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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Martin Szomszor

Service-oriented architectures have evolved to support the composition and utilisation of
heterogeneous resources, such as services and data repositories, whose deployments can
span both physical and organisational boundaries. The Semantic Web Service paradigm
facilitates the construction of workflows over such resources using annotations that ex-
press the meaning of the service through a shared conceptualisation. While this aids
non expert users in the composition of meaningful workflows, sophisticated middleware
is required to cater for the fact that service providers and consumers often assume differ-
ent data formats for conceptually equivalent information. When syntactic mismatches
occur, some form of workflow harmonisation is required to ensure that data incompat-
ibilities are resolved, a step we refer to as syntactic mediation. Current solutions are
entirely manual; users must consider the low-level interoperability issues and insert Type
Adaptor components into the workflow by hand, contradicting the Semantic Web Service
ideology.

By exploiting the fact that services are connected together based on shared conceptual
interfaces, it is possible to associate a canonical data model with these shared concepts,
providing the basis for workflow harmonisation through this intermediary data model.
To investigate this hypothesis, we have developed a formalism to express the mapping
of elements between data models in a modular and composable fashion. To utilise
such a formalism, we propose additional architecture that facilitates the discovery of
declarative mediation rules and subsequent on-the-fly construction of Type Adaptors
that can translate data between different syntactic representations. This formalism and
proposed architecture have been implemented and evaluated against bioinformatics data
sources to demonstrate a scalable and efficient solution that offers composability with
virtually no overhead. This novel mediation approach scales well as the number of
compatible data formats increases, promotes the sharing and reuse of mediation rules,
and facilitates the automatic inclusion of Type Adaptor components into workflows.
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Chapter 1

Introduction

During the latter half of the 20" Century, scientists took the initiative to build a
global communication medium to support the transmission of information between
parties located anywhere on the planet. Their efforts culminated in the 1990s with
the appearance of what is now commonly recognised as the Internet: a world-wide
network of interconnected computers supporting the reliable interchange of data.
The Internet itself should not be considered as a monolithic entity but rather a
dynamic and loosely coupled collection of smaller networks managed by businesses,
academic institutions, governments, and individuals, all sharing a diverse range of

information exposed in a rich variety of formats.

With an explosion in the volume and connectivity of computing resources, the
requirements to manage computations across large, geographically separated, het-
erogeneous resources have become more complex. Information can be spread across
different storage end-points in a variety of different formats, each with different ac-
cess models. Grid [44] and Web Services [23] have evolved to support applications
operating in these types of environment, enabling the collation of computing as-
sets to meet complex computing requirements through the use of service-oriented
architectures (SOAs). SOAs are founded on a perspective that facilitates the con-
solidation of loosely coupled, dynamic resources, by adhering to a uniform access
model that hides the underlying implementation. This facilitates cost effective and

rapid adaptation to changes in requirements, and the convenient incorporation of
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new resources, while maintaining high levels of interoperability. By providing uni-
form access to resources spanning both physical and organisational boundaries,
SOAs allow users to gather information from disparate resources, perform inten-
sive computational analysis, and collect results in sophisticated formats. One ap-
plication domain that profits from the benefits of such an architecture is eScience
where bioinformatics [80], high energy physics [50] and astronomy [11] applications

have been developed to assist users in scientific experimentation.

Much of the success of these applications comes from the ability to provide end-
users with simple paradigms onto which they can map conventional scientific prac-
tices. One key example of this is workflow: the specification of a computational
process across multiple resources. This is very similar to the design and execution
of a scientific experiment which is usually expressed as a workflow with a number
of tasks. With SOAs, these scientific tasks are realised by services, allowing users
simply to convert their intended experiment directly to a workflow specification.
To this end, Grid and Web Services communities strive to provide users with the
most productive conditions, supporting them in the discovery of services to meet

their goals, and the specification of meaningful workflows.

Recent advances within the Grid and Web Services community have focused on
helping users in the discovery of services and their composition to form functioning
workflows. As the number of service instances continues to increase, the need for
efficient and user-friendly service matching is more important; searching over ser-
vice descriptions alone is a cumbersome and tedious task. In many cases, service
operations are not documented and operation names have little semantic value;
colloquial terms, acronyms and shorthand concatenations frustrate users and im-
pede the discovery process. However, by utilising Semantic Web [20] approaches,
such as the annotation of service descriptions with concepts from an ontology that
capture the meaning of Web Services, users can formulate and execute queries
using domain specific terminology from a shared conceptualisation, rather than
conventional keyword matching. With suitably rich ontologies, users can find the
services they need easily, quickly and reliably. This has been realised through the
development of ontology languages, such as OWL (the Web Ontology Language)
[83], that supports the publishing and sharing of conceptual models on the Web.
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With the introduction of semantically-annotated Web Services, workflow compo-
sition has shifted to a higher-level design process: users can choose to include
services in workflow to achieve particular goals based on a high-level definition of
the service capability. While tools [89, 48] that exploit these semantic definitions
can make workflow design more accessible to untrained users, it does lead to more
complex architectural requirements. The situation often arises where users wish to
connect two services together that are conceptually compatible but have different
syntactic interfaces. This occurs when service providers use their own data for-
mats to represent information within their application domain. To reconcile any
data incompatibilities in a workflow, syntactic mediation is required, often taking
the form of a translation script, bespoke application code, or mediation Web Ser-
vice. Currently, these Type Adaptor components must be discovered manually and
inserted into the workflow by hand, imposing additional effort on the user [58].
Consequently, they are distracted from the workflow design, spending additional
time understanding why an incompatibility has been encountered and how it can

be resolved.

To improve on the manual selection and insertion of Type Adaptors, existing Web
Service architectures can be augmented to identify when syntactic mediation is
required within a workflow, what components are available to carry it out, and
how they can be invoked. Semantic Web Service research has addressed this issue
to a certain degree [2, 84]: semantic annotations that describe the service capa-
bility can be used to give meaning to the information it consumes and produces.
By extending existing semantic service definitions to capture the structure and se-
mantics of the data consumed and produced, an ontology can be used as a shared
conceptual reference model, facilitating the translation of data between different

syntactic representations.

By combining work from the data integration field, Semantic Web research and
Web Service invocation techniques, we show that it is possible to supply an archi-
tecture that supports automated workflow harmonisation through the automatic
discovery and invocation of appropriate Type Adaptors. By investigating a bioin-
formatics use case, we deduce the requirements for syntactic mediation and the
kinds of complex data translation required. Much of our architecture is centred

on the development and utilisation of a bespoke mapping language to express the
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relationship between concrete data formats and their corresponding conceptual
models. We derive the requirements for this mapping language from bioinfor-
matics data sets and present a formalism that describes such mappings and the

transformation process derived from them.

1.1 Thesis Statement and Contributions

The following thesis statement summarises our solution to the problem of workflow

harmonisation:

Whenever data representations assumed by Web Services lead to semantically
compatible but syntactically incongruous data flow, automated workflow
harmonisation can be achieved by combining a composable, declarative mapping
language with semantic service annotations, providing a scalable mediation

approach that promotes sharing and reuse.

Workflow harmonisation, the act of identifying syntactic mismatches, finding the
appropriate Type Adaptors, and invoking them, can be driven using data transla-
tion mediated by a canonical intermediary representation derived from the shared
semantics of the service interfaces. In this dissertation, we present an architec-
ture to support automated workflow harmonisation, making use of three principal

contributions (presented graphically in Figure 1.1):

1. Mediation
To enable the translation of data between different syntactic representations,
a scalable mediation approach is employed making use of a declarative, com-
posable and expressive mapping language, and a transformation implemen-

tation:



Chapter 1 Introduction 5

Harmonisation Architecture

® Discover suitable mediation components using service registry
® Execute data translation using Configurable Mediation
® Invoke target Web Services

@ Scalable mediation approach using intermediate representation
® Mapping language and transformation formalism (FXML-M)
® Mapping language and transformation implementation (FXML-T)

Discovery

® WSDL for Type Adaptor description
@ Service Registry to support the registration, advertisment
and discovery of Type Adaptors

FIGURE 1.1: A visual representation of the contributions in this Thesis.

(a)

Scalable mediation approach

We conceived an intermediate representation, making use of OWL on-
tologies, to capture the structure and semantics of different data for-
mats. With a common representation in place, maximum interoper-
ability can be achieved by providing mappings between each data for-
mat and its corresponding OWL model. As more XML data formats
are added, a linear expansion in the number of required mappings is

observed.

A declarative, composable and expressive mapping language

To specify the relationship between a concrete XML representation and
its corresponding conceptual model in OWL, the bespoke mapping lan-
guage FXML-M is used to define mappings that associate schema ele-
ments from a source schema to elements in destination schema using
an XPATH like notation. Since complex mappings are often required,
FXML-M provides predicate support (to enable the conditional map-
ping of elements), local scoping (so different mappings can be applied
depending on element context), and the mapping of collections of ele-
ments and attributes for composite relations. Mappings are combined
to form an M-Binding document (expressed in XML), which can be

used to drive document transformation. To promote sharing and reuse,
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M-Bindings may also import mappings from other documents.

(c) A practical and scalable mapping language implementation
FXML-T— our mapping language and transformation implementation,
can be used to translate XML documents by consuming an M-Binding,
the source document schema, and a destination document schema. Em-
pirical testing proves that our Mapping Language approach is practi-
cal, our implementation scales well, M-Binding composition comes with
virtually no cost, and the implementation is efficient when translating
bioinformatics datasets. FXML-T is combined with the ontology reason-
ing API JENA [60] to create the Configurable Mediation (C-MEDIATOR):
a reconfigurable Type Adaptor to enable the mediation of data through

a shared conceptual model.

2. A uniform description method for Type Adaptors using WSDL
Because Type Adaptor components may come in many forms: e.g. trans-
lation scripts, bespoke code and Web Services, it is important to describe
their capabilities uniformly. While it is understood that wWSDL can be used
to specify Web Service interfaces and invocation methods, we establish that
Type Adaptors can also be described with WsDL, allowing existing Web
Service registry technology to be reused, and support the advertising and

discovery of Type Adaptor components.

3. Automated Workflow Harmonisation Architecture
With a configurable data translation component in place and a mechanism
to specify, advertise and discover different kinds of Type Adaptors, auto-
mated workflow harmonisation can be achieved by discovering the appropri-
ate Type Adaptors at runtime. We present our Web Services Harmonisation
architecture, WS-HARMONY, that combines our mapping language im-
plementation and Type Adaptor discovery technology to support automatic
type conversion by extrapolating the conversion requirements from service
definitions within a given workflow, discovering and executing the necessary
Type Adaptors, and invoking the target services. Testing shows that our
automated mediation approach is practical, and comes with relatively low
performance cost in the context of a typical Web Service workflow execution.

To invoke previously unseen Web Services, our Dynamic Web Service Invoker
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(DWSI) is used, offering improvements over existing Web Service invocation
APIs such as Apache Axis [10] and JAX-RPC in terms of performance and

practicality.

1.2 Document Structure

We begin in Chapter 2 by investigating a bioinformatics grid application to see
why workflow design and execution is impeded by service providers assuming dif-
ferent representations for conceptually equivalent information. Using a common
bioinformatics task as a use case, we find that existing workflow harmonisation
techniques are entirely manual: users must identify when mismatches in data for-
mat occur, what components are available to resolve them, and how they should
be inserted into the workflow, drawing their attention away from the scientific

process at hand.

In Chapter 3, we analyse related work in the areas of Semantic Web technology,
data integration and automated service integration. Through assessment of the
state of the art, we conclude that Semantic Web Service technology can be incor-
porated with existing data integration techniques to facilitate automated workflow

harmonisation.

Chapter 4 presents WS-HARMONY: an architecture to support automated
workflow harmonisation. The use of OWL as an intermediate representation is
discussed with examples to show how our use case scenario can be harmonised us-
ing a common conceptual model. Software to support the automated discovery and
execution of Type Adaptors is presented with an emphasis on the C-MEDIATOR

and how it is used to create the required Type Adaptors on-the-fly.

Chapter 5 focuses on the XML data transformation problem where a formalised
mapping language and transformation theory is presented in the form of FXML-
M. Through the analysis of data sources within our bioinformatics use case, we
derive the requirements for XML mapping and transformation which are shown to

be complex.
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In Chapter 6, we outline our transformation library FXML-T. This implementation
of the FXML-M language is presented in detail with particular attention to the way
in which rules from the formalisation are implemented. The inner workings of the
C-MEDIATOR are shown, and a detailed example is provided to demonstrate how
syntactic mediation is provided in our use case scenario. FEmpirical testing of
the transformation implementation is made to establish FXML-T as scalable and
efficient transformation implementation that offers M-Binding composability with

virtually zero cost.

Finally, the architecture components required to make use of our C-MEDIATOR
and support the automated discovery and inclusion of Type Adaptors is presented
in Chapter 7. A method for the description of Type Adaptor capabilities using
WsSDL and their subsequent registration, advertisement, and discovery through a
service registry is demonstrated along with a presentation of our Dynamic Web
Service Invoker (DwsI). Conclusions and future work are given in Chapter 8 to
show how our contributions can be reused in the advancement of Semantic Web

Service technology.

1.3 Publications

During the development of this Thesis, the following work has been published:

Szomszor, M., Payne, T. and Moreau, L. (2005) - Using Semantic Web Tech-
nology to Automate Data Integration in Grid and Web Service Archi-
tectures. In Proceedings of Semantic Infrastructure for Grid Computing Applica-
tions Workshop in Cluster Computing and Grid (CCGRID) - IEEE, Cardiff, UK.
http://eprints.ecs.soton.ac.uk/10916/
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Szomszor, M., Payne, T. and Moreau, L. (2006) - Dynamic Discovery of Com-
posable Type Adapters for Practical Web Services Workflow. In Proceed-
ings of UK e-Science All Hands Meeting 2006, Nottingham, UK.
http://eprints.ecs.soton.ac.uk/12753/

Szomszor, M., Payne, T. and Moreau, L. (2006) - Automated Syntactic Me-
dation for Web Service Integration. In Proceedings of IEEE International
Conference on Web Services (ICWS 2006), Chicago, USA.
http://eprints.ecs.soton.ac.uk/12764/



Chapter 2

Motivation:

A Bioinformatics Use Case

The Web Services computing vision promises an environment where services can
be discovered, composed, executed and monitored easily. However, through the
inspection of a real world Web Services application, we find that this vision has not
been fully realised: the composition and execution of services is often hindered by
the fact that service providers use different data formats to represent conceptually
equivalent information. In order to resolve these mismatches, additional processing
is required to translate data between different formats. Current solutions to this

problem are entirely manual and require skilled user intervention.

This Chapter characterises the workflow composition and execution problem, re-
vealing the current solutions, as well as a description of a more user-friendly
approach. This Chapter begins with Section 2.1, providing an introduction to
bioinformatics and an overview of the MYGRID [80] project. Section 2.2 follows,
containing a description of how semantic annotations are used to augment the ser-
vice discovery procedure. In Section 2.3, we present our use case scenario before
outlining the problems it reveals in Section 2.4. Section 2.5 examines the schema
reuse often employed in service interface definitions and the implications it holds
for a mediation solution. We conclude in Section 2.6 by discussing the current

solutions and how they can be improved.

10
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2.1 Bioinformatics Overview

Bioinformatics is the application of computational techniques to the management,
analysis, and visualisation of biological information. With the collection and stor-
age of large quantities of genomic and proteomic data, coupled with advanced
computational analysis tools, a bioinformatician is able to perform experiments
and test a hypothesis without using conventional ‘wet bench’ equipment — a
technique commonly referred to as in silico experimentation [49]. To support this
kind of science, multiple vendors offer access to a variety of resources creating a
loosely coupled, dynamic, and large scale environment which scientists can exploit

to achieve their scientific aims.

The MYGRID [80] project provides an open-source Grid middleware that sup-
ports in silico biology. Using a service-oriented architecture, a complex infras-
tructure has been created to provide bioinformaticians with a virtual workbench
with which they can perform biological experiments. Access to data and com-
putational resources is provided through Web Services which can be composed
using the workflow language XSCUFL [97] and executed with the FreeFluo [46]
enactment engine. The biologist is provided with a user interface (Taverna [89])
which presents the services available, enables the biologist to compose and view
workflows graphically, execute them, and browse the results. A screenshot of the
Taverna workbench is shown in Figure 2.1 and contains four windows: Available

Services, Workflow Diagram, Run Workflow, and Enactor Invocation.

The Available Services window in the top left shows a list of services the user has
access to and the operations each service offers. The Workflow Diagram window
in the bottom left shows a graphical representation of the current workflow. Each
box represents a service invocation and the arrows joining them represent the flow
of data. The user is able to drag and drop services from the available services list
into the graphical editor to add a service to the current workflow. The graphical
representation of the workflow is mirrored in XML in the form of an XSCUFL
workflow document. The Run Workflow and Enactor Invocation windows
enable the user to view the workflow’s invocation steps and any intermediate

results, as well as the status of any currently running processes.
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FIGURE 2.1: The Taverna Workbench.
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Within the Taverna application, one of the most difficult tasks the user faces is
finding the service instances they require. Typically, the user has planned their
experimentation process prior to their interaction with the Taverna workbench.
Most likely, this has been done on paper with various abstract definitions of the
types of service required for each stage in the process. To find a particular service
which achieves a goal they desire, the user has to inspect the services available
in the Available Services window and manually choose the most appropriate
one. Given the terse and often cryptic service descriptions, and the sheer number
of services offered (over 1000 in MYGRID) [58, 71], the discovery of services is
awkward. Hence, recent research from the MYGRID project has been centred on

the incorporation of Semantic discovery.

2.2 Semantic Discovery

According to the basic premise of the Semantic Web [20], information should be
presented in a way where the meaning is captured in a machine processable format
so computers can understand the semantics of the data and exchange information
accurately. This vision has been partially realised through the use of ontologies: a
language to formally define a common vocabulary of terms for a given domain and
how such terms relate to each other [51], and in particular, through the develop-
ment of ontology languages, such as OWL [83], that provide mechanisms to support
the publishing, sharing, and collaboration of ontology definitions using the Web.
By annotating service definitions with concepts from these shared ontologies, users
can find services based on conceptual definitions of the service capability, rather

than the low-level interface definitions.

Figure 2.2 is a graphical representation showing part of an ontology created to cap-
ture the kinds of terms used in the description of bioinformatics data [94]. With
this domain model in place, and the appropriate service annotations, a bioinfor-
matician can discover services according to the task it performs (e.g. retrieving,
processing or visualising data), the resources it uses (e.g. particular databases),
and the type of inputs and outputs (e.g. consumes sequence data and produces an

alignment result), rather than simply the labels used or the data types specified in
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FIGURE 2.2: A subset of the bioinformatics ontology developed by the MYGRID
project.

the service interface definition. To implement this feature in Taverna, the Pedro
[48] tool is used to annotate service definitions with concepts from the bioinfor-
matics ontology. These semantic annotations can then be consumed by FETA
[71], a light-weight architecture for user-oriented semantic service discovery, that
in turn, provides a query interface to search over services. The most recent release
of the Taverna workbench provides a graphical query interface to FETA, which is
illustrated in Figure 2.3. The query window here allows the user to find services
based on values of certain service attributes which have been set previously using

the Pedro annotation tool. In this example, some of the required attributes are:

1. the service name must contain the string "DNA";
2. it must perform the task with concept "retrieving";
3. it must make use of the "SWISS-PROT" resource (a database in this case).

Any service instances matching those criteria will be returned to the user when

the query is submitted.
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FIGURE 2.4: An abstraction view of our bioinformatics use case

2.3 Use case

For our use case, we examine a typical bioinformatics task: retrieve sequence data

from a database and pass it to an alignment tool, such as Blast [6], to check for

similarities with other known sequences. According to the service-oriented view

of resource access adhered to by MYGRID, this interaction can be modelled as a

simple workflow with two stages: an initial stage to retrieve the sequence data,

and a second stage to check for similarities with other sequences. We show this

simple workflow at an abstract level in Figure 2.4.

To turn this abstract definition into a concrete workflow, the user must discover
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suitable services for each step. Many Web Services are available to retrieve se-
quence data, for our example, we could use one available from EMBL [96], or
alternatively, one from DDBJ [36]. For the second stage of the workflow, an align-
ment service available from NCBI [81] could be used. Therefore, two concrete
workflows can be created to perform the analysis: one using the XEMBL service

and another using the DDBJ-XML service, illustrated in Figure 2.5.

. Sequence Alignment
Accession ID —)~ '—> Data NCBI-Blast Results
DDBJ-XML NCBI-Blast performs
Sequence Alignment

Services available at XEMBL
and DDBJ-XML both provide
sequence data records.

FIGURE 2.5: Two possible concrete workflows for a sequence retrieval and anal-
ysis task.

2.4 Syntactic Compatibility

While both sequence retrieval services are similar, in that an accession id is passed
as input to the service and an XML document is returned containing all the se-
quence data, the format of the XML documents is different: XEMBL returns an
EMBL-EBI formatted document!, whereas DDBJ-XML returns a document us-
ing their own custom format?. When considering the compatibility of the data
flow between the services, it can be seen that the output from neither sequence
retrieval service is directly compatible for input to the NCBI-Blast service. Figure
2.6 illustrates this example: the DDBJ-XML service produces a DDBJ formatted
sequence data record, and the NCBI-Blast service consumes a FASTA formatted

sequence.

http://www.ebi.ac.uk /embl/schema/EMBL_Services_V1.0.xsd
2http://getentry.ddbj.nig.ac.jp/xml/DDBJXML.dtd
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At a conceptual level, the output of the DDBJ-XML Service is
compatible with the input to the NCBI-Blast Service.

Sequence
Data

Conceptual Level

DDBJ-XML

Syntactic Level

NCBI-Blast

DDBJ-XML X Fasta
Format Format

<DDBJIXML xmlns="http://themindelectric.com'> >AB000059
<ACCESSION>ABOQQO59</ACCESSION> atgagtgatggagcagtatgagtgatggagcagtatgagtgatggageagt. . .
<FEATURES>
<cds>
<location>1..1755</1location>
<qualifiers name="product">capsid protein 2</qualifiers>
<qualifiers name="protein_id">BAA19020.1</qualifiers>
<qualifiers name="translation">MSDGAV...</qualifiers>
</cds>
</FEATURES>
<SEQUENCE>atgagtgatggagcagt . . </SEQUENCE>
</DDBIXML>

At a syntactic level, the output from the DDBJ-XML Service is
not compatible with the input to the NCBI-Blast Service.

FI1GURE 2.6: The DDBJ-XML output is conceptually compatible with the input
to the NCBI-Blast service, but not syntactically compatible.

To execute a workflow where the output from the DDBJ-XML service is passed as
input to the NCBI-Blast service, the differences in data format assumed by each
provider must be reconciled, a process we refer to as workflow harmonisation.
Within Taverna, this is a manual task: users must identify when a syntactic
mismatch has occurred, what components are available to carry out the necessary
translation, and in many cases, new ones must be created. The transformation
of data between different representations by an external software components, or
syntactic mediation, can be achieved using a variety of techniques: a bespoke
mediator could be programmed using a language such as JAVA; a transformation
language such as XSLT [34] is used to specify how the translation is performed; or
another mediation Web Service could be invoked. We use the term Type Adaptor
to describe any software component that enables the translation of data, either
declaratively (in the case of a script) or procedurally (in the case of a program or

Web Service).
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2.5 Data format reuse in Web Services

Upon further examination of services in MYGRID, it is apparent that a single
Web Service may offer a number of different operations. The service interface
definition (expressed using WsDL [33]) defines the input and output types for each
operation by referencing an XML schema type (referred to as the syntactic type),
and semantic annotations attached using the Pedro tool define the conceptual
type for each input and output by referencing a concept from the bioinformatics
ontology (the semantic type). Often, it is the case that a Web Service offers
operations with inputs and outputs that utilise parts of the same global data
structure. For example, the DDBJ-XML Service in our use case offers many
operations over sequence data records. A single XML schema exists to describe the
format of the sequence data record, and each operation defines the output type by
referencing an element within this schema. We illustrate this scenario in Figure
2.7 by showing the DDBJ-XML interface definition (right box), and how semantic
annotations relate message parts to concepts from the bioinformatics ontology (left

box).

The DDBJ-XML service offers access to many sequence data repositories: SWISS,
EMBL and UNIPROT are three of them. Each of these databases is maintained
separately so users may elect to retrieve sequence data from one source over an-

other. To support this, the DDBJ-XML service offers separate operations to supply

WSDL
Each line represents the semantic /~ N\
type of the input or output. input
| :string
Get SWISS record
Ontology | DDBJ-XML output
T 1 xsdistring |Jnput The DDBJ-XML service
S Get EMBL record offers a number
-{ DDBJ-XML utput of operations

DDBJ-XML

input

Get UNIPROT record
-{ DDBJ-XML output

xsd:string [Jnput

Get Sequence Features

G J

Sequence_Data -

.

Sequence_Feature )-...

FiGure 2.7: The DDBJ-XML web service offers a number of operations over
the same XML schema.
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access to each repository. Each of these three operations has the same input and
output types, both in terms of the syntactic type and the semantic type. The
DDBJ-XML service also offers operations to retrieve only parts of the sequence
data record. In Figure 2.7, we show the “Get Sequence Features” operation that
allows users to retrieve only the features of a sequence data record. In this case,
the output syntactic type is the <Feature> element from the DDBJ-XML schema
and the semantic type is the Sequence_Feature concept. With this kind of schema
reuse, one can imagine that a single Type Adaptor component may be suitable
for use with many service operations, even those which operate over a subset of a
global schema. In our use case, a single Type Adaptor could translate sequence
data from DDBJ-XML format to FASTA format, and would therefore be suitable

for any of the operations shown in Figure 2.7.

2.6 Conclusions

To achieve workflow harmonisation in a workflow-driven service-oriented environ-
ment that encourages users to discover services through high-level conceptual de-
scriptions, some form of syntactic mediation is often required to translate data
between different representations. Current solutions require users to find man-
ually manually (or possibly create) any required translation components. Given
the wide variety of heterogeneous services typically offered in large-scale eScience
applications, syntactic mediation components often take up a significant propor-
tion of the composition when compared to the actual services required to achieve
experiment goals. Naturally, this hinders the scientific process because users fre-
quently spend time harmonising the services in their composition rather than
actually designing and using it. Furthermore, it contradicts the basic Semantic
Web Service ideology because users must consider low-level interoperability issues.
Therefore, our aim is to automate the process of workflow harmonisation so users
can create meaningful workflows without concern for the interoperability issues
that arise from heterogeneous data representations. This means the identification
of syntactic mismatches, discovery of Type Adaptors, and their execution must
be addressed. As we highlighted in Section 2.5, services often provide operations

that consume or produce information using the same or subsets of the same data
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formats. Consequently, an automated workflow harmonisation approach should
embrace the reuse of format specification, which in turn, can reduce the chances

of Type Adaptor duplication.



Chapter 3

Background

In Chapter 2, we analysed a bioinformatics Grid application and found that work-
flow composition and execution is often hindered by the differences in data rep-
resentation assumed by service providers. Our aim is to improve on the current
manual solutions and support autonomous workflow harmonisation through the
discovery and invocation of necessary Type Adaptors at runtime. This Chapter
examines background material in the areas of Grid, Web Services, and Semantic
Web, as well as a review of related work in the fields of data integration, service

integration and workflow composition.

We begin in Section 3.1 with an introduction to Grid and Web Services, sum-
marising the fundamental technologies and their limitations. Section 3.2 shows
how Semantic Web technology can augment existing Grid and Web Service envi-
ronments, supporting more intuitive service discovery and facilitating autonomous
service invocation. We describe the current technologies that aim to support the
application of Semantic Web techniques to Web Service architectures and finish

with a comparison of their approaches.

In Section 3.4, an overview of relevant data integration work is presented, high-
lighting the similarity of problems addressed with those underpinning the workflow
harmonisation problem. We present existing workflow harmonisation technology
in Section 3.6 and discuss the relevance to our workflow harmonisation problem.

In Section 3.7, we look into high-level service discovery and workflow composition

21
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techniques to see how they support the creation of meaningful workflows in scien-
tific applications. We conclude in Section 3.8 by discussing how data integration
approaches can be combined with Semantic Web Service technology to support

automated service integration.

3.1 Grid Computing and Web Service

Ever since the early 1970’s, when computers were first linked together by networks,
the concept of harnessing computational power from multiple machines to perform
a single task has become a fundamental computer science field. Research in this
field has been driven mainly by the high performance computing community who
concentrate on splitting up large computational tasks, allocating them to multiple

machines for calculation, and reintegrating the final results.

In the 1990’s the distributed computing community saw new opportunities arise
through the emergence of the Internet. The Internet provides a global network
on which any two machines on the planet can communicate across a simple and
reliable transport mechanism. This explosion in connectivity and computing power
has been matched by the increasing complexity of tasks users want to perform.
Particularly motivated by scientific fields such as astronomy, particle physics and
biology, users now demand access to powerful computational systems that hold

vast amounts of data collected from a range of disparate sources.

The Grid is a distributed computing infrastructure designed to support exactly
this type of complex behaviour: co-ordinated resource sharing across dynamic and
geographically separated organisations [44]. This resource sharing covers a wide
range of computing assets including computational power, information storage and
observational equipment. With this variety of heterogeneous resource types expos-
ing a diverse mix of functionality, a fundamental problem that must be addressed
by the Grid is how to provide a homogeneous access model to all types of resource.
For example, whether a resource exposes data stored within a database or software
which processes data, a homogeneous resource description and access model must
be used to ensure maximum interoperability. This issue was addressed by the Open

Grid Services Architecture (0OGSA) [45] where a service-oriented view of resource



Chapter 3 Background 23

access is employed. Essentially, this means that access to every type of resource
is modelled as though it is a service. To implement this type of architecture, Web

Services can be used.

3.1.1 Web Service Architecture

The Grid architecture relies on a service-oriented view of resource access inspired
by the use of the Web Services Architecture [23]. This allows resource providers
to describe their capabilities in terms of a Web Service, most commonly through
the use of WSDL [33]. WSDL is a specification language that describes the abstract
operational characteristics of a service using a message-based paradigm. Services
are defined by operations (which are analogous to methods from traditional pro-
gramming paradigms), each of which has an input message and an output message
(like the parameters and result of a method). Each message may contain a number
of parts, each of which is defined by a reference to a schema type (typically XML
Schema [41]). These abstract definitions are bound to concrete execution mod-
els to explain the invocation method (for example SOAP [52] encoding over HTTP

transport).

Other Web Service technologies are also available to support more intricate service
functionality such as service discovery (UDDI [1]), secure message exchange (WS-
SECURITY [61]) and the specification of collaborations between resources (WS-CDL
[62]). Many software implementations are available to support the Web Services
Architecture, such as the Apache Axis Web Service Project [10] and IBM’s Web-
Sphere Software suite [59]. To this end, the Web Service Architecture provides a
fundamental model on which to build Grid computing applications through a set

of widely recognised standards and a range of software tools to support them.

3.1.2 Web Service Limitations

While the use of WsDL provides us with a common way to view the invocation
parameters of a Web Service, such as the format of a valid message and the concrete

execution model, it does not supply any information on what the service does - a
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notion usually referred to as the semantics of the service. This leads to two major

problems:

1. Unsophisticated service discovery
Service discovery is the process through which we can find services that
perform a given task. Although current Web Service standards such as
UDDI and ebXML [40] support the registration and indexing of large numbers
of services, their information models are constrained, allowing only simple
string matching on business and service types. In extreme cases, interface
definitions are completely undocumented and operation names bear little
relation to the actual functionality provided. Paolucci et al [82] demonstrates
that human comprehension of a service description is required before we can
be sure that it matches any given requirements. Hence, the level of autonomy

we can achieve is limited.

2. Limited automatic invocation
Assuming a candidate service has been discovered, we would then wish to
invoke it. WSDL describes the structure and required data types of the mes-
sage contents, so we can determine a valid message format. However, it does
not state what the parts of the message contents represent. For example, a
service may expose an operation to calculate the distance between two cities.
The interface for such a service could take two strings as input: one for the
source city name and one for the destination city name. Without additional
semantics, an automated invocation component would not know which city
name to place in which part since they both have the same type, namely a
string. Since service vendors are unlikely to subscribe to a predefined mes-
sage layout, we cannot assume that a client will know how to create the

correct message [77].

