d eps upds 104 β
R 104γ′d eps upds

0.9 1.811 180,303 2,417,577 1 2.106 112,702 1,331,940

0.8 3.414 228,621 3,286,905 1.8 3.573 142,422 1,662,302

0.7 4.886 290,748 4,522,890 2.6 5.134 181,877 2,144,917

0.6 6.095 372,599 6,409,592 3.2 6.212 227,749 2,719,002

0.5 7.177 487,850 9,264,967 3.8 7.242 292,363 3,593,417

0.4 8.053 732,700 13,651,702 4.3 8.123 371,230 4,675,575

0.3 8.840 1,132,067 21,875,812 4.76 8.870 485,894 6,227,397

0.2 9.558 1,827,925 38,971,344 5.3 9.610 796,517 9,939,642

0.1 10.224 3,514,909 92,847,921 5.92 10.253 1,848,445 24,475,813

0.05 10.527 6,572,401 193,211,437 6.31 10.530 3,805,949 51,288,513

0.01 10.745 37,759,162 969,757,899 7.1 10.748 26,133,573 360,112,068

using the other algorithms. In the Perceptron+boosting scenario the relevant for the

Perceptron stage parameter b/(ηR2) was set to the value 0.1. Also, the step of the boost-

ing scenario was chosen as 0.2βp. The parameters λ controlling the effective learning

rates of the two boosting stages were set again to the values 0.1 and 0.03, respectively,

whereas the maximum number of epochs in each step during the boosting stages was

set to 300,000. In the Bolzano stage of the Bolzano+boosting scenario we set the max-

imum number of epochs in each trial to 30,000 and the parameter λ controlling ηeff

to the value 1. The step of the boosting scenario was set to 0.005βb, λ was given the

value 0.25 and the maximum number of epochs in each boosting step was set to 10,000.
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Comparing the results of Table 7.12 with the ones of Tables 7.9, 7.10 and 7.11 we ob-

serve once more that the algorithmic implementations with fixed margin condition, with

the exception of the Bolzano+boosting scenario, perform impressively well for values of

the margin up to 90-95% of the maximum. More specifically, the Perceptron+boosting

scenario is approximately 2 times faster than MICRA for values of the margin close to

95% of the maximum. It is worth pointing out that the boosting stage of the Percep-

tron+boosting algorithm is extremely efficient requiring only a relatively low number of

epochs or updates in order to upgrade the solutions with low margin values provided by

the Perceptron stage.

Table 7.12: Experimental results for the full sonar dataset. The directional margin
γ′d, the number of epochs (eps) and updates (upds) are given for the Incremental, the
Perceptron+boosting and the Bolzano+boosting algorithms.

Incremental Perceptron+boosting Bolzano+boosting

104γ′d eps upds 104γ′d eps upds 104γ′d eps upds

0.114 42,253 1,685,953 4.222 317,402 3,769,039 3.596 408,312 8,894,285

1.248 44,496 1,743,753 4.852 317,825 3,770,643 3.700 408,348 8,894,364

2.246 50,450 1,920,776 5.461 318,264 3,772,358 3.905 408,474 8,894,648

3.250 62,365 2,298,515 6.041 318,675 3,774,000 4.021 408,609 8,895,017

4.245 85,500 3,116,392 6.636 319,163 3,776,124 4.204 410,252 8,900,020

5.248 116,793 4,266,063 7.236 320,227 3,781,114 4.401 424,310 8,940,481

6.245 156,377 5,808,864 7.842 322,895 3,797,249 4.502 439,443 8,976,933

7.246 205,259 7,781,493 8.445 328,812 3,842,018 4.615 461,978 9,035,328

8.246 269,331 10,544,159 9.049 357,818 4,071,167 4.714 483,663 9,089,719

9.247 402,128 16,613,580 9.657 499,316 5,388,230 4.805 509,931 9,153,537

10.245 1,029,414 47,619,950 10.246 1,053,977 12,081,623 4.858 524,286 9,189,881

7.1.1.2 The Artificial Dataset LS-10

Table 7.13: Experimental results for the artificial dataset LS-10. The directional
margin γ′d, the number of epochs (eps) and updates (upds) are given for ALMA2.

ALMA2 with η =
√

2

α 103γ′d eps upds

0.9 1.560 89,633 316,096

0.8 2.168 227,394 839,473

0.7 2.393 509,266 1,946,876

0.6 2.553 1,030,497 4,180,679

0.5 2.721 1,775,427 8,356,361

0.4 2.761 3,582,989 17,853,849

0.3 2.816 7,954,304 41,564,517

0.2 2.855 22,124,883 118,767,267

0.1 2.885 108,209,065 588,576,481

The binary artificial dataset known as LS-10 has instances with 10 attributes the values

of which are produced according to a uniform distribution in the interval [0,1]. The
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attributes xi of the instances belonging to the first class satisfy the inequality x1 +

· · · + x5 < x6 + · · · + x10 with the attributes of the instances of the other satisfying

the inverse inequality. To perform our experiments we produced a LS-10 dataset with

1000 instances equally divided into two classes. In all our experiments with this set

the data are embedded in the augmented space at a distance ρ = 1 from the origin

in the additional dimension. For the specific dataset produced according to the above

procedure the choice ρ = 1 leads to R ≃ 2.749 and γd ≃ 0.00291.

Table 7.14: Experimental results for the artificial dataset LS-10. The directional
margin γ′d, the number of epochs (eps) and updates (upds) are given for the Perceptron

and CRAMMA1 with ηeff = 0.015( β
R

)−0.95.

Perceptron CRAMMA1

b
ηR2 103γ′d eps upds β

R 103γ′d eps upds

0.15 1.356 53,375 182,079 6 1.408 2,312 12,092

0.3 1.787 70,914 266,191 8 1.831 1,862 12,381

0.43 2.052 92,782 351,609 10 2.124 1,807 13,683

0.8 2.335 148,389 583,895 16 2.370 1,836 18,776

1.25 2.530 199,433 841,741 24 2.547 2,298 26,484

1.62 2.648 216,945 1,025,056 39.5 2.661 3,129 41,397

1.89 2.698 249,217 1,206,358 42 2.698 3,202 43,633

2.5 2.754 308,453 1,572,668 75 2.789 4,740 74,211

5 2.813 539,763 3,000,567 130 2.817 8,419 127,015

11 2.866 1,126,815 6,463,168 270 2.869 17,862 259,291

30 2.892 3,000,437 17,495,732 700 2.892 50,141 665,720

55 2.901 5,457,872 32,001,008 1600 2.901 124,393 1,516,142

Table 7.15: Experimental results for the artificial dataset LS-10. The directional
margin γ′d, the number of epochs (eps) and updates (upds) are given for the algorithms
agg-ROMMA and MICRA0.05,0.9.

agg-ROMMA MICRA0.05,0.9 with η = 1.1

δ 103γ′d eps upds 103 β
R 103γ′d eps upds

0.8 1.402 24,653 92,923 0.72 1.554 119 2,783

0.7 1.808 33,467 145,912 0.95 1.877 122 2,835

0.6 2.102 44,397 218,501 1.16 2.142 249 3,307

0.5 2.360 62,347 330,751 1.3 2.374 519 4,127

0.4 2.532 103,951 543,610 1.43 2.573 1,089 5,928

0.3 2.632 188,071 1,001,102 1.52 2.663 1,747 8,303

0.2 2.691 372,954 2,273,537 1.55 2.700 2,176 9,591

0.1 2.804 792,503 5,230,325 1.68 2.828 4,891 19,077

0.07 2.838 1,144,998 7,618,917 1.719 2.852 6,204 24,387

0.05 2.866 1,610,371 10,658,391 1.77 2.874 10,988 40,238

0.02 2.892 4,057,295 26,332,267 1.867 2.892 27,260 97,522

0.01 2.901 8,169,278 52,805,473 1.949 2.901 60,240 214,054
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Our experimental results for ALMA2, the Perceptron, CRAMMA1, agg- ROMMA and

MICRA0.05,0.9 are presented in Tables 7.13, 7.14 and 7.15. We see that ALMA2 is again

the slowest by far. MICRA0.05,0.9 is again the fastest by far in every respect followed

by CRAMMA1. The Perceptron and agg-ROMMA are much slower than MICRA and

CRAMMA with the Perceptron being faster than agg-ROMMA for larger margins and

able to approach the maximum margin γd ≃ 0.00291. Since we chose the value ǫ = 1 for

CRAMMA a value δ = 0.95 < 1 had to be chosen according to Theorem 5.2.