To overcome these problems we require additional high-level service descriptions
(service annotations) that express the service behaviour in an unambiguous, ma-
chine interpretable format. Expressing service properties in such a manner is

commonly referred to as a semantic service description or formal semantic model.
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3.2 Web Services and Semantics

The Semantic Web [20] is an extension of the existing Web that aims to support
the description of Web resources in formats that are machine understandable.
According to the Semantic Web approach, resources are given well-defined mean-
ing by annotating them with concepts and terminology that typically correlate
with those used by humans. To share knowledge at a high-level using well-defined
semantics, we can use an ontology: a modelling language to formally define a com-
mon vocabulary of terms for a given domain and how such terms relate to each
other [51]. The Web Ontology Language (OWL) [83] is an example of an ontology
language that is specifically designed to facilitate the publication and sharing of
domain models on the Web. OWL is an extension of the existing Resource De-
scription Framework (RDF) [66], incorporating features from the DARPA Agent
Markup Language (DAML) [91] and Ontology Inference Layer (OIL) [56] to cre-
ate a rich conceptual modelling language with well defined reasoning procedures

founded on description logics [12].

In OWL, classes (or concepts) are used to define groups of items or individuals that
should be collected together because they share common attributes. For example,
the individuals Anne, Barry, and Colin would all be members of the Person class.
Properties are used to state relationships between classes of individuals, (called
object properties, and from classes to specific data values (called datatype proper-
ties). Class hierarchies can be used to specify classes which are considered more
specific or general than other classes (e.g. the class Male is more specific than the
class Person). Individuals (or concept instances) can then be specified in terms
of defined classes with object properties to relate them to other individuals, and
datatype properties that define their attributes using literal values such as strings
or integers. With OWL, both the ontology definition and its concept instances can
be represented using an XML syntax, with datatype properties instantiated using
XML schema types. Through the use of ontologies, the Semantic Web supplies
computers with rich annotations enabling them to reason on resources distributed

across the Web through a common, high-level conceptual model.

By applying the Semantic Web approach to a Web Services architecture, existing

Web Service interface definitions can be annotated with semantic descriptions.
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This approach supports: (a) more advanced service discovery [72] because queries
on a service’s functionality can be formulated in terms of the high level, human
oriented descriptions; and (b) better automation [9] because service interfaces will
be annotated with semantics that describe what the data represents and not just

its syntactic type.

To enable the annotation of Web Services with semantics, the use of ontologies
is critical. Given that any particular service instance operates within a set of
domains (e.g. a book buying service works in the purchasing and book information
domains), we can encode the operational characteristics of the service using an
ontology. For example, a purchasing ontology would have concepts describing
payment, shipping, ordering, etc. and a book information ontology would describe
books, authors, publishers, etc. To create these service description ontologies, we

must ensure that we encapsulate the necessary information:

e Information processing
What are the inputs and outputs of the service? Given that service providers
will often use their own bespoke data structures, an ontology describing the
service information requirements should state what the inputs and outputs
are using terms from a shared conceptualisation, enabling clients to deter-
mine what each part of a service’s interface means. This enables clients
to invoke services properly by ensuring that data given to the service for
processing is both the correct syntactic type (specified in the interface def-
inition) and appropriate semantic type (the concept referenced within the

ontology).

e Behaviour
How does this service change the state of the system? Many services have
effects other than the immediate processing of data. For example, a service
which allows a customer to purchase an item needs to represent the notion
that after a successful invocation the customer’s credit card account will
be reduced by a certain amount and the requested item will be shipped to
them. Capturing this behaviour is essential since two different services that
consume and produce conceptually equivalent data need to be distinguished

from each other by the effects they have on the real world.
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The combination of Semantic Web technology with Web Services to produce Se-
mantic Web Services has received a great deal of attention. In the following sub-
sections, we investigate the major technologies that aim to support the Semantic

Web Service vision, before comparing their approaches.

3.2.1 OWL-S

OWL-S is a set of ontology definitions (expressed using the OWL ontology language)
designed to capture the behaviour of Web Services. The top level service ontology
presents the service profile, a description of what the service does (e.g. that a ser-
vice is used to buy a book). The service is described by the service model, which
tells us how the service works (e.g. a book buying service requires the customer
to select the book, provide credit card details and shipping information and pro-
duces a transaction receipt). Finally, the service supports the service grounding
that specifies the invocation method for the service. Figure 3.1 shows the basic re-
lationship between these top level ontologies. In terms of data representation and
service invocation, our interest lies primarily in the service grounding ontology
because it describes the relationship between the high-level service description,

encapsulated within the OWL-s ontology definition of the service, and the actual

Service Profil The Service profile describes what the
ervice rFrorile service does.
Service Grounding
Service Model The Service Model describes how to interact
with the service.

FIGURE 3.1: OWL-S services are described by three facets; a profile, a grounding
and a model

service interface.

presents

supports The Service Grounding describes

how to invoke the service.

described by
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FIGURE 3.2: OWL-S atomic processes are grounded to WSDL Service operations.
Each owL-s parameter is grounded to a WSDL message part.

The current OWL-S release (Version 1.2 Beta [2]) supports the annotation of wsDL
interfaces for services that use SOAP invocation only. The basic grounding premise
is that each OWL-S atomic process (the most basic process element) is grounded
to a WSDL operation. The input parameters to an atomic process, which represent
the conceptual type of the input, are grounded to WSDL input message parts.
The same applies for the output parameters: they are grounded to WSDL output

message parts (Figure 3.2).

To annotate an existing Web Service that has a WSDL definition, XSLT scripts
are used to describe how an input OWL concept instance (serialised in XML) is
translated to a SOAP envelope so it can be sent directly to the service for invocation.
The reverse applies for the service output: XSLT is used to translate the output
SOAP envelope into an OWL concept instance. While this is a rather restrictive
approach since only one style of Web Service invocation and data encoding is
supported, it is only one implementation style that has been explored by the OWL-$
community: OWL-S is designed to be extensible and support other encoding types

and invocation styles, although this has yet to be explored.

3.2.2 WSMO

The Web Services Modelling Ontology (WSMO) [84] is an evolving technology built
upon, and extending the earlier UPML [43] framework. wsMO is designed to pro-

vide a framework to support automated discovery, composition, and execution of
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FIGURE 3.3: With wsMoO, adaptors are placed in front of legacy components,
such as Web Services, to provide a bridge to the wsMo infrastructure.

Web Services based on logical inference mechanisms. Conceptually, WsSMO is based
on an event driven architecture so services do not directly invoke each other, in-
stead goals are created by clients and submitted to the wsMO infrastructure which
automatically manages the discovery and execution of services. Like OWL-S, WSMO
uses ontologies to describe both the behaviour of Web Services and the informa-
tion they consume and produce. This is achieved using the bespoke F-Logic based
language WSML [37]. It is assumed that components within the WSMO architec-
ture communicate using a standardised message format: an XML serialisation of
the wsML language. Essentially, this means that all participants within a wsMO
framework are expected to communicate at a conceptual level using XML serialisa-
tions of WSML concepts. To accommodate differences in conceptual representation,
the wsMO infrastructure also contains explicit mediator components that support

the translation of information between different WSML representations.

To elevate conventional computing resources, such as Web Services and databases,
into the wsMo framework, message adaptors are placed in-front of the resource

to deal with the translations to and from traditional syntactic interfaces (such
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as a SOAP interface to a Web Service or an ODBC interface to a database) and
the WSML message layer as we show in Figure 3.3 These Adaptors are a super
set of what we defined earlier as Type Adaptors because they are responsible
for more than the translation of data between different syntactic representations:
conversions between different access models (e.g. relational databases and XML
data), different transport types (e.g. HTTP, and FTP), and different interaction
protocols (e.g. request / response Web Services, and remote method invocation).
An example of such an adaptor can be found in Section 5.3 of [76] which performs
translations between wsML and Universal Business Language [74] (UBL). With
this approach, the syntactic interface to a business service is hidden because its

interface is exposed only through the wsMo framework.

3.2.3 WSDL-S

WSDL-S (Web Service Semantics, a W3C Member submission) [5] is an extension
of the existing WSDL interface definition language that supports meta-data at-
tachment. WSDL-S assumes formal semantic models (i.e. models that describe
the service behaviour using semantics) exist outside the wsDL document and are
referenced via WSDL extensibility elements. WSDL-S is technology agnostic so any
formal semantic model can be used, such as OWL-s or WwsMO. We provide a visual
representation in Figure 3.4 that shows a conventional WSDL document referencing
an OWL ontology (to provide formal semantics for the data types) and an OWL-S
definition (formal semantics for the service behaviour). To support the relation-
ship between concrete data (in XML) and its conceptual representation (in OWL),

WSDL-S has two annotation models:

1. Bottom Level Annotation
For simple cases, when a one-to-one correspondence exists between an XML
element within the WSDL message and an OWL concept, bottom level an-
notations can be used to specify the mapping by means of an extensibility
element. While this model is limited (complex types are not supported), it

is sufficient for many cases.
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FIGURE 3.4: WSDL-S annotation approach: wsDL Definitions are linked to
external semantic models via extensibility elements

2. Top Level Annotation
With the top level annotation approach, an external mapping can be refer-
enced that specifies the full translation between XML and OWL. This allows
complex data representations to be assigned a model in OWL. Again, WSDL-
S is technology agnostic so any form of mapping can be used, such as XSLT

or XQUERY [22].

3.2.4 Comparison of Semantic Annotation Techniques

OWL-S, WSMO, WSDL-S and the annotation policy adopted by FETA (discussed
previously in Chapter 2) are oriented around the idea of high-level service de-
scriptions specified using an ontology based language: OWL in the case of OWL-S,
wsML for wsmo, and RDFS [25] for FETA. The description approaches are simi-
lar: inputs and outputs to services are specified using concepts from an ontology
describing the domain in which the service operates. Changes to the state of the
world are defined using pre-condition and effect based constructs, i.e. some state
of the system must be true before execution is permitted and successful invocation

results in new facts being added. The difference in approach lies fundamentally
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in their implementation methodology. OWL-S and FETA are used as an annota-
tion model, supplying language constructs to describe the behaviour of services
at a conceptual level without imposing any standard message exchange format or
invocation style. While current OWL-S implementations are based around some-
what restricted models, i.e. WSDL interface annotation with SOAP invocation,
the model is designed to be extensible and therefore support other types of Web
resource and access methods. Implementation of the WsMO architecture can be
considered more mature than those supporting owrL-s. The wsMX framework
which implements wWsMO already supplies a integrated annotation, discovery and
invocation environment - something which has yet to be fully realised by the OWL-
S community. However, this has been achieved mainly because of the restrictions
placed on WsMO participants, namely a standardised message exchange format
and imposed invocation style. Since WSDL-S is only an annotation approach that
relies on the existence of an external formal model, it cannot be compared directly
to OWL-S, WsMO, or FETA. However, it does subscribe to the same basic princi-
ple i.e. services are described using high-level, conceptual definitions expressed in

an ontology.

3.3 Viewing a Semantic Web Service Architec-

ture

The amalgamation of the term “semantic” with “web service” to produce Semantic
Web Service has been used frequently, but also indiscriminately. Sometimes it is
used to refer to the notion that existing Web Services are augmented with Semantic
Web technology to aid computers in understanding what the service does and
how it works. All other times, it used to refer to a new type of service that
sits on the Semantic Web, directly consuming and producing information at the
conceptual level. To distinguish between these different views, we introduce the

terms semantically annotated Web Service and semantically enabled Web Service.

Semantically annotated Web Services are conventional Web Services, such as those
described by wsDL, that have been annotated with a semantic description. This al-

lows the service to continue interacting with traditional clients, as well as allowing
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more advanced components, such as a discovery service, to utilise the additional
annotations and reason on the capabilities of the service. We illustrate this type
of service in Figure 3.5. With these types of service, some mechanism must exist
to describe how conceptual information structures, such as ontology instances, are

grounded to concrete data representations such as XML.

Ontology
Instances

Ontology
Instances

Semantically
Annotated
Web Service

Service Input ) Service Output )

i Transform Ontology Transform XML to
. Instance to XML Ontology Instance
XML Data XML Data
<a> XML Input . XML Output <x>
<b>foo<\b> ) Web Service ) <y>5<\y>
<b>bar<\b> <z>10<\z>
</a> </x>

FIGURE 3.5: A semantically annotated Web Service is a traditional Web service
that has annotations describing the grounding of ontology concepts to its XML

types.

Semantically enabled Web Services are services that consume input and produce
output at a conceptual level. We assume these types of service are able to reason
on the data received and have a suitable mark-up mechanism to describe their

functionality. We illustrate these types of service in Figure 3.6.

Ontology
Instances

Ontology
Instances

Semantically
Enabled
Web Service

Service Input ) Service Output )

FI1GURE 3.6: A Semantically enabled Web Service which consumes input and
produces output in the form of ontology instances.

With semantically enabled Web Services, conceptual service definitions are created
and maintained by service providers. This restricts compatibility since any poten-
tial clients must understand the domain ontologies used by the provider. Given

the distributed nature of the Web and the diverse range of communities utilising
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it, it is likely that several ontologies will develop to explain the same domain using
slightly different structures and terms. Service providers must also anticipate the
requirements of the client which can be problematic because different clients may
use the same service to achieve different goals. For example, the Amazon Web
Service (www.amazon. com) can be used to purchase CDs, but a client may wish to
use the service to find album track listings or cover art. In addition, for a service
to be semantically enabled, the provider is forced to provide a semantic descrip-
tion; a complex task which they may not be qualified to perform or wish to spend

resources doing so.

A semantically annotated Web Service permits multiple annotations for a single
service instance. This allows different organisations and communities to describe
Web Services with their own ontologies according to their own interpretations. It
also means service providers can still use conventional WSDL documents to expose
their capabilities and rely on third party annotations to give them semantics.
Finally, by annotating existing definitions rather than altering them, we can ensure

compatibility between semantic and non-semantic clients.

The bioinformatics application in which our work is situated is a semantically
annotated environment. Services expose their functionality using conventional
interface definitions such as WsDL. These interface definitions are then annotated
with terms from a bioinformatics ontology, supplying semantics and capturing the

meaning of the service.

3.4 Data Integration

The workflow problem we present in our use case emanates from the variety of data
formats assumed by service providers. Data Integration (the means of gathering
information from multiple, heterogeneous sources) also addresses this problem,
providing solutions which enable the harvesting of information across differing
syntactic representations. Given the similarity of the problem, we investigate the
following data integration research: a bioinformatics application that utilises on-
tologies to capture the meaning of information content; a physics Grid technology

that enables transparent access to data ranging over multiple, divergent sources; a
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geographic dataset integration solution; a semantic data integration system for the
web; and a Grid data definition language to support the meaningful interchange

of Grid data.

3.4.1 TAMBIS - Data Integration for Bioinformatics

The Transparent Access to Multiple Bioinformatics Information Sources [87] (TAM-
BIS) framework is designed to support the gathering of information from various
data sources through a high-level, conceptually-driven query interface. In this sys-
tem, information sources are typically proprietary flat-file structures, the outputs
of programs, or the product of services, with no structured query interface such as
SQL or XQUERY [22], and no standard representation format. A molecular biology
ontology, expressed using a description logic, is used in conjunction with functions
that specify how every concept is accessed within each data source to deliver an
advanced querying interface that supports the retrieval of data from multiple in-
formation sources assuming different data representations. The requirements for
syntactic mediation are similar to those of data integration: syntactic mediation
requires a common way to view and present information from syntactically incon-
gruous sources; data integration systems, such TAMBIS, have achieved this by
using conceptual models to describe information source in a way that is indepen-
dent of representation. While the TAMBIS approach is useful when considering
the consolidation of Web Service outputs, it does not support the creation of new
data in a concrete format, a process that is required when creating inputs to Web

Services.

3.4.2 XDTM - Supporting Transparent Data Access

The need to integrate data from heterogeneous sources has also been addressed
by Moreau et al [78] within the Grid Physics Network, GriPhyN [50]. Like the
bioinformatics domain, data sources used in physics Grids range across a variety of
legacy flat file formats. To provide a homogeneous access model to these varying
data sources, Moreau et al [78] propose a separation between logical and physical

file structures. This allows access to data sources to be expressed in terms of the
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logical structure of the information rather than the way in which it is physically
represented. To achieve this, an XML schema is used to express the logical structure
of an information source, and mappings are used to relate XML schema elements to
their corresponding parts within a physical representation. The XML Data Type
and Mapping for Specify Datasets (XDTM) prototype provides an implementation
which allows data sources to be navigated using XPATH. This enables users to re-
trieve and iterate across data stored across multiple, heterogeneous sources. While
this approach is useful when amalgamating data from different physical represen-
tations, it does not address the problem of data represented using different logical
representations. Within a Web Service environment where service are described
using WSDL, we can assume homogeneous logical representation because inter-
face types are described using XML schema. Our workflow harmonisation problem
arises from the fact that service providers use different logical representations of
conceptually equivalent information, i.e. differently organised XML schemas to

hold the same conceptual items.

3.4.3 Ontology-based Geographic Data Set Integration

Geographic data comes in a variety of formats: digitised maps, graphs and tables
can be used to capture and visualise a range information from precipitation lev-
els to population densities. As new data instances appear, it is important with
geographic data sets to recognise their spatial attributes so information can be
organised and discovered by regional features such as longitude and latitude, as
well as political or geographic location. Uitermark et al [92] address the prob-
lem of geographic data set integration: the process of establishing relationships
between corresponding object instances from disparate, autonomously producing
information sources. Their work is situated in the context of update propagation
so geographically equivalent data instances from different sources, in different for-
mats, can be identified and viewed as the same instance. Abstraction rules dictate
the correspondence between elements from different data models which means the
relationship between instances of data in different models can be derived, e.g. they

are in the same location or they fall within the same region.
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3.4.4 1IBIS: Semantic Data Integration

The Internet-Based Information System (IBIS) [29] is an architecture for the
semantic integration of heterogeneous data sources. A global-as-view approach
[19, 32] is employed meaning a single view is constructed over disparate infor-
mation sources by associating each element in a data source to an element in a
global schema. A relational model is used as the global schema with non-relational
sources wrapped as legacy file formats; Web data and databases models can all be
queried using a standard access model. A novel feature of the IBIS architecture
is the ability to deal with information gathered via Web forms. This is achieved
by exploiting and implementing techniques developed for querying sources with

binding patterns [69].

3.4.5 Data Format Definition Language

The Data Format Definition Language (DFDL) [16] is a proposed standard for the
description of data formats that intends to facilitate the meaningful interchange of
data on the Grid. Rather than trying to impose standardised data formats across
vendors, the DFDL language can be used to specify the structure and contents of
a file format at an abstract level, with mappings that define how abstract data
elements are serialised within the data format. The DFDL API can then be used
to parse data and operate over it without regard for the physical representation
of the data. This approach has the benefit that information providers can choose
to represent their data using the most appropriate format. This is an important
consideration for Grid applications because data sets can be large and complex,
and therefore, enforcing a particular representation language such as XML is not

feasible.

3.4.6 Reflection on Data Integration Techniques

Viewing information sources through a three-tier model [86] allows us to separate

different data integration solutions and position our work against them. Figure 3.7
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FIGURE 3.7: A Three Tier Model to separate physical storage, logical structure
and conceptual meaning of information.

illustrates the relationship between physical representation, logical organisation,

and the meaning of data:

1. Physical Representation - How the file is stored

Data can be stored in a variety of formats: proprietary binary files, text files,

XML files and databases encompass the most common methods.

2. Logical Organisation - How the information is structured

On top of the physical representation layer, the logical organisation of the

data dictates the structure of the information, e.g. XML schema, relational

models, etc.

3. Conceptual - What the data means

On top of the logical organisation layer, the conceptual model of an in-

formation source specifies what the information means at a high-level of

abstraction.

It is common for data integration solutions to use a common representation or

uniform access model to facilitate the gathering and processing of information from
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different representations. In terms of the three-tier model presented in Figure 3.7,
a set of heterogeneous formats in one layer can be abstracted in the layer above to
support homogeneous data access. For example, different physical file formats can
be integrated through a common structural representation, a technique used by
DFDL, XDTM and IBIS. If different logical organisations of data exist, a common
conceptual model can be used to access data sources through a single view, an
approach used by TAMBIS and the integration of geographic datasets. In either
case, some form of mappings or wrapper programs are used to translate data. The
workflow harmonisation problem that we presented earlier in Chapter 2 stems from
the fact that different service providers assume different logical organisations of
data (under the assumption that XML schema are used to describe the input and
output of Web Services). Therefore, a common conceptual model that describes
the contents of different XML schemas can be used to drive the translation of data
between different formats. To achieve this, some method is required to assign
meaning to XML schema components expressed in a high-level language such as a
description logic or ontology. This notion, commonly referred to as XML semantics,

is discussed in the following section.

3.5 XML Semantics

The idea of assigning semantics (or meaning) to elements and attributes inside
XML schemas has been explored in a variety of different ways. In some cases, it
is used for data integration purposes; many different XML instances that assume
different logical structures are viewed through a common conceptual model so
queries across different representations and their results are expressed in terms
of the meaning of the data that is captured in a high-level model. Kim and
Park [64] have developed the XML Meta Model (XMM) to support this kind of
functionality. The XMM captures the semantics of XML schemas using a simple Is-
A relationships: each element and attribute within an XML schema is an instance

of a particular concept within the XML meta model.

Schuetzelhofer and Goeschka [85] have employed a set theory approach to assign

domain semantics to information represented in XML. A three-layer meta-model
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graph breaks XML into three levels: (i) the instance-level graph models the exis-
tence of elements, attributes, and literals as nodes of a graph and types as their
edges (ii) the type-level graph models the XML schema with element and attribute
definitions represented as nodes, and type definitions represented as edges (iii) the
meta-type-level is comprised of meta-type nodes that model the domain concepts,
and meta-type links that represent the relationship between domain concepts.
With this three-layer meta model representation of XML, instances of elements
in different schemas that share the same meta-type-level nodes are conceptually
equivalent. Therefore, a homogeneous view for querying XML data across different
logical representations (i.e. different XML schemas) can be achieved through the

meta-type level.

Liu et al [70] present the XML Semantics Definition Language (XSDL) to support
the modelling of XML semantics. Using OWL ontologies to capture the semantics
and structure of XML documents, and mappings that declare the relationship be-
tween XML schemas and OWL ontologies, different representations of conceptually
equivalent information can be viewed through a common ontological model. This
approach is also used by An et al [7] who define a mapping language to express

the relationship between XML DTDs and OWL ontologies.

While these data integration techniques facilitate the viewing and querying of data
across different XML representations through a common conceptual model, they
do not enable the conversion of data between different formats. For workflow har-
monisation, when the output format from one service does not match the input
format to another service, data needs to be converted from one representation to
another. To apply data integration techniques that utilise a shared conceptual
model of data to the workflow harmonisation problem requires a two-way conver-
sion process: information from one format that is viewed through the conceptual
model must be serialised to a different format. This idea has been explored by
Balzer and Liebig [14] in the context of Semantic Web Service integration. Again,
OWL ontologies are used as a common conceptual model to capture the semantics
of XML data structures. Unlike the research presented above, their mapping ap-
proach enables the conversion of data from XML to OWL and from OWL to XML
providing the mechanism necessary to support workflow harmonisation. However,

their mapping language is quite limited: a one-to-one correspondence between
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XML elements and OWL concepts is assumed. Through the investigation of real
bioinformatics data later in Chapter 5, we find that data structures are not so neat
and often the combination of more than one element constitutes a single concept,
particular elements can have different semantics depending on their context, and
some element’s semantics change depending on the values of other elements and

attributes.

3.6 Automated Workflow Harmonisation

In this Section, we examine two systems that provide support for automated me-
diation in service-oriented architectures: a classification based approach where
mediator services are used to harmonise data incompatibilities, and an ontology-
based approach that generates transformations between syntactically discordant

interfaces.

3.6.1 Shim based Service Integration

Hull et al [58] have investigated the workflow harmonisation problem within the
MYGRID project. They dictate that conversion services, or shims, can be placed
in between services whenever some form of translation is required. They explicitly
state that a shim service is experimentally neutral in the sense that it has no
effect on the result of the experiment. By enumerating the types of shims required
in bioinformatics Grids and classifying all instances of shim services, it is hoped
that the necessary translation components could be automatically inserted into
a workflow or suggested to the user at workflow composition time. However,
their work encapsulates a variety of conversion services, not just ones to perform

syntactic mediation. Shim services are classified in the following way:

e Dereferencer
In our use case, an accession id is used to retrieve a sequence data record. In
bioinformatics services, it is often the case that results from analysis services

are references to a record and not the actual record itself. When results from
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one service invocation are passed as input to another service, sometimes it
is necessary to insert an additional service to retrieve the entire record. This

type of intermediate service is classified as a dereferencer shim.

e Syntax Translator
When services assume different representation of the same information, a

syntax translator shim is inserted.

e Semantic Translator
Sometimes a conversion between conceptually similar information is required.
For example, a DNA sequence may need to be converted to a protein se-

quence. This type of service is classified as a semantic translator shim.

e Mapper
In our use case, the two sequence retrieval services use the same unique record
identifiers (or accession id’s). Other bioinformatics services exist to retrieve
sequence data, but using different unique identifiers. Services that convert

a reference from one system to another are classified as mapper shims.

e Iterator
When the output from one service is a set of records, and the input to the
next service is a single record, an iterator shim can be placed in between
services to process each member of the record set individually and combine

the results.

For the purpose of this analysis, we consider only the syntax translator shim;
the other types of shim service cover integration problems outside the scope of
syntactic mediation. The notion that particular types of service can be grouped
together (e.g. services for syntax translation) is useful because users can readily
identify services that will help them resolve syntactic incompatibilities. From an
automation perspective, the classification approach would work if the capability
of the conversion service (namely the source type consumed and the destination
type produced) can be queried because software components could then find Type

Adaptors to meet specific translation requirements at runtime.
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3.6.2 Ontology based transformation generation

The SEEK project [24] specifically addresses the problem of heterogeneous data
representation in service oriented architectures. Within their framework, each
service has a number of ports which expose a given functionality. Each port
advertises a structural type that represents the format of the data the service
is capable of processing. These structural types are specified by references to
XML schema types. If the output of one service port is used as input to another
service port, it is defined as structurally valid when the two types are the same.
Each service port can also be allocated a semantic type which is defined by a
reference to a concept within an ontology. The plugging together of two service
ports is semantically valid if the output from the first port is subsumed by the
input to the second port. Structural types are linked to semantic types by a
registration mapping using a custom mapping language based on XPATH. If the
plugging together of two ports is semantically valid, but not structurally valid,
an XQUERY transformation can be generated to harmonise the two ports, making
the link structurally feasible. While the SEEK project does present a solution to
the problem of harmonising syntactically incompatible services, their work is only
compared to the services within the bespoke SEEK framework — the use of specific

Web Service technologies such as WSDL or SOAP are not discussed.

3.7 Discovery and Composition

Within any large-scale Grid or Web Services application, the discovery of services
and the composition of workflows is a fundamental process. We inspect the tech-
nology that facilitates these processes and discuss recent research within these

fields.

3.7.1 Grid Based Semantic Service Discovery

Grid environments are not static: new services can appear, services can disappear

and existing interfaces can be modified at any time. To cope with this dynamic
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scenario, service registries are often used to keep track of the services available.
Within the MYGRID project, the Taverna workbench uses a service registry to
maintain a list of available services and presents them to the user. As we mentioned
in Section 3.1.2, existing Web Service discovery technologies, such as UDDI, are only
able to provide primitive discovery mechanisms based on simple string matching
of service descriptions and classifications of service instances. Next generation
discovery components, such as FETA [71], supply more advanced service location
mechanics by exploiting semantic service annotations. To support this kind of
discovery, the service registry has evolved into a more complex component. Instead
of simply storing interface definitions, it is now necessary for Grid registries to
support the annotation of service interfaces with additional semantics by both
service providers and third parties. To enable semantic service discovery, query
interfaces must be provided to support the searching and retrieval of services in

terms of the service semantics.

The GRIMOIRES service registry [93] is an example of such a next generation Grid
registry, supporting advanced service annotation and discovery. GRIMOIRES works
on top of existing Web Service standards providing annotation support for wsDL
service definitions and UDDI service records. Meta-data is stored using RDF [66]
triples and a query interface is provided using RDQL. The meta-data attachment
policy is generic so it can support a range of annotation approaches such as OWL-S

and WSDL-S.

3.7.2 Web Service Composition with Semantics

In scientific Grid applications, such as Taverna, workflows are used to capture the
experimentation process. With the introduction of semantic service annotations,

conventional workflow models can be augmented in two ways:

1. Abstract Workflow Definitions
Traditional workflows are specified over service instances. For example, the
workflow we present in our use case is specified over the DDBJ-XML or
XEMBL sequence retrieval services and the NCBI-Blast service. Given that

semantic annotations describe service interfaces at conceptual level, new
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workflow models are being formulated to allow users to specify service com-
positions at an abstract level [38, 73]. This allows users to express their
desired workflow in terms of the kind of service used, rather than the actual
service instances. Our use case scenario could be expressed as a sequence
retrieval service which gets a record and passes it to an alignment service.
This abstract workflow definition can then be mapped onto an enactable

workflow instance using a semantic service discovery component [95].

2. Automated Composition
By utilising planning techniques from the artificial intelligence community,
it is possible to generate a service composition that achieves a high-level
goal that is not achievable by a single service instance [18, 21]. For example,
our use case workflow could be specified as a single task that consumes a

sequence accession id and produces sequence alignment results.

In both of these scenarios, we find that services may be plugged together because
their semantic descriptions deem them compatible. However, as we have shown
in Chapter 2, semantically interoperable services (services that share the same se-
mantic types) are not necessarily syntactically compatible. Therefore, automated

workflow harmonisation is critical to the success of these applications.

3.8 Conclusions and Analysis

We have shown that the application of Semantic Web technology to Web Services
can facilitate more advanced service discovery and autonomous invocation. By
using a bioinformatics ontology, such as the one presented by Wroe et al [94], a Web
Service’s characteristics can be defined using high-level terminology from a shared
conceptualisation that is familiar to users. To support this type of annotation,
next generation service registries, such as GRIMOIRES, can be used in combination
with advanced discovery components, such as FETA, to supply a rich Web Service
environment that supports users in the composition of workflows and facilitates

the scientific process.
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In Chapter 2, Section 2.4, we identified that workflow composition is hindered by
the fact that service providers and consumers often assume different representa-
tions for conceptually equivalent information. While existing manual solutions do
provide the necessary syntactic mediation for workflow harmonisation, an auto-

mated solution is preferable for two main reasons:

1. The Semantic Web Service philosophy is centered around the notion that
users should be able to coordinate the exchange and processing of informa-
tion between parties using high-level terms from shared conceptualisations
without concern for the interoperability issues. When users are forced to
consider the data formats assumed by providers and consumers and how

they relate to each other, this basic premise is violated.

2. A considerable amount of effort is required for users to insert the appropriate
mediation components. While it may be the case that a Type Adaptor exists
to harmonise a particular dataflow between services, users are unable to share
and discover them, so duplication is rife. Furthermore, users in these types of
domain, such as bioinformatics, are not experts in Web Service composition

so the harmonisation of dataflow is a daunting and complex task.

Through our investigation in related work, we identified that previous data inte-
gration work also tackles to problem of heterogeneous data representation; projects
such as TAMBIS and SEEK have successfully used shared conceptual models to
provide a homogeneous access model across disparate information formats. This
type of approach can be implemented using a mapping language that provides a
data representation with clear semantics, allowing pieces of information in different
formats to be identified through a common term or concept. However, existing ap-
proaches that apply semantics to XML data structures to drive homogeneous data
access are usually one way processes: information can be gleaned from different
formats and viewed through a common model, but it cannot be converted be-
tween different syntactic models. The workflow harmonisation problem we tackle
requires the conversion of data between formats, and therefore, further work is

required.
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In the next Chapter, we present the WS-HARMONY architecture: a frame-
work to support automated workflow harmonisation. Data integration techniques
that rely on common conceptualisations to capture the structure and semantics of
different data formats are used, along with Web Service discovery technology, to
facilitate the automatic discovery and inclusion of the appropriate Type Adaptors

at runtime.



Chapter 4

WS-HARMONY:
An Architecture for Automated

Workflow Harmonisation

In Chapter 2, we presented the problem that occurs in semantically-annotated
Web Service environments when a service provider and a service consumer assume
different syntactic representations for conceptually equivalent information. While
this motivating use case highlights the impact of this problem when users are
composing services based on their semantic definitions (e.g. high-level conceptual-
isations of the service inputs and outputs), we can also imagine similar problems

arising when automatic planning techniques are used to generate workflows.

As indicated in Chapter 3, Section 3.7, much research has been undertaken to
convert abstract workflows to concrete specifications [38, 73], as well as the gener-
ation of workflows to fulfill tasks not achievable by a single service [18, 21]. In both
of these examples, services may be joined by a planning algorithm because they
are deemed semantically compatible (through inspection of the service’s semantic
annotations). Since the planing techniques listed above do not consider low-level
interoperability issues when joining services, they may generate workflows that
cannot be reliably invoked. Therefore, the harmonisation solution presented in
this dissertation is important not only for the development of applications like

Taverna that provide users with an interaction to semantically-annotated Web

48
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Services, but also to the Semantic Web research field as a whole: there are many
situations when services are connected because they should fit, even though they

may not agree on the same syntactic model.

In this Chapter, we present the Web Service Harmonisation Architecture (WS-
HARMONY) that supports the invocation of Web Services and automatic rec-
onciliation of data formats whenever semantically compatible but syntactically
incongruous service interfaces are joined. For this architecture, we do not believe
it necessary to conform to a particular Semantic Web Service annotation model
(such as OWL-S, WSDL-S or FETA) because the same harmonisation problem can
arise when using any of them, and the same solution can be employed. The as-
sumptions we make are that all service interfaces are defined using wsSDL with
their respective message parts specified using XML schema. This makes our solu-
tion compatible with any technology that conforms to these widely used standards,

including user-oriented applications and automatic composition software.

Broadly, the architecture can be split into two sections: the syntactic mediation
approaches supported and the infrastructure created to enable them; and the
discovery of Type Adaptors to automate the process of syntactic mediation and

the invocation of target services. The contributions of this Chapter are:

1. Scalable mediation approach
To support the translation of data between different formats, we make use
of shared conceptual models expressed with the ontology language OWL.
Individual data formats are mapped to a conceptual model using a declara-
tive and composable mapping language so conceptually equivalent elements
within different representations are linked via a common concept. This ap-
proach provides better scalability as the number of compatible data formats

increases than directly translating data between formats.

2. Type Adaptor generation from mapping rules
By consuming mappings that specify the meaning of XML schema compo-
nents through a shared conceptual model, our Configurable Mediator is able
to masquerade as a bespoke Type Adaptor on demand to fulfill a given

translation requirement.
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3. Middleware to facilitate the sharing and automatic discovery of
Type Adaptors
One novel aspect of the WS-HARMONY architecture is the use of WSDL to
describe Type Adaptors and mapping specifications. This enables us to reuse
existing registry technology to enable the sharing and discovery of adaptor

components.

The first half of this Chapter is concerned with mediation, beginning in Section 4.1
with a classification of mediation approaches and how OWL can be used to drive
data translation with an intermediate representation. Section 4.2 shows how medi-
ation components fit into existing workflow execution frameworks and introduces
the Configurable Mediator: a software component that translates data using map-
pings specified between XML schemas and OWL ontologies. Section 4.3 discusses the
requirements of our mediation approach and argues for the de-coupling of transla-
tion specifications from service descriptions, as well as highlighting the benefits of
a modular language to describe translation. The latter half of the Chapter shows
how we automate the process of syntactic mediation, starting in Section 4.4 with
an overview of our advertising and discovery techniques before the presentation of

the WS-HARMONY architecture as a whole in Section 4.5.

The WS-HARMONY architecture presented in this Chapter is given at a high
level: many of the technical aspects are reserved for later Chapters where they are
presented in more detail. References to more detailed explanations are given at

the appropriate place, as well a summary of contributions at the end in Section

4.6.

4.1 Mediation Approach

The conversion of data between different formats in large-scale and open systems,

such as the Grid and Web Services, can be separated into two approaches:

1. Direct Mediation
When many different formats exist to represent conceptually equivalent in-

formation, Type Adaptors may convert data between formats directly. We
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Data format

With a direct mediation approach,
Type Adaptors must be created to
convert between every pair of
compatible data formats

Type Adaptor

FIGURE 4.1: Direct Mediation: Converting data directly between formats

By introducing an intermediate
representation (i), to which all
@ @ data formats are converted, less
Type Adaptors are required to
achieve maximum interoperability

FIGURE 4.2: Intermediary Mediation: Converting data to an intermediate rep-
resentation

illustrate this approach in Figure 4.1 where we show six compatible data for-
mats (a to f) and the number of Type Adaptors required (connecting lines).
As the number of compatible data formats increases, the number of Type
Adaptors required is O(n?). Whenever a new format is introduced, O(n)
Type Adaptors must be created (one for each existing format) to ensure

maximum interoperability.

2. Intermediary-based Mediation
By introducing an intermediate representation to which all data formats are
translated (Figure 4.2), the number of Type Adaptors required is O(n) as
the number of compatible formats increases. Also, when a new data format
is conceived, only one Type Adaptor is required to convert this new format

to the intermediate representation.

Current systems (such as the Taverna application discussed in Chapter 2) employ

a direct mediation approach: conversion components translate data directly from
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one format to another. Given the poor scalability of this approach and the large
overhead when introducing new formats, the WS-HARMONY architecture is

centered around the use of an intermediate representation.

While it is outside the scope of this dissertation, a natural progression for this
view of data translation is to consider the impact of multiple intermediate repre-
sentations. We can imagine that a single ontology is constructed to capture the
structure and semantics of some data (such as a sequence data record in our use
case) to provide a particular application with a single view over heterogeneous
formats. However, it is likely that different ontologies would be developed for the
same data source because other communities will have different interpretations of
the data structure and the terms used. To illustrate this idea, Figure 4.3 shows
three different intermediate representations (i1, i2 and i3) and a number of differ-
ent data formats (including = and y). If a transformation exists between i; and
13, * has a transformation to i1, and y has a transformation from 73, then an item
in format x may be converted to format y via the intermediate representations i,

and iQ.

To enable the translation of data from
format x’to format'y, a transformation
must exist to convert from the
intermediate representation i, toi,

FIGURE 4.3: Joining of Intermediate representations

4.1.1 Using OWL as an Intermediate Representation

The Web Ontology Language (OWL) [83] is an ontology specification language
that enables the publishing and sharing of conceptual models on the Web. By
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extending the existing mark-up capabilities of RDF and RDFS and combining rea-
soning capabilities from the description logic community [57, 54], OWL embraces
the name-spacing and linking benefits of the Web to support sharing and reuse,
and provides the necessary language constructs to model complex domain knowl-
edge. Using OWL to capture the structure and semantics of XML data has been
reviewed in Chapter 3, Section 3.5 and is a proven data integration technique. To
illustrate this idea against our bioinformatics use case, we present an ontology to
describe Sequence Data Records in Figure 4.4. Complete OWL listings for this

ontology can be found in Appendix A, Listing A.1.

The main concept, Sequence_Data_Record (centre of Figure 4.4), has the datatype
properties accession_id (denoting the unique id of the dataset) and description
(a free-text annotation). Each sequence data record has a Sequence that con-
tains the string of sequence data, the length of the record and its type!. A se-
quence data record contains a number of References that point to publications
that describe the particular gene or protein. FEach reference has a list of au-
thors, the journal name, and the paper publication title. Sequence data records
also have a number of different features, each having a Feature_Location that

contains the start and end position of the feature. There are many different

IType here does not denote a syntactic type - it is a kind of sequence.

Key Feature_Location
@ DataType Property @ start
Object Property Reference star
end
4\ Sub-Concept @ en

@ authors
@ journal
@ title

6equence_Data_Recor'a

@ accession_id [
@ description

has_reference

has_sequence

]
(Featur'e_Sourcew ( Feature_CDS w
has_feature @ lab_host @ translation
— @ isolate @ product
A @ organism @ protein_id
ﬁDBJ_Sequence_Data_Recor'a ﬁMBL_Sequence_Data_Recor'a

@ molecular form @ data_class
@ taxonomy @ date_created
@ date_last_updated @ release_created

FI1GURE 4.4: An Ontology to describe sequence data records

location

has_reference

Sequence

@ data
@ length
@ type

Sequence_Feature

location

has_feature

has_sequence
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types of feature; we show two common ones in this example: Feature_Source
and Feature_CDS. Both of these concepts are sub-classes of the Sequence_Feature
concept which means they inherit properties assigned to the parent class. In
the case of a sequence feature, they all contain a location, but each has its
own list of properties: lab_host, isolate and organism are properties of the Fea-
ture_Source class; and translation, product and protein_id are properties of the
Feature_CDS class. The Sequence_Data_Record concept also has two sub-concepts:
DDBJ Sequence_Data_Record and EMBL_Sequence_Data_record. These classes cap-
ture the fact that while both the DDBJ and XEMBL formats contain mainly the
same information, there are attributes of each record that are unique to their for-
mat. For example, repository-specific information such as the date created or date

last updated.

Fragments of XML describing a sequence feature in both DDBJ and EMBL formats
are given in Listing 4.1 and 4.2 These two representations essentially contain the
same information in different formats: The Feature type is CDS, it has a product,
protein_id, translation and location. Figure 4.5 gives a visual representation of
the concept instances that would be used to capture this sequence feature infor-
mation. An instance of the Feature_CDS class would be used with three datatype

properties holding the translation, product and protein_id. The feature location

<feature name="CDS">
<qualifier name="product">capsid protein 2</qualifier>
<qualifier name="protein_id">BAA19020.1</qualifier>
<qualifier name="translation">MSDGAVQPDGGQPAVR...</qualifier>
<location type="single" complement="false">
<locationElement type="range" accession="AB000059">
<basePosition type="simple">1</basePosition>
<basePosition type="simple">1755</basePosition>
</locationElement>
</location>
</feature>

LisTING 4.1: Sample XML from a EMBL formatted Sequence Data Record

<FEATURES>
<cds>
<location>1..17556</location>
<qualifiers name="product">capsid protein 2</qualifiers>
<qualifiers name="protein_id">BAA19020.1</qualifiers>
<qualifiers name="translation">MSDGAVQPDGGQPAVR...</qualifiers>
</cds>
</FEATURES>

LISTING 4.2: Sample XML from a DDBJ-XML formatted Sequence Data Record
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Feature_Location

@ start:1
@ end:1755

location

( Feature_CDS \

@ location
@ translation:MSDGAVQPDGGQPAVR. ..
@& product:capsid protein 2
@ protein_id:BAA19020.1

FIGURE 4.5: An OWL concept instance to describe a feature from a Sequence
Data Record

information would be represented using an instance of the Feature_Location class
and would be linked to the Feature_CDS via the object property location. With
a common ontology in place to describe bioinformatics data, syntactically incon-
gruous dataflow between two services operating in this domain can be harmonised
by translating data from one representation to another via the intermediate OWL
model. This idea is exemplified in Figure 4.6 against our bioinformatics use case
from Chapter 2. In this example, the output from the DDBJ-XML service is con-
verted to its corresponding concept instance (the Sequence_Data_Record concept),
which can in turn be converted to FASTA format for input to the NCBI-Blast

service. We define two terms to distinguish between these conversion processes:
e Conceptual Realisation
The conversion of an XML document to an OWL concept instance.

e Conceptual Serialisation

The conversion of an OWL concept instance to an XML document.

_(DDBJ Sequence )
' Data Record 1

The output from the DDBJ-XML The Sequence Data Record concept

g <
service is converted to an instance 1 -2 -2 1 instance is converted to FASTA format
of the DDBJ Sequence Data Record concept 3 i forinput to the NCBI_Blast service

P 3 g

V= Q!

S R

DDBIXML | | 2 St FASTA
A Y S
DDBJ-XML Format § g Format NCBI_Blast

O
g 5
]

FIGURE 4.6: Using an ontology instance as a mediator to harmonise services
with incompatible interfaces.
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To facilitate these conversion processes, we assume a canonical representation for
OWL concept instances. This allows us to view conceptual realisation and concep-
tual serialisation as XML to XML transformations. While it is common for OWL
users to specify OWL concept instances using RDF/ XML syntax, XML schemas do
not usually exist to validate them. Therefore we automatically generate schemas

using the OWL-XZS generator, presented in full in Chapter 7, Section 7.2.

4.1.2 Mapping XML to OWL and vice versa

To enable the transformation of XML data to OWL and vice versa, we present
the declarative mapping language FXML-M (formalised XML mapping). FXML-M
is modular and composable to embrace XML schema reuse meaning XML schema
components? can be mapped individually to OWL concepts and properties. We
formalise this mapping language and the transformation process in Chapter 5 after
deriving requirements from real bioinformatics data sets. FXML-M is designed
to accommodate complex relationships: collections of XML components can be
mapped to single elements (and vice versa); components can be mapped differently
based on the existence and values of other elements and attributes; components
can be mapped depending on their context within an XML document, and some
basic string manipulation support is offered through the use of regular expressions.
To this end, FXML-M provides a set of novel language constructs that do not exist

in other approaches [64, 85, 70, 7, 14].

An implementation of the FXML-M language is provided through a SCHEME [63]
library called FXML-T, presented in Chapter 6. Through empirical testing, we
show that our implementation scales well with respect to increasing document and
schema sizes, offers composability with almost zero cost, and is efficient compared

to other translation implementations when used with bioinformatics data sets.

2We use the term components to refer to XML elements, attributes and literal values
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4.2 Mediation Infrastructure

In Section 4.1, we specified two mediation approaches: direct and intermediary-
based. Although direct mediation does not scale well, current Grid and Web
Services infrastructures already expose this functionality. Therefore, the WS-
HARMONY architecture is designed to cope with both approaches. To present
our architecture, and position our contribution against existing technology, the
following sub-sections show current workflow invocation models, how they are
affected with a direct mediation approach, and what changes intermediary-based

mediation requires.

4.2.1 Conventional Workflow Invocation

Since we are augmenting an existing Grid infrastructure, we begin by showing the
current topology in Figure 4.7. When executing workflows in a service-oriented
environment, a Workflow Enactment Engine, such as FreeFluo [46] or activeBPEL
3], is used to control the invocation of Web Services. The Workflow Enactment
Engine takes a workflow specification document describing the services to invoke,

the order in which to invoke them, the dataflow between services, and optionally

The Workflow Enactment Engine
consumes a workflow specification and
optional workflow input

Workflow
Specification
(BPELWS, XSCUFL)

Web Service invocation

S (e.g. SOAP/HTTP)
ynamic .
W?r:;ﬂ?w Y\ WS Invoker ¢« " WebService 1

Y ,
Workflow <" The Workflow Enactment Engine
Enactment uses the Dynamic WS Invoker

Engine to execute Web Services

Web Service invocation

. (e.g. SOAP/HTTP)
; W”g,‘;:;fggr > WebService?2

On completing all tasks within the workflow,
the Workflow Enactment Engine may
produce an output

Workflow
Output

i

FIGURE 4.7: Current Invocation Framework for Workflow based applications
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some workflow inputs. To support the invocation of arbitrary Web Services, the
WS-HARMONY architecture includes a Dynamic Web Service Invoker (DWsTI).
While current Web Service invocation technologies, such as Apache Axis [10], are
adequate in static environments where service definitions are known at design /
compilation time, they do not cater well for the invocation of previously unseen
services. The DWSI is able to call arbitrary wsDL [33] defined services that bind
with SOAP [52] encoding over HTTP transport. This part of the WS-HARMONY
architecture is presented in full later in Chapter 7 where a performance evaluation

against Apache Axis shows that the DwsI has a lower invocation overhead.

4.2.2 Direct Mediation Workflow Harmonisation

To cater for any syntactically incompatible services, extra stages must be inserted
into the workflow to perform syntactic mediation. Figure 4.8 shows various kinds
of Type Adaptor (an XSLT script, JAVA class, or Web Service invocation) that
could be used as a direct mediator to harmonise the data incompatibility. Current
solutions require the manual discovery and insertion of adaptor components into
the workflow specification, and thus the workflow designer must consider low-level

interoperability issues.

When the output from Web Service 1 is not compatible for input
to Web Service 2, data translation may be executed in a
— variety of ways. This figure shows how a translation script,
Workflow Mediation Web Service, and JAVA Class could be used.
Specification

(BPELWS, XSCUFL) .
ynamic )
4 WS Invoker Web Service 1

Workflow 4 Translation

i

Input Specification
XSLT Script

A4

Workflow
Enactment
Engine

Mediation
Web Service

The Mediator may take the
form of an XSLT Engine, Web

<
A Workflow | ‘.\Serwce invoker, orJava execution
Output - .,
Dynam'c Web Service 2
WS Invoker

FIGURE 4.8: Syntactic Mediation in the context of workflow
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4.2.3 Intermediary-based Workflow Harmonisation

In order to translate XML data from one format to another via an intermediate rep-
resentation in OWL, as we described in Section 4.1.1, two translation specifications
are required: one for conceptual realisation and one for conceptual serialisation
(Figure 4.9). The WS-HARMONY architecture supports on-the-fly creation of
Type Adaptors using mapping specifications in FXML-M through the Configurable
Mediator (C-MEDIATOR) component. The C-MEDIATOR, pictured in detail in
Figure 4.10, consumes a serialisation and realisation specification (expressed us-
ing FXML-M) and uses them to transform an XML document in one format to an
XML document in a different format via an intermediate OWL concept instance.
The Translation Engine, built using FXML-T, transforms XML data by consuming
mapping rules expressed in FXML-M, and JENA is used to hold the intermediate
OWL model. A full breakdown of the C-MEDIATOR and Translation Engine are

provided in Chapter 6.

y| Workflow The Workflow Enactment Engine uses the Configurable
Mediator to convert the output of Web Service 1 into

Specification . ;
(BPFéLWS XSCUFL) the correct format for input to Web Service 2

Dynamic .
) A W< Invoker Web Service 1
r Workflow

in OWL

Input 4 Realisation
Translation
Y " LTI mi= a/b->x/y
T Ontology l my= a/c->x/z
EVrchrlt(r]:lq(;vr\\/t R Configurable Instance

AT - Mediator intermediate ——
Engine Boresentation A Serialisation
Translation

mi= x/y->p/q

my= x/z->p/r
Workflow |
Output [
P Dynamic )
WS Invoker Web Service 2

The Configurable Mediator uses the realisation translation to generate an OWL
concept instance from the output of Web Service 1. This concept instance servces as the
intermediate representation. The serialisation translation is then used to convert the
concept instance to a different XML representation that is suitable for input to Web Service 2.

FIGURE 4.9: Modified Invocation Framework featuring a configurable mediator
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FIGURE 4.10: A high-level view of the Configurable Mediator

4.3 Mediation Specification Requirements

The specification of mappings between XML and OWL is central to our workflow
harmonisation solution since they provide the mechanisms necessary to perform
syntactic mediation. At a fundamental level, we have split the mediation process
into two translation operations: conceptual serialisation, the process of converting
XML to OWL, and conceptual realisation, the process of converting OWL to XML.
A single Web Service may offer a number of operations: for example, the DDBJ-
XML Service we use in our use case offers many operations over sequence data
records. As we highlighted in Chapter 2, Section 2.5, XML schema definitions are
often reused when services offer multiple operations over the same, or subsets of
the same data. A simple service annotation approach defines translations for each
Web Service operation. This is the approach taken by OWL-S where XSLT scripts
are used to define the transformation for each operation input and output. If this
technique is used to annotate the DDBJ-XML service, separate annotations would
be needed to describe the “Get SWISS record”, “Get EMBL record” and “Get
UNIPROT record” operations. Furthermore, when we consider the “Get Sequence
Features” operation, we see that a subset of the same transformation is required
because the output is a subset of the full sequence data record. This annotation

approach has two major limitations:
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1. Close coupling of mapping specification
For the DDBJ-XML service, which offers operations over exactly the same
data types, it would be better to de-couple the mapping specifications from
the service description for two reasons: (a) the same mappings could be
reused by each operation resulting in less work during the annotation process,
(b) if the data format and its corresponding ontology definition are modified,
only one change to the mapping would be required. The DDBJ-XML service
offers 60 different operations to retrieve sequence data records so de-coupling

is an important consideration.

2. No support for mapping reuse
As we illustrated earlier in Figure 2.7, the DDBJ-XML service provides op-
erations that return subsets of complete sequence data records. Rather than
use separate mappings to describe how each possible subset of the sequence
data record is translated to and from an OWL concept instance, it is better
to describe how each part of the sequence data record is translated using a
declarative language, in effect, providing building blocks to construct Type

Adaptors.

Therefore, the WS-HARMONY architecture offers a scalable mediation solution,
both in terms of the mediation approach (which is based on an intermediate repre-

sentation), and in the way mappings are de-coupled from the interface definition.

4.4 Discovery of Type Adaptors

The mediation infrastructure presented in Section 4.2 assumes that all Type Adap-
tor components, either for direct mediation or through an intermediate OWL repre-
sentation, are known. To enable automated mediation, i.e. discover the appropriate
translation components without human direction, WS-HARMONY makes use
of a registry that stores Type Adaptor information. Since Type Adaptors come
in many forms, e.g. application code, scripts, mapping specifications and Web
Services, we separate their definitions into abstract capability (what the input
and output types are) and concrete implementation (how the Type Adaptor is in-

voked). Under this assumption, all Type Adaptors can be described using WsDL,
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and retrieved according to their input and output types. Because WSDL is used to
define Type Adaptor functionality, existing Web Service registry technology can
be reused. WS-HARMONY relies on the GRIMOIRES [93] registry to support
the advertising, sharing and discovery of WsDL Type Adaptor definitions, as we
illustrate in Figure 4.11. This part of the WS-HARMONY architecture is pre-

sented in full in Chapter 7 where a full explanation of wSDL and the GRIMOIRES

The GRIMOIRES registry
is used to advertise and
discover Type Adaptors

lwsDL Diefinition|

registry is given.

Direct Type Adaptors Grounding specifications
are described using WSDL H are described using WSDL

Java Mediation

[ Code 1 Web Service
BSML —

| Realisation |

/" 7| Translation
| xsir ACAVE NSDXML intermediate OWL
Script Schema Schema Representation
\.} DDBJXML y Serialisation |

Schema M Translation

B XL Schomas [l

F1GURE 4.11: WSDL is used to describe Type Adaptors which are registered
with GRIMOIRES

4.5 Automated Workflow Harmonisation

With a mediation infrastructure in place that supports the translation of data
using direct and intermediary mediators, and a registry containing mediator de-
scriptions, the complete WS-HARMONY architecture can be viewed in terms of
Web Services, XML schemas, OWL ontologies, and the GRIMOIRES registry, as we

show in Figure 4.12:
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e Web Services

Web Services (bottom left of Figure 4.12) are described using wSDL by the
service provider. The syntactic type of any operation input or output is

defined by a reference to an XML schema type or element.

XML Schemas

XML schemas (bottom right) are created by service providers to describe the
datasets consumed and produced by their Web Services. Direct Mediators
(e.g. XSLT scripts, Web Services and bespoke programs) may translate data
directly between formats. Mappings supply the necessary translation spec-
ification to perform conceptual serialisation and conceptual realisation and
enable intermediary-based mediation. In effect, this allows XML data to be

turned to and from an OWL concept instance.

Ontologies
Ontologies (top) capture the structure and semantics of the XML data for-
mats and provide the semantic types for service inputs and outputs necessary

for semantic service discovery.

Registry

The service registry (centre) is used to store WsDL interfaces for Web Ser-
vices and their corresponding semantic annotations. Any Type Adaptors
(both direct and intermediary) are also described using WSDL so the exist-
ing GRIMOIRES query interface can be used for discovery according to the

required input and output types.

4.6 Conclusions and Contribution Summary

To supply the invocation and mediation framework presented in this Chapter,

we make three distinct contributions that are presented in detail in the following

Chapters:

1. A Modular Transformation Theory

As we stated earlier in Section 4.3, a good transformation approach for con-

ceptual serialisation and conceptual realisation is modular. On investigating
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this requirement within a bioinformatics Grid application, we found a modu-
lar transformation is difficult to achieve with complex data sets. Our solution
comes in the form of FXML-M (Chapter 5): a declarative and composable
mapping language with a well defined transformation process. FXML-M has
novel features that allow complex mappings to be specified: predicate sup-
port is included so mapping can be specified in terms of the existence and
values of other elements; mappings can be given scope so different map-
pings are applied depending on the context of a particular element within
a document; string manipulation constructs are included through regular
expressions support to allow different characters within a string value to be

split and assigned to different elements.

2. A Configurable Mediator
The Transformation Engine, (built with FXML-T'), implements the mapping
and transformation theory presented in Chapter 5 to enable the conversion of
XML documents. The C-MEDIATOR (Chapter 6) combines the Transforma-
tion Engine with the ontology processing API JENA to supply a dynamically
configurable Type Adaptor. The C-MEDIATOR consumes mappings that
specify the processes of conceptual realisation and conceptual serialisation,
along with an ontology definition in OWL, and uses them to drive the con-

version of data between syntactically incongruous data formats.

3. Architecture for the registration, sharing, and discover of Type
Adaptors
With a mediation infrastructure in place, WS-HARMONY supports au-
tomatic workflow harmonisation through the discovery of appropriate Type
Adaptors at runtime. To achieve this, all Type Adaptor components (both
direct and intermediary) are described using WSDL and registered with the
GRIMOIRES service registry. This means the existing GRIMOIRES query in-
terface can be reused to support the discover of Type Adaptors according to
the desired input and output types. To overcome the limitations of existing
Web Service invocation APIs, such as Apache Axis and JAX-RPC, with respect
to the invocation of previously unseen services, the Dynamic Web Service
Invoker is used. These additional architecture components are presented in

Chapter 7.
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Transformation Theory

To harmonise dataflow between two syntactically incompatible service interfaces,
data transformations can be used to convert a data instance from one represen-
tation to another. In Chapter 4, we identified two ways in which this mediation
can be performed: direct (where translation is performed from one format straight
to another) and intermediary-based (where a common format is used as a lingua
franca). Since direct mediation has poor scalability and is difficult to use in large
communities where many different formats are used, we have concentrated our
efforts on the intermediary-based approach because it supports better scalability

and eases the introduction of new data formats (Chapter 4, Section 4.1).

By using OWL ontologies to capture the structure and semantics of data structures,
OWL concept instances can be used as the intermediate representation allowing
all semantically equivalent data formats to become interchangeable (Chapter 4,
Section 4.1.1). Existing semantic service annotation techniques, such as OWL-S,
WSDL-S and the FETA annotation model, already use the notion of a semantic
type: a concept from an ontology which is assigned to each input and output type
for a service interface. These annotations are reused within the WS-HARMONY
architecture, effectively assigning each concrete type a corresponding conceptual
model in OWL via the semantic type. By assuming a canonical XML representation
for OWL concept instances, we simplify the transformation problem allowing real-

isation and serialisation transformations to be expressed as XML transformations.

66
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The contribution of this Chapter is a modular and composable XML mapping lan-
guage and translation formalisation to support the transformation of data between
different formats. The novelty of the language is the combination of the following

features:

A declarative and composable mapping language to support mapping reuse

and schema composition.

e Composite mappings so a single element in the source document can be
mapped to a combination of elements in the destination document (and vice

versa).

e Predicate support to allow elements and attributes to be mapped differently

depending on their content or structure.

e Basic string manipulation so literal values can be split and mapped to dif-

ferent elements in a destination document.

e Scoping to allow different mappings to be applied depending on the context

of an element within the document.
e XML syntax for the specification of mappings.

e A formalism to define the mapping language and transformation process,
giving precise semantics for the language and the specification of an abstract

implementation.

The Chapter begins in Section 5.1 where we derive our transformation require-
ments using data sets from our use case. In Section 5.2 we give a brief overview
of XML and XML schema, showing how they are represented within an existing
formalisation [26]. This formalism is then extended in Section 5.3 to describe the
mechanics involved in a transformation process. Section 5.4 describes our trans-
formation theory at a high level, before we present its formalisation in Section 5.5.
In Section 5.6, example mappings for conceptual realisation of the DDBJ bioinfor-
matics service output are presented, along with their corresponding XML syntax
in Section 5.7. We conclude in Section 5.8 by summarising our transformation

theory and present additional features that could be included in future work.
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5.1 Transformation Requirements

We stated in Chapter 4 that we simplify the transformation requirements for
conceptual serialisation and conceptual realisation by assuming a canonical XML
representation of OWL concept instances. This way, we can view the translation
process as an XML to XML translation. While it is common for OWL users to specify
OWL concepts and their instances using XML syntax, XML schemas do not usually
exist to validate them. Therefore, we automatically generate schemas using the
OWL-XZS generator (OWL XML instance schema generator), presented in full in
Chapter 7. An example instance schema for the Sequence Data ontology used in
our use case can be found in Appendix C. By using this XML schema, we are able
to describe an instance of the Sequence_Data_Record concept using the XML given

in Listing 5.1.

To provide a modular transformation solution, we use mappings to express the
relationship between the XML elements and attributes in a source schema, and
their corresponding elements and attributes in a destination schema. We illustrate
this idea in Figure 5.1 where we show a subset of a full sequence data record in
DDBJ format and its corresponding OWL concept instance (serialised in XML).
We consider six different mapping types, with examples given in Figure 5.1, that

highlight our mapping requirements:

1. Single element to element mapping
In simple cases, elements and attributes in a source schema correspond di-
rectly to elements and attributes in a destination schema. For example, in
Figure 5.1, the <DDBJXML> element is mapped to the <Sequence Data Record>

element.

2. Element contents mapping
When elements and attributes contain literal values (e.g. strings and num-
bers), it is necessary to copy the literal value from the source document and
include it in the destination document. For example, the text value AB000059
contained in the <ACCESSION> element must be copied to the destination doc-

ument and inserted as the contents of the <accession_id> element.
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<?xml version="1.0" encoding="iso —8859—-1" ? >

<Sequence _Data _Record xmins="http://www.ecs.soton.ac.uk/"'mns03r/sch ema/Sequence —Ont" >
<accession _id >AB000059 </accession _id >
<sequence >atgagtgatggagcagttcaaccagacggtggtcaacctgctgtcagaaa. .. <Isequence >
<description ~ >Feline panleukopenia virus DNA for capsid protein 2 </description >

<has _reference >
<Reference >
<authors >Horiuchi M. </authors >
<journal >Submitted (22 —DEGC-1996) to the EMBL/GenBank/DDBJ databases.