In Table 7.16 we present the experimental results on the LS-10 dataset for the Incremen-

tal, the Perceptron+boosting and the Bolzano+boosting algorithms. In implementing

the incremental scenario we first attempted successfully to find a solution possessing a

margin value of 0.0002 and subsequently we proceeded in steps of 0.0003. In the Per-

ceptron+boosting scenario the relevant for the Perceptron stage parameter b/(ηR2) was

set to the value 0.01. Also, the step of the boosting scenario was chosen as 0.1βp. The

parameters λ controlling the effective learning rates of the two boosting stages were set

again to the values 0.1 and 0.03, respectively, whereas the maximum number of epochs

in each step during the boosting stages was set to 3,000. In the Bolzano stage of the

Bolzano+boosting scenario we set the maximum number of epochs in each trial to only

50 and the parameter λ controlling ηeff to the value 0.5. The step of the boosting sce-

nario was set to 0.005βb, λ was given the value 0.025 and the maximum number of

epochs in each boosting step was set to 5,000. From Table 7.16 we see that the fastest

algorithm in all respects is the Incremental followed by the Bolzano+boosting and the

Perceptron+boosting. If we take into account the results of Tables 7.13, 7.14 and 7.15

we may say that MICRA0.05,0.9 is more or less comparable to the last two algorithms in

the above classification.

Table 7.16: Experimental results for the artificial dataset LS-10. The directional
margin γ′d, the number of epochs (eps) and updates (upds) are given for the Incremental,
the Perceptron+boosting and the Bolzano+boosting algorithms.

Incremental Perceptron+boosting Bolzano+boosting

103γ′d eps upds 103γ′d eps upds 103γ′d eps upds

1.114 115 874 2.404 4,450 14,327 2.693 1,270 11,218

1.411 152 1,066 2.478 4,458 14,351 2.762 1,869 12,659

1.703 195 1,316 2.556 4,470 14,391 2.846 4,592 19,081

2.009 247 1,615 2.629 4,480 14,421 2.856 8,467 30,473

2.308 308 1,963 2.714 4,494 14,459 2.871 12,177 41,782

2.600 473 3,269 2.780 4,544 14,582 2.880 16,582 54,970

2.901 4,297 32,273 2.850 7,564 25,263 2.891 20,337 66,377

7.1.1.3 The Dataset WBC−11

The linearly separable dataset WBC−11 consists of 672 instances each with 9 attributes.

We constructed it from the Wisconsin Breast Cancer (WBC) dataset obtainable from
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Table 7.17: Experimental results for the WBC−11 dataset. The directional margin
γ′d, the number of epochs (eps) and updates (upds) are given for ALMA2.

ALMA2 with η =
√

2

α 102γ′d eps upds

0.9 1.324 259,019 973,702

0.8 1.783 648,397 2,704,552

0.7 2.008 1,446,449 6,254,522

0.6 2.141 3,003,292 13,320,424

0.5 2.228 6,126,330 27,666,245

0.4 2.290 12,869,852 58,927,860

0.3 2.336 29,574,927 136,925,778

0.2 2.373 83,529,043 390,186,724

0.1 2.402 409,746,613 1,928,029,375

Table 7.18: Experimental results for the WBC−11 dataset. The directional margin
γ′d, the number of epochs (eps) and updates (upds) are given for the Perceptron and

CRAMMA0.5 with ηeff = 0.00006( β
R

)−1.

Perceptron CRAMMA0.5

b
ηR2 102γ′d eps upds β

R 102γ′d eps upds

0.1 0.861 151,723 501,541 0.021 0.899 1,998 10,174

0.17 1.162 188,455 686,703 0.038 1.213 3,566 18,066

0.26 1.413 238,097 946,966 0.056 1.430 5,314 26,836

0.4 1.650 330,060 1,401,984 0.195 1.659 49,750 239,778

0.65 1.880 464,581 2,058,524 0.329 1.885 106,224 524,046

0.97 2.033 623,833 2,894,811 0.455 2.033 172,418 859,626

1.8 2.197 1,059,020 4,980,423 0.64 2.201 292,732 1,458,022

4.1 2.321 2,241,988 10,761,773 0.81 2.322 418,691 2,088,673

8.5 2.374 4,499,804 21,798,933 1.05 2.374 667,983 3,356,490

45 2.415 23,240,723 113,406,210 4.7 2.415 14,220,901 64,987,024

the UCI repository by first omitting the 16 instances with missing attributes and sub-

sequently removing from the dataset containing the remaining 683 instances the 11

instances having the positions 2, 4, 191, 217, 227, 245, 252, 286, 307, 420 and 475. In

our experiments we chose the value ρ = 30 for the parameter ρ of the augmented space

which led to R =
√

1716 and γd ≃ 0.0243.

Our experimental results for ALMA2, the Perceptron, CRAMMA0.5, agg- ROMMA and

MICRA0.1,0.8 are presented in Tables 7.17, 7.18 and 7.19. We see that ALMA2 is again

the slowest by far. The superiority of the performance of MICRA0.1,0.8 on this dataset

is remarkable. CRAMMA0.5 performs also very well taking easily the second position

among the above mentioned algorithms. The Perceptron and agg-ROMMA are much

slower than MICRA and CRAMMA with the Perceptron being faster than agg-ROMMA

for all values of the margin and able to approach γd ≃ 0.0243.
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Table 7.19: Experimental results for the WBC−11 dataset. The directional margin
γ′d, the number of epochs (eps) and updates (upds) are given for the algorithms agg-
ROMMA and MICRA0.1,0.8.

agg-ROMMA MICRA0.1,0.8 with η = 2.3

δ 102γ′d eps upds 103 β
R 102γ′d eps upds

0.8 0.839 154,575 552,707 0.5 0.937 872 4,087

0.7 1.122 186,442 827,561 0.7 1.348 896 4,373

0.6 1.403 223,103 1,153,779 0.82 1.477 978 4,949

0.5 1.642 280,170 1,630,857 0.95 1.682 1,042 5,335

0.4 1.847 374,253 2,382,480 1.45 1.897 24,945 106,884

0.3 2.030 547,813 3,541,471 1.64 2.047 36,277 161,918

0.2 2.195 868,845 5,784,868 1.86 2.203 59,002 276,094

0.1 2.318 2,071,529 13,931,792 2.07 2.324 96,899 467,369

0.05 2.373 4,590,007 31,156,487 2.22 2.376 150,039 755,815

0.03 2.394 8,036,424 54,749,006 2.39 2.400 303,195 1,429,303

0.01 2.415 25,361,230 174,388,827 2.7 2.415 1,037,611 4,533,155

Table 7.20: Experimental results for the WBC−11 dataset. The directional margin
γ′d, the number of epochs (eps) and updates (upds) are given for the Incremental, the
Perceptron+boosting and the Bolzano+boosting algorithms.