Motohiro Horiuchi, Obihiro University of Agriculture and V eterinary Medicine,
Veterinary Public Health; Inada cho, Obihiro, Hokkaido 080 ,
Japan (E —mail:horiuchi@obihiro.ac.jp, Tel:0155 —49-5392) <fjournal >

</Reference >
</has _reference >
<has _reference >
<Reference >
<authors >Horiuchi M. </authors >
<title  >evolutionary pattern of feline panleukopeina
virus differs fromn that of canine parvovirus <title >
<journal >Unpublished Reference <fournal >
</Reference >
</has _reference >
<has _feature >
<Feature _Source >
<location >
<Feature _Location >
<start >l</start >
<end>1755</end >
</Feature _Location >
</location >
<lab _host >Felis domesticus <flab _host >
<isolate >Somk/isolate >
<organism >Feline panleukopenia virus <forganism >
</Feature _Source >
</has _feature >
<has _feature >
<Feature _CDS>
<location >
<Feature _Location >
<start >l</start >
<end>1755</end >
</Feature _Location >
</location >
<translation >MSDGAVQPDGGQPAVRNERATGSGNGSGGGGGGGSGGVGt&iFGlation >
<product >capsid protein 2 <lproduct >
</Feature _CDS>
</has _feature >

</Sequence _Data >

LisTING 5.1: An XML representation for an instance of a Sequence_Data con-
cept

3. Multiple element mapping
In some cases, the relationship between elements in a source and destination
schema is not atomic; a combination of elements in the source document
may constitute a single element (or another combination of elements) in
the destination document. For example, the <FEATURES> element containing
a <source> element is mapped to the <has feature> element containing a

<Feature_Source> element in our example.
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Sequence data record in DDBJXML Format

—1(<DDBJXML>) e

<ACCESSIONA@B@@@@SQ%/ACCESSION>

<FEATURES>

\_ <sources/
<10cationﬂf).@:t:k/location>
a <qualifiers name="isolate"sSomL¥/qualifidrs>

(<qualifiers name="Llab_host">Felis domestilcus</qualifiers>

</source>

</Features>
</DDBJXML>

—<Sequence_Data_Record>)
<accession_id>ABBBPRSIK/accession_id>
Zhas_feature> N\
<h<Feqtur'e_Sour'ce>/ °

<isolates@Somlx/isolate> e_
(<lab_host>Felis domesticus</lab_host> ©
<location>
<Feature_Location>
<startTx/start> °
<end>A755x/end>
</Feature_Location>
</location>
</Feature_Source>
</has_feature>
</Sequence_Data_Record>

An Instance of the Sequence_Data_Record concept

FIGURE 5.1: Mappings between elements and attributes in the DDBJXML
Sequence Data format and elements within the XML serialisation of the
Sequence_Data_Record OWL concept

4. String manipulation support
In complex cases, the contents of a string literal may contain two or more
distinct pieces for information. In Figure 5.1, the <location> element has
text containing the start and end position, delimited by "..". Each of these
positions must be mapped to separate elements in the destination document

because they are assigned separate properties in the ontology.

5. Predicate support
Sometimes, an element or attribute from a source schema may be mapped
differently depending on the value of an attribute or element, or even the
presence of other elements within the document. This can be seen in Figure
5.1 where the <qualifiers> element is mapped differently depending on the
value of the @name attribute - in the case of Mapping 5, when the string

equals "lab_host" , the element is mapped to the <lab_host> element.
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6. Local Scoping
In some scenarios, we may wish to map elements differently based on their
context. For example, in a DDBJ record, the contents of the <qualifiers>
element (a string value) is mapped differently depending on the value of
the @name attribute. In mapping 6, the string contents of the <qualifiers>
element is mapped to the contents of the <isolate> element. To support this
kind of behaviour, our mapping language supports local scoping so different

rules can be applied in different contexts.

Because of these complex mapping requirements, we specify our mapping language
and the transformation of XML documents using a formalisation. This facilitates
a sound and efficient implementation (presented later in Chapter 6) and helps us
capture the more difficult transformation properties such as predicate support and

local scoping.

5.2 XML Formalisation

We have elected to base our mapping and translation theory on an existing XML
and XML schema formalisation [26] called Model Schema Language (MSL) - a W3C
working draft [27]. While other XML and XML schema formalisms have been pro-
posed [17] [79], MSL captures the most complex XML constructs such as type inher-
itance and cardinality constraints, as well as lending itself to the specification of
mappings between different XML schemas and the process of document translation

driven by such mappings.

In this Section, we outline the principal features of MSL: how elements, attributes
and types are referenced (Section 5.2.1), how groups of elements are specified
for type declarations (Section 5.2.2), how XML schema components!' are defined
(Section 5.2.3), and how XML documents are represented (Section 5.2.4). This
will give the reader enough knowledge to understand our mapping and translation

formalisation, which appears later in the Chapter in Section 5.5.

I'We use the term components to encompass elements, attributes and literal values.
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<?xml version="1.0" encoding="iso —8859—-1" ? >

<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSche ma"
targetNamespace="http://www.ecs.soton.ac.uk/"mns03r /schema/Example —Source"
xmins="http://www.ecs.soton.ac.uk/"mns03r/schema/Ex ample —Source" >

<xsd:element name="a" >
<xsd:complexType >
<xsd:all >
<xsd:element name="b" type="xsd:string" minOccurs="1" ma xOccurs="1"/ >
<xsd:element ref="c" minOccurs="1" maxOccurs="1"/ >
<fxsd:all >
<xsd:attribute name="id" type="xsd:string"/ >
</xsd:complexType >
<Ixsd:element >

<xsd:element name="c" type="c —type"/ >

<xsd:complexType name="c —type" >
<xsd:sequence >
</xsd:sequence >
</Ixsd:complexType >

<xsd:complexType name="c —extended" >
<xsd:complexContent >

<xsd:extension base="c —type" >
<xsd:sequence >
<xsd:element ref="d" minOccurs="1" maxOccurs="3" >

<Ixsd:sequence >
</xsd:extension >
</xsd:complexContent >
<Ixsd:complexType >
<xsd:element name="b" type="xsd:integer’/ >
<xsd:element name="d" type="xsd:integer"/ >

<Ixsd:schema >

LisTING 5.2: A Simple XML Schema

5.2.1 Normalised schema

MSL references the components of an XML schema, such as elements, attributes and
types, using a normalised format. Normalisation assigns a unique, universal name
to each schema part and provides a flat representation of the components found
within a schema document. This allows us to distinguish between components
with the same name that have been declared within different scopes. To exemplify
this notation, we provide the normalised form for all XML components declared in
the simple XML schema shown in Listing 5.2 with corresponding line numbers in
square brackets to show where they are defined. These references are simply used
to point to XML schema components: the definition of actual elements and types

is presented later in Section 5.2.2.
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[6] http://www.ecs.soton.ac.uk/ mns03r/schema/Example-Source/#element::a

[7] http://wuw.ecs.soton.ac.uk/ mns03r/schema/Example-Source/#element::a/type: :*

[12] http://wuw.ecs.soton.ac.uk/ mns03r/schema/Example-Source/#element: :a/type: :*/attribute: :id
[9] http://wuw.ecs.soton.ac.uk/ mns03r/schema/Example-Source/#element: :a/type::*/element::b
[16] http://www.ecs.soton.ac.uk/ mns03r/schema/Example-Source/#element::c

[18] http://www.ecs.soton.ac.uk/ "mns03r/schema/Example-Source/#type::c-type

[24] http://www.ecs.soton.ac.uk/ mns03r/schema/Example-Source/#type: :c-extended

[34] http://wuw.ecs.soton.ac.uk/ mns03r/schema/Example-Source/#element::b

[35] http://www.ecs.soton.ac.uk/ mns03r/schema/Example-Source/#element: :d

The first part of the normalised schema reference, up to the first occurrence of the
# symbol, is the namespace. The second part (following the # symbol) is a path
of sort / name pairs (delimited by ::), each containing a sort (e.g. #element,
#attribute, or #type) designating the kind of component referenced, and a name
(e.g. aor id) which is the local name assigned to the component. For example, the
element a is defined in the global scope (line 6 of Listing 5.2) and is referenced with
the namespace prefix http://www.ecs.soton.ac.uk/ mns03r/schema/Example-Source and
the normalised path reference element::a. The element a contains an anonymous
complex type definition (line 7) which is referenced using the path element::a/
type::* (where "x" represents an anonymous type and should not be confused
with a wild card character). This complex type has a locally defined element (line
9) named b which can be distinguished from the globally defined element named
b (line 34) because they have different normalised schema references (element: :a/
type::*/element::b and element: :b respectively). The type refinement given in

line 24 is used later to illustrate type inheritance within MSL.

For compactness, a short form notation is used throughout the rest of this Chapter
to refer to schema components where the namespace is dropped along with the
sort definition. This allows us to reference the element a simply using a, the
anonymously defined type within the scope of a using a/*, and the attribute id

(line 12) using a/*/@id.

5.2.2 Model Groups

In XML, elements and attributes are assigned types to describe their contents. For
elements containing data values, this is one of the pre-defined XML types such as

xsd:string or xsd:int, or a simple type that restricts the content of an existing
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type (for example, numbers between 1 and 10). For elements that contain other
elements, such as element a in our example above (Listing 5.2), their type is a
complez type. A complex type falls into one of three categories, specified using one
of the following indicators:

e <xsd:sequence> - contains a sequence of elements in a specified order.

e <xsd:all> - contains a collection of elements in any order.

e <xsd:choice> - contains one element from a choice of elements.
Occurrence indicators may be set to specify the number of times each content

element should appear (e.g. an element in a sequence can only appear once).

In MSL, the contents of an XML type is specified by a model group using traditional

regular expression notation [4]. We let g range over model groups.

group g := € empty sequence
| 0 empty choice
| g1, g2 a sequence of g1 followed by g2
’ g1 ‘ g2 choice of g1 or g2
| a1 &gg an interleaving of g; and g2 in any order
| g{m, n} g repeated between minimum m and maximum n times
| CL[g] attribute with name a containing g
’ e[g] element with name e containing g
| p atomic datatype (such as string or integer)
| x component name (in normalised form)

These model groups are used in the definition of schema components, as we de-

scribe in the following section.
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5.2.3 Components

In MSL, schema components (XML elements, attributes, etc...) can be one of
seven sorts?: element, attribute, simply type, complex type, attribute group or model

group. We let srt range over sorts.

sort srt ::= attribute
| element
|  simpleType
| complexType
| attributeGroup

| modelGroup

In XML, it is possible to express rudimentary type inheritance. When defining a
type, a base type must be specified (by default this is assumed to be xsd:UrType).
A type may either extend the base type or refine it. Extension is used in the case
where the subtype allows more elements and attributes to be contained within
it, such as the type c-extended in Listing 5.2. Refinement is used to constrict
the existing elements and attributes defined by the base type, for example, by

imposing more restrictive cardinality constraints.

We let emp range over components where x is a reference to another normalised

2the term sort is used to avoid confusion with the XML term type
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component name, der ranges over the two types of derivation (extension or refine-

ment), ders is a set of der’s, b is a boolean value and ¢ is a model group.

components cmp = component (

sort srt

name T

base x

derivation = der

refinement ders
abstract = b

content = g

A derivation specifies how the component is derived from its base type. We let

der range over derivations, and ders range over sets of derivations:

derivation der ::= extension
| refinement
derivation set ders = {dery,..., der;}

The refinement field of a component definition states the permissible derivations
that can be made using this component as base. With a means to specify schema
components, the components from our example schema (Listing 5.2) can be defined
as in Figure 5.2 (preceded with corresponding line numbers in square brackets to
indicate where they are defined in the schema listing). The content of an element
or attributes is its type (e.g. element a has the content a/*), and the content of
a complex type is a list of the elements and attributes it contains (e.g. type a/*

contains an interleaving of a/*/@id, a/*/b, and c).
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(6]

component(

sort = element,
name = a

base = xsd:UrElement,
derivation = restriction,
refinement = {3},

abstract = false,

content = a/*

D)

[7]
component(

sort = complexType,
name = a/*,

base = xsd:UrType,

derivation = restriction,

refinement = {restriction,extension}
abstract = false

content = a/*/@id{1,1} & a/*/b{1,1} & c{1,1}
D)

[12]

component(

sort = attribute,

name = a/*/@id,

base = xsd:UrAttribute,
derivation = restriction,
refinement = {restriction}
abstract = false

content = xsd:string

D)

[9]

component(

sort = element,
name = a/*/b,

base = xsd:UrElement,
derivation = restriction,
refinement = {3}

abstract = false

content = xsd:string

D)

[16]
component(

sort = element,

name = c,

base = xsd:UrElement,

derivation = restriction,
refinement = {3},
abstract = false,
content = c-type

FIGURE 5.2: MSL to represent the schema components defined in Listing 5.2
with listing line numbers for components indicated in square brackets.

[18]
component(

sort = complexType,
name = c-type,

base = xsd:UrType,

derivation = restriction,

refinement = {restriction, extension}

abstract = false
content = b{1,2}

D)

[24]

component(

sort = complexType,
name = c-extended,
base = c-type,

derivation = extension,

refinement = {restriction, extension}

abstract = false
content = d{1,3}

[34]
component(

sort = element,
name = b

b
base = xsd:UrElement,
derivation = restriction,
refinement = {3},
abstract = false,
content = xsd:integer

D)

[35]
component(

sort = element,
name = d

b
base = xsd:UrElement,
derivation = restriction,
refinement = {3},
abstract = false,
content = xsd:integer



Chapter 5 Transformation Theory 78

5.2.4 Typed Documents

In the previous Sections (5.2.1, 5.2.2 and 5.2.3), we have described how MSL can
be used to specify XML schema components. To represent instances of the schema
components, or XML documents, MSL uses typed documents. We let td range over

typed documents:

document td ::= € empty document
| tdl, tdg a sequence of typed documents
’ C a constant (e.g. a string or an integer)
| a[s = C] an attribute a of type s with contents c
| G[t = td] an element e of type t with contents td

As an example, Figure 5.3 contains MSL to express the XML document given in
Listing 5.3 adhering to the schema presented earlier in Listing 5.2. The root
element a, of type a/*, is a sequence containing the attribute a/*/@id (with
the string value "foo"), the element a/*/b (with the string value "bar"), and
the element c. The element c, of type c-type, contains a sequence with two b

elements each containing the integer values 1 and 2.

ala/* >
a/*/@id[xsd:string > "foo"],
a/*/blxsd:string > "bar"],
clc-type >
b[xsd:integer > 1],
b[xsd:integer > 2]
]

FIGURE 5.3: MSL to express the XML document given in Listing 5.3

<?7xml version="1.0" encoding="iso-8859-1" 7>
<a xmlns="http://www.ecs.soton.ac.uk/ " mns03r/schema/Example-Source" id="foo">
<b>bar</b>
<c>
<b>1</b>
<b>2</b>
</c>
</a>

LISTING 5.3: An example xml document
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5.3 Formalisation Extensions

Before describing our XML mapping and transformation methodology, we present
two extensions to the MSL formalisation: we describe a notion of document paths,
which allow us to specify a selection of components from within an XML document,

and simple predicates which will be used later to specify conditional mappings.

5.3.1 Document Paths

To specify a selection of child elements, attribute or literal values located deep
within a given typed document, we use a document path. This is an important
XML construct and is already implemented in XPATH [35]. However, XPATH has
not been formalised within MSL, so we present our own simple document path
formalism. We let path components 6 range over attribute names, element names,
the keyword value, the keyword value with a regular expression, and the empty

document e:

path component 6 ::= a attribute name
| (& element name
‘ value value extraction
\ value{regexp} regular expression
‘ € empty document
regular expression regexp ::= string

The empty document € is included so empty XML elements (e.g. <x/> can be

matched). A path expression is then specified by a sequence of path components.

path expression © = (6y,0s,...,60,)

Definition 1 (Path Components) To evaluate a path expression © against a
source typed document tds, each path component (8,,) in the expression must match

components within tds. Given a typed document tds that contains the components
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td,, that match 6, we write:

0Ftds — td,,

To define this behaviour, and others throughout the rest of this Chapter, we use
inference rule notation [47]. In this notation, when all statements above the line
hold, then the statement below the line also holds. We present rules to define
the matching of path components against typed documents in Figure 5.4. Rule
PATHC.A states that a path component 6 referencing an attribute a matches the
typed document aft > td.|, and therefore § F tdy, — a[t > td.] holds. Rule
PATHC.E uses the same principle to define the matching of elements. PATHC.C
states that a path component # = value will match a typed document only if it
is a constant value (i.e. tds = ¢). To match regular expressions against constants
(rule PATHC.REG), we assume the existence of a function eval(regexp, ¢) = r which
evaluates the regular expression regexp against the string ¢ giving the result r. The
matching of the empty document is defined in rule PATHC . EMP. Rules NOT . PATHC. A,
NOT.PATHC.E, NOT.PATHC.C, NOT.PATHC.REG, and NOT.PATHC. EMP define the cases
where the path component 6 is not matched against the typed document td,, so
0 - tds — 1 holds. When matching any path component against a typed document
that is a sequence of other typed documents, there are four possible cases: only
the first element in the sequence is matched (PATHC.SA), only the second element
in the sequence is matched (PATHC.SB), both elements are matched (PATHC.SAB),
or neither element is matched (NOT.PATHC.S).

Definition 2 (Child Documents) When evaluating a path expression, each path
component is matched in order against components in the source document. To
traverse into the document and take direct children of an element or attribute, a
notion of typed document contents is required. The direct child of a parent typed
document td, is a child typed document td. and is denoted by:

child(td,) = td,

To evaluate a path expression (which is a sequence of path components), it is
necessary to take the contents of an element or attribute so it can be evaluated
against the next path component in the sequence. Inference rules to describe this

behaviour are given in Figure 5.5. Rule CHILD.A states that a typed document
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0 =a td,=alt>td]

PATHC.A
0+ td, — alt > td.]
NOT.pATHCA 0 =2 tds #alt > td]
o OF td, >L
PATHC.E 0=e td, =elt > td]
. 0+ tds — e[t = tdc]
NOT.pATHCE b= tds #eft 5 td.]
. ‘ 0+ tds — |
PATHC.C 0 = value tds=-c
' 0+ td, — c
0 = value tds # c
NOT.PATHC.C

0Ftdy, — 1

0 = value{regexp} tds=c eval(regexp,c)=r

PATHC.REG
OFtd, — r

0 = val td,
NOT.PATHC.REG value{regerp} #c

OFtd, —L
paTHCEMp O ¢ =€
’ 0+ td, — €
NOTPATHCEMP O —C tda7€
’ ’ OFtd, —L

0 tds =td,,td, 0+ td, —1td, OFtd, —L

PATHC.SA
0+ td, — td,
oumiceg 0 tds =tdutdy OFtd, —L Ot td, — td,
' 0+ td, — td,
0 td, =tdy td, O+ td, —td, 60+ td,— td,
PATHC.SAB

0+ td, — td,, td,

FIGURE 5.4: Rules to define the application of path components to typed
documents
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tds = a[t > td,]
child(aft > td,)) = td,

CHILD.A

td, = e[t > td,]

CHILD.E
child(e[t > td,]) = td,

caripc % =¢
~ child(c) =¢
CHILD.EMP — 0 =€
' child(e) = ¢
td, = td,. td,
CHILD.SEQ

child(td,, tdy) = td,, td,

FIGURE 5.5: Rules to define the direct children of typed documents

tds that is the attribute definition a[t 3 td.| contains the document ¢d.. A similar
definition is used to define the contents of an element in rule CHILD.E. The other
three rules define the contents of the empty document (CHILD.EMP), a constant
(CHILD.C), and a sequence of typed documents (CHILD.SEQ) to be itself.

Definition 3 (Path Expressions) The application of path expression © to a
typed document tdy yields a result typed document td,.. This action represents
the extraction of elements deep within a typed document according to the path

components specified in the path expression. To denote this, we write:

OFtd, — td,

With rules in place to describe the contents of typed documents and the matching
of path components, the evaluation of a path expression can be specified as in
Figure 5.6. The result document, td,, is taken from the contents of the final

component matched (child(td,_1/) = td,).

As an example, the path expression © = (a,a/* /Qid,value) can be evaluated
against the typed document given in Figure 5.3 to give the result "foo", and would

be equivalent to applying the XPATH statement a/@id/text (). To illustrate this
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@ - <017027---70n>
0, F td, — tdy child(tdy) = td;,
92 F tdl — tdll Chlld(tdll) = tdg,
0, b td,_ — td,_v child(td,_y) = td,

PATH.EVAL
OtFtdy —td,

FIGURE 5.6: A rule to define the application of a path expression to a typed
document

evaluation, Figure 5.7 shows the steps involved with and explanation of the rules

used below:

1. The source document is tds; and the path expression is ©. Rather than
write the full typed document, ... is used to denote element and attribute
contents. Rule PATH.EVAL is used to derive the result document and is
comprised of three steps: «, (3, and v, each denoting the application of a

path component from O (e.g. [@]) and its child document (e.g. [@/]).

2. [a] - The first path component in © is matched against the root document

(aF tds — ala/* > ...]) using rule PATHC.E.

3. [@/] - The direct child of the matched document is found using rule CHILD.E.
The direct child is a sequence of typed documents containing the attribute

a/*/@id, the element a/*/b, and the element c.

4. [f] - The second path component in © is then matched against the se-
quence using rule PATHC.SA since only the first document in the sequence
matches (rule PATHC.A) and the remaining two do not (rules NOT.PATH.A
and NOT.PATH.S).

5. [#'] - The direct child of the matched document is found using rule CHILD. A.
The direct child of the attribute is the literal value foo.

6. [y] - The final path component in © is matched against the literal value using
rule PATHC.C (value =7 foo” — 7 foo”).

7. ['] - The direct child of the literal value is itself (from rule CHILD.C) and is
the final result of the application of the path expression © to td;.



tds = ala/* > .. ]
O = (a,a/ x /Qid,value)
o] [o]
6] 191
(PATH.EVAL) 5 Pht]d [l]foo
) ) Lottt
o tds = ala/x > .. ]
(CHILDE) o] @/ 5 1) = a/  /aid[ . J.a/ % /bl ], o[..]
0 =a/x/Qid tds=a/x*/b[...] O=a/*/Qid td;=c]|..]
0 =a/*/Qid td, =a/x /Qid].. ] a/* /Qidta/* /bl...|] =L a/* /Qidtcl..] —L1
a/* /Qid t a/* /Qid[...] — a/* /Qid].. ] a/*/QidkF1l, 1—1

(PATHC.SA) [f]

a/* /Qid t a/* /Qid[...], L— a/ x /Qid].. ]

tdy, = a/ x /@id].. ]
child(a/ * /@Qid[xsd : string 5 foo]) = foo

(CHILD.A) [F]

0 = value td, = foo
(PATHC.C) [v]

value - foo — foo

td, = foo
child(foo) = foo

(CHILD.C) [v]

FIGURE 5.7: An example path expression evaluation to retrieve the contents of an attribute

AI1081 T, uopRULIOJSURI], ¢ Iojdey))
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5.3.2 Simple Predicates

To cope with complex mappings where the semantics of an element or attribute
vary depending on the existence of other elements or their values, predicate support
is necessary. This notion was presented earlier in Section 5.1, example mapping
5, where the <qualifiers> element is mapped differently depending on the value
of the @name attribute. We let predicate atoms patom range over path expressions

and constants (such as a string or a number):

predicate atom patom ::= S} path expressions

| C constant

A predicate 1 is then defined as:

predicate 77/1 = 3 patom Evaluation of patom is not the empty document e
| 'lbl && '(ﬂg Evaluation of both 1 and 12 must be true
’ wl ‘ ‘ wQ Evaluation of either ¥ or 12 must be true
| pat0m1 < patomg The evaluation of patom; is less than the evaluation of patomg

| pat0m1 > pat0m2 The evaluation of patom; is greater than the evaluation of patoms

| pCLtOTTLl = pat0m2 The evaluation of patom; is equal to the evalaluation of patoms
/ . .

’ - w The evaluation of v is false

| true Always true

Definition 4 (Predicate Evaluation) Predicates can be used to: check for exis-
tence of elements and attributes located within a typed document; the comparison
of literal values against each other; and the comparison of literal values to defined
constants. A predicate atom (patom) can be applied to a typed document td, to

give a result document td, and is written:

apply (patom, td,) = td,
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PEXPR.TD OFtd, — td,
’ apply (0, tdy) = td,
td,
PEXPR.C

apply(c, td,) = ¢

FIGURE 5.8: Rules to define the evaluation of predicate expressions.

The evaluation of a predicate 1 against a typed document tds is either true or

false:
Y Etdy — b

Since predicate atoms range over path expressions and constants, we specify two
rules (PEXPR.TD and PEXPR.C in Figure 5.8) to define their evaluation against a
typed document. Rule PEXPR.TD states that when a predicate atom patom is
equal to a path expression ©, and © - td; — td, (from rule PATH.EVAL), then the
evaluation of patom against td, is equal to td,. When a predicate atom patom
is equal to a constant ¢, the evaluation of patom to ¢ is the constant itself (rule
PEXPR.C). This rule is used when a comparison is made to a defined constant, e.g.

the value of an element must be greater than 10.

Rules to define the evaluation of predicates are given in Figure 5.9. Rule PEVAL.E
states that the evaluation of the predicate atom patom against td, must not equal
the empty document. This predicate can be used to check for the existence of ele-
ments and attributes. Rule PEVAL.NEG states that the evaluation of the predicate
1" against td, must be false. Rule PEVAL.AND states that the evaluation of both
predicates 1 and 1), must be true. Rule PEVAL.OR states that the evaluation of ei-
ther predicate 1, or ¥ must be true. Rule PEVAL.LESS states that the evaluation
of patom, to tds must be less than the evaluation of patom, to tds. Rule PEVAL.GR
states that the evaluation of patom, to tds must be more than the evaluation of
patomy, to td,. Rule PEVAL.EQ states that the evaluation of patom, to td, must be

equal to the evaluation of patom, to td,.
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5.4

Y = 3 patom apply(patom,tdy) = td, td, #L
Y tdy — true

PEVAL.E

Y=Y Y Etd, — false

PEVAL.NEG
Y tdy — true

1/1:@%&&% td 77Da|_tds_>ba ,lvbbl_tds_)bb

PEVAL.AND
U tdy, — by A by

V=1, ||ty td Y, b tds — by Uyt tds — by

PEVAL.OR
U F td, — by V by

Y = patom, < patom,
apply (patom,, tds) = c,

apply (patomy, tds) = ¢

PEVAL.LESS
Y Etdy — ¢y <

Y = patom, > patomy,
apply (patom,, tds) = c,

apply (patomy, tds) = ¢

PEVAL.GR
Y Etds — cq >0

1 = patom, = patomy,
apply (patom,, td,) = c,

apply (patomy, tds) = ¢

PEVAL.EQ Yy E—

FIGURE 5.9: Rules to define the evaluation of predicates.

Transformation Process

When using the MSL formalisation of XML, we view the transformation process

as an action which consumes a source document, td, and produces a destination

document, tdy. Since typed documents are specified in a hierarchical manner, with

element and attribute documents containing other typed documents, we can view

an XML document as a tree structure with nodes corresponding to XML compo-

nents, and edges corresponding to XML types. This is illustrated in Figure 5.10

where three representations of the same XML document are given, one in standard
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Example Typed Document Typed Document in atomic form  Typed Document in tree form
alal*»> tdi=ala/*>tdy]
b [ xsd:string = "val1"], td, = tdsz, tds
b [ xsd:string 5 "val2" ] tdz=b [ xsd:string = tds ]
] tds =b [ xsd:string o tdg ]
tds ="vall1"
tdg = "val2"

FI1GURE 5.10: Viewing a typed document as a tree

typed document notation, one with each typed document specified individually,
and finally a tree representation. By viewing an XML document as a tree, we
can visualise the transformation process using a recursion over the source docu-
ment where groups of elements, attributes or constant values correspond directly
to groups of elements, attributes or constant values in the destination document.
This idea is presented visually in Figure 5.11 using a trivial transformation. With
this method of transformation, we can describe a translation using a number of
mappings which relate components in the source schema to components in the
destination schema. At each stage of the recursion over the source document,
mappings are used to create the appropriate parts in the destination document.
We define this process formally in section 5.5 where we also describe more complex

mapping constructs.

5.5 Mappings and the Transformation Process

In this Section, we describe the specification of mappings and how mappings are
used to direct a transformation. First, we define two kinds of mapping path: source
mapping paths and destination mapping paths. Source mapping paths are used to
specify the selection of components from the source document and destination
mapping paths are used to describe the creation of components in the destination

document.
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Source Document Destination Document

_>

"vallﬂ "va12" "vallll "va12"
(a) Desired Transformation
Source element g, of type a/* containing

elements b corresponds to destination
element x, of type x/*, containing elements y

"vall" "yal2"

(b) Translation Step 1

Source elements b, of type xsd:string, with string contents v
corresponds to destination elements y, of type xsd:string,
with contents v

xsd:string xsd:string

"vall" "yval2" "wvall" "wval2"

(c) Translation Step 2

FIGURE 5.11: Transformation through recursion

5.5.1 Mapping Paths
A source mapping path p is defined as a sequence of source mapping pairs:

P :<[01 X ,lvbl]v [92 X ¢2], ce 7[971 X ¢n]>
0 ranges over path components

1) ranges over predicates

Definition 5 (Source Mapping Pairs) Fach pair in a source mapping path

contains a path component (0) that matches XML components from the source
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0 x| OFtds — td,, & td, — true
0 x 0] F td, — td,,

SMPAIR

p= (0 x U], [0 x ], ..., [0 X Yy])

0, % 1] - tdy — tdy  child(tdy) = td;,

[92 X ¢2] F tdl — tdll Child(tdll) = tdg,
[6n X ] F tdy_y — td,_y  child(td,_y) = td,

SMPATH
pFtdy, — td,

FIGURE 5.12: Rules to define the evaluation of source mapping paths.

document, and a predicate (1) that must evaluate to true. This pairing technique
allows any part of a source mapping path to be assigned a predicate so complex
component selections can be made. The evaluation of a source mapping pair [0 X 1]

against a typed document td, results in a matched document td,, and is written:
[0 x ] Ftds — td,,

Definition 6 (Source Mapping Paths) The evaluation of a source mapping
path p against a source document tds yields a result document td, (the components

successfully selected by p) and is written:

pFtds — td,

Figure 5.12 contains the two rules that define source mapping path evaluation.
Rule SMPAIR states that when the path component ¢ matches td, with td,, and
the predicate ¢ applied to those matched components evaluates to true, then
[0 x Y] - tds — td,, holds. The application of source mapping path (or a sequence
of source mapping path pairs) can then be describe by the rule SMPATH.

When defining the creation of components in the destination document a joining

operator is used. We let w range over joining operators:

joining operator w 1= join

| branch
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A destination mapping path, 4, is used to specify the creation of elements, at-
tributes and values in the destination document, and is defined as a sequence of

destination mapping pairs:

§ = ([01 xwi], [02 Xws], ..., [0 X wy])

Each pair contains a path expression 6,, which describes the elements, attributes
and values to be created, and a joining operator w,. The evaluation of destina-
tion mapping paths is done during the transformation process and is described in

Section 5.5.2; as is the joining operator.

5.5.2 Mappings and Bindings

A mapping describes a selection of nodes from a source document and their corre-

sponding representation in a destination document. We let m range over mappings:
mapping m = (p, 0, B)

p is the source mapping path, ¢ is the destination mapping path, and B is a local
binding containing mappings that should only be considered for application when
the parent mapping has been applied. A binding, B, is defined as a sequence of

mappings:
binding B = (my,ma,...,my,)

A binding can be constructed from any number of mappings to describe the trans-
lation of components within a source document to components in a destination
document. A binding is defined using a sequence because the order in which the

mappings are defined is the order in which they are applied.
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5.5.3 Transformation

The application of a Binding to a typed document gives the destination typed
document which is the result of all compatible mapping applications. This trans-

formation process is split into four stages:

1. Mapping selection
Given td, and a binding B, identify mappings from B that are compatible
for application to td;.

2. Source Document Selection
Given the set of applicable mappings M,, and a source document tdg, for
each mapping m, € M, the source mapping path p from m, is applied to

give a result document p - td; — td,.

3. Recursion
The result of each source mapping path (¢d,) is itself translated using B to
give td,» (where local mappings defined in the parent mapping are added
to the global binding B and their ordering is preserved). The recursion
continues until no mappings are valid, the empty document is encountered,

or a constant value is found.

4. Destination Document Construction
For each mapping applied, the destination mapping path ¢ is evaluated and
used to create new components in the destination document. The contents

of each new component created is the result of the recursive call.