Incremental Perceptron+boosting Bolzano+boosting

102γ′d eps upds 102γ′d eps upds 102γ′d eps upds

0.626 206 1,205 1.497 264,516 1,076,473 1.509 9,042 637,047

0.908 238 1,328 1.647 264,951 1,077,845 1.643 9,428 637,880

1.203 437 2,075 1.797 266,206 1,081,684 1.790 10,303 639,854

1.502 7,816 57,388 1.947 343,809 1,425,412 1.972 11,490 642,942

1.800 18,888 148,344 2.096 438,366 1,852,761 2.082 12,548 646,294

2.101 40,091 332,117 2.246 533,354 2,286,890 2.228 96,599 972,145

2.400 233,306 2,200,969 2.396 681,987 2,950,450 2.301 139,606 1,146,128

In Table 7.20 we present the experimental results on the WBC−11 dataset for the Incre-

mental, the Perceptron+boosting and the Bolzano+boosting algorithms. In implement-

ing the incremental scenario we first attempted successfully to find a solution possessing

a margin value of 0.001 and subsequently starting from the value 0.003 we proceeded

in steps of 0.003. In the Perceptron+boosting scenario the relevant for the Perceptron

stage parameter b/(ηR2) was set to the value 0.3. Also, the step of the boosting scenario

was chosen as 0.1βp. The parameters λ controlling the effective learning rates of the

two boosting stages were set again to the values 0.1 and 0.03, respectively, whereas the

maximum number of epochs in each step during the boosting stages was set to 100,000.

In the Bolzano stage of the Bolzano+boosting scenario we set the maximum number of

epochs in each trial to only 700 and the parameter λ controlling ηeff to the value 0.5.

The step of the boosting scenario was set to 0.025βb, λ was given the value 0.1 and the

maximum number of epochs in each boosting step was set to 30,000. From Table 7.20

we see that the fastest scenario involving the fixed margin condition algorithms is the

Incremental followed by the Bolzano+boosting. If we take into account the results of
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Tables 7.17, 7.18 and 7.19 we may say that only MICRA0.05,0.9 is faster than the fixed

margin condition scenarios.

7.1.2 Inseparable Data

For linearly inseparable datasets we consider an instance space extended by as many

dimensions as the instances where each instance is placed at a distance |∆| from the

origin in the corresponding dimension. Then, relying on the analysis of Section 6.2, we

seek separation in this extended space with large margin.

An important property of the extended space is the existence of a lower bound on the

maximum directional margin Γ∆opt in that space given by (6.13) which depends only on

the parameter ∆ of the extended space and the number l of patterns. The existence of

such a lower bound is very helpful because it allows us to determine acceptable values

of ηeff for CRAMMAǫ. Indeed, if we set

ηeff = η0

(

β

R

)−δ

with η0 <
1

2

(
√

1 + 8
|∆|
R
√
l
− 1

)

and 0 < ǫδ < 1 the conditions of Theorem 5.2 are automatically satisfied for β > R.

We also take advantage of another property of the extended space in order to attempt

an assessment of the relative deviation of the margin Γ∆ found from the (unknown)

maximum Γ∆opt: the quantities D and D′ defined in Section 6.2 for which D′ ≥ D holds

become equal, according to Remark 6.3, if the optimal extended solution vector is found.

Thus, we may take the relative deviation

δD

D
≡ D′ −D

D

as a measure of the departure from optimality. In order to test this idea we will compare

in our experiments δD/D with the relative deviation

δΓ

Γ
≡ Γ∆opt − Γ∆

Γ∆opt

of Γ∆ from Γ∆opt.

7.1.2.1 The WBC Dataset

The linearly inseparable Wisconsin Breast Cancer (WBC) dataset, obtainable from the

UCI repository, comprises 683 instances each with 9 attributes after ignoring the 16

instances with missing attributes. We embed the data in the augmented space at a dis-

tance ρ = 10 from the origin in the additional dimension and we construct the extended
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instance space with a parameter ∆ = 1. This leads to R =
√

917 and to a maximum

margin Γ∆opt ≃ 0.13033 with respect to zero-threshold hyperplanes in the extended (and

augmented) space.

Table 7.21: Experimental results for the WBC dataset (extended with ∆ = 1). The

relative deviations δD
D

and δΓ
Γ , the margin Γ∆ and the number of epochs (eps) and

updates (upds) are given for ALMA2.

ALMA2 with η =
√

2

α 10 δD
D 10 δΓ

Γ 103Γ∆ eps upds

0.9 3.86 4.05 77.52 1,520 16,533

0.8 2.72 2.58 96.73 4,039 50,778

0.7 1.82 1.77 107.23 7,230 118,230

0.6 1.13 1.16 115.24 11,666 248,460

0.5 0.81 0.81 119.76 20,147 512,248

0.4 0.53 0.53 123.36 36,614 1,084,841

0.3 0.33 0.33 126.01 77,085 2,518,152

0.2 0.19 0.19 127.84 203,016 7,184,571

0.1 0.08 0.08 129.33 945,965 35,542,411

Table 7.22: Experimental results for the WBC dataset (extended with ∆ = 1). The

relative deviations δD
D

and δΓ
Γ , the margin Γ∆ and the number of epochs (eps) and up-

dates (upds) are given for the Perceptron and CRAMMA0.5 with ηeff = 1.7
R
√

683

(

β
R

)−1

.

Perceptron CRAMMA0.5

b
ηR2 10 δD

D 10 δΓ
Γ 103Γ∆ eps upds β

R 10 δD
D 10 δΓ

Γ 103Γ∆ eps upds

0.22 4.20 4.49 71.82 1,553 20,358 0.313 5.46 4.47 72.10 1,001 17,958

0.34 3.59 3.60 83.38 1,926 27,705 0.46 4.24 3.62 83.09 1,637 28,786

0.64 2.70 2.73 94.74 3,049 46,592 0.682 3.01 2.75 94.47 2,871 49,358

1.48 1.76 1.70 108.15 4,824 95,244 1.19 1.77 1.71 108.01 5,717 111,833

3.5 0.90 0.87 119.05 8,300 206,468 1.98 0.85 0.87 118.93 11,114 254,331

4.95 0.64 0.63 122.15 11,563 285,567 2.3 0.62 0.65 121.91 13,993 328,997

8.1 0.45 0.44 124.62 18,730 457,333 2.8 0.42 0.44 124.58 18,648 464,755

70 0.18 0.18 128.04 160,306 3,843,624 5.18 0.17 0.17 128.07 55,548 1,502,210

700 0.15 0.15 128.37 1,599,408 38,336,600 11.11 0.08 0.08 129.27 208,338 6,773,596

Our experimental results for ALMA2, the Perceptron, CRAMMA0.5, agg- ROMMA and

MICRA0.05,0.9 are presented in Tables 7.21, 7.22 and 7.23. We see that ALMA2 is the

slowest for large values of the margin. MICRA0.05,0.9 is again the fastest by far with

respect to the number of updates with agg-ROMMA needing fewer epochs in order to

converge to large margin hyperplanes. Moreover, the Perceptron is apparently unable

to approach the maximum margin arbitrarily close. CRAMMA0.5, instead, is able to

approach Γ∆opt ≃ 0.13033 as close as one wishes since the choice ηeff = 1.7
R
√

683

(

β
R

)−1

satisfies the conditions of Theorem 5.2. It is worth noticing that for all algorithms the

quantity δD/D proves a surprisingly accurate measure of the relative deviation δΓ/Γ of

Γ∆ from Γ∆opt, especially if the margins attained are relatively large.