Definition 7 (Mapping Compatibility) When a mapping m can be applied to

a typed document td, we write:
isCompatible(m, td)

The rule COMP . ME in Figure 5.13 states that when the first component referenced in
a source mapping path is the element e, and the source document t¢d is the element
e, then mapping m can be applied to td. Rule COMP.MA is similarly defined for at-

tribute compatibility. As in the MSL formalism, we assume the existence of a fixed
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m={p, 0, By p={(ex],...) td=e[t>td]

COMP.ME
isCompatible(m, td)

m={p, 0, B)) p={(lax],...) td=alt>td]

COMP.MA
isCompatible(m, td)

FIGURE 5.13: Rules to define mapping compatibility

dereferencing map that takes a component name z and gives the corresponding

component, so features of the component (such as its type) can be determined:

deref(z) = cmp
e.g. deref(z).type = t

e.g. deref(z).sort = element

The most complex stage in the translation process is to construct the destination
typed document. This stage is complicated because we have to handle the cre-
ation of multiple elements in order to map components from the source domain
to multiple components in the destination schema. We illustrate this problem
in Figure 5.14 where we show the translation of a simple source document to
two possible destination documents. The destination documents differ only by
the joining of element y. In the left translation, the destination mapping path
([x x join], [y x join], [z x branch]) indicates that all elements discovered by the
application of ([a x true|, [b x true]) (or elements a which contain elements b)
should be translated to elements z contained within a single element y, contained
within the element z. The right translation shows a similar mapping but with

unique y elements created for each match.

Definition 8 (Destination Creation Pairs) During the transformation process,
source mapping paths (p) are applied to the source document (tds) to select XML
components (written p & tds — td. from rule SMPATH). The result typed document
(td.), is paired with the destination mapping path (&) to give a destination creation

pair P = [§ X td.| where § are the components to construct and td. is their content.
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Source Document

‘ nyal11n nya12m

<[ax true], [b x true]> -> <[x x join], [y x join], [z x branch]> <[a xtrue], [b x true]> -> <[x xjoin], [y x branch], [z x branch]>
<[b x true], [value x true]> -> <[z x branch], [value x branch]> <[b x true], [value x true]> -> <[z x branch], [value x branch]>

xsd:string xsd:string xsd:string xsd:string
"vall" "val2" "vall" "val2"
Destination Document Destination Document
with joining with branching

FIGURE 5.14: A Source Document with two possible transformations, each
using a different joining operator

To denote the construction of the destination document, we write:
construct([d x td.]) = td,

For the base case, when the destination mapping path 6 in P contains only one
destination mapping pair (6 = ([#xw])), P can construct the destination document
by the rules shown in Figure 5.15. Rule BPAIR.EVAL.E states that When P =
[0 X td.] and 6 = ([e x branch]), the destination document contains the element
e, of type t, with the contents td.. Rules BPAIR.EVAL.A, BPAIR.EVAL.C, and
BPAIR.EVAL.EMP define the construction of attributes, constants, and the empty

document in a similar way.

Definition 9 (Destination Creation Set) During the transformation process,
multiple mappings may be applied to a given source document. Each mapping is
applied independently to give a destination creation pair (P) that are combined to
form a destination creation set R = {Py, Py, ... ,P,}. When creating elements
in the destination document, joining operators define whether a set of the same
elements should be combined to form one element (join) or used to create a se-

quence of elements (branch). Therefore, a destination creation set R can be split
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P=1[0xtd] ¢={[exbranch]) deref(e).type =1

BPATR.EVAL.E
construct(P) = e[t > td.]

P=[)xtd] = axbranch]) deref(a).type="1

BPAIR.EVAL.A
construct(P) = alt > td.]

P=1[0xc §=value x branch|)

BPAIR.EVAL.C
construct(P) = ¢

P=1[0x¢ 6= ([exbranch])

BPAIR.EVAL.EMP
construct(P) = ¢

FIGURE 5.15: Rules to define the construction of destination documents (base
case).

into two subsets: Ry, (where all destination creation pairs P have the joining
operator join in the first destination mapping pair), and Ry.anen (where all desti-
nation creation pairs P have the joining operator branch in the first destination

mapping pair). To denote this, we write:
R= Rjoin U Rbranch

Figure 5.16 contains rules to define when a destination creation pair P in in the

set of Ry (rule RJIOIN) or Ryranen (rule RBRANCH).

Definition 10 (Root of the joined destination creation set) To construct
the destination document from the set of joined destination creation pairs in Ry,
the first component x referenced in each destination creation pair P must be the
same (because they are to be joined). We write the following to locate the element
x:

Rjoin >x

Rule ROOT.RJOIN in Figure 5.16 defines the path component x located in the set

of joined destination creation pairs Rjqiy,.

Definition 11 (Create Sequence) During the creation of the destination typed

document, it is necessary to combine typed documents to form a sequence. To
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PeR P=[dxtd §=/{(0xbranch], ...)

RBRANCH
P c Rbranch
RJOTN PeR P=[dxtd 6={([0xjoin], ...)
P e Rjoin
Rjoin - {P17P27 7Pn}
Py =pi,tdi]  pr=([z x join], ...),
Py = [p2,tdo]  p2 = ([z X join], ...),
ROOT RJOIN P, = [pn,td,]  pn = ([x X join], ...)

Rjoin >x

FIGURE 5.16: Rules to define the sets of joined and branched destination
creation pairs.

td, # e Ntdy, =€

MAKE.SEQA
! td, Mtdy, = td,

td, = e Ntdy # €
td, Mtdy, = tdy

MAKE.SEQB

td, # e Ntdy, # €

MAKE.SEQAB
W Ad, = i, td,

FIGURE 5.17: Rules to define the construction of sequences.

combine td, and td, we write:

td, Mtdy, = td,

Figure 5.17 contains three rules to define the creation of a sequence from two
documents td, and td,. Rule MAKE.SEQA is used when td, is equal to the empty
document (€), so td, Mtd, = td,. Rule MAKE.SEQB is used when td, is equal to the
emtpy document (€), so td, Mtd, = td,. Finally, when both td, and td,, are not
equal to the empty document, td, M td, is equal to a typed document that is the

sequence td,, tdy.

Definition 12 (Destination Document Construction) When mappings have

been applied to a source document to make the set of destination creation pairs R
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(where R = {Py, P5,...,P,} and P, = [0 X td.]), R can be used to construct the

destination document td, using Definition 8. To denote this we write:
construct(R) = td,

Figure 5.18 contains rules to define the construction of documents using the set
of destination creation pairs R. Rule R.EVAL states the set R is divided into two
subsets called Rjin, and Ryranen that are used to construct two result documents
td; and td,. Therefore, the construction of a destination document using R is

equal to the combination of td, and td, (see previous rules in Figure 5.17).

Rule RJOIN.EVAL defines the construction of a destination document using the
set Rjon. Each destination creation pair P; has the first destination mapping
pair removed to give P/ (next(FP;) = P! using rule NEXT.C.PAIR). These new
destination content pairs are then combined in the set R’ which is itself used to
construct the result document td,. The root element x is located (Rjei > ), and
its type is determined (deref(z).type = t) so the destination document x[t > td,]

can be created.

Rule RBRANCH.EVAL defines the construction of a destination document using the
set Rjoin. Bach destination creation pair P, € Ryrancn is used to construct a des-
tination document td,, using rules BPAIR.EVAL.E, BPAIR.EVAL.A, BPAIR.EVAL.C,
or BPAIR.EVA.EMP (defined earlier in Figure 5.15) if the destination mapping path
0 contains only one pair, or rule BPAIR.EVAL.LIST if there is more than one pair
in the destination mapping path. Rule BPAIR.EVAL.LIST defines the construction
of a destination document using a destination creation pair P that contains a des-
tination mapping path ¢ with more than one pair. The first component referenced
(x) and its type (t) are determined, and the destination creation pair P has its
first destination mapping pair removed to give P’ (written next(P) = P’). A set
of new destination creation pairs R is created that contains only P’. R is then
used to construct the destination document td, (with rule R.EVAL), and therefore

P constructs the document x[t > td,].

Definition 13 (Mapping Application) The evaluation of a mapping m from
the binding B against a typed document td, gives a destination creation pair P

where P = [0 X td,]. The typed document td, is the result of the application of the
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R= Rjoin U Rbranch
construct(Rjy,) = td; construct(Ryanch) = tdyp

R.EVAL
construct(R) = td; Mtd,

Rjoin: {PlaPQa aPZ}
next(P) = Pj, next(P;) = P,, ... ,next(P;) = P/
R ={P,P,, ... P}

construct(R') = td,
Rjoin > deref(x).type =t

RJOIN.EVAL
construct(R;y,) = z[t > td,]

Rbrcmch = {P17P27 7Pk}
construct(P;) = td,
construct(P,) = td,,

b

construct(P,) = td,

RBRANCH.EVAL
construct(Ry.anen) = tdy Mitde M ... M td,

P = [5,td,]
5= ([0 x wal, [0y X w,], ...)

5rest — <[8T X ‘97"]7 - >

NEXT.C.PAIR
next(P) = [Opest X tds]

P =0 x tdy]

0 = ([x x branchl, [0, X w,], ...)
deref(x).type =t
next(P) = P’
R={P'}
construct(R) = td,
construct(P) = z[t > td,]

BPAIR.EVAL.LIST

FIGURE 5.18: Rules to define the construction of the destination document.
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source mapping path p from m to td, and 0 is the destination mapping path.:

m, B+ td, — [0 X td,]

Because more than one mapping may be applied to a given typed document, we
define the application of a set of applicable mappings M, to a typed document td,
as a set of result pairs R where R = {Py, Py, ... ,P,}:

evaluate(M,, td;) = R

Rules for the application of mappings are given in Figure 5.19. Rule MAP.EVAL
states that when the mapping m in B is valid for application to a source typed
document tdg, the result of the application of p to td; is td,. Local mappings B;
are combined with the global binding B to give B’ (where ordering is preserved)
that is used to transform the result document td, into td,,. The result of the
recursion (td,) is then combined with the destination mapping path § to give the

destination creation pair [0 X td,].

Rule MAPSET.EVAL describes how a set of compatible mappings M, are each eval-
uated against a source document td; to give the set of result pairs R where

R={P,P,, ... ,P,)}.

Definition 14 (Document Transformation) The transformation of a source
document tds using mappings from the binding B creates a destination document
td, and 1s denoted by:

transform(B, td,) = td,

Rule BINDING.EVAL in Figure 5.19 defines this behaviour. The set of compatible
mappings M, is calculated and evaluated to give a set of destination creation
pairs R (evaluate(M,,td;) = R). R is then used to construct the destination td,

(construct(R) = td,) — the result of the transformation process.
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meE B
m = <p> 57 Bl>
isCompatible(m, td;)
pFtds — td,
B'= BUB,
MAP EVAL transform(B’,td,) = td,
' m, B Etdy — [0 x td,/]
td, B
Ma = <m17m27 s 7mn>
isCompatible(m, td;),
isCompatible(my, td;),
isCompatible(m,,, tdy)
mi € Bbmee B, ... ,m, €B
my, BFtd, — Py, my, BFtdg — P, ..., m,,B+td, — P,
MAPSET.EVAL
evaluate(M,, tdy) = {P,, P, ..., P.}
B td,
Ma = <m17 ma, ... 7mn>

isCompatible(m, td,),
isCompatible(ma, td),

isCompatible(m,,, tdy)
m € BmyeB, ... m, €B
evaluate(M,, td;) = R
construct(R) = td,

BINDING.EVAL
transform(B, tdy) = td,

FIGURE 5.19: Rules to define the evaluation of Bindings.

5.6 Example Mappings

To demonstrate our mapping language, we provide a subset of mappings to trans-
form an instance of a DDBJ sequence data record to a Sequence_Data_Record
concept instance (the full set of mappings can be found in in Appendix B). For
compactness, assume all source mapping path predicates are true unless otherwise

specified (see mapping 12 and 14):
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m1 = ((DDBJXML, ACCESSION) , ([Sequence_Data_Record X join], [accession_id X branch]) ,0)
mo = ((ACCESSION, value) , ([accession_id X join], value) , D)
m3 = ((DDBJXML, DEFINITION) , ([Sequence_Data_Record X join], [definition X branch]) ,0)
mg = ((DEFINITION, value) , ([definition X join], value) ,0)
my; = {(source,location) , ([Feature_Source X join|, [has_position x branch], [Location X branch]) ,0)
mg = ( (location, value{“"[*.]4+”}) , {[Location x join], [start X branch], value) , D)
mio = { (location, value{“[".]+”}) , (Location X join], [end x branch], value) ,0)
m11 = ((DDBJXML, FEATURES, source) ,
([Sequence_Data_Record X join], [has_feature x branch], [Feature_Source x branchl]) , 0)
mi2 = ( (source, [qualifiers X {qualifiers, qualifiers/* /@namevalue = “isolate” }]) ,
([Feature_Source X join], [isolate X branch]) , (m13))
mi1s = { (qualifiers, value) , {[isolate x join], value) , ()
mia = ( (source, [qualifiers X {qualifiers, qualifiers/* /@namevalue = “lab_host” }]) ,
([Feature_Source X join], [lab_host X branch}]) , (mis))
mi1s = { (qualifiers, value) , {[lab_host X join], value) , D)

These mappings are then used to define a binding B as follows:
B - <m17m27m37m47m77m97m107m117m127m14> (51)

Mappings my3 and my5 are excluded from the sequence B because they are defined
locally within other mappings. A source document in DDBJ format can then be
evaluated using this binding to give a destination document which is the sequence

data record in its corresponding OWL representation.

5.7 XML Syntax for Binding Specification

The specification of mappings and bindings in XML format is supported, as we
illustrate in Listing 5.4, where an equivalent binding is given to the one specified
in Section 5.6. Mapping ids are consistent so the reader can easily find the corre-
sponding mapping in mathematical notation. This kind of XML document is called
an M-Binding and can be used to drive the translation of XML documents, as we
show later in Chapter 6. Our XML binding format is designed to look similar to

conventional XPATH notation so users familiar with XML tools will find it intuitive.
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<binding name="DDBJ —to —sequencedata”
xmins="http://jaco.ecs.soton.ac.uk/schema/binding"
xmins:sns="http://jaco.ecs.soton.ac.uk/schema/DDBJ"
xmins:dns="http://jaco.ecs.soton.ac.uk/ont/sequence data"
targetNamespace="http://jaco.ecs.soton.ac.uk/bindin g/DDBJ—to —sequencedata’ >
<mapping id="m1" >
<source match="sns:DDBJXML/sns:ACCESSION >
<destination create="dns:DDBJ _Sequence _Data _Record[join]/dns:accession _id[branch]// >
</mapping >

<mapping id='m2" >

<source match="sns:ACCESSION/$"/ >

<destination create="dns:accession _id[join)/$" >
</mapping >

<mapping id='m3" >

<source match="sns:DDBJXML/sns:DEFINITION" >

<destination create="dns:DDBJ _Sequence _Data -Record[join]/dns:definition[branch]"/ >
</mapping >

<mapping id='m4 >

<source match="sns:DEFINITION/$"/ >

<destination create="dns:definition[join]/$" >
</mapping >

<mapping id='m7 >
<source match="sns:source/sns:location"’/

<destination create="dns:Feature _Source[join)/dns:has _position[branch]/dns:Location[branch]"/ >
</mapping >
<mapping id='m9 >

<source match="sns:location/$7"]+"/ >

<destination create="dns:Location[join])/dns:start[bra nchl/$’/ >
</mapping >

<mapping id='m10" >

<source match="sns:location/$[".]+$"/

<destination create="dns:Location[join}/dns:end[branc histT >
<I/mapping >

<mapping id='m11" >

<source match="sns:DDBJXML/sns:FEATURES/sns:source"/

<destination create="dns:DDBJ _Sequence _Data _Record[join}/dns:has _feature[branch]/dns:Feature _Source[branch]'/ >
</mapping >

<mapping id='m12" >
<source match="sns:source/sns:qualifiers[sns:qualifie rs/sns:name/$ = “isolate"]/ >
<destination create="dns:Feature _Source[join)/dns:isolate[branch]'/ >
<mapping id='m13 >
<source match="sns:qualifiers/$"/ >
<destination create="dns:isolate[join]/$" >
</mapping >
</mapping >

<mapping id='m14' >
<source match="sns:source/sns:qualifiers[sns:qualifie rs/sns:name/$ = “lab “hostT/ >
<destination create="dns:Feature -Source[join]/dns:lab —host[branch]"/ >
<mapping id='m15 >
<source match="sns:qualifiers/$"/ >
<destination create="dns:lab —hostfjoin]/$"/ >
</mapping >
</mapping >
<Mbinding >

LisTING 5.4: An XML representation for a Binding

Local mappings can be defined easily by including their definition within the par-
ent mapping element (see mappings 12 and 14). To extract literal values from the
content of an element or attribute, the $ symbol is used, and can be suffixed with

a string to denote a regular expression (mappings 9 and 10).
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5.8 Conclusions

The mapping and transformation formalism presented in this Chapter provides an
XML to XML transformation technology based on the MSL formalisation of XML
and XML schema. While we use this language to describe the conversion of an
XML document to, and from, a canonical OWL serialisation, the formalism can be
used as a generic XML to XML translation tool. Mapping statements describe the
association of XML components (elements, attributes and literal values) in a source
schema to components in a destination schema, so such mappings can be used to
drive the transformation of a source document. The following advanced mapping

constructs are supported:

e Document paths
Simple transformations can be expressed using 1 to 1 mappings. To accom-
modate scenarios where a single component maps to a set of components
(1 ton), or a set of components map to a single component (n to 1), map-
ping statements can be expressed using document paths. For example, mq;
from the example mapping in Section 5.6 maps DDBJXML/FEATURES/source to

Sequence_Data_Record .

e Predicate support
When the mapping of a component is dependent on the value of another at-
tribute or element, such as the <qualifiers> element in the DDBJ sequence
data record, predicate evaluation is used - see mis. In this example, the
value of the @name attribute must be “isolate” for the <qualifiers> element

to be mapped to the <isolate> element.
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e Scoping
Sometimes the mapping of a particular element or attribute depends on
context. For example, the value of the <qualifiers> element is mapped

differently in mappings m13 (local to mapping my3), and my5 (local to myy).

e String Manipulation
When the value of an element contains two distinct entities, such as the
<location> element in the DDBJ record, regular expressions can be used to
extract different characters from an elements content. An example of this

construct can be found in mappings mg and m.

The translation process is a recursion over the source document that applies com-
patible mappings at each element or attribute encountered to create elements and
attributes in the destination document. By using a modular specification approach
we facilitate the reuse of mappings when service operations are defined across the

same or subsets of the same XML schema.

One mapping construct not supported is list processing. Within XML schema,
elements can contain sequences of other elements. Although it is not necessary
to meet the requirements from our bioinformatics data set, it would be desirable
to add mapping constructs that enable elements within a sequence to be mapped
differently depending on their position. For example, map the first instance to one
element and the rest to another. This is supported in XPATH where array indexes
can be used, for example, a/b[0] will return the first <b> element contained within

<a> .

While the use of the joining operator is critical to our translation formalism, it is
also cumbersome. By analysing the destination schema to see what destination

documents are valid, the user could be freed of this burden.
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The Configurable Mediator

Implementation

To enable a client within the WS-HARMONY architecture to perform workflow
harmonisation, the Configurable Mediator (introduced in Chapter 4) can be used
to create a Type Adaptor on-the-fly by consuming the appropriate realisation and
serialisation mappings. In Chapter 5, an XML mapping and transformation for-
malism (FXML-M) was presented to enable complex mappings to be made between
XML schema components that can be used to drive the transformation of a doc-
ument. In this Chapter, we present an implementation of this formalisation in
the form of a SCHEME [63] library called FXML-T (Formalised XML Translation)

which offers the following functionality:

1. A SCHEME representation for MSL [26] components and typed documents.

2. A number of functions to import conventional XML documents, XML schemas

and M-Binding documents into FXML-T' s-expressions.

3. A SCHEME representation for mappings and M-Bindings, supporting docu-

ment paths and predicate evaluation.

4. Functions to perform document translation using an M-Binding according

to the rules presented earlier in Chapter 5.

105
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This SCHEME library is used to construct a Translation Engine which is combined
with the JENA ontology processing API to create the Configurable Mediator. To
evaluate the practicality and scalability of our mapping language implementation,
as well as examine the relative cost of composing M-Bindings, we test the FXML-
T library using increasing document sizes, increasing schema sizes, increasingly
complex M-Binding composition, and real bioinformatics data. Evaluation shows
our implementation scales well and M-Binding composition comes with virtually
zero performance cost. We also examine the complexity of our transformation algo-
rithm and show that translation cost is O(c, n) where ¢ is the number of compatible
mappings, and n is the size of the input document. Hence, the contribution of
this Chapter is the Configurable Mediator: An efficient software component that
is dynamically configured by realisation and serialisation M-Bindings to create

intermediary-based Type Adaptors.

We begin this Chapter in Section 6.1 with a brief discussion of macro languages and
our implementation of FXML-M relates to these. Section 6.2 provides the FXML-T
representation of normalised schema names, schema components, typed documents
and mappings, providing example SCHEME code to illustrate their representation.
Section 6.3, contains definitions of the functions offered by the FXML-T library to
enable the conversion of XML documents, XML schemas and M-Binding documents
to FXML-T, as well as the transformation of documents using M-Bindings. Sec-
tion 6.3.2 presents pseudocode for our transformation algorithm and an analysis
of its complexity. We then show how these functions can be combined to provide
a Transformation Engine in Section 6.3, before presenting the internal workings of
the Configurable Mediator in Section 6.4. Section 6.5 gives details of our evalua-
tion including a comparison with other XML translation technologies. Finally, we

conclude the Chapter in Section 6.6.

6.1 Transformation Languages

Transformation languages have been studied within the computer science discipline
[67] since the 1960s when the first programming languages were developed. When

using the first generation of computers, programmers were limited to writing code
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using assembly languages where instructions in the source program have a one-
to-one correspondence to the instructions executed by the central processing unit.
Programmers realised early on that much of the code written was duplicated so
some simple reuse mechanisms were introduced so that symbols could be used
to denote the inclusion of a large block of code. As these reuse mechanisms
matured, facilities were added to include different code based on the value of some
parameters, and the first macro languages we conceived, including the General-
Purpose Macro Processor (GPM) [88], Macro Language One (ML/1) [28], and
TRAC [75].

As programming languages and compiler engineering advanced, the requirements
for macro languages became more complex. It was recognised that simple text
rewriting was not sufficient when trying to express intricate transformations of
data and programs. To overcome these limitations, tree rewriting systems were
developed, giving programmers the means to express elaborate data transforma-
tions. A good example of this is the RbRS SCHEME [63] macro system that has

two notable features:

1. Hygienic Macros
When a macro is expanded, the system automatically creates private symbols
that bind to the macro parameters. This avoids the problem of wvariable
capture where statements in the macro expression share names with variables

already in the environment, resulting in unexpected behaviour.

2. Pattern Matching
Instead of using SCHEME code to define pattern matching, a declarative
syntax is provided to give programmers a more intuitive interface to the

macro system.

In addition, there is a vast amount of literature providing theoretical foundations

to tree rewriting system, an example of which is the Lambda Calculus [15].

When implementing the FXML-M language, we are essentially creating a tree
rewriting system; the input is an XML document (a tree structure) and the output
is a different XML document. Like the SCHEME macro system, we use a declara-

tive approach for pattern matching to maximise accessibility. Since XML pattern
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matching is already widely used in the community through XPATH [35], we ensure
that our pattern matching syntax is close to XPATH. For the implementation of our
transformation algorithm, we choose SCHEME because: (1) the similarity between
XML tree structures to SCHEME s-expressions means there is little overhead to
model XML documents (2) as we show in later in Section 6.3.1, the transformation

rules defined formally in Chapter 5 can be easily specified in SCHEME.

6.2 FXML-T Representation Overview

In this Section, we describe how aspects of MSL and our mapping formalisation
(FXML-M) are represented in FXML-T. We show the format of normalised com-
ponent names, schema components, typed documents and mappings, providing

example SCHEME s-expressions to illustrate their representation.

6.2.1 FXML-T representation of normalised component

names

In MSL, normalised component names are used to reference elements, attributes
and types. We define the structure of a normalised component name in FXML-T

using BNF [13] notation:

(fxml : cname) == ( (uri) . (localnamex) )
(uri) == (string)
(localnamex) == ()| ( (localname) . (localnamex) )
(localname) == ( (sort) . (string))
(sort) = element | attribute | complexType | simpleType
(string) == “(sequence of characters)”

An (faxml : cname) is a pair containing a namespace URI and a list of localnames.
Each localname is a pair containing the component sort and component name. We

provide an example in Figure 6.1 that gives a component name, in MSL notation,
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and the corresponding SCHEME s-expression to represent it. The bounding box
illustrates where the namespace "http://jaco.ecs.soton.ac.uk/schema/DDBJ" ap-

pears in both representations.

6.2.2 FXML-T representation of schema components

In MSL, components describe the elements, attributes and types of an XML schema.

An XML schema is represented in FXML-T using an (faxml : schema), defined as

MSL Notation

'(";http://jaco.ecs.soton.ac.uk/schema/DDBJ?‘ (element . "qualifiers™)

'''''''''''''''''''''''''''''''''''''''''' (type . "*")
(attribute . "name™))

FIGURE 6.1: Component Name representation in FXML-T
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follows:

(fxml : schema)

(fxml : component)

(base

)
(derivation)
(refinement)

)

(content

(contentx)

(mazx)

(listof fxml : component)
( (sort)

(fxml : cname)
(base)

( (derivation) )
(refinement)
(content) )
(fxml : cname)

restriction | extension

(list of derivation)

( G-Sequence (contentx) )

( G-Choice (contentx) )

( G-Interleave (contentx) )

( G-Repetition (min)({max){content) )

( G-Attribute (faxml : cname)(content) )
( G-Element (fzml : cname){content) )

( G-Component-Name (fxml : cname) )
(list of content)

(integer)

(integer) | infinite

An (fzml : component) is a list containing a sort!, the name of the component, the

name of the base component, the derivation type, the permitted refinements and

the content. To illustrate the ( fxml : component) representation, Figure 6.2 gives

example SCHEME s-expressions to create two components from the DDBJ sequence

data schema. The qualifiers element contains string content and has exactly one

IThe term sort is used to avoid confusion with the XML term type.
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attribute called name. Using this notation, an XML schema is represented in FXML-

T as a list of (fazml : component).

component( :
sort = element, :
name = qualifiers,

i base = xsd:UrElement,

: derivation = restriction,

i refinement = {restriction, extension},
i content = qualifiers[qualifiers/*]

component(
sort = complexType,
name = qualifiers/*,
base = xsd:string,
derivation = extension,
refinement = {extension},
content = qualifiers/*/@name{l,1}

MSL Notation

(element

restriction
(restriction extension)
(G-Component-Name

'(complexType

extension
(extension)
(G-Component-Name
(G-Repetition
1

1

Scheme S-Expression

("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element .
("http://www.w3.0rg/2001/XMLSchema” (element .

("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element .

("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element .

"qualifiers™))
"UrElement™))

"qualifiers™)

(type . "*"3)))

(type . "*"))

("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element .

"qualifiers™)

(cons "http://www.w3.0org/2001/XMLSchema" (type "string"))

"qualifiers™)

(type . "*")

(attribute .

"name")))))

Fi1Gure 6.2: Component representation in FXML-T
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6.2.3 FXML-T representation of typed documents

In MSL, XML documents are formed using typed documents. In FXML-T, typed

documents are defined as follows:

(fzml :td) == ( TD-Empty )
| ( TD-Constant (string) )
| ( TD-Sequence (feml : td){feml : td) )
| ( TD-Element (name)(type){faml : td) )
| ( 'TD-Attribute (name)(type)(fzmi : td) )
(name) = {(fzml : cname)

(type) == (fxml: cname)

An (fzml : td) is one of five sorts: The empty document (for empty XML elements),
a constant value (e.g. a string literal or integer value), a sequence containing two
typed documents (for elements containing other elements), an element (with a
name and type) containing a typed document, or an attribute(with a name and
type) containing a typed document. We give an example SCHEME s-expression
in Figure 6.3 to create a small DDBJ sequence data document. The <DDBJXML>
element contains a sequence of two typed documents holding the <ACCESSION> and

<SEQUENCE> elements, each having string content.

MSL Notation
DDBJXML[DDBJIXML/* =

ACCESSION[xsd:string > "AB000059"],
SEQUENCE[xsd:string © "atgagtgatggagcagttcaaccagacgg..."]
]

Scheme Code
'(TD-Element

("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element . "DDBJIXML"))
("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element . "DDBJIXML")
(type . "*"))

(TD-Sequence

(TD-Element
("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element . "ACCESSION"))
("http://waww.w3.0rg/2001/XMLSchema" (type . "string"))
(TD-Constant "ABQ@0@59"))
(TD-Element
("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "SEQUENCE"))
("http://www.w3.0rg/2001/XMLSchema” (type . "string"))
(TD-Constant "atgagtgatggagcagttcaaccagacgg..."))))

FIGURE 6.3: Typed document representation in FXML-T



Chapter 6 The Configurable Mediator Implementation 113

6.2.4 FXML-T Representation of bindings and mappings

In Chapter 5, a binding is defined as a sequence of mappings where a binding
may be represented in XML format as an M-Binding document. Each mapping
specifies the relation between XML components in a source schema to components
in a destination schema. Such a binding can then be used to direct the translation
of an XML document to a different representation. In FXML-T, bindings and

mappings are defined as follows:

(fxml : binding)
(frml : mapping)
(id)

(scope)

(spairs+)

(spair)

(spath)

(svalue)

(regexp)

)

(fxml : predicate

() | ((faml : mapping) . (fxml : binding) )
( (id) {scope) (spairsx) (dpairs¥){local) )
(string)

global | local

() | ((spair) . (spairx) )

( (spath) . (fzml : predicate) )

(fzml : cname) | ( empty ) | (svalue)

( value (regexp) ) | ( value )

(string)

( true )

(‘exists (fzml : pexprs) )

( not (fxml : pexprx) )

(‘and (foml : predicate)(fzmi : predicate) )
(or (fzml : predicate){fzml : predicate) )
( = (faml : pexprs)(faml : pexprs) )

(

> (fxml : pexpr*){faml : pexprx) )
( < (fxml : pexpr«){fxml : pexprx) )
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(pexprx ) | ( {pexpr) . (pexprx))

fxml : cname) | (constant) | value

{
{
c= ()| ((dpair) . (dpairx) )
(
{

(pezpr

(dpair s
(dpair (dpath) . {(operator) )

fxml : cname) | ( value ) | ( empty )

(operator) == ( branch ) | ( join )

(localy == ()| ( (feml : mapping) . (local) )

)
)
)
)
(dpath) ==
)
)
)

(constant) == (string)

An (faxml : binding) is a list of mappings. Each (fzml : mapping) is a list
containing an identifier, the scope of the mapping (either local or global), a source
mapping path ((spairs*)), a destination mapping path ({dpairsx)), and a list of
local mappings. A (spair) is a pair containing a source path and a predicate. A
(spath) is either an (fxml : cname), the keyword empty, or an (svalue) expression
which can include a regular expression to extract particular characters from a
string value. An (faxml : predicate) can be one of eight sorts: true, exists, not,
and, or, =, <, or >. A (dpair) is a pair containing a destination path and a joining
operator. To demonstrate the construction of a binding in FXML-T, Figure 6.4
contains a SCHEME s-expression to create a subset of mappings that describe the
translation of a DDBJ document to a Sequence Data Record concept instance

(The full set of mappings can be found in Appendix B).

mi = ((DDBJXML, ACCESSION) , ([Sequence_Data_Record x join], [accession_id x branch]) ,®)
mo = ({ACCESSION, value) , ([accession_id x join], value) , D)
my = ( (source,location) , ([Feature_Source x join], [has_position x branch], [Location x branch]) ,0)
mg = ((location, value{“"[".]4+"}) , ([Location x join], [start x branch], value) ,®)
mio = { (location, value{“[".]+”}) , (Location X join], [end x branch], value) ,0)
mi2 = ( (source, [qualifiers x {qualifiers, qualifiers/* /@namevalue = “isolate” }]) ,

[

([Feature_Source X join], [isolate X branch]) , (m13))

mi3 = ((qualifiers, value) , ([isolate X join], value) , D)
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In Figure 6.4, each mapping identifier is highlighted so they can be easily matched
to the mapping definition given above. Mapping m; is a simple association between
the DDBJXML/ACCESSION elements and the Sequence Data Record/accession_id ele-
ments. Mappings m; and mg contain simple regular expressions to assign the start
and end locations contained in one string to different elements in the destination
document. Mapping mqo contains a simple predicate expression that ensures the
qualifiers element is transformed into an isolate element only when the string

content of the name attribute is equal to "isolate" .