Chapter 7 Implementation and Experiments 137

Table 7.23: Experimental results for the WBC dataset (extended with ∆ = 1). The

relative deviations δD
D

and δΓ
Γ , the margin Γ∆ and the number of epochs (eps) and

updates (upds) are given for the agg-ROMMA and MICRA0.05,0.9.

agg-ROMMA MICRA0.05,0.9 with η = 20

δ 10 δD
D 10 δΓ

Γ 103Γ∆ eps upds 103 β
R 10 δD

D 10 δΓ
Γ 103Γ∆ eps upds

0.5 4.65 4.43 72.59 1,734 13,983 3.8 3.79 4.34 73.77 1,278 7,810

0.4 3.59 3.53 84.36 2,439 20,822 4.5 3.28 3.45 85.40 1,878 11,583

0.3 2.48 2.64 95.91 3,138 33,728 5.2 2.19 2.60 96.48 2,586 18,792

0.2 1.55 1.69 108.36 4,964 62,751 6.1 1.39 1.66 108.69 4,245 40,824

0.1 0.76 0.86 119.16 9,238 169,588 7.02 0.68 0.83 119.57 6,632 105,964

0.07 0.54 0.60 122.48 12,181 273,864 7.35 0.52 0.59 122.59 9,298 151,695

0.05 0.40 0.43 124.68 14,860 409,956 7.54 0.37 0.43 124.70 12,104 183,643

0.02 0.17 0.17 128.08 21,777 976,028 7.99 0.14 0.17 128.09 23,946 334,565

0.01 0.08 0.08 129.28 28,205 1,554,492 8.4 0.05 0.06 129.49 48,106 734,629

In Table 7.24 we present the experimental results on the WBC dataset for the Incremen-

tal, the Perceptron+boosting and the Bolzano+boosting algorithms. In implementing

the incremental scenario we first attempted successfully to find a solution possessing a

margin value of 0.038 and we subsequently proceeded in steps of 0.03. In the Percep-

tron+boosting scenario the relevant for the Perceptron stage parameter b/(ηR2) was set

to 1. Also, the step of the boosting scenario was chosen as 0.05βp. The parameters λ

controlling the effective learning rates of the two boosting stages were set to the values

0.09 and 0.03, respectively, whereas the maximum number of epochs in each step during

the boosting stages was set to 5,000. In the Bolzano stage of the Bolzano+boosting sce-

nario we set the maximum number of epochs in each trial to only 200 and the parameter

λ controlling ηeff to the value 0.5. The step of the boosting scenario was set to 0.1βb,

λ was given the value 0.1 and the maximum number of epochs in each boosting step

was set to 10,000. From Table 7.24 we see that the fastest scenario involving the fixed

margin condition algorithms is the Perceptron+boosting followed by the Incremental.

Their performance seems remarkable even if we take into account the results of Tables

7.21, 7.22 and 7.23. Actually, the Perceptron+boosting scenario competes closely with

MICRA0.05,0.9 for margins up to 98% of the maximum.

Table 7.24: Experimental results for the WBC dataset (extended with ∆ = 1). The
margin Γ∆, the number of epochs (eps) and updates (upds) are given for the Incremen-
tal, the Perceptron+boosting and the Bolzano+boosting algorithms.

Incremental Perceptron+boosting Bolzano+boosting

103Γ∆ eps upds 103Γ∆ eps upds 103Γ∆ eps upds

38.02 1,150 17,946 107.72 4,474 69,929 98.08 11,367 191,687

68.05 3,201 66,323 117.83 7,349 92,461 110.41 15,949 238,592

98.01 6,325 164,701 122.94 11,162 135,456 116.47 19,379 274,348

128.00 21,557 1,040,212 128.07 21,060 331,914 122.62 24,475 337,940
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7.1.2.2 The Votes Dataset

Table 7.25: Experimental results for the votes dataset (extended with ∆ = 1). The

relative deviations δD
D

and δΓ
Γ , the margin Γ∆ and the number of epochs (eps) and

updates (upds) are given for ALMA2.

ALMA2 with η =
√

2

α 10 δD
D 10 δΓ

Γ 103Γ∆ eps upds

0.9 4.57 4.53 91.85 49 508

0.8 4.37 4.37 94.53 70 1,039

0.7 2.90 2.82 120.68 115 1,975

0.6 1.94 2.00 134.47 175 3,655

0.5 1.61 1.52 142.52 331 7,239

0.4 1.12 1.06 150.22 588 14,446

0.3 0.74 0.68 156.54 1,196 32,101

0.2 0.40 0.38 161.69 3,113 88,595

0.1 0.16 0.15 165.39 14,487 428,568

Table 7.26: Experimental results for the votes dataset (extended with ∆ = 1). The

relative deviations δD
D

and δΓ
Γ , the margin Γ∆ and the number of epochs (eps) and up-

dates (upds) are given for the Perceptron and CRAMMA0.5 with ηeff = 1.7
R
√

435

(

β
R

)−1.3

.

Perceptron CRAMMA0.5

b
ηR2 10 δD

D 10 δΓ
Γ 103Γ∆ eps upds β

R 10 δD
D 10 δΓ

Γ 103Γ∆ eps upds

0.73 3.59 3.60 107.53 45 735 0.622 2.57 3.59 107.61 64 767

0.85 3.06 3.32 112.15 47 808 0.661 2.60 3.34 111.91 51 772

0.95 2.24 2.62 123.98 49 869 1.1 2.15 2.70 123.15 95 1,458

2.2 1.52 1.63 140.54 82 1,644 1.8 1.18 1.66 140.14 174 2,972

6.65 0.74 0.74 155.53 214 4,502 3 0.54 0.77 154.99 365 6,828

15.9 0.35 0.36 161.99 491 10,350 4.9 0.27 0.36 161.89 803 16,510

50 0.17 0.18 164.89 1,521 31,937 6.95 0.15 0.18 164.94 1,473 32,102

300 0.10 0.11 166.12 9,068 190,142 10 0.10 0.10 166.24 2,811 65,160

105 0.09 0.10 166.29 3,019,034 63,282,759 15.9 0.05 0.05 167.19 6,558 162,803

The votes dataset, obtainable from the UCI repository, comprises 435 instances each

with 16 attributes. This dataset consists of the votes of each of the U.S. Congressmen

on 16 key issues. We attribute to a “yes” vote the value +1, to a “no” vote the value

-1 and to an unspecified vote the value 0. We embed the data in the augmented space

at a distance ρ = 1 from the origin in the additional dimension and we construct the

extended instance space with a parameter ∆ = 1. This leads to R =
√

18 and a

maximum margin Γ∆opt ≃ 0.16799 with respect to zero-threshold hyperplanes in the

extended (and augmented) space.

Our experimental results for ALMA2, the Perceptron, CRAMMA0.5, agg- ROMMA and

MICRA0.05,0.9 are presented in Tables 7.25, 7.26 and 7.27. We see that ALMA2 is the

slowest. MICRA0.05,0.9 is again the fastest with respect to the number of updates and

agg-ROMMA needs fewer epochs in order to converge to hyperplanes with large margin.
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Table 7.27: Experimental results for the votes dataset (extended with ∆ = 1). The

relative deviations δD
D

and δΓ
Γ , the margin Γ∆ and the number of epochs (eps) and

updates (upds) are given for the agg-ROMMA and MICRA0.05,0.9.

agg-ROMMA MICRA0.05,0.9 with η = 5

δ 10 δD
D 10 δΓ

Γ 103Γ∆ eps upds 104 β
R 10 δD

D 10 δΓ
Γ 103Γ∆ eps upds

0.5 2.45 3.54 108.52 39 443 327 2.49 3.50 109.19 37 460

0.4 2.83 3.44 110.19 46 586 340 2.27 3.22 113.91 43 489

0.3 2.07 2.49 126.08 55 820 411 1.66 2.27 129.79 51 678

0.2 1.41 1.55 141.92 88 1,421 460 1.21 1.44 143.84 71 932

0.1 0.65 0.68 156.53 156 3,282 542 0.56 0.66 156.97 162 2,323

0.05 0.33 0.34 162.27 213 6,253 580 0.28 0.32 162.62 255 4,209

0.03 0.16 0.17 165.12 301 9,885 609 0.16 0.17 165.12 446 7,891

0.02 0.10 0.10 166.29 504 15,055 629 0.09 0.10 166.37 721 13,119

0.01 0.05 0.05 167.21 1,187 37,444 658.7 0.04 0.04 167.24 1,498 29,075

Moreover, the Perceptron, although faster than CRAMMA0.5 away from the maximum

margin, is apparently again unable to approach Γ∆opt arbitrarily close. CRAMMA0.5,

instead, is able to approach Γ∆opt ≃ 0.16799 as close as one wishes since the choice

ηeff = 1.7
R
√

435

(

β
R

)−1.3
satisfies the conditions of Theorem 5.2. Once more the quantity

δD/D proves for all algorithms an accurate measure of the relative deviation δΓ/Γ of

Γ∆ from Γ∆opt.