6.3 FXML-T Function Overview

The FXML-T library provides functions to convert XML schemas to fxml:schema
structures, XML documents to fxml:td (typed documents), and M-Bindings ex-

pressed in XML to fxml:binding format.

xmls->fxml:schema : (string) — (faxml : schema)
xml->fxml:td : (string)(fzml : schema) — (fxml : schema)
xml->fxml:binding : (string)(fxml : schema){fxml : schema) — (fxml : binding)

The xmls->fxml:schema function converts an XML schema document to an

fxml:schema. It takes one string as input which refers to the location of the XML
schema file. Files may be loaded from the local file system or over a network via
HTTP. The xm1->fxml:td function converts an XML document to an fxml:td. To
perform this translation, an fxml : schema must be provided along with a reference
to the location of the XML document. The xml1->fxml:binding function converts
an M-Binding document (a binding specified in XML) to an fxml:binding by
taking a file location, and the input and output schema files. To transform an

XML document, the fxml :transform function is used:

fxml:transform : (faml: schema)(fxml : td){fxml : schema)(frml : binding)

—  (fxml : td)
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(define binding
T
global
;source mapping path
(("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element .
("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element .
;destination mapping path

;no local mappings

(@)
Clim2"
global
;source mapping path
(("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element .
(value))
;destination mapping path

(value))
;no local mappings

(@)

7

global

;source mapping path
(("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element .
("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element .
;destination mapping path

;no local mappings

O
Cnon
global
;source mapping path
(("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element .
Cvalue "A[AJ+" D))
;destination mapping path

(Cvalue))
;no local mappings

(@)
("m1@"
global
;source mapping path
(("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element .
(value "[A.]+" D)
;destination mapping path

(value))
;no local mappings

(@)
("m12"
global
;source mapping path
(("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element .
("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element .
;predicate to ensure the qualifier value is organism

"isolate")))
;destination mapping path

; one local mapping
("m13"
local
;source mapping path
(("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element .
(value))
;destination mapping path

(value))
;no local mappings

O

Scheme S-Expression

(("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element .
("http://jaco.ecs.soton.ac.uk/ont/sequencedata” (element .

(("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element .

(("http://jaco.ecs.soton.ac.uk/ont/sequencedata” (element .
("http://jaco.ecs.soton.ac.uk/ont/sequencedata” (element .

(("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element .
("http://jaco.ecs.soton.ac.uk/ont/sequencedata” (element .

(("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element .
("http://jaco.ecs.soton.ac.uk/ont/sequencedata"” (element .

(= (("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element .
("http://jaco.ecs.soton.ac.uk/schema/DDB]" (element .

(("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element .
("http://jaco.ecs.soton.ac.uk/ont/sequencedata” (element .

(("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element .

"DDBJ") (true))
"ACCESSION") (trued)))

"Sequence_Data_Record") (join))
"accesion_id") (branch)))

"ACCESSION") (true))

"accession_id") (join))

"cds") (true))
"location") (true)))

"Feature_CDS") (join))
"Location") (branch)))

"location") (true))

"Location") (join))
"start") (branch))

"location") (true))

"Location") (join))
"end") (branch))

"source") (true))
"qualifiers")

"qualifiers"))
"qualifiers") (type .

"Feature_Source") (join))
"isolate") (branch)))

"qualifiers") (true))

"isolate") (join))

"*") (attribute .

"name")))

FIGURE 6.4: Representation of Bindings in FXML-T
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The fxml:transform function takes four arguments: an fxml:schema describing
the source document, a source fxml:td, an fxml:schema describing the desti-
nation document, and an fxml:binding. The output is an fxml:td which is the
result of the application of mappings in the fxml:binding to the source document
according to the rules specified in Chapter 5, Section 5.5.3. Finally, we provide
the fxml:td->xml function which allows us to convert an fxml:td to conventional

XML syntax.

fxml:td->xml : (faoml:td) — (string)

6.3.1 Transformation Rules in FXML-T

FXML-T is implemented in SCHEME because its inherent data structures (s-expressions)
correlate closely to the structures used in FXML-M. When defining code to per-
form document translations, it is simple to implement the rules defined earlier
in Chapter 5. To highlight the correspondence between FXML-M rules and the
SCHEME functions that implement them, we give SCHEME code to evaluate docu-
ment paths in Figure 6.5 and the rule names that they implement. The function
match-pathcomponent takes a path component (pc) and a typed document (td)
as input. This function implements the rules defined earlier in Chapter 5, Figure
5.4 for the matching of path components. The function get-pc-sort returns a
symbol denoting the kind of component referenced which will be one of element,
attribute, value, valuereg, or empty. Once the path component sort has
been determined, simple conditional cases check that the path component refer-
enced matches the typed document passed as input. If no rules for matching are

true, then the empty list is returned.

The td-child function takes a typed document (td) as input and returns the
child document, as defined by the rules in Chapter 5, Figure 5.5. Finally, the
evaluate-pathexpression function is shown which implements the rule for eval-
uating path expressions (Figure 5.6 in Chapter 5). This function recurses through
the sequence of path components, matching them against each typed document

td and returning the contents. Because of this clear relationship between SCHEME
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Rules defining the

(define match-pathcomponent matching of path
(lambda (pc td) components
(let ((pc-sort (get-pc-sort pc)))
(cond ((and (eq? pc-sort 'element) (eq? pc (cadr td))) td) < PATHC.E
(Cand (eq? pc-sort 'attribute) (eq? pc (cadr td))) td) 1= - PATHC.A

(Cand (eq? pc-sort 'value) (eq? (car td) 'TD-Constant)) td) < PATHC.C
(Cand (eq? pc-sort 'valuereg) (eq? (car td) 'TD-Constant)) < PATHC.REG
(list 'TD-Constant (eval-regexp (cdr pc) (cadr td)))) PATHC.EMP

(Cand (eq? pc-sort 'empty) (Ceq? (car td) 'TD-Empty)) td) <
(Ceqg? (car td) 'TD-Sequence) PATH. SA
(let ((head (match-pathcomponent pc (cadr td))) PATH.SB

((tail (match-pathcomponent pc (caddr td)))J)) | PATH. SAB

NOT.PATH.S

((null? (car head)) tail) < T
(Cand (pair? head) (pair? tail))4 """""""""""""""""""""""""

(list 'TD-Sequence head. taitdy " NOT.PATHC.E

Celse " D)) =" NOT.PATHC.A

Celse 'O NN« NOT.PATHC.C
NOT.PATHC.REG
(define td-child NOT . PATHC . EMP

(lambda (td)
(let ((td-sort (car td)))

Rules defining
(cond ((eq? td-sort 'TD-Element) (cadddr td)) <. .
((eq? td-sort 'TD-Attribute) (cadddr td))( ............................................... document children
(Ceq? td-sort 'TD-Constant) td) ... e CHILD.E
(Ceq? td-sort 'TD-Empty) td) e AT = CHILD.A
((eq? td-sort 'TD-Sequence) td) e T ——— | CHILD.C
(else "Error: Unknow Document Encountered”yY))Y . = CHILD.EMP
_ 1 CHILD.SEQ
(define evaluate-pathexpression
(lambda (pe td) Rule defining path

X » ) :
Gif ESUU- ped expression evaluation

(let* ((match (match-pathcomponent (car pe) td)) < PATH.EVAL

(content (td-child match)))
(evaluate-pathexpression (cdr pe) content)))))

FIGURE 6.5: The correspondence between FXML-M transformation rules and
the SCHEME code for FXML-T

function definitions and FXML-M rules, extensions or changes to the formalism

can be easily implemented in FXML-T.

6.3.2 Transformation Algorithm and Complexity Analysis

To derive the complexity of the FXML-T transformation algorithm, we break down
the translation process into a number of small functions that can be analysed
individually. Pseudocode is used to present the transformation algorithm, and is
given in listings 6.1 and 6.2. In FXML-T, components can be dereferenced by their
namespace and local name using a component hash table. The use of hash tables
ensures component dereferencing occurs in constant time, providing the hash table
is sized appropriately. When reading an XML schema using the FXML-T library, a
heuristic is used to size the component hash table based on the file size of the XML

schema. Like the component hash table, mappings are indexed in the binding hash
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table by their source mapping path’s first component so that applicable mappings

for any given document can found in constant time.

When reading the pseudocode, parts of a structure are referenced using a

structure.part notation. For example, a mapping contains a source mapping
path, a destination mapping path, and local binding. The source mapping path
is denoted by mapping.sourcemappingpath, the destination mapping path is de-
noted by mapping.destinationmappingpath, etc. Since these parts of a structure
can be obtained directly, they are considered to operate in constant time, or O(1).
A number of basic functions are also assumed: head(x) and tail(x) are used
in cases when a structure, such as a mapping path, is a list and either the first
element or the rest of the list are required. We describe the pseudocode functions

listed below:

e transform(td, bindingmap) - (line 1)
The transform function consumes a source typed document and a binding
hash table as input. The set of compatible mappings is retrieved from the
binding hash table (line 2) and evaluated against the source typed document
(line 3) to give a set of destination creation pairs. These pairs are then
used to construct the destination document (line 4) which is returned as the

function output.

e evaluate(compatiblemappings, td, bindingmap) - (line 8)
The evaluate function takes a set of compatible mappings, a source docu-
ment, and the binding hash table. Each mapping in the set of compatible
mappings is evaluated separately (line 11) to generate a destination creation

pair that is added to a result set.

e evaluatemapping(mapping, td, bindingmap) - (line 15)
A mapping contains a source mapping path, a destination mapping path, and
a set of local bindings. The evaluate-mapping function evaluates the source
mapping path against the source document (line 20), obtaining a matched
document as output. This matched document is itself translated (line 21)
using the transform function defined above, with local bindings added to the

binding hash table.
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e evaluate-smpath(smpath, td) - (line 26)
The evaluate-smpath function takes the first source mapping pair refer-
enced in the source mapping path and extracts the path component (line
28) and predicate (line 29). The path component is matched against td
(line 30) and the predicate is evaluated (line 31) to ensure the mapping is
valid for application. If the predicate evaluates to true, the child document
of the matched document is obtained (line 32). If the source mapping path
contains more source mapping pairs, a recursion is made (line 34), passing
the tail of the source mapping path and the child of the matched document
as input. If there are no more pairs to process in the source mapping path,

the child of the matched document is returned.

e match-pathcomponent (pc, td) - (line 41)
To match path components to a typed document, the kind (or variety) of
the path component is determined (line 42). The path component pc is then
checked against td to see if they match (lines 44 - 53). If td is a sequence,
a recursive call is made on each of the documents in the sequence (lines 55
and 56). Either both documents in the sequence match (line 57), only one

is matched (lines 61 and 63), or neither match (line 59).

e child-td(td) - (line 69)
The child-td function determines the kind of typed document passed as
input and returns the appropriate content. If td is either an attribute or
element, the tail is returned (where tail is the content document). If td is

the empty document, a constant, or a sequence, td itself is returned.

e predeval(predicate, td) - (line 77)
This function finds the kind of predicate passed as input (line 78) which will
be one of: exists, neg, and, or, less, greater, equal, or true. If a pred-
icate contains a patom (where a predicate atom is either a path expression
or a constant), such as the exists predicate, predicate.patomn is used to
obtain the predicate atom. For the other cases, predicate.subpredicate
is used to obtain sub-predicates that are used in the definition of a parent
predicate, for example, the and predicate, that evaluates to true when both

sub-predicates also evaluate to true.
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e apply(patom, td) - (line 92)
The application of a predicate atom to a typed document is simple: either
the predicate atom is a path expression (line 94) that can be evaluated using
the evaluate-pe function; or the predicate atom is a constant, in which case

the constant itself is returned (line 95).

e evaluate-pe(pe, td) - (line 98)
The evaluate-pe function consumes a path expression and a typed docu-
ment. The first path component in the path expression is matched against
td (line 99) and the child of the result is taken. If more path components
are defined in the path expression, a recursive call is made, passing the tail
of the path expression and the child of the matched document as input. If
there are no more path components in the path expression, the child of the

matched document is returned.

e construct(dpairs) - (line 107)
The construct function takes a set of destination creation pairs as input
and uses them to construct the destination document. The set of destination
creation pairs is split into two subsets called rjoin and rbranch. Each of
these is used separately to construct destination documents (lines 110 and

111) that are then combined in a sequence to give the destination document.

e construct-rjoin(rjoin) - (line 115)
When constructing a destination document from rjoin, a new set of desti-
nation creation pairs is constructed by iterating through each pair in rjoin
and removing the head of the destination mapping path (line 118). The first
component referenced (x) in each pair’s destination mapping path is deter-
mined (line 120) and its type (t) is obtained (line 121). The construct
function is then called using the new set of destination creation pairs (line
122) to get a content document. The construct-rjoin function returns
a new document created using the component x, of type t, with content

contentdocument.

e construct-rbranch(rbranch) - (line 126)

Each destination creation pair in rbranch is used to construct a separate
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document (line 129). All these documents are then combined using the

make-sequence function to create the destination document (line 130).

e construct-pair(pair) - (line 133)
This function consumes a destination creation pair (composed of a desti-
nation mapping path and a content document) and produces a destination
document. If there is more than one destination mapping pair in pair’s
destination mapping path (line 135), the first component referenced (x) is
obtained (line 136), and its type (t) is determined (line 137). A new des-
tination creation pair is then constructed (line 138) using the rest of the
destination mapping path and the content document. This new destination
creation pair is used to create a set of destination creation pairs with only
one pair so it can be constructed using the construct function. If there is
are no more destination mapping pairs in pairs’s destination mapping path
(line 141), the first component referenced (x) is found (line 142). Based on
the variety of x (i.e. attribute, element, constant, etc.), a destination

document can be created with the contents from pair.contentdocument.

To calculate the complexity of the mapping evaluation algorithm presented above,
we take a bottom-up approach, calculating the complexity of each function used,
starting with the matching of path components. The match-pathcomponent
function consumes a path component (pc) and a type document (td). If td is
an attribute, element, constant, or the empty document, then the function re-
turns in constant time O(1). If td is a sequence of two typed documents then
match-pathcomponent is called on each of them. The first of the two documents
in the sequence (or the head) must be an element, attribute, constant, or the
empty document, and the second (or tail) may be any kind of typed document
(i.e. it could contain another sequence). Because of this linked-list structure, we
can consider a typed document that is a sequence to be a list of typed documents
with size n. Therefore, the worst case complexity of the match-pathcomponent
function is O(n), where n is the number of components contained in a sequence.
For the rest of this analysis, we refer to the size of a typed document as n, where
n is the number of elements, attributes, constants, or occurrences of the empty

document.
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Child documents are obtained using the child-td function. Since this function
only checks the kind of the typed document passed as input and directly returns
its content (when the kind is element or attribute), or itself (empty document,
constant, or sequence), it operates in constant time — O(1). The evaluate-pe
function is used to evaluate a path expression (pe) against a typed document (td).
Given that a path expression is a list of path components of size m, and each path
component is matched against a typed document (itself of size n) in O(n) time,
the complexity of the evaluate-pe function is O(m,n) where m is the number of

components in the path expression and n is the size of the typed document.

Predicates are expressions that either contain predicate atoms (e.g. exists, less,
greater, or equal), or other sub-predicates (e.g. neg, and, and or). We assume
the size of a predicate (written p) is equal to the total number of predicate atoms
in the expression, including those defined in sub-predicates. The apply function
is used to apply a predicate atom to a typed document and executes in either
O(1) time (when the predicate atom is a constant), or in O(m,n) time (when the
predicate atom is a path expression of size m). Therefore, the complexity of the
predeval function is O(p, n), where n is the size of the typed document and p is

the number of predicate atoms in the predicate expression.

To evaluate a source mapping path (function evaluate-smpath) with ¢ pairs,
the path component of each pair is matched against td (where td is the child
of the evaluation of the previous pair in the source mapping path, or the source
document for the first pair), and the predicate in each pair is matched against
the result of match-pathcomponent(pc,td). Therefore, the complexity of the
evaluate-smpath is O(q, n) where ¢ is the size of the source mapping path and n

is the size of the typed document.

To construct a destination document from a set of destination creation pairs, the
construct function (line 107) is used. A set of destination creation pairs contains
d pairs, each with » number of destination mapping pairs in their destination map-
ping path. The construct function splits the set of destination creations pairs into
rjoin and rbranch and evaluates them separately using the construct-rjoin
and construct-rbranch functions. To construct a destination document from

rjoin (line 115), each destination creation pair has its first destination mapping
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pair removed from its destination mapping path (tail(pair.dmpath)). A call is
then made to the construct function, using the new set of destination creation
pairs. Therefore, the construction of destination documents from rjoin operates
in O(r), where r is the number of destination mapping pairs in the destination
mapping path of each destination creation pair. To construct a destination doc-
ument from rbranch (line 126), each pair in rbranch is constructed separately
using the construct-pair function. Hence, construction from rbranch occurs in
O(d), where d is the number of destination creation pairs. When the two func-
tions for the construction of rjoin and rbranch are combined in the construct

function, the resulting complexity is O(d, r).

With the complexity of source mapping path application and destination document
construction in place, we can now derive the complexity of the transformation
process. Each time a document is transformed using the transform function, a
set of compatible mappings, of size ¢, is retrieved from the binding hash table.
An iteration through each of these compatible mappings is made, evaluating each
mapping individually to construct a destination creation pair. These destination
creation pairs are then combined to make a set of destination creation pairs of size
d. As we stated earlier, the construction of the destination document is O(d, ).
Therefore, the complexity of the transform function is O(n, ¢), where n is the size
of the source document, and ¢ is the number of compatible mappings. Through
evaluation of the FXML-T library later in Section 6.5, we confirm this result and
show that increasing source document size only increases the transformation time

linearly.
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transform(td, bindingmap)

}

{
compatiblemappings <— Hashtable.lookup(bindingmap, td.componentName)
resultset <— evaluate(compatiblemappings, td, bindingmap);
resultdocument <— construct(resultset)
RETURN resultdocument

evaluate(compatiblemappings, td, bindingmap) {

resultset <— emptyset

foreach mapping in compatiblemappings
resultset.add(evaluatemapping(mapping, td, bindingmap )

RETURN resultset

evaluatemapping(mapping, td, bindingmap)

}

smpath <— mapping.sourcemappingpath
dmpath <— mapping.destinationmappingpath
localbinding <— mapping.localbinding

matcheddocument <— evaluate —smpath(smpath, td)
result  <— transform(matcheddocument, bindingmap.add(localbindi

RETURN [result . destinationpath]

evaluate —smpath(smpath, td) {

}

firstpair <— head(smpath)
pc <— firstpair.pathcomponent
predicate ~ <— firstpair.predicate
matched —td <— match —pathcomponent(pc td)
IF predeval(predicate, matched

child —td <— td —child(matched —td)

IF tail(smpath)

RETURN evaluate —smpath(tail(smpath), child —td)

SE
RETURN child —td
E
RETURN empty

match —pathcomponent(pc, td) {

}
child

pc—kind <— kind(pc)
CONDITIONAL
pc—kind = element AND td = pc
RETURN td
pc—kind = attribute AND td = pc
RETURN td
pc—kind = value AND td = constant
RETURN td
pc—kind = valuereg AND td = constant
RETURN eval— regeJ)(pc, td)
pc—kind = empty A = empty
RETURN td
td = sequence
head <— match fpathcomponentgpc, headgtd))
tail  <— match —pathcomponent(pc, tail(td))
IF head != null AND tail '= null
RETURN makesequence(head, tail)
IF head = null AND tail = null

RETURN null
IF head = null
RETURN talil
IF tail = null
RETURN tall
ELSE
RETURN null
—td(td)

d —kind -{klnd(td)
CASE td—kind OF
attribute: RETURN tail(td)
element: RETURN tail(td)
empty: RETURN td
constant: RETURN td
sequence: RETURN td

ng))

LISTING 6.1: Pseudocode for the transformation algorithm
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141
142
143
144
145
146
147
148
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predeval(predicate, td) {
CASE predicate.kind OF

}

exists: result <— apply(predicate.patom, td)
IF result '= empty RETURN true ELSE RETURN false
neg: RETURN ! predeval(predicate.subpredicate, td)
and: RETURN predeval(head(predicate.subpredicates), td ) AND
predevalétail(predicate.subpredicates), td)
or: RETURN predeval(head(predicate.subpredicates), td) OR
predeval(tail(predicate.subpredicates), td)
less: RETURN apply(head(predicate.patom) < applyétailEpredicate.patom;g
greater: RETURN apply(head(predicate.patom) > apply(tail(predicate.patom
equal: RETURN apply(head(predicate.patom) = apply(tail( predicate.patom))
true: RETURN true

apply(patom, td)
CASE patom O

}

evaluate

}

pathexpression: RETURN evaluate —pe(patom.pe, td)
constant: RETURN patom.constant

—pe(pe, td)

mh:—._llt((j:hed —td <— m{atch —pathcomponent(head(pe), td)

chi

IF tail(pe)
R

—td <— td —child(matched = —td)
ETURN evaluate —pe(tail(pe), child —td)

SE
RETURN child —td

construct(dpairs)

}

rjoin

<— rjoin(dpairs)

rbranch  <— rbranch(dpairs)

b

<— construct f{g)in(rjoin&
<— construct —rbranch(rbranch)

RETURN makesequence(td —j, td —b)

construct,
dpairs <— emptyset
for each pair in rjoin

}

—rjoin(rjoin) {

dpairs.add([tail(pair.dmpath) . pair.document]))

X <— root(rjoin)

t <— x.type

content  <— construct(dpairs)
RETURN newdocument(x, t , content)

construct

—rbranch(rbranch)

{
resultdocument <— emptydocument

for each pair in rbranch

resultdocument.add(construct —pair(pair))

RETURN makesequence(resultdocument)

construct

—pair(pair)

dmpath <— pair.dmp{ath

IF tail(dmpath)

X <— head(dmpath).component

t <— type(x)

dpairs <— {[ tail([dmpath) . pair.document] }
resultdocument <— construct(dpairs)

RETURN newdocument(x, t, resultdocument)

ELSE

X <— head(dmpath).component

CASE x.kind OF
element: RETURN newdocument(x, type(x), pair.contentdoc ument)
attribute: RETURN newdocument(x, type(x), pair.contentd ocument)
constant: RETURN pair.contentdocument
empty: RETURN emptydocument

LISTING 6.2: Pseudocode for the transformation algorithm
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6.4 The Configurable Mediator

The C-MEDIATOR is a component that consumes M-Binding documents and uses
them to direct the transformation of data from one format to another via an
intermediate OWL representation. This process is broken into three stages: (i)
conversion from the source XML format to OWL (conceptual realisation); (ii) mod-
elling of the OWL concept instance; (iii) conversion from OWL to a destination
XML format (conceptual serialisation). Stages (i) and (ii) are performed by the
Translation Engine that is implemented using the FXML-T functions defined in
Section 6.3. Figure 6.6 shows how these functions are combined to create the

Transformation Engine.

The Transformation Engine takes four inputs: a source XML schema, a source
XML document, a destination XML schema and an M-Binding in XML format.

The xmls->fxml:schema function is used to convert the source and destination

The Transformation Engine takes four
documents as input

Source Source Destination P
Schema Document Schema M;I?g,r\}ﬁ_lgg
<XMLS> <XML> <XMLS>

Y

(xmls->fxml:schema)

H A4 fxml:schema "E
J] : < > :
c : xml->fxml:td :
2 E : Y :
Ll H H . H
= : : (xmls->fxml:schema) :
.0 : : T :
© : : : TR SChema Ny
é : : : (xml->fxml:binding)
o ' v fxml:td '
e N .51 R
(4] H N H
c e T eommeeneaand
© fxml:schema R fxml:binding
= YVVY
( fxml:td->xml )

Y

Destination
Document
<XML>

The Transformation Engine produces
the destination XML document

FiGURE 6.6: The Transformation Engine
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XML schemas to fxml : schema structures. The source document is converted to an
fxml:td using the xm1->fxml:td function (consuming the source schema already
converted to an fxml:schema). The M-Binding document is converted to an
fxml:binding and then passed with the source fxml:td, source fxml: schema, and
destination fxml:schema to the fxml:transform function. Once the document
translation has been completed, the output is converted from an fxml:td to an

XML document using the fxml:td->xml function.

After the initial conversion from the source XML format to an OWL concept instance
(serialised in XML), the concept instance must be validated against its ontology
definition. The C-MEDIATOR uses JENA to perform this stage of the mediation,
creating an inference model from the ontology definition and importing the con-
cept instance into it. During this stage, concept hierarchies are calculated and any
instances imported are classified. From the perspective of our use case, this means
that the output from the DDBJXML service (a DDB.J_Sequence_Data_Record con-
cept) is also classified as an instance of the Sequence_Data_Record concept. There-
fore, input to a service consuming a Sequence_Data_Record, such as the NCBI-Blast
service, is valid. The C-MEDIATOR and its interaction with our DwsI and the two
target Web Services from our use case is illustrated in Figure 6.7. In this diagram,
the C-MEDIATOR is shown converting data from DDBJXML format to FASTA
format via an instance of the Sequence_Data_Record concept. We show all the doc-
uments necessary for each conversion process (e.g. XML schemas and M-Binding
documents) and where they originate (e.g. WSDL definitions, manually specified
or automatically generated). To illustrate the mechanics of the C-MEDIATOR, we

follow the conversion process in four stages, as they are labelled in Figure 6.7:

1. The Dynamic wsDL Invoker (DWSI) consumes the accession_id and invokes
the DDBJ service to retrieve a complete sequence data record. The document

returned is of type DDBJXML.

2. The DDBJXML sequence data record is converted to an instance of the
sequence _data record concept using the Translation Engine. The Transla-
tion Engine consumes the sequence data record, the XML schema describing
it (taken from the DDBJ wsDL definition), a schema describing a valid in-

stance of the sequence_data_record concept (generated automatically by
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the OWL-XZS generator), and the realisation M-Binding document. The
Translation Engine produces an instance of the sequence data record con-

cept which is imported into the Mediation Knowledge Base (a JENA store).

3. To transform the sequence_data_record concept instance to FASTA format,
the Translation Engine is used again, this time consuming the OWL concept
instance (in XML format), the schema describing it (generated by the OWL-
XIS generator), the schema describing the output format (from the NCBI-
Blast wspL) and the serialisation M-Binding. The output produced is the
sequence data in FASTA format.

4. The bwsI consumes the FASTA formatted sequence data record and uses it

as input to the NCBI-Blast service.

Workflow Input Workflow Output
wsdl:GetEntryln wsdl:runAndWaitForOut
*accession_id [xsd:string] * result[resultType]

Web Services with WSDL

Descriptions

NCBI-Blast
SOAP/HTTP|
Service: runAndWaitFor > o

PortType: runAndWaitFor

OAP/HTTP X DDBJ
c _________ Service: GetEntry
PortType: GetEntry

&
From Semantic Annotation | [Sequence_Data_Record]
Out: GetEntryOut Concept URI In: runAndWaitForln
¢ record [DDBJXML] * sequence_data[[FASTA]

e [N Sequence_Data_Record
Sequence_Data_Record <

NCBI Blast WSDL:---

Sequence Data Ontology

Manually Manually Seq-Data-Ont -> FASTA
Specified Specified M-Binding

FIGURE 6.7: A detailed view of the Configurable Mediator in the context of
our use case.
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6.5 Evaluation

To evaluate our implementation of FXML-M, as well as the scalability of the lan-
guage design itself, we devised four tests to examine the performance of our Trans-
lation Engine against increasing document sizes, increasing schema sizes, increas-
ingly complex M-Binding composition, and a large set of Sequence Data Records.
All tests were carried out using a 2.6Ghz Pentium4 PC with 1GB RAM running
Linux (kernel 2.6.15-20-386) using unix utility time to record program user times.
FXML-T is implemented in SCHEME and run using the Guile Scheme Interpreter
v1.6 [53]. Results are averaged over 30 runs so plotted values are statistically

significant at a 95% confidence interval.

6.5.1 Scalability

We test the scalability of FXML-T in two ways: by increasing input document size
(while maintaining uniform input XML schema size), and by increasing both input

schema size and input document size. The test hypothesis follows:

H1. Ezpanding document and schema size will increase the translation cost

linearly.
For comparison, FXML-T is tested against the following XML translation tools:

e XSLT: Using Perl and the XML::XSLT module - http://xmlxslt.sourceforge.net/.
e XSLT: Using JAVA (1.5.0) and Xalan (v2.7.0) - http://xml.apache.org/xalan-j/

e XSLT: Using Python (v2.4) and the 4Suite Module (v0.4) - http://4suite.org/.

e SXML: A SCHEME implemention for XML parsing and conversion (v3.0)

http://okmij.org/ftp/Scheme/SXML.html.

Since FXML-T is implemented using an interpreted language, and Perl is also in-
terpreted, we would expect them to perform slowly in comparison to JAVA and

Python XSLT which are compiled?. Figure 6.8 shows the time taken to transform

2 Although Python is interpreted, the 4Suite library is statically linked to natively compiled
code
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a source document to a structurally identical destination document for increasing
document sizes. The maximum document size tested is 1.2 MB, twice that of the
Blast results obtained in our use case. From Figure 6.8 we see that FXML-T has
a linear expansion in transformation time against increasing document size: the
correlation coefficient (1* = o04,/0,0,) is 0.916 (3 decimal places) where 1 is a
straight line and 0 is evenly scattered data. Both Python and JAVA implementa-
tions also scale linearly with better performance than FXML-T due to JAVA and
Python using compiled code. Perl exhibits the worst performance in terms of time
taken, but a linear expansion is still observed. These results are summarised in
the table presented in Figure 6.9. To compare each implementation, we calculate
the line of best fit using the equation y = max + b. The coefficient m for each
implementation is listed in the table to convey the growth in transformation time.
The difference in growth for each implementation to FXML-T is also listed, and
presented as a percentage to assist the reader in comparison. For example, Perl is

94.0% slower than FXML-T, but Java is 62.4% faster.

70 : | | | |
PERL X
PERL Fit ----- -
o - /}KPerI
60 - EXMLFit - - - 1
JAVA X )
JAVA Fit ——-—-
SXML  +
& 50 SXMLFit ) 1
2 PYTHON [ .
3 PYTHON Fit oo )
& 40 F /x |
o )
> _EFXML
2 30 e ]
8 -
E ’ /‘/
) p /-/
2 20} X e |
* -7 / - __—-XJava
’ - SXML|
----------------- [JPython
0 =kl L R I

0 200 400 600 800 1000 1200
Document Size (KBytes)

FIGURE 6.8: Transformation Performance against increasing XML document
size
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| Doc Size (KB) | fxml (s) | perl (s) | java (s) | sxml (s) | python (s) |

0.14 0.13 0.22 0.97 0.04 0.16
2.10 0.18 0.34 0.98 0.06 0.16
8.29 0.33 0.70 1.07 0.10 0.20
27.98 0.79 1.83 1.28 0.25 0.28
56.11 1.58 3.44 1.64 0.46 0.40
106.30 2.74 6.32 2.23 0.84 0.63
214.70 5.78 12.41 3.46 1.73 1.08
359.23 9.68 20.71 5.06 2.97 1.72
720.56 20.62 41.44 9.04 6.31 3.32
1091.65 32.94 63.05 13.10 9.61 4.86
m value 0.0296 0.0574 | 0.0111 | 0.0088 0.0043
difference 0.0278 | -0.0185 | -0.0209 -0.0253
percentage || 94.0% | -62.4% | -70.4% -85.4%

FIGURE 6.9: A summary of translation performance for increasing document
sizes.