Table 7.28: Experimental results for the votes dataset (extended with ∆ = 1). The
margin Γ∆, the number of epochs (eps) and updates (upds) are given for the Incremen-
tal, the Perceptron+boosting and the Bolzano+boosting algorithms.

Incremental Perceptron+boosting Bolzano+boosting

103Γ∆ eps upds 103Γ∆ eps upds 103Γ∆ eps upds

45.06 26 386 130.49 56 937 134.23 178 5,594

85.03 51 769 141.44 72 1,045 141.16 326 7,260

125.02 102 1,673 153.05 143 1,784 157.95 387 7,508

165.00 1,648 70,699 164.82 391 6,275 165.06 636 11,496

In Table 7.28 we present the experimental results on the votes dataset for the Incremen-

tal, the Perceptron+boosting and the Bolzano+boosting algorithms. In implementing

the incremental scenario we first attempted successfully to find a solution possessing a

margin value of 0.045 and we subsequently proceeded in steps of 0.04. In the Percep-

tron+boosting scenario the relevant for the Perceptron stage parameter b/(ηR2) was set

to 1. Also, the step of the boosting scenario was chosen as 0.1βp. The parameters λ

controlling the effective learning rates of the two boosting stages were set again to the

values 0.09 and 0.03, respectively, whereas the maximum number of epochs in each step

during the boosting stages was set to 150. In the Bolzano stage of the Bolzano+boosting

scenario we set the maximum number of epochs in each trial to only 50 and the parame-

ter λ controlling ηeff to the value 0.5. The step of the boosting scenario was set to 0.05βb,

λ was given the value 0.05 and the maximum number of epochs in each boosting step
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was set to 250. From Table 7.28 we see that the fastest scenario involving the fixed mar-

gin condition algorithms is the Perceptron+boosting followed by the Bolzano+boosting.

Their performance seems again remarkable even when the results of Tables 7.25, 7.26

and 7.27 are taken into account. Once more the Perceptron+boosting scenario competes

closely with MICRA0.05,0.9 for margins up to 98% of the maximum.

7.2 A “Reduction” Procedure for PLAs

A large proportion of the computer time required for the convergence of a PLA is devoted

to checking the validity of the misclassification condition as the training patterns are

presented sequentially to the algorithm in rounds (epochs). If one had a good way of

guessing which patterns are more likely to be misclassified one could present them more

often to the algorithm, thereby increasing the proportion of computer time devoted to

updating the hypothesis. This motivates us to attempt to reduce the computational cost

by forming a reduced “active set” of patterns consisting of the ones found misclassified

during each epoch which are then cyclically presented to the algorithm for N mini-epochs

unless no update occurs during a mini-epoch. Subsequently, a new full epoch involving

all the patterns takes place giving rise to a new active set. The algorithm terminates

only if no mistake occurs during a full epoch. This procedure clearly amounts to a

different way of sequentially presenting the patterns to the algorithm and should not

affect the applicability of convergence theorems. An algorithm incorporating the above

procedure will be referred to as “reduced”.

We now apply this “reduction” procedure to MICRA and attempt to assess its benefits.

We compared experimentally MICRA and “reduced” MICRA (red-MICRA) on the re-

duced sonar, the WBC−11 and WBC datasets with the results presented in Tables 7.29,

7.30 and 7.31. We observe that the number of full epochs is much lower for red-MICRA

Table 7.29: Experimental results for the reduced sonar dataset. The directional

margin γ′d, the number of epochs (eps) and updates (upds) are given for MICRA0.05,0.9

and the number of full epochs (f-eps), mini epochs (m-eps) and updates (upds) for
red−MICRA0.05,0.9.

MICRA0.05,0.9, η = 50 red−MICRA0.05,0.9, η = 45, N = 80

104 β
R 103γ′d eps upds 104 β

R 103γ′d f-eps m-eps upds

24 5.242 11,422 104,925 22.8 5.260 3,939 18,554 45,436

28 5.902 15,215 140,633 27 5.947 4,607 24,259 60,709

32 6.629 20,854 200,516 30.6 6.664 6,589 34,849 88,347

36 7.303 33,956 331,057 34.6 7.312 9,902 57,260 148,010

40.4 7.864 74,309 706,274 38.8 7.876 16,863 114,199 312,645

41.7 8.006 99,851 950,918 40.3 8.011 22,062 158,925 454,118

44.3 8.192 199,378 1,932,165 42.6 8.195 32,415 276,936 875,417

49.5 8.367 1,153,031 11,610,899 47.8 8.368 80,621 1,171,391 5,749,228
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Table 7.30: Experimental results for the WBC−11 dataset. The directional mar-

gin γ′d, the number of epochs (eps) and updates (upds) are given for MICRA0.1,0.8

and the number of full epochs (f-eps), mini epochs (m-eps) and updates (upds) for
red−MICRA0.1,0.8.

MICRA0.1,0.8, η = 2.3 red−MICRA0.1,0.8, η = 2.1, N = 80

105 β
R 102γ′d eps upds 105 β

R 102γ′d f-eps m-eps upds

145 1.897 24,945 106,884 142 1.901 943 30,122 83,734

164 2.047 36,277 161,918 171 2.070 1,628 70,216 221,760

186 2.203 59,002 276,094 201 2.207 2,408 138,214 585,967

207 2.324 96,899 467,369 222 2.327 3,313 209,862 932,693

222 2.376 150,039 755,815 233 2.376 4,298 270,979 1,224,162

239 2.400 303,195 1,429,303 238 2.405 5,545 301,791 1,343,680

270 2.415 1,037,611 4,533,155 251 2.415 8,162 477,356 2,187,647

Table 7.31: Experimental results for the WBC dataset (extended with ∆ = 1). The

margin Γ∆, the number of epochs (eps) and updates (upds) are given for MICRA0.05,0.9

and the number of full epochs (f-eps), mini epochs (m-eps) and updates (upds) for
red−MICRA0.05,0.9.

MICRA0.05,0.9, η = 20 red−MICRA0.05,0.9, η = 30, N = 20

104 β
R 103Γ∆ eps upds 104 β

R 103Γ∆ f-eps m-eps upds

52 96.48 2,586 18,792 51 97.44 242 2,416 14,621

61 108.69 4,245 40,824 60 109.04 571 4,684 29,486

70.2 119.57 6,632 105,964 69 119.85 646 7,814 67,463

75.6 124.77 12,401 187,185 74.1 124.99 781 11,474 127,895

79.9 128.09 23,946 334,565 79.4 128.13 1,233 18,758 296,149

84 129.49 48,106 734,629 83.9 129.50 2,322 39,452 713,999

without a simultaneous blow up in the number of mini-epochs. This should certainly

result in a serious reduction of the computational cost, as expected. What comes maybe

as a surprise is that in many cases we have a serious reduction in the number of updates

whereas less often we observe an increase. Overall, however, it seems that the reduction

procedure is indeed computationally beneficial.

7.3 Comparison of MICRA with SVMs

A comparison of MICRA with SVMs, unlike PLAs, could only involve the CPU-time

required to achieve a certain approximation of the hyperplane giving rise to the maximum

geometric margin γ in the feature space where the patterns are linearly separable. PLAs

like MICRA become extremely slow in the vicinity of the maximum directional margin

γd which is attainable only asymptotically. Moreover, γd approaches γ only in the

limit where the augmented space parameter ρ → ∞. As a consequence, MICRA could

converge faster than SVMs only to a solution hyperplane with geometric margin γ′

slightly lower than γ. We choose to compare red-MICRA with SVMs at a margin value
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larger than 99% of γ. Although it is straightforward to formulate MICRA (or red-

MICRA) in dual space we will treat it here, unless otherwise specified, as a primal space

algorithm. For linearly separable datasets our feature space will be the initial instance

space whereas for linearly inseparable ones, unless otherwise specified, an instance space

extended by as many dimensions as the instances will be considered where each instance

is placed at a distance |∆| from the origin in the corresponding dimension. This amounts

to employing linear kernels and for inseparable data a soft margin approach involving

the 2-norm of the slacks.

In our experiments SVMs are represented by algorithms based on decomposition meth-

ods which are many orders of magnitude faster than standard SVMs. More specifically,

red-MICRA is compared with LIBSVM [11], an improved version of SMO, and SVMlight.

For both algorithms we choose m = 400MB for the memory parameter and C = 105

(approximating C = ∞) for the 1-norm soft margin parameter since we are dealing

with a hard margin problem in the appropriate feature space. Also, the working set size

parameter q of SVMlight is fixed to the default value q = 10. For each dataset we obtain

values of the geometric margin γ′ corresponding to two different values of the accuracy

parameter ǫ both for LIBSVM and SVMlight. The larger value of the margin obtained

by these algorithms corresponds to ǫ = 0.001 and is regarded as a good approxima-

tion to the maximum geometric margin γ. We require that the margin γ′ achieved by

red-MICRA be larger than 99% of the larger margins (corresponding to ǫ = 0.001) and

larger than the lower margins (corresponding to ǫ > 0.001) obtained by both LIBSVM

and SVMlight. We take advantage of the sparsity in the attributes of the initial space

only if these attributes are binary. We also take into account the enormous sparsity

present in the attributes associated with the additional dimensions of the extended in-

stance space. The experiments were conducted on a 1.8 GHz Intel Pentium M processor

with 504 MB RAM running Windows XP. The codes written in C++ were run using

Microsoft’s Visual C++ 5.0 compiler.

Table 7.32 contains the results of our comparative study of LIBSVM, SVMlight and

red-MICRA on several UCI datasets with I/O excluded from the CPU-times reported.

The value of the accuracy parameter ǫ corresponding to the lower value of the margin

is set to ǫ = 0.03 for LIBSVM and ǫ = 0.015 for SVMlight. The sonar (meaning here the

reduced sonar), the WBC and the votes datasets are described already. The ionosphere

(iono) dataset consists of 351 instances each with 34 attributes. The tic-tac-toe (ttt)

dataset consists of 958 instances each with 9 attributes taking values from the set {x, o,b}
represented as {1,−1, 0}. The german (germ) dataset consists of 1000 instances each

with 24 attributes. Finally, the linearly separable mushroom (mush) dataset consists

of 5644 instances after removing the ones with missing attributes. Each instance has

22 categorical attributes replaced here by 125 binary ones out of which exactly 22 are

true. We believe that from Table 7.32 it is fair to conclude that, roughly speaking,

red-MICRA is of speed comparable to that of decomposition SVMs.
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Table 7.32: Results of a comparative study of LIBSVM, SVMlight and red-MICRA
on several UCI datasets.

data ∆
LIBSVM SVMlight red−MICRA0.05,0.9

set 102γ′ Secs 102γ′ Secs 102γ′ Secs 102γ′ Secs ρ η N 105 β
R 102γ′ Secs

sonar 0 0.8451 0.17 0.8405 0.10 0.8460 6.85 0.8388 4.84 1 45 80 462.2 0.8406 3.60 1

iono 1 10.554 0.06 10.389 0.05 10.551 0.30 10.448 0.19 3
2 10 10 2929 10.449 0.07

votes 1 16.846 0.02 16.708 0.02 16.841 0.18 16.690 0.11 1 5 20 6385 16.718 0.02

WBC 1 13.034 0.12 12.848 0.09 13.033 0.81 12.929 0.45 2 25 20 837.6 12.932 0.35

ttt 1 10.300 0.47 10.183 0.27 10.295 3.35 10.185 1.35 1
2 8 20 5334 10.203 0.05

germ 25 95.361 0.62 94.055 0.45 95.332 2.96 94.217 1.82 8 30 50 908.9 94.415 0.36

mush 0 36.551 0.58 35.988 0.33 36.538 0.17 36.103 0.11 0 4.5 50 12535 36.212 0.10

Table 7.33: Results of a comparative study of LIBSVM, SVMlight and red-MICRA
on several UCI datasets with non-linear kernels.

data LIBSVM SVMlight red−MICRA0.05,0.9

set 102γ′ Secs 102γ′ Secs 102γ′ Secs 102γ′ Secs ρ η N 105 β
R 102γ′ Secs

iono 96.581 0.03 94.795 0.02 96.569 0.48 94.573 0.33 50 350 400 146 95.758 0.12

votes 191.79 0.03 188.81 0.02 191.71 0.07 188.70 0.05 10 70 300 1034 190.00 0.04

WBC 19242 0.31 19013 0.20 19259 7.64 19138 5.64 4000 600 300 56.7 19141 1.31

ttt 415.35 0.42 409.65 0.16 415.19 1.10 408.60 0.33 14 6 30 6626 411.28 0.28

germ 3.4487 1.01 3.3763 0.92 3.4480 0.91 3.3857 0.77 0.1 5 30 5570 3.4159 0.88

For the linearly inseparable datasets considered above (iono, votes, WBC, ttt, germ)

we repeated the comparative study using sufficiently powerful non-linear kernels able to

allow linear separation in the appropriate feature space. Thus, in this case we no longer

need to resort to soft margin approaches. For all datasets we used non-homogeneous

polynomial kernels of degree d = 4 with parameter c = 1 except for the german dataset

for which we used a Gaussian kernel with parameter σ = 1. In this study we had, of

course, to employ the dual space formulation of red-MICRA. Our results are summarised

in Table 7.33 where the value of the accuracy parameter ǫ corresponding to the lower

value of the margin is set to ǫ = 0.03 for LIBSVM and ǫ = 0.02 for SVMlight. We see

again that the speed of red-MICRA is of the same order of magnitude as the one of de-

composition SVMs. Nevertheless, the results indicate that the primal space formulation

is more advantageous for red-MICRA.

We also analysed several subsets of the Adult (32561 instances, 123 binary attributes)

and of the Web (49749 instances, 300 binary attributes) datasets in the version of [46]

with results presented in Table 7.34 and Table 7.35, respectively. Here ∆ = 1. Also, in

both tables the lower value of the margin for LIBSVM corresponds to ǫ = 0.03. For the

Adult dataset no augmentation is required (ρ = 0) and the lower value of the margin

for SVMlight corresponds to ǫ = 0.025. For the Web dataset, instead, we do perform

an augmentation for red-MICRA with parameter ρ = 0.25. Also, the lower value of

1Value obtained using the dual space formulation.
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the margin for SVMlight in Table 7.35 is obtained with ǫ = 0.02. We observe that the

CPU-time required for red-MICRA to converge is shorter and exhibits a better scaling

behaviour with the size of the dataset. Moreover, the shortage of memory as the dataset

size grows apparently slows down LIBSVM. In contrast, SVMlight and red-MICRA are

not affected.