Our second performance test examines the translation cost with respect to in-
creasing XML schema size. To perform this test, we generate structurally equiva-
lent source and destination XML schemas and input XML documents which satisfy
them. The XML input document size is directly proportional to schema size; with
2047 schema elements, the input document is 176KBytes, while using 4095 ele-
ments a source document is 378 KBytes. Figure 6.10 shows translation time against

the number of schema elements used.

Python and JAVA perform the best - a linear expansion with respect to schema
size that remains very low in comparison to FXML-T and Perl. FXML-T itself has
a quadratic expansion; however, upon further examination (see Figure 6.12), we
find the quadratic expansion emanates from the XML parsing sub-routines used to
read schemas and M-Bindings, whereas the translation itself has a cost linear to
the size of its input (solid line in Figure 6.12). The SCHEME XML library used for
XML parsing is common to FXML-T and SXML, hence the quadratic expansion for
SXML also. Therefore, our translation cost would be linear if implemented with a
suitable XML parser. A summary of these results is given in table format in Figure

6.11.
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FIGURE 6.10: Transformation Performance against increasing XML schema size

’ Schema Size

| fxml (s) [ perl (s) | java (s) | sxml (s) | python (s) |

3 0.14 0.22 0.04 1.03 0.17
15 0.19 0.24 0.07 1.08 0.18
85 0.49 0.51 0.21 1.23 0.21
156 0.88 0.99 0.38 1.45 0.26
255 1.42 2.08 0.76 1.60 0.31
511 3.29 7.04 3.69 1.98 0.46
1023 8.02 26.19 25.85 2.50 0.75
2047 23.69 101.10 | 67.61 3.32 1.42
4095 87.09 412.74 | 233.90 5.17 2.76
m value 0.0184 0.0850 | 0.0504 | 0.0011 0.0006
difference | 0.0666 | 0.0320 | -0.0174 -0.0178
percentage || 361% 37% -34% -1693%

FIGURE 6.11:

6.5.2 Composition Cost

H2. Binding composition comes with virtually no performance cost.

sizes.

A summary of translation performance for increasing schema

One important feature of our translation language (FXML-M) is the ability to com-

pose M-Bindings at runtime. This can be achieved by creating an M-Binding that
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FIGURE 6.12: FXML-T transformation Performance breakdown against increas-
ing XML schema size

includes individual mappings from an external M-Binding, or imports all map-
pings from an external M-Binding. For Service interfaces operating over multiple
schemas, M-Bindings can be composed easily from existing specifications. Ide-
ally, this composability should come with minimal cost. To examine M-Binding
cost, we increased the number of M-Bindings imported and observed the time
required to transform the document. To perform the translation, 10 mappings are
required myq, mo, ..., myy. M-Binding 1 contains all the required mapping state-
.,myo}. M-Binding 2 is a composition of two M-Bindings

.,mip}. To fully test the cost of

ments: By = {mq,mo, ..
where By = {my, ..., ms}UBy, and By, = {m, ..
composition, we increased the number of M-Bindings used and ran each test us-
ing 4 source documents with sizes 152Bytes, 411Bytes, 1085Bytes, and 2703Bytes.
While we aim for zero composability cost, we would expect a small increase in
translation time as more M-Bindings are included. By increasing source docu-
ment size, a larger proportion of the translation time will be spent on reading in
the document and translating it. Consequently, the relative cost of composing

M-Bindings will be greater for smaller documents and therefore the increase in

cost should be greater. Figure 6.13 shows the time taken to transform the same
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FI1GURE 6.13: Transformation Performance against number of bindings

| Number of Bindings || 152KB | 411KB | 1085KB | 2703KB |

1 0.156 0.160 0.180 0.215

2 0.152 0.162 0.182 0.216

3 0.156 0.160 0.182 0.212

4 0.156 0.160 0.183 0.216

5 0.157 0.162 0.178 0.216

mvalue 0.0006 0.0002 | -0.0003 | 0.0002

max difference | 0.005 0.026 0.059

max percentage | 103% | 112% 118%

FIGURE 6.14: A summary of translation performance for increasing M-Binding
composition.

four source documents against the same mappings distributed across an increas-
ing number of M-Bindings. On the whole, a very subtle increase in performance
cost is seen, and as expected, the increase is slightly larger for bigger documents.
Again, a summary of values is given in Figure 6.14 where m values are shown to be
very small. This indicates the that line of best fit is virtually flat, and therefore,

the increase in translation cost is minute.
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6.5.3 Bioinformatics Data Performance

H3. FXML-T performs well in comparison to other transformation technologies

when used to translate real bioinformatics data sets.

To test the practicality of FXML-T, we randomly retrieve a large selection of se-
quence data records from the DDBJ-XML service and translate them to their
corresponding OWL concept instance, serialised in XML. For comparison, the same
translation is performed using an XSLT script with two different implementations:
Perl and Python. Previous tests indicate that Perl XSLT performs worse than
FXML-T and Python XSLT performs better, so we expect FXML-T values to fall
roughly in the middle. Figure 6.15 is a plot of the time taken (in seconds) to
transform a Sequence Data Record to an OWL concept instance against the size
of the Sequence Data Record. On average, FXML-T translates a document in
60% of the time that Perl XSLT does, with an increase in translation time that
is proportional to the size of the input document. Python performs much better,
translating documents on average 50% quicker than FXML-T and with very little
increase in translation time as document size increases. These results are also

summarised in Figure 6.16.

6.5.4 Analysis

Hypothesis HI states that the performance cost of translation should be linear
or better for FXML-T to be a scalable implementation. In Section 6.5.1, testing
with increasing input document size shows FXML-T to have a linear increase in
the cost of translation. Although a quadratic expansion is observed when schema
sizes are increased, we discover that this performance overhead emanates from
the XML parsing routines used and not the transformation cost which is shown to
remain linear in Figure 6.12. Hypothesis H2 states the M-Binding composition
should ideally come with virtually zero performance cost. In Section 6.5.2, test-
ing of increasingly complex M-Binding composition shows that the inclusion of
mappings from other documents does not effect the translation performance in a

significant way. Finally, to fulfil hypothesis H3 and ensure FXML-T is a practical
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FIGURE 6.15: Transformation Performance against a random selection of Se-
quence Data Records from the DDBJ service

| Doc Size (KB) || fxml (s) [ perl (s) | python (s) |

2.04 0.30 0.36 0.17
5.01 0.30 0.34 0.17
11.00 0.35 0.45 0.18
15.96 0.43 0.72 0.22
20.51 0.43 0.68 0.22
30.89 0.61 1.22 0.27
40.20 0.57 0.78 0.20
52.12 0.74 1.30 0.26
ihline mvalue 0.0088 0.0183 0.0017
difference | 0.0095 -0.0072
percentage || 107.6% | -81.2%

FIGURE 6.16: A summary of translation performance for bioinformatics data
collected from DDBJ.
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implementation, we test FXML-T against real bioinformatics data sources. Figure
6.15 illustrates that FXML-T performance is reasonable compared to other XSLT

implementations.

6.6 Conclusions

FXML-T implements our transformation formalisation fully. It supports the trans-
lation of documents based on mappings between components within source and
destination schemas. To express complex relations between elements, for exam-
ple the mapping of elements based on other attribute values, FXML-T supports
predicate evaluation. When the manipulation of string values is required, regular
expressions may be used to extract characters of interest. FXML-T also provides
an implementation of the core MSL constructs, namely schema components and
typed documents. The MSL specification [26] does present inference rules that de-
scribe the process of document validation; i.e. the notation that an XML document
conforms fully to the schema that describes it. However, we have not implemented
this feature within FXML-T since third part schema validators can be used. Valida-
tion must be used otherwise it is possible to specify transformations that produce

invalid documents.

Through evaluation of the FXML-T library against similar XML translation tools,
we have shown that our implementation scales well when input document size is
increased. While a quadratic expansion in translation time is observed when in-
creasing schema sizes, we find that this increase emanates from the XML parsing
subroutines used. The actual cost of translation remains linear with respect to
input schema size. Therefore, our translation cost would be linear if more efficient
XML parsing routines were used. In terms of M-Binding composition, our imple-
mentation performs very well: increasing the number of M-Bindings included has

virtually no cost on the overall translation performance.

The languages FXML-M and XSLT [34] are obviously closely related because they
both cater for XML translation. At a basic level, they provide operators that
allow items of text in the source document to be replaced with different text in a

destination document. However, FXML-M offers one significant benefit over XSLT:
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FXML-M supports the composition of mappings in a predictable manner. With
XML schema, the definition of elements, attributes and types can be imported
from an external document. This is a useful feature when combining data from
different sources because schema definitions do not need to be rewritten. If this
were to occur with two XML schemas that both have an M-Binding to define the
translation to another XML representation, the M-Binding definitions may also be

imported, and therefore save considerable effort.
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Invocation and Discovery

Architecture

The goal of the WS-MED architecture is to provide a generalised set of software
components that can be exploited by any technology making use of Web Services
standards (such as wsDL and XML schema) to translate XML data between different
formats via an intermediate OWL representation. In the previous two Chapters, we
have focused on the core syntactic mediation technology, namely the mapping lan-
guage FXML-M (Chapter 5), its corresponding implementation FXML-T (Chapter
6), and the internal workings of the Configurable Mediator (C-MEDIATOR). While
these contributions create the necessary infrastructure to support a scalable data
translation approach, more software components are required to complete the big
picture given in Figure 4.12 (Chapter 4). For example, analysis of current applica-
tions shows that the discovery and sharing of Type Adaptors is not well supported:
most users create their own library of adaptors and rarely share them with other

individuals.

If we are to consider the WS-MED architecture as a generic solution to the
workflow harmonisation problem, we must support users and other software com-
ponents in the sharing and discovery of Type Adaptors, the dynamic invocation of
target services, and the generation of canonical XML representations for OWL con-
cept instances. A more detailed list of these additional architecture requirements

follows:

140
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1. Invocation of target services
In a constantly changing environment where services appear and disappear
at any time, services may be discovered to achieve particular goals that have
not been used before. Therefore, it is important for an invocation component

to cater for the execution of previously unseen services defined using WSDL.

2. Derive a canonical model from the intermediary representation
Since our intermediary-based mediation approach relies on a canonical XML
representation of OWL concept instances to act as a lingua franca, a mech-
anism is required to automatically derive such a model. To be compatible
with the C-MEDIATOR, an XML schema is required to validate OWL concept

instances (called an OWL-XZS).

3. Discovery of Type Adaptors
To find autonomously the appropriate Type Adaptor to harmonise the flow
of data between two services, a discovery and publishing facility is required
that supports the advertising and retrieval of Type Adaptors based on their
conversion capabilities. To conform to existing Web Service standards, we

base this part of the architecture on a UDDI compliant registry.

In this Chapter, we present the WS-HARMONY architecture components that
enable the execution of WSDL specified Web Services; the generation of OWL-
XZS (owL instance schemas); and the advertising, sharing, and discovery of Type
Adaptors. We test Type Adaptor discovery cost in the context of workflow execu-
tion times and show that discovery time is minimal in comparison to the execution
of target services. Our Dynamic Web Service Invoker is also tested against an-
other Web Service invocation API (Apache Axis [10]) and is shown to be faster,

particularly as the message size increases.

The contribution of this Chapter is a set of architecture components to satisfy the

requirements above for automatic workflow harmonisation:

e A Dynamic Web Service Invoker that is able efficiently to execute previously

unseen WSDL specified Web Services.

e An OWL XML instance schema (OWL-XZS) generator that consumes OWL

ontologies and produces XML schemas to validate concept instances.
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e An approach for the description of Type Adaptor components using WSDL
and a component to automatically generate WsDL definitions of M-Binding

capability.

e A registration, sharing and discovery mechanism for Type Adaptors using

the GRIMOIRES [93] service registry.

This Chapter is organised as follows: Section 7.1 gives an overview of WSDL, how
services are typically invoked, why the invocation of previously unseen services is
problematic, and how the Dynamic Web Service Invoker overcomes such problems.
Section 7.2 discusses the relationship between OWL ontologies and XML schema,
with an example to show the OWL-XZS generator at work using an algorithm that
automatically creates OWL-XZS. In Section 7.3, we concentrate on the description
and discovery of Type Adaptors, presenting a uniform description method based
on WSDL. Section 7.4 evaluates our Dynamic Web Service Invoker against a leading
Web Service invocation API, and shows that the discovery of Type Adaptors in
WS-HARMONY is insignificant compared to the execution of target services.

Finally, we conlude in Section 7.5.

7.1 Dynamic Web Service Invocation

In this Section, we describe the problem faced by software components that are
designed to enable the invocation of previously unseen Web Services. After a brief
introduction to WSDL, and an explanation of the invocation problem, we present
a solution that utilises a standardised XML view for service input and output
messages. Finally, our implementation is presented in the form of the Dynamic

Web Service Invoker (DWSI).

7.1.1 WSDL and Web Service Invocation

WSDL [33] is an XML grammar used to specify Web Services and how to access

them. A wsDL document defines a service as a collection of endpoints, or ports.
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Each port exposes a number of operations which the service supports. An opera-
tion is defined in terms of the input message it consumes and the output message
it produces. A message has a number of uniquely named parts, the type of which
is specified by a reference to an XML schema definition [41]. Custom schema defi-
nitions may also be included in the WSDL definition. The definition of the service,
ports, operations and messages is done at an abstract level and bound to concrete
execution models via the service bindings. The service binding specifies which type
of protocol and datatype encoding is used for each operation, effectively stating
how to invoke the service. By using a two tier model in which the service definition
is given at an abstract level and its implementation is defined in terms of those
abstractions, we are able to view many different Web Service implementations
through a common interface. For example, a SOAP over HTTP binding, and a JMS
[55] binding could both be specified for the same operation allowing clients from

different platforms to utilise the same service.

We give an example WsDL document for the DDBJ-XML Bioinformatics service,
used in our use case, in Listing 7.1. After the namespace declarations, the <types>
element declares the types used by the service. The <DDBJXML> element definition
is imported from an external schema. Following the type specification, the WSDL
document declares two messages: the getEntryln and getEntryOut messages, each
of which has one part denoting the contents of the message. For the input mes-
sage, there is only one part called accession_id of type DDBJ:ACCESSION. The
output message also contains one part of type DDBJ:DDBJXML - a custom type
to hold the Sequence Data Record. The <portType name=’DDBJPortType’> el-
ement describes an endpoint which offers an operation called “GetEntry” which
can be used to get Sequence Data Records. The input and output of this op-
eration is specified by a reference to the previously defined wSDL messages. The
<binding name=’DDBJBinding’ type=’tns:DDBJPortType’> element provides a
binding for the abstractly defined portType GetEntry.

A typical Web Service is implemented using SOAP [52] encoding over HTTP trans-
port (as the DDBJ-XML service does). In this case, the service binding states
that the message contents is placed inside a SOAP message and sent over HTTP.
A SOAP message (or envelope) is an ordinary XML document that conforms to

a specific schema defined at http://www.w3.0rg/2001/12/soap-envelope. The
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<?xm version="1.0' encoding="UTF —8?7 >

<definitions name='DDBJService’
targetNamespace="http://jaco.ecs.soton.ac.uk:8080/D DBJWrapper/ddbj’
xmins:tns="http://jaco.ecs.soton.ac.uk:8080/DDBJWra pper/ddbj’

xmins:DDBJ="http://jaco.ecs.soton.ac.uk/schema/DDBJ
xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/’
xmins:http="http://schemas.xmlsoap.org/wsdl/http/’
xmlIns:mime="http://schemas.xmlsoap.org/wsdl/mime/’
xmins:xsd="http://www.w3.0rg/2001/XMLSchema’
xmins:soapenc="http://schemas.xmlsoap.org/soap/enco ding/’
xmins:wsdI="http://schemas.xmlsoap.org/wsdl/
xmlns="http://schemas.xmlsoap.org/wsdl/’ >
<types >
<xsd:schema targetNamespace="http://jaco.ecs.soton.ac .uk:8080/DDBJWrapper/ddbj" >
<xsd:import namespace="http://jaco.ecs.soton.ac.uk/sc hema/DDBJ"
schemalocation="http://jaco.ecs.soton.ac.uk/schema/ DDBJ.xsd"/ >
<Ixsd:schema >
<ltypes >

<message name='getEntryln’ >

<part name='accession _id’ element="DDBJ:ACCESSION’/ >
</message >
<message name='getEntryOut’ >

<part name="record’ element="DDBJ:DDBJXML’/ >
</message >

<portType name='"DDBJPortType’ >
<operation name='GetEntry’ >
<input name='getEntryln’ message="tns:getEntryIn’/ >
<output name='getEntryOut’ message="tns:getEntryOut’/ >
</operation >
</portType >

<binding name="DDBJBinding’ type="tns:DDBJPortType’ >
<soap:binding style="document’ transport="http://schem as.xmlsoap.org/soap/http’/ >
<operation name='GetEntry’ >
<soap:operation soapAction="GetEntry'/ >
<input name='getEntryln’ >
<soap:body use='literal’/ >
<linput >
<output name='getEntryOut’ >
<soap:body use='literal’/ >
<loutput >
</operation >
</binding >
<service name='"DDBJService’ >
<port name='"DDBJPort’ binding="tns:DDBJBinding’ >
<soap:address location="http://jaco.ecs.soton.ac.uk:8 080/DDBJWrapper/ddbj'/ >
</port >

</service >
</definitions >

LisTING 7.1: WSDL Document describing the DDBJ-XML sequence retrieval
service
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<soap:envelope >
<soap:body >
<getEntryln >
<DDBJ:ACCESSION-AB000059</DDBJ:ACCESSION>
</getEntryln >
</soap:body >
</soap:envelope >

LisTING 7.2: Example SOAP envelope using RPC style

<soap:envelope >
<soap:body >
<DDBJ:ACCESSION-AB000059</DDBJ:ACCESSION>
</soap:body >
</soap:envelope >

LisTiNG 7.3: Example SOAP envelope using Document style

fundamental purpose of SOAP is to provide a standardised protocol for the ex-
change of information between distributed system components. In terms of Web
Services, these components are the client and the service provider. During the
invocation of a SOAP encoded WsSDL Web Service, a SOAP envelope is created and
the message parts are placed inside it. The format of this SOAP envelope depends
on the binding style specified in the wsDL binding. The two types of style sup-
ported are document and rpc. With rpc style (see Listing 7.2), the child element
of the <soap:body> node in the soap envelope has the same name as the WSDL
operation name. The children of this operation node correspond to each of the
message parts: each child element taking the same name as the message part
name. With document style (see Listing 7.3), the children of the <soap:body>
node correspond directly to the message parts (there is no node corresponding to
the operation name - usually the SOAPAction HTTP header is used to distinguish
different operations). They are not named according to the message part names,

instead they are named after the XSD element they refer to.

In trivial cases the part type will be a simple, predefined type such as string or in-
teger. However, XSD allows for the specification of complex types: an XML element
that contains other elements (simple or complex). Existing Web Service APIs such
as Apache or JAX-RPC use classes to encapsulate the XSD type and serialisers are
registered to transform an object instance into the desired format. With complex
types, such classes have to be created and compiled prior to execution and their
corresponding serialisers registered at runtime. In terms of dynamic invocation,

the problem is simple: without hard-coded classes to represent the complex types
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specified by the service provider, execution by the client is impossible. Therefore,
we have developed an alternative message representation and invocation technique:
instead of storing the message parts using classes, we define an XML representation
of a WSDL message that is independent of binding style. This allows us to specify
inputs to a WSDL service without knowing its implementation and hence provide
dynamic invocation. It also simplifies the integration of the DWsI with the C-
MEDIATOR since all Web Services messages are instantiated in XML format. Our
JAVA based Dynamic Web Service Invoker (DwsI) is able to invoke WSDL specified
services when given inputs in this XML format, and returns the results in the same
format. The following sections define the XML representation with examples and

the interface to our DWSI.

7.1.2 XML representation of WSDL messages

The root element of the WSDL message XML representation takes the same name
as the WSDL message name. Each of its child elements corresponds to a message
part with each element taking the name of the message part as shown in Listing

7.4.

If complex types are used, they are represented as children of the <part-name>
element. We show an example input message for invocation of the DDBJ-XML

sequence retrieval service in Listing 7.5 and fragment of the output in Listing 7.6.

<message —hame>
<part —name> part contents <Ipart —name>
<part —name> part contents <Ipart —name>

<part —name> part contents <lpart —name>
</message —hame>

LISTING 7.4: An XML representation of a WSDL message.

<getEntryln >
<accession _id >
<ACCESSION xmlIns="http://jaco.ecs.soton.ac.uk/schema/ DDBJ">AB000059</ACCESSION>
<l/accession _id >
</getEntryln >

LISTING 7.5: Example Input Message for DDBJ-XML Sequence Retrieval Ser-
vice
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<getEntryOut >

<record >
<DDBJXML xmins="http://jaco.ecs.soton.ac.uk/schema/DD BJ">
<ACCESSIONAB000059</ACCESSION>
<FEATURES
<source >
<location >1..1755 </location >
<qualifiers name="isolate" >Somk/qualifiers >
<qualifiers name="lab _host" >Felis domesticus  </qualifiers >
<qualifiers name="mol _type" >genomic DNA</qualifiers >
<qualifiers name="organism" >Feline panleukopenia virus </qualifiers >
</source >
<cds >
<location >1..1755 </location >
<qualifiers name="product" >capsid protein 2 </qualifiers >
<qualifiers name="protein _id" >BAA19020.1 </qualifiers >
<qualifiers name="translation" >MSDGAV... </qualifiers >
</cds >
</FEATURES>
<SEQUENCEatgagtgatggagcagt.. </SEQUENCE
</DDBJIXML>
</record >

</getEntryOut >

LisTING 7.6: Example Output Message for DDBJ-XML Sequence Retrieval
Service (fragment only).

Since no proper schema definition exists to describe this type of container, we
have created a simple schema generator which will create the correct schema when
passed a WSDL interface, port-type, service name, and desired operation. This soft-
ware component is exposed as a Web Service (available at http://jaco.ecs.soton
.ac.uk:8080/schema), where the WsDL location, port-type, service name, and de-
sired operation are all passed as arguments. Listing 7.7 shows an example schema
to describe the input and output messages of the “getEntry” operation provided
by the DDB-XML service. Because our schema generator is exposed as a Web
Service, the target namespace of the XML document can reference the schema
generator (lines 4 - 8), and therefore, support the validation of WsDL input and
output message documents. By using this XML representation of WSDL messages,
we can view the data sent to and returned from any type of WSDL service execution

through the same data representation.

7.1.3 Dynamic Web Service Invoker

Our Dynamic Web Service Invoker (DWSI) exposes one method named invoke,

with the following signature:
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<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSche ma"
xmins:tns="http://jaco.ecs.soton.ac.uk:8080/DDBJWra pper/ddbj"
xmins:DDBJ="http://jaco.ecs.soton.ac.uk/schema/DDBJ ’
targetNamespace="http://jaco.ecs.soton.ac.uk:8080/s chema.jsp?
wsdllocation=http://jaco.ecs.soton.ac.uk/wsdl/ddbj. wsdl;

servicens=null;servicename=DDBJService;
porttypens=null;porttypename=DDBJPortType;
operation= GetEntry" >
<xsd:element name="GetEntryIn" >
<xsd:comlexType >
<xsd:sequence >
<xsd:element ref="accession _id" minOccurs="1" maxOccurs="1"/ >
<Ixsd:sequence >
<Ixsd:comlexType >
<Ixsd:element >
<xsd:element name="GetEntryOut" >
<xsd:comlexType >
<xsd:sequence >
<xsd:element ref="record" minOccurs="1" maxOccurs="1"/ >
<Ixsd:sequence >
<Ixsd:comlexType >
<Ixsd:element >
<xsd:element name="accession _d" >
<xsd:comlexType >
<xsd:sequence >
<xsd:element ref="DDBJ:ACCESSION" minOccurs="1" maxOccu rs="1"/ >
<Ixsd:sequence >
<Ixsd:comlexType >
<Ixsd:element >
<xsd:element name="record" >
<xsd:comlexType >
<xsd:sequence >
<xsd:element ref="DDBJ:DDBJXML" minOccurs="1" maxOccurs ="1" >
</xsd:sequence >
<Ixsd:comlexType >
<Ixsd:element >
</Ixsd:schema >

LisTING 7.7: Example XML schema to wrap DDBJ-XML Sequence Retrieval
Service input operation

public static Node invoke(String wsdlLocation, String operation,
String serviceNS, String serviceName,
String portTypeNS, String portTypeName,
Node inputDOM);

The parameters are:

e wsdlLocation - The URL of the wWsDL document
e operation - The operation to call

e serviceNS - The service namespace

e serviceName - the service name

e portTypeNS - the port-type namespace
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e portTypeName - the port-type name
e inputDOM - An org.w3c.dom.Node object holding the input XML

e return - An org.w3c.dom.Node object holding the output XML

Our current version supports SOAP over HTTP bindings only since they are the
only ones used within our bioinformatics application. The DWSI supports both
types of style (rpc and document) allowing it to invoke Web Services deployed
on any platform including JAVA and .NET, a feature not adequately supported
in any existing JAVA APIs. Evaluation of the DWsI is presented later in Section
7.4.1 where invocation of the DDBJ-XML service using the DWSI is compared to

Apache Axis.

7.2 Generation of owL Instance Schemas

We stated earlier in Chapter 4 that we simplify our transformation requirements for
conceptual realisation and conceptual serialisation by assuming a canonical XML
representation of OWL concept instances. This way, the realisation and serialisa-
tion translation process can be viewed as an XML to XML translation. While it is
common for OWL users to specify OWL concepts and instances using an RDF/ XML
syntax, XML schemas do not usually exist to validate them. Therefore, automated
harmonisation can only be achieved if these schemas are generated. To present
this idea, we use a simple vehicle ontology, illustrated in Figure 7.1. The Vehicle
concept has two datatype properties (number_of wheels and number_of_seats) and
two subconcepts: Van and Car. Every vehicle has an Engine (which could be
described by a more specific concept such as Petrol or Diesel) and a Transmis-
sion. Listing 7.8 shows the XML schema created by the OWL-XZS generator to
validate instances from the vehicle ontology. The algorithm is outlined below with

references to parts from the schema listing.
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FI1GURE 7.1: A simple vehicle ontology

7.2.1 Algorithm for XML Schema Generation

Klein et al [65] present an algorithm to generate XML schemas that validate OIL
[56] ontology-containers. Using an adapted version of their algorithm to cater for
OWL ontologies, we are able to generate XML schemas to validate OWL concept

instances for a given ontology definition. The algorithm is outlined below:

1. Materialise the hierarchy
OWL provides language constructs to specify concept hierarchies so a particu-
lar concept can be considered a more general classification than another. For
example, the concept Vehicle can be considered more general than the con-
cepts Car or Van. Subsumption, usually denoted as C' = D, is the reasoning
processes through which the concept D (the subsumer) is checked to see if it
is more general than the concept denoted by C' (the subsumee). Reasoning
engines, such as JENA, provide subsumption reasoning so when an ontology

definition is loaded, all concept hierarchies are calculated automatically.

2. Create an element for each concept
For every OWL concept in the ontology, an XSD element is created. For

the vehicle ontology in Figure 7.1, the following elements would be created:
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<Vehicle>, <Van>, <Car>, <Engine>, <Petrol Engine, and <Diesel _Engine>.

These can be found in lines 5 to 10 of Listing 7.8.

3. Create an element for each property
For every OWL property in the ontology, an XSD element is created. For
properties that link concepts to other concepts (called an object prop-
erty), such as the has_engine property, the type of the element is a complex
type. For properties that link concepts to literal values (called a datatype
property), such as the number_of wheels and number_of seats properties,
the type is the same as the type given in the OWL definition and is likely to
be one of the predefined XSD types such as an integer or string. Property

element definitions can be found in lines 13, 16-19 of Listing 7.8.

4. Create a complex Type definition for each concept
Once the XSD elements have been created, an XML schema complex type
is created for each concept. When creating the complex type, a list of all
possible properties for that concept are extracted by checking the domain
of all properties. The complex type is then specified as a sequence over
these properties with any cardinality constraints from the property reflected
using XML schema occurrence indicators. In cases where a concept is a
subconcept of another, such as the Car concept in the vehicle ontology,
XSD type extension is used to provide the inheritance of properties from the

parent. See lines 22 - 63 of Listing 7.8 for complex Type definitions.

5. Create a type definition for each property

Finally, a type definition is created for every property in the ontology. As
we stated above, datatype properties are assigned a simple type and object
properties are given a complex type. When object property types are cre-
ated, the range of the property is examined and a list of possible concepts
that property links to is determined. When an object property links to a con-
cept which has sub concepts, such as the has_engine property in the vehicle
ontology, the complex type is set to be a choice over any of the sub concepts,
e.g. the has_engine complex type will be a choice of Engine, Petrol_Engine,
or Diesel_Engine. The type definition for the has_engine property can be
found in lines 66 - 72 of Listing 7.8.
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<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSche ma'

xmins="http://jaco.ecs.soton.ac.uk/ont/vehicle _ontology"
targetNamespace="http://jaco.ecs.soton.ac.uk/ont/ve hicle _ontology" >

<!— Concept El ements —>

<xsd:element name="Vehicle" type="Vehicle —TYPE"/ >

<xsd:element name="Van" type="Van —TYPE"/ >

<xsd:element name="Car" type="Car —TYPE"/ >

<xsd:element name="Engine" type="Engine —TYPE"/ >

<xsd:element name="Petrol _Engine" type="Petrol _Engine —TYPE"/>

<xsd:element name="Diesel _Engine" type="Diesel _Engine —TYPE"/>

<!l— bj ect Property El ements —>
<xsd:element name="has _engine" type="has -engine —TYPE"/>

<!— Datatype Property Elements —>

<xsd:element name="number  _of _wheels" type="xsd:integer"/ >
<xsd:element name="number  _of _seats" type="xsd:integer"/ >
<xsd:element name="loading _capacity" type="xsd:integer"/ >
<xsd:element name="cubic _capacity" type="xsd:integer"/ >

<!— Concept Types —>

<xsd:complexType name="Vehicle —TYPE">
<xsd:sequence >
<xsd:element ref="has -engine"/ >
<xsd:element ref="has _transmission"/ >
<xsd:element ref="number _of _.wheels"/ >
<xsd:element ref="number _of _seats"/ >

</xsd:sequence >
<Ixsd:complexType >

<xsd:complexType name="Van —TYPE">
<xsd:complexContent >

<xsd:extension base="Vehicle —TYPE">
<xsd:sequence >
<xsd:element ref="loading _capacity"/ >

<Ixsd:sequence >
<Ixsd:extension >
</Ixsd:complexContent >
<Ixsd:complexType >

<xsd:complexType name="Car —TYPE">
<xsd:complexContent >
<xsd:extension base="Vehicle —TYPE"/ >
</Ixsd:complexContent >
<Ixsd:complexType >

<xsd:complexType name="Engine  —TYPE">
<xsd:sequence >
<xsd:element ref="cubic _capacity"/ >
</xsd:sequence >
<Ixsd:complexType >

<xsd:complexType name="Petrol _Engine —TYPE">
<xsd:complexContent >
<xsd:extension base="Engine —TYPE"/ >

</Ixsd:complexContent >
<Ixsd:complexType >

<xsd:complexType name="Diesel -Engine —TYPE">
<xsd:complexContent >
<xsd:extension base="Engine —TYPE"/ >

</Ixsd:complexContent >
<Ixsd:complexType >

<!— Property Types —>
<xsd:complexType name="has _engine —TYPE">
<xsd:choice >

<xsd:element ref="Engine"/ >
<xsd:element ref="Petrol _Engine"/ >
<xsd:element ref="Diesel _Engine"/ >

<Ixsd:choice >
</xsd:complexType >
</xsd:schema >

LISTING 7.8: Example XML Schema to validate instance of the vehicle ontology

When creating any elements or complex types, the namespace and local name of
the concept is mirrored in the XML schema. This means that a uri pointing to a
particular OWL concept or property also refers to the XML schema element that val-
idates it. Pseudocode for the OWL instance schema generation algorithm is given in
Listing 7.9. The create-schema function take three arguments: concepts (a ma-

terialised hierarchy of the concepts in the OWL ontology); properties (a hierarchy
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of the properties within the OWL ontology); and schema (the schema document to
be created - initially emtpy). For every concept in the ontology, an element dec-
laration is added to the schema using the concept namespace, the concept local
name, and the name of the type (which is the local name concatenated with the
string “-“TYPE”). Once the element declaration has been added to the schema,
a complex type definition is created using the create-concept-complex-type.
This function iterates through all properties that have a domain equal to the
concept passed in the argument, and creates a complex type that is equal to a

sequence over these properties.