Table 7.34: Results of a comparative study of LIBSVM, SVMlight and red-MICRA
on several subsets of the Adult dataset.

subset LIBSVM SVMlight red−MICRA0.05,0.9

size 102γ′ Secs 102γ′ Secs 102γ′ Secs 102γ′ Secs η N 102 β
R 102γ′ Secs

1605 3.9383 1.41 3.9022 1.07 3.9375 3.02 3.8877 1.58 20 100 1.918 3.9038 0.63

3185 2.7437 5.55 2.7187 4.29 2.7434 11.3 2.7093 6.23 25 100 1.400 2.7187 1.73

6414 1.9292 22.5 1.9094 17.6 1.9290 71.3 1.9097 37.7 45 300 1.025 1.9111 5.83

11220 1.4499 73.2 1.4348 58.6 1.4497 283.4 1.4342 141.7 65 300 0.798 1.4356 14.7

16100 1.2069 389.7 1.1927 312.3 1.2068 638.2 1.1923 318.6 80 500 0.673 1.1950 28.7

22696 1.0154 1511.8 1.0030 1040.2 1.0154 1291.1 1.0042 683.5 95 500 0.580 1.0062 45.9

32561 0.8526 3902.3 0.8424 2484.5 0.8525 2733.8 0.8432 1439.4 105 600 0.492 0.8441 75.0

Table 7.35: Results of a comparative study of LIBSVM, SVMlight and red-MICRA
on several subsets of the Web dataset.

subset LIBSVM SVMlight red−MICRA0.05,0.9

size 102γ′ Secs 102γ′ Secs 102γ′ Secs 102γ′ Secs η N 102 β
R 102γ′ Secs

2477 10.448 0.57 10.292 0.51 10.445 0.30 10.312 0.18 25 10 1.681 10.344 0.07

4912 7.0079 2.07 6.8967 1.83 7.0067 1.10 6.8909 0.61 25 10 1.212 6.9393 0.20

9888 4.8784 8.95 4.7970 7.82 4.8772 5.45 4.8072 3.22 30 10 0.868 4.8316 0.86

24692 2.9555 115.5 2.9066 90.2 2.9549 66.9 2.9111 32.1 50 10 0.535 2.9265 4.82

49749 2.1094 725.0 2.0723 635.8 2.1089 360.2 2.0771 176.4 70 10 0.405 2.0894 18.3

We repeated the comparative analysis on the subsets of the Adult dataset without ex-

ploiting the sparsity in the attributes of the initial instance space (only 14 at most out

of the 123 binary attributes are true) in order to examine the extent to which the algo-

rithms under investigation are able to take advantage of this sparsity. The parameters

used are the same as in our previous analysis except for the memory parameter of LIB-

SVM and SVMlight which now had to be reduced from m = 400MB to m = 360MB in

order to improve the performance of LIBSVM. Our results are presented in Table 7.36.

By comparing Table 7.34 with Table 7.36 we see that although all three algorithms are

able to take advantage of the sparsity red-MICRA seems to benefit the most.

Finally, we conducted an experiment with the very large multiclass Covertype dataset

(581012 instances, 54 attributes) obtainable from the UCI repository, and studied the

classification problem of the first class versus all the others treating again the whole

dataset as a training set. Due to the memory difficulties encountered by LIBSVM we

compared red-MICRA only with SVMlight for which we obtained only one margin value
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Table 7.36: Results of a comparative study of LIBSVM, SVMlight and red-MICRA on
several subsets of the Adult dataset without exploiting the sparsity of the input space.

subset LIBSVM SVMlight red−MICRA0.05,0.9

size 102γ′ Secs 102γ′ Secs 102γ′ Secs 102γ′ Secs η N 102 β
R 102γ′ Secs

1605 3.9383 3.2 3.9022 2.9 3.9375 9.2 3.8877 4.7 20 100 1.918 3.9038 2.3

3185 2.7437 13.2 2.7187 11.9 2.7434 45.6 2.7093 25.1 25 100 1.400 2.7187 7.0

6414 1.9292 53.3 1.9094 48.2 1.9290 208.7 1.9097 110.7 45 300 1.025 1.9111 26.3

11220 1.4499 165.4 1.4348 150.3 1.4497 669.6 1.4342 336.5 65 300 0.798 1.4356 65.5

16100 1.2069 1363.0 1.1927 1105.3 1.2068 1456.7 1.1923 719.3 80 500 0.673 1.1950 118.5

22696 1.0154 5130.7 1.0030 3558.1 1.0154 2888.9 1.0042 1518.5 95 500 0.580 1.0062 170.7

32561 0.8526 12271.9 0.8424 8138.9 0.8525 6007.6 0.8432 3147.4 105 600 0.492 0.8441 268.4

corresponding to an accuracy parameter ǫ = 0.01. Such a value of ǫ is sufficiently small

to guarantee a margin γ′ larger than 0.99γ. In the experiment we rescaled the dataset

by multiplying all the attributes with 0.001 and their sparsity was fully exploited. From

the results desplayed in Table 7.37 red-MICRA appears approximately 10 times faster

than SVMlight.

Table 7.37: Results of a comparative study of SVMlight and red-MICRA on the
Covertype dataset.

data ∆
SVMlight red−MICRA0.05,0.9

size ǫ 103γ′ Secs ρ η N 105 β
R 103γ′ Secs

581012 10 0.01 15.774 47987.7 2 70 400 336 15.789 4728.0

Before concluding our comparative study of red-MICRA and SVMs we would like to

point out that if we do not insist on margin values very close to the maximum margin

the advantage of red-MICRA becomes more apparent. For an illustration we repeated

the experiment on the Covertype dataset setting the accuracy parameter ǫ of SVMlight

to the value ǫ = 0.1. From the results desplayed in Table 7.38 we observe that for margin

values close to 90% of the maximum margin γ red-MICRA appears approximately 50

times faster than SVMlight.

Table 7.38: Results of a comparative study of SVMlight and red-MICRA on the
Covertype dataset for margin values lower than 99% of γ.

data ∆
SVMlight red−MICRA0.05,0.9

size ǫ 103γ′ Secs ρ η N 105 β
R 103γ′ Secs

581012 10 0.1 14.517 28021.1 2 70 400 250 14.541 561.1
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7.4 An evaluation

Our first comparative experimental study involved only PLAs. From the results reported

one may conclude with very high confidence that ALMA, in spite of its theoretical mer-

its, is by far the slowest among the large margin algorithms considered. The standard

Perceptron with margin showed consistently a very good behaviour for values of the

margin not very close to the maximum one. Also, CRAMMA with the appropriate

choice of the effective learning rate competes with the Perceptron away from the max-

imum margin but becomes certainly faster in the vicinity of the optimal solution since

it is provably able to approach such a solution arbitrarily close. Finally, agg-ROMMA

and MICRA proved in all experiments to be the fastest among the large margin PLAs

with agg-ROMMA having the tendency to require in some cases fewer epochs and MI-

CRA always fewer updates in order to converge. On the other hand, the algorithmic

implementations employing the fixed margin condition algorithms, although unable to

approach the maximum margin solution extremely close, exhibited remarkable perfor-

mance for margins of the order of 90 − 95% of the maximum. Even more surprisingly,

for such values of the margin they proved in some cases to be as fast as or even faster

than MICRA.

In the comparative experimental study between PLAs and SVMs we have chosen MICRA

as the best candidate to represent PLAs on the basis of its performance in the first

comparative study. From our results we believe that it is fair to draw the conclusion

that red-MICRA, incorporating a reduction technique in order to improve its speed, is

able to compete with decomposition SVMs and proves much faster for large datasets

and linear kernels.
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Conclusion

Large margin classification is desirable because it is intuitively appealing but most im-

portantly because it is well-motivated from statistical learning theory. The subject of the

present thesis was the development, theoretical analysis and experimental evaluation of

Perceptron-like algorithms able to classify data with large margins from the separating

hyperplane in an attempt to provide viable alternatives to the popular Support Vector

Machines.

Our theoretical analysis based on the notion of stepwise convergence revealed that a

Perceptron-like algorithm with an initial weight vector in the span of the data converges

in a finite number of steps if the classification condition requires margin values which

become, sooner or later, smaller than the maximum margin and the effective learning

rate becomes eventually small enough without decreasing faster than linearly with the

number of mistakes. However, the above conditions, which are easily satisfied by many

algorithms including the fixed margin condition algorithms presented here, are by no

means adequate to guarantee convergence to the optimal solution hyperplane. It turns

out that convergence to the solution with maximum margin is obtained only asymptoti-

cally and provided the parameters of the algorithm scale appropriately with the relevant

parameter controlling the asymptotic procedure. Assuming that the classification condi-

tion and the effective learning rate are governed by simple power-law rules involving the

number of mistakes we obtained sufficient conditions for asymptotic convergence to the

maximum margin solution. These conditions are not very constraining, thereby demon-

strating that convergence to the optimal solution is not a property of some very special

algorithmic constructions but rather characterises larger groups of algorithms. Thus,

our analysis led to a significant enlargement of the class of Perceptron-like large margin

classifiers. The same analysis, however, showed clearly that even a slight modification

of such an algorithm may result in its failure to achieve the maximum margin if the

conditions characterising its behaviour during the asymptotic procedure are violated.

Such a sensitivity in the conditions governing the behaviour of the algorithms during

the asymptotic process may be the reason for the inability of the standard Perceptron
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with margin, unlike ALMA, to converge to the maximum margin solution in spite of

the striking similarities of these two algorithms. The most general conditions, however,

ensuring that a Perceptron-like algorithm is able to achieve the maximum margin are

still to be discovered.

Our experimental analysis, on the other hand, revealed that the Perceptron-like large

margin classifiers developed here converge in most cases faster than other similar al-

gorithms. More importantly, the red-MICRA algorithm with slow relaxation of the

misclassification condition and relatively fast decrease of the effective learning rate with

the number of mistakes proved comparable in speed or faster than decomposition method

SVMs, especially for large datasets. We should stress, however, that the performance

of most of our algorithms depends on the choice of the (initial) value of the effective

learning rate. Moreover, there is no reliable way of choosing in advance the value of

the parameter that determines how close the achieved margin is to the maximum one

in spite of the fact that there are lower bounds on the fraction of the maximum margin

that the algorithm achieves. Thus, the usefulness of such algorithms depends on the

experience of the user. Nevertheless, we find it remarkable that simple extensions of the

old Perceptron algorithm are so competitive.
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In the present Appendix we proceed to a sketch of the derivation of (5.50), (5.51) and

(5.52) following the technique of [21].

Taking the inner product of (5.13) (with the denominator of its r.h.s. being denoted

Nt+1) with the optimal direction u, employing (5.1) and repeatedly applying the result-

ing inequality we have

1 ≥ ut+1 · u =
ut · u+ ηeffyk · u/R
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For the normalisation factor Nm+1 we can derive the inequality
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t
∏

j=m

rj ≥
t
∑

m=2

t
∏

j=m

rj = rt

t
∑

m=2

t−1
∏

j=m

rj ≥ rt
t
∑

m=2

αm−t

(

m− 1

t− 1

)A

(A.2)

given that a1 · u > 0 and ηeff = η0R/β. At the last stage of the previous inequality we

made use of

− ln
t−1
∏

j=m

rj =
t−1
∑

j=m

ln r−1
j ≤ (t−m) lnα+

t−1
∑

j=m

A

j
≤ lnαt−m +A

∫ t−1

m−1

dj

j
.

Taking into account (5.40) and the fact that A ≤ η0 we have that (1 + 2A/t)
1
2 ≤

(1 + 2η0γd/β)
1
2 ≤ 1 + η0γd/β. Using the latter inequality and setting l = m − 1 (A.2)
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gives

1 +
1

η0

β

γd
≥ α−t(t− 1)−A

t−1
∑

l=1

lAαl . (A.3)

Let us first assume that A ≤ 1. Then, since l/(t − 1) ≤ 1, we can set A = 1 in (A.3)

and using

n
∑

l=1

lαl = α
d

dα

n
∑

l=1

αl = α
d

dα

(

α
αn − 1

α− 1

)

=
nαn+1

(α− 1)2

{

(α− 1)− 1− α−n

n

}

obtain
1− α−(t−1)

t− 1
≥ (α− 1)

{

1− (α− 1)

(

1 +
1

η0

β

γd

)}

. (A.4)

The r.h.s. of (A.4) is certainly positive if ηeff < γd/R or η0 < βγd/R
2. Since the l.h.s. is

a monotonically decreasing function of t vanishing in the limit t → ∞, (A.4) gives rise

to an upper bound on t. To obtain an approximation of this upper bound (i.e. obtain

a less restrictive upper bound) we employ the relation α−(t−1) = e−(t−1) lnα and the

inequalities (1− e−x) /x < 1−x/2+x2/6 for x > 0, (x−1)− (x−1)2/2 < lnx < (x−1)

for x > 1 and 1/ ln x < x/(x− 1) for 1 < x ≤ 2. Then, from (A.4) we have

1− (α− 1)

(

1 +
1

η0

β

γd

)

≤ 1− α−(t−1)

(α− 1)(t − 1)
=

1− e− lnα(t−1)

(α − 1)(t − 1)

≤ 1− e− lnα(t−1)

lnα(t− 1)
≤ 1− 1

2
lnα(t− 1) +

1

6
ln2 α(t− 1)2

or

(t− 1)2 − 3
t− 1

lnα
+ 6

α− 1

ln2 α

(

1 +
1

η0

β

γd

)

≥ 0 .

The last relation, making use of the inequalities mentioned above, yields

(t− 1)2 − 3

α− 1
(t− 1) + 6

α2

α− 1

(

1 +
1

η0

β

γd

)

≥ 0

which gives the expected upper bound on (t − 1), namely the smallest positive root of

the corresponding quadratic equation

t− 1 ≤ 3

2

1

α− 1

(

1−
√

1− 8

3
α2(α− 1)

(

1 +
1

η0

β

γd

)

)

≤ 3

2

1

α− 1

{

1−
(

1− 4

3
α2(α− 1)

(

1 +
1

η0

β

γd

)

− 32

9
α4(α− 1)2

(

1 +
1

η0

β

γd

)2
)}

= 2α2

(

1 +
1

η0

β

γd

)

+
16

3
α4(α− 1)

(

1 +
1

η0

β

γd

)2

.

Real roots exist if η0 < βγd/
√

6R2 and the smallest one was approximated by employing
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the inequality
√

1− x ≥ 1 − x/2 − x2/2. Taking into account that (α − 1) ≤ η2
0R2

2β2 we

arrive at the bound of (5.50) from which (5.51) is readily derivable.

If A ≤ 2, again because l/(t− 1) ≤ 1, we can set A = 2 in (A.3). Then, using

n
∑

l=1

l2αl = α
d

dα

n
∑

l=1

lαl =
nαn+1

(α− 1)3

{

n(α− 1)2 − 2(α− 1) + (α+ 1)
1− α−n

n

}

,

we get
α− 1

t− 1
− 1− α−(t−1)

(t− 1)2
≥ 1

2
(α− 1)2

{

1− (α− 1)

(

1 +
1

η0

β

γd

)}

. (A.5)

The l.h.s. of (A.5) can be shown to be a strictly decreasing function of t vanishing as

t → ∞ whereas its r.h.s. is positive if η0 < βγd/R
2. Thus, (A.5) leads to an upper

bound on t. To find an approximation of such a bound we employ again the relation

α−(t−1) = e−(t−1) lnα and the additional inequality (1− e−x) /x > 1−x/2+x2/6−x3/24

for x > 0 in (A.5) to obtain the less restrictive relation

(t− 1)3 − 4

α− 1
(t− 1)2 + 12

α2

α − 1

(

1 +
1

η0

β

γd

)

(t− 1) + 12
α4

(α − 1)2
≥ 0 .

In the limit β
R → ∞ the above inequality is satisfied if t is bounded from above by the

smallest positive root of the corresponding cubic equation. This leads to (5.52).
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