Once elements and types have been created for each concept, the create-schema
function iterates through the list of properties and calls the create-property
function. This function first checks the kind of property passed in the argument
to ascertain whether it is an object property or a datatype property. If it is a
datatype property, an element is created with the same XML type as the OWL

property. If it is an object property, an element is created using the property’s

create —schema(concepts, properties, schema) {
foreach concept in concepts
schema.addelement(concept.ns, concept.localname, conc ept.localname + "  —TYPE")

create —concept —complex —type(concept, properties, schema)

foreach property in properties
create —property(property, concepts, properties, schema)

}

create —concept —complex —type(concept, properties) {
sequence <— empty
foreach property in properties
if property.domain = concept
sequence.add(property)

schema.addcomplexType(concept.ns, concept.localname + "—TYPE",
sequence, concept.parent)

}

create —property(property, concepts, properties, schema) {
if property.kind = datatype
schema.addelement(property.ns, property.localname, pr operty.type)
else property.kind = object
schema.addelement(property.ns, property.localname, pr operty.localname + " —TYPE")
sequence <— empty
foreach concept _.in _range in property.range()
choice <— empty
foreach subconcept in concept _in _range.subconcepts()
choice.add(subconcept)

sequence.add(choice)
schema.addcomplexType(property.ns, property.localnam e + "—TYPE",
sequence, property.parent)

LisTING 7.9: Pseudocode for the generation of OWL-XZS
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namespace and localname and a complex type is created. The complexType to
define the element contents is a sequence over all the concepts that are in the
range of the property. If any of these concepts has sub-concepts in the concept
hierarchy, a choice indicator is used to specify that any of the sub-concepts are

also valid.

The OWL-XZS generator is implemented using JAVA and the JENA toolkit. The
OWL-XZS generator consumes an OWL ontology and produces an XML schema to
validate instances of concepts from the given ontology and is exposed as a Web

Service.

7.3 Type Adaptor Description and Discovery

To fully automate the workflow harmonisation process, it is necessary for the C-
MEDIATOR to be able to access the required resources (i.e. the serialisation and
realisation M-Bindings) at runtime without user intervention. Given WSDL service
interfaces that specify syntactic types (by references to XML Schema elements) and
semantic service annotations that define semantic types (by reference to concepts
within an OWL ontology), dataflow between services can be examined for incon-
sistencies. If the output syntactic type from a source service is different from the
input type to a target service, they are not syntactically compatible. However, if
the source output semantic type references the same concept (or is subsumed by
the same concept) as the input to the target service, they are deemed semantically
compatible. When this occurs, a query to registry can be made to find realisa-
tion and serialisation M-Bindings and a Type Adaptor can be created using the
C-MEDIATOR. In the following subsections, we explain how WSDL can be used to
describe Type Adaptor capabilities and support the discovery of Type Adaptors

through the use of a service registry.

7.3.1 Type Adaptor Discovery Requirements

There are many applications and tools that support the translation of data between

different formats. XSLT [34] enables the specification of data translation in a
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script format using pattern matching and template statements. Such a script
can be consumed by an XSLT engine to drive the translation of XML data to a
different representation. Other forms of Type Adaptors are not so transparent;
translation programs are often created using languages such as JAVA and Perl. In
other cases, a Type Adaptor may take the form of a distinct mediator Web Service,
described by wsDL and executed using SOAP over HTTP. When data flow within
a workflow links two syntactically incompatible interfaces (i.e. the output type
from the source service is different to the input type of the destination service),
Type Adaptors must be inserted to harmonise differences in representation. As
we stated in Chapter 2, this is currently a manual process that must be carried

out at workflow design time.

In Chapter 4, Section 4.1, two mediation approaches were identified: direct and
intermediary based. With a direct approach, one type adaptor is required to trans-
late from a source format straight to a destination format. With an intermediary
based approach, where data is transformed to common representation expressed
using an ontology language, two type adaptors are required: one for conceptual
realisation and one for conceptual serialisation, illustrated in Figure 7.2. In these
scenarios, it is assumed that the necessary adaptor components are known and
inserted into the workflow (in the case of direct mediation), or consumed by the

Configurable Mediator (for intermediary based mediation).

Since current Grid and Web Services infrastructures provide no mechanism to
describe, advertise or discover Type Adaptors, adaptor development is often ad
hoc: users create translation components on demand, even though other users way
have already engineered them. Individuals can build their own libraries of adap-
tors, but are unable to obtain those created by others without direct intervention,
for example, by email or file transfer. To reduce user effort through the sharing of
adaptor components, as well as supporting the retrieval of Type Adaptors for au-
tomated harmonisation, an advertising and discovery mechanism is required that
enables users and programs to get Type Adaptors according to type conversion

capabilities. We break down the requirements for such a system as follows:
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With direct mediation, the translation
component may take the form of an
XSLT script, Web Service invocation,
or Java execution

Mediation
Web Service

A Translation

Specification
XSLT Script

Direct Mediation

Configurable
Mediator

Web Service 1 Web Service 2

4 Realisation A Serialisation

Translation Translation
my= a/b->x/y my= x/y->p/q
With intermediary based My= a/c->x/z my= x/z->p/r
mediation, two translation
scripts are required
to convert data Intermediary Based Mediation

F1GURE 7.2: Differences in execution for direct and intermediary based media-
tion

1. A standard way to describe Type Adaptor capabilities
To support the discovery of adaptor components according to their func-
tionality while remaining agnostic of their implementation, a description
approach must be employed that specifies: (i) the abstract functionality of
the adaptor in terms of the source type consumed and the destination type
produced; (ii) the concrete execution model showing how to invoke the com-

ponent.

2. A repository to store Type Adaptor information
With standardised definitions in place, Type Adaptor descriptions can be
uploaded to a registry and shared with others. Such a registry must provide
a suitable query interface that supports the retrieval of adaptor descriptions
based on input and output types. This way, appropriate software can identify
when a syntactic mismatch occurs within a workflow and find the relevant

Type Adaptor autonomously by querying the registry.
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In Section 7.3.2, we present our method for describing Type Adaptor capabilities

before showing an implementation to generate descriptions automatically.

7.3.2 Generic Type Adaptor Description Approach

To describe the capabilities of all Type Adaptors, irrespective of implementation,
we separate concrete implementation details from the abstract definition. Under

this assumption, all Type Adaptors can be described using WsDL [33].

WSDL is a declarative language used to specify service capabilities and how to
access them through the definition of service end-points. The operations imple-
mented by the service are defined in terms of the messages consumed and produced,
the structure of which is specified by XML Schema. The service, operations and
messages are described at an abstract level and bound to a concrete execution
model via the service binding. The service binding describes the type of proto-
col used to invoke the service and the requested datatype encoding. Because of
this two-tier model, many different Web Service implementations may be viewed
through a common interface. By applying the same principle to data harmoni-
sation components, WSDL can be used to describe the capabilities of any Type
Adaptor. Using this approach allows different implementations of the same Type
Adaptor to be described with the same abstract definition (i.e. in terms of the
input and output XML schema types) and different bindings. This is illustrated in
Figure 7.3, where three Type Adaptors are shown: an XSLT script, a JAVA program
and a SOAP Web Service, all providing the same functionality - to convert data of
type S to D. Although other Web technologies, such as RDF [66], would be ad-
equate for describing Type Adaptor behaviour in this way, WSDL is standardised
and widely used for other Web Service technologies (e.g. the workflow languages
WSFL [68] and BPEL4WS [90], and the choreography language ws-cDL [62]), and

therefore facilitates technology reuse in future work.
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WSDL Description

input_message, inl:
- part: in, type: S
output_message, outl:
- part: out, type: D

port type: The XSLT Script, Java program and
- operation: convert
- input_message, inl SOAP Service can all be described
- output_message, outl | ing the same abstract WSDL interface
XSLT Script Java Web Service
<xsl:stylesheet> main(String args[1){ <definitions>
<xsl :template match="5"> S=ar‘gs[®] > . .;binding name="adaptorBinding'>
<D> ... </D> conver‘t(S) . <soap:Binding style='document' ...>
’ <operation name'convert's>
</xsl:template> } <soap:operation soapAction='convert'/>
. <input name='convertIn'/>
</xsl: StyleSheet> <output name='convertOut'/>
<operation>
</binding>
</definitions>

F1GURE 7.3: Using WSDL to describe different Type Adaptors

With a uniform method for the description of Type Adaptors in the form of WSDL,
we can utilise existing registry technologies to support sharing and discovery - this
feature is described in more detail in Section 7.3.4. Figure 7.4 shows a high level
view of how a registry containing WSDL definitions of Type Adaptors can be used
in our use case workflow to perform syntactic mediation. The output from the
DDBJ Service, of XML type DDBJ, is used as input to the NCBI-Blast Service,
which consumes type FASTA. The binding section of the wSDL definition describes
how to execute the translator, for example, by providing the location of an XSLT

script or the JAVA method details.

7.3.3 WSDL Generation for M-Bindings

Within the WS-HARMONY architecture, translation may be performed using an
intermediary based adaptor which converts data from a source type to a destination
type via an intermediate OWL representation. Using the mapping language FXML-
M, presented in Chapter 5, and the Configurable Mediator, shown in Chapter 6,
conversion between semantically equivalent data representations can be achieved

using a realisation M-Binding and a serialisation M-Binding. Since we assume a
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When queried, the Registry returns [ \wspl Des cription
the WSDL document describing the [ input_message, ini:
. - part: in, type: DDBJ
Type Adaptor converting DDBJ to FASTA output_nessage, outl:
- part: out, type: FASTA

find adaptor to - port type: The WSDL Binding describes
convert from RegIStI’y - operation: convert how to use the Type Adaptof
- input_message, inl

DDBJ to FASTA

- output_message, outl
Binding:

- Type adaptor reference
Type Adaptor
D t yp p D t
DDBJ ocumen 1. 3 Pl 20U L (NCBI_Blast
Type:DDBJ DDBJ to FASTA Type: FASTA

The Type Adaptor can be used to translate instances of DDBJ
formatted sequence data to FASTA format

FIGURE 7.4: The use of a registry to discover Type Adaptors

canonical XML representation for OWL concept instances, which can be validated
using automatically generated OWL-XZS (OWL instance schema), M-Bindings
converting XML to OWL and vice-versa can be described as an adaptor converting
from a source XML type to a destination XML type - i.e. the same as a direct

mediation component.

For the sake of automation, we provide a system to generate WSDL definitions
for M-Bindings so their descriptions can be added to a registry automatically.
Since an M-Binding is a sequence of mappings, B = {my, ma, ..., m,}, with each
mapping m; denoting a transformation rule, a WsDL definition must capture all
possible transformations catered for by B - namely an operation for each mapping
m;. When generating a WSDL definition, each mapping is given a corresponding
WSDL operation that consumes an input message and produces an output message,
each with one message part. The input message part references the same element as
the root of the mapping source statement and the output message part references
the same elements as the root of the mapping destination statement, as we show
in Figure 7.5. The WsDL service definition specifies the location of the M-Binding
document using the extensibility point and the <fxml:binding location=’...’>
element. This allows a user or software component to retrieve the M-Binding
document when given the WSDL definition. Pseudocode for the generation of

WSDL documents that describe M-Binding capability is given in Listing 7.10.
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Each mapping has a corresponding <definitions>
WSDL operation where each operation <message name='sns#x-to-dns#p-IN'>
consumes and produces a message /<p‘"t name="in" element= $S:X />
. . </message> et
with one part.The input message part <message name=" snsitx-tp-dns#p-0UT'>
references the same element as the <part name="out'.element="dns:p'/>
root of the mapping source and the </message> .-’
output message part references the <me5$°ge _name=" 5"‘5_#%! f—’eo‘gnf#q‘IN J
<part-‘name="1n--"element="sns: >
same element as the root of the Imieagem Y
destination statement. _,f"<'ﬁ1§3_ssagé‘ name="'sns#y-to-dns#q-0UT'>
. ':_ --“"<wsdlpart name='out' element='dns:q'/>
example.xml _,jf;—“' </message>
my = x/y -> p/q *f;;§____§§- <portType name='TranslationPortType'>
my = x/z -> p/r $ <operation name='sns#x-to-dns#p'>
m3 = y/$ -> q/$ <input name='sns#x-to-dns#p-IN'/>
\\‘\~\\\\\\\\\ <output name="sns#x-to-dns#p-0UT"'/>
mg = 2/$ > r/$ </operation>

‘<oper‘ation name="sns#y-to-dns#q'>
<input name='sns#y-to-dns#q-IN'/>
<output name='sns#y-to-dns#q-0UT'/>

</operation>

</portType>
The WSDL service definition SO , . -
<service name='TranslationService'>

Sp€CIerS the location of the <port name='TranslationPort'
M-Binding document. \ binding="tns:Translation Binding's
<fxml:binding location="example.xml'/>
</port>
</service>
<definitions>

FI1GURE 7.5: The relationship between and M-Binding and its wSDL definition

After setting the target namespace of the WSDL to the same as the M-Binding
(line 2), a new service element is created (line 3) using the location of the M-
Binding, a portType is added (line 4), and the source and destination schemas
are imported (lines 5 and 6). For the generation, an iteration is made through all
mappings in the global scope, adding an input message and an output message for
each. The input message type (with the part name “IN”) is the same as the first
component referenced in the source mapping path (line 14). The output message
type (with the part name “OUT”) is the same as the first component referenced
in the destination mapping path (line 15). Once the message have been created,

an operation can be added to the portType (line 17).

Figure 7.6 illustrates our Binding Publisher Service which can be used to auto-

matically generate WSDL definitions of M-Bindings and publish them with the
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create —wsdl(mbinding, wsdl) {
wsdl.setTargetNS(mbinding.targetNS)
wsdl.addservice(mbinding.location)
portType <— wsdl.addPortType("TranslationPortType")
wsdl.importType(mbinding.sourceNS)
wsdl.importType(mbinding.destinationNS)

foreach mapping in mbinding

inmessage <— wsdl.addMessage("sns#" + mapping.sourceroot.localname + "—to —dns# +
mapping.destinationRoot.localname + " —IN")

outmessage <— wsdl.addMessage("sns#" + mapping.sourceroot.localname + "—to —dns# +
mapping.destinationRoot.localname + " —0uT")

outmessage.addpart("out”, mapping.destinationRoot)

portType.addOperation("sns# + mapping.sourceroot.loca Iname + " —to —dns#" +
mapping.destinationRoot.localname, inmessage, outmess age)
RETURN wsdl

}

LisTING 7.10: Pseudocode for the generation of wsDL definitions that capture
M-Binding capability.

GRIMOIRES registry. The Binding Publisher Service takes three inputs: an M-
Binding, a source XML schema and a destination XML schema (1). After generating
the wsDL description (2), it is published in the GRIMOIRES repository (3) so it can
be found at later time using the standard GRIMOIRES API call findinterface (4).

The wsDL document returned contains the location of the M-Binding document

Source Schema Generated WSDL
element: S in message type:S
type: S/* ] 9 out message type:D
element: X i‘;y‘(;a‘{};;") portType: convert
H binding:
fxml :MBindingURI
Service: convert
M-Binding 0 H
m;: S/X -> D/Y i
My X/$ <> ¥/$ Binding Publisher 9 GRIMQIRES
Service save_service Registry

Register

Binding
findinterface e
input type: S V
s output type: D e T
Destination Schema M-Binding
element: D m;: S/X -> D/Y
type: D/* m,: X/$ -> Y/$

element: Y

Configurable
Mediator

F1GURE 7.6: The Binding Publisher Service can be used to automatically gen-
erate WSDL definitions of M-Bindings and register them with GRIMOIRES
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(5) which can then be consumed by the C-MEDIATOR (6) to drive translation.

7.3.4 Grimoires Repository

To support the sharing and discovery of Type Adaptor descriptions, we utilise

the GRIMOIRES (www.grimoires.org) registry. GRIMOIRES is an extended UDDI

[1] registry that supports publishing, annotation and discovery of service inter-

faces. UDDI, the Web Services standard for interface publication, enables service

providers to advertise service descriptions through the use of a standardised model.

This model is broadly broken into three tiers, illustrated in Figure 7.7:

1. Business Entity: The top level container that holds description informa-

tion about a business or entity. Each service provider is allocated a unique

business entity ID to which they can add business services.

2. Business Service: Each service offered by a business entity is allocated a

unique business service ID. A Business entity can provide multiple services.

3. Binding Template: For each business service, a binding template is cre-

ated to specify the actual end point of their service, for example, the wsSDL

document location. This information is encapsulated with a tModel data

structure.

Business Entity

[Business Service]
@inding Templata

<businsessEntity businessKey='35AF7F00-1319-21D6-A0DC-00QCOEQQACBD ">
<name>DDBJ</name>
<description>DNA Data Bank of Japan</description>
</businessEntity>

<businessService serviceKey='2AB336(0-2182-43B0-756B-0003CC35CC1D">
<name>BLAST</name>
<description>Execute BLAST specified with query sequence</description>
</businessService>

<bindingTemplate bindingkey="4BC7(340-2498-12E6-887C-0005AC34CC2D">
<accessPoint URLType="http">http://xml.nig.ac.jp/xddbj/Blast</accessPoint>
<tModel>
<overviewDoc>
<description>wsdl link</description>
</overviewURL>http://xml.nig.ac.jp/wsdl/Blast.wsdl</overviewURL>
</overviewDoc>
</tModel>
</bindingTemplate>

FIGURE 7.7: An overview of the UDDI data model with examples in XML
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Because UDDI only provides a contact point for service descriptions, it lacks the
ability to support the discovery of services according to interface properties such
as the input or output message parts. GRIMOIRES has been developed to solve

this problem, providing an extended UDDI registry offering two notable features:

e Meta-data annotation
By storing all UDDI models and WSDL definitions in RDF, GRIMOIRES sup-
ports arbitrary annotation of interface definitions. For example, any part of
the WSDL definition can be linked to a concept in an ontology to give WSDL
message parts a semantic type or classify a WSDL operation. GRIMOIRES
provides a meta-data query interface so services can be discovered according

to their meta-data attachments.

e WSDL query interface
Given the wide use of WSDL, and the inability of conventional UDDI registries
to support the retrieval of services according to WsDL features, GRIMOIRES

offers a WSDL query interface that enables searching over WsSDL features.

To use the GRIMOIRES registry for the advertising and discovery of Type Adaptors,
we create three business entities: one to hold direct mediation definitions, and
another two to hold intermediary based mediation definitions (one for conceptual
serialisation and one for conceptual realisation). This separation is used so users or
software components can query for specific types of mediators, ensuring that other
services are excluded from the search. In Figure 7.8, we show how GRIMOIRES
can be used in our use case scenario to find the necessary M-Bindings to perform
syntactic mediation via an intermediate OWL representation. The output of the
DDBJ-XML service, of type DDBJ, is not suitable for input to the NCBI-Blast
service because it consumes FASTA format. Since both data types have been
assigned the same semantic type (the Sequence Data concept), an OWL concept
instance can be used as the intermediate representation. Therefore, two queries
are sent to the GRIMOIRES repository: one for a Type Adaptor that converts from
DDBJ to Sequence Data, and another that converts from Sequence Data to FASTA
format. The wSDL documents returned from this query point to the relevant M-

Bindings so they can be consumed by the C-MEDIATOR to drive translation.
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[Sequence_Data] [Sequence_Data]
A

semantic type
Document NCBI_Blast
Type: FASTA -

The second query to the GRIMOIRES

semantic type
Doculment
DD Type:DDBJ

The first query to the GRIMOIRES

Configurable
Mediator

repository finds a realisation — T repository finds a serialisation
M-Binding to convert from DDBJ M-Binding M-Binding M-Binding to convert from a
format (the output syntactic type) bDBJ [Sequence_Data] Sequence_Data concept to FASTA
to a Sequence_Data concept [Sequer;c(c)e Datal FAtg)TA format (the input syntactic type
(the semantic type) — to the NCBI_Blast service)
A A
input: DDBJ findinterface findInterface [input:[Sequence_Data]
output: [Sequence_Data] , . J output: FASTA

GRIMOIRES

Repository

FIGURE 7.8: How the GRIMOIRES repository can be used to discover M-
Bindings at run time

7.4 Evaluation

To evaluate the middleware components we have presented in this Chapter, we
perform two tests: (i) to check the performance of the DwsI; and (ii) to ensure
that the discovery of M-Binding documents is not significant compared to the cost
of invoking the target services. The test setup is the same as was specified earlier

in Chapter 6, Section 6.5.

7.4.1 Dynamic WSDL Invoker

We test the performance of the DwsI by invoking the DDBJ-XML web service
multiple times to retrieve random Sequence Data Records with a range of sizes
from 2KBytes to 140KBytes. For comparison, we test the DWSI against the JAVA
based Apache Axis toolkit. The test hypothesis follows:

H/j. The Dynamic Web Service Invoker performs well in comparison to other
imvocation frameworks and scales linearly as input or output document size is

mcreased.
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Figure 7.9 is a graph that shows invocation time (in milliseconds) against the size of
Sequence Data Record retrieved. For relatively small output documents, around
20KBytes, the bwst and Apache Axis implementations are roughly the same.
However, as the document size increases, the DwsI is able to retrieve the document
between 30% and 50% quicker than Apache Axis. During the invocation of a Web
Service, a significant amount of time is spent sending the SOAP envelope over the
network, waiting for the service to respond, and receiving the response envelope.
When the message size is fairly small, the time taken by each implementation to
create the envelope, either by parsing the XML document in the case of the DWSI
or serialising the JAVA objects for Apache Axis, is relatively small in comparison.
However, as the output document size increases, the SOAP envelope creation time
is more significant. The times recorded in this test indicate the point where either
the XML output document is created (for the DWSI), or the JAVA objects are
instantiated in memory (for Apache Axis). In the WS-HARMONY architecture,
the output of the service may be passed to a C-MEDIATOR for translation. When
this occurs, the C-MEDIATOR can directly consume the output XML document. If
Apache Axis was used, a further processing step would be required to convert the

JAVA objects to an XML representation.

7.4.2 Discovery Cost

To evaluate our discovery implementation, we consider the relative cost of using
GRIMOIRES to discover M-Bindings in the context of workflow execution. The

hypothesis is as follows:

H5. The cost of M-Binding discovery using GRIMOIRES is not significant when

compared to the cost of executing the target services.

We test our hypothesis against our use case workflow using the DDBJ-XML and
NCBI-Blast services. The Table below shows the average time taken (from 10 runs)
for each step of the mediation process using OWL as an intermediary representation.

The translation process is broken into 5 steps:
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FIGURE 7.9: DwsI and Apache Axis performance invoking the DDBJ-XML
Web Service

. Discover realisation M-Binding
The DWSsI is used to query the GRIMOIRES repository for a Type Adaptor
that converts from DDBJXML to Sequence Data Record.

. Conceptual Realisation
The DDBJXML record is transformed to an instance of the Sequence Data

concept.

. Modelling of OWL concept instance

The Sequence Data Record concept instance is imported into JENA.

. Discover serialisation M-Binding
The DWSI is used to query the GRIMOIRES repository for a Type Adaptor

that converts from Sequence Data Record to FASTA.

. Conceptual Serialisation
The Sequence Data Record concept instance is transformed to FASTA format

by the Translation Engine.
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Activity | Average
DDBJ Execution 2.50

Realisation Discovery 1. 0.22
Realisation Transformation 2. 0.47
Jena Mediation 3. 0.62
Serialisation Discovery 4. 0.23
Serialisation Translation 5. 0.27

Total Mediation 1.81

Results show that the total mediation time is just under 2 seconds, with the largest
portion of the time taken importing the OWL instance into JENA. The discovery
overhead (finding realisation and serialisation M-Bindings) is small in comparison,
0.22 seconds and 0.23 seconds respectively, which totals 20% of the time taken to
execute the DDBJ-XML service. Other services, such as the NCBI-Blast service,
can take much longer to execute — times in excess of 1 minute are not uncommon
— so discovery time within this context is low. Although GRIMOIRES implements
UDDI, our discovery mechanism requires the use of additional GRIMOIRES func-
tionality, namely, the retrieval of service based on their input and output types.
This is not implemented in UDDI but can be achieved with GRIMOIRES using meta
data attachment. Fang et al [42] show that GRIMOIRES discovery time scales well
as more descriptions are added, so we infer that our discovery process comes with

an acceptable performance cost.

7.5 Conclusions

In this Chapter, we have presented the middleware components of the WS-HARMONY
architecture that enable the invocation of WSDL services, generation of OWL-XZS,
and the discovery of Type Adaptor specifications. Our Dynamic Web Service In-
voker provides an effective way to invoke previously unseen WSDL services that
would otherwise be problematic using existing Web Service invocation APIs. The
OWL-XZS provides the bridge between OWL ontologies and their corresponding se-
rialisations in XML, supporting the specification of mappings between XML schemas

and OWL ontologies. By using WSDL to describe adaptor capabilities, both direct
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and intermediary based mediators can be shared among users, reducing effort in
the development of adaptor components and facilitating the autonomous discovery
of harmonisation components. By automatically generating WSDL descriptions of
M-Binding capabilities and registering them with the GRIMOIRES repository, the
C-MEDIATOR can find serialisation and realisation M-Bindings at run time, pro-
viding an automatic harmonisation infrastructure that we demonstrate against a
bioinformatics use case. Empirical testing shows that the discovery process comes
with a relatively low cost in comparison to the execution of target services, and
would scale well as more descriptions are added providing an efficient registry
implementation, such as GRIMOIRES, is used. Caching mechanisms that track
the discovery of Type Adaptors could be implemented to improve discovery per-
formance and would be useful if particular adaptors are searched for more than
others. Using a logical separation between Type Adaptors and normal services
within the repository, through the use of UDDI business entities, means queries
for adaptor components will not return other sorts of service that could effect the

meaning of the workflow.



Chapter 8

Conclusions and Future Work

In scientific, service oriented environments, where access to a variety of data repos-
itories and computational analysis tools is exposed via Web Services, scientists rely
on the similarity between workflow design and experiment design to perform in
silico science. Users decompose their experimental processes into a set of tasks,
then discover service instances to realise them, mapping the process control onto
a workflow over these service instances. With the recent inclusion of semantic
service annotations, the service discovery process has evolved: instead of search-
ing over interface definitions alone (which are often terse and undocumented),
users can find the services they need by specifying the functional requirements
of a service using terminology from a domain ontology. After finding service in-
stances to fulfil the tasks within their experimentation process, the user creates a
workflow to control the order of execution and the flow of data between services.
However, Chapter 2 showed that workflow design is often complicated because
service providers can assume different representations for conceptually equivalent
data. This confuses users because semantically interoperable service interfaces, i.e.
those which produce and consume information that is assigned the same concept
from an ontology, may be syntactically incompatible. The current solutions to this
problem require the manual insertion of Type Adaptor components to perform the
necessary syntactic mediation, effectively enforcing workflow harmonisation on the
workflow designer. The result is a convoluted workflow design pattern in which
users have to consider not only the scientific aims of their design, but also the low-

level interoperability issues between services. Consequently, this distracts users

169
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from the real scientific problem they want to address and reduces accessibility to

non-technical users.

Through an investigation of related work in Chapter 3, we discovered that a com-
bination of Semantic Web Service technology with existing data integration tech-
niques can yield solutions that support users in the creation of meaningful work-
flows without concern for the interoperability issues that arise from heterogeneous
data representations. Such a solution is presented in Chapter 4 in the form of our
Web Service mediation framework, WS-HARMONY'. From a global perspective,
we separate the mediation of data into two categories: direct, where transforma-
tion is performed straight from one format to another; and intermediary-based,
where a common data model is used to mediate between the two formats. With
a direct approach, scalability is poor; as the number of compatible data formats
increases, the number of translation components required is O(n?). When intro-
ducing a new data format for which there already exists conceptually equivalent
formats, translation components must be written from the new format to all ex-
isting formats to achieve maximum interoperability. With an intermediary-based
approach scalability is much better; a constant increase in the number of transla-
tion components will occur as the number of compatible data formats is increased
- O(n). In addition, the introduction of new data formats is made easier be-
cause only a translation to and from the intermediary format is required. While
we focus our efforts on an intermediary-based approach, discovery of direct Type
Adaptors is supported to cater for the conversion components that already exist

within MYGRID.

Intermediary-based mediation within the WS-HARMONY architecture is sup-
ported using OWL ontologies that capture the structure and semantics of data
formats, with mappings that specify how data instances are transformed to and
from a conceptual representation. WS-HARMONY uses an OWL concept in-
stance as an intermediate representation to translate conceptually equivalent data
between different syntactic formats. The transformation of data is handled by the
Configurable Mediator (C-MEDIATOR) - a software component that consumes a
mapping, a source data instances, schemas for the source and destination data
format, and an ontology definition in OWL, and produces a data instance in the

destination format. Because service providers often expose many operations that
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consume and produce information over the same, or subsets of the same, data for-
mat, we champion a mapping approach that is both modular and composable to
facilitate the reuse of mapping definitions. In terms of the mapping specification,
it is beneficial to de-couple it from the service interface definition, so that service
providers can continue to expose access to their resources in the conventional man-
ner without having to add mapping definitions. Also, when multiple operations
are exposed over the same, or subsets of the same data type, only a single mapping

definition for that type is needed, rather than one for each operation.

To express the relation between XML schema components and OWL concepts, we
define the mapping language FXML, presented in Chapter 5. Examination of the
data formats from our use case shows that the translation between XML data
sources and their corresponding conceptual models in OWL is often complex when
considered from a modular perspective. Therefore, we developed a formalisation
to express the mapping of schema components and the translation process between
data formats. This low-level approach has allowed us to understand and capture
the complex translation requirements, notably document paths, predicate-based
evaluation, local scoping and string manipulation, as well as providing a solid foun-
dation on which we built our transformation engine FXML-T. Chapter 6, presents
the implementation of the C-MEDIATOR, with particular emphasis on the transla-
tion engine FXML-T. Through empirical testing, we show that the implementation
is scalable with respect to increasing document sizes and increasing schema size,

as well demonstrating that binding composition comes with virtually zero cost.

Automated workflow harmonisation: the discovery of appropriate mappings on
behalf of the user at runtime, can be achieved using a registry that supports the
advertising and discovery Type Adaptors based on conversion capabilities. Chap-
ter 7 presented a method to describe the capabilities of Type Adaptors in such
a way that they may be discovered according to their functionality by using the
Web Services Description language WSDL. Because WSDL separates the abstract
functionality of a software component from the implementation specifics, Type
Adaptors can be described and discovered in terms of their conversion capabilities
without consideration for implementation. Using WSDL means translation speci-
fications, such as XSLT scripts and M-Bindings, as well as applications, such as

JAVA programs and web services, can all be specified using wsDL with the binding
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portion of a WSDL document giving the appropriate instructions on how to invoke
the Type Adaptor. The WS-HARMONY architecture uses the GRIMOIRES grid
registry for the advertising and discovery of Type Adaptors and provides a reg-
istration service that automatically generates WSDL descriptions for M-Binding
documents. Existing GRIMOIRES API calls are used to support the discovery of
Type Adaptors by the input type and desired output type. This approach works
for both direct and intermediary-based adaptors so existing conversion components

can be shared easily amongst users.

In general, the contributions of this dissertation can be considered a fundamental
step towards the realisation of a Semantic Web Services vision. While a signif-
icant portion of research in this area has focused on the methods for capturing
the meaning of service interfaces and how to orchestrate their coordination, the
relationship between high-level descriptions and low-level interface definitions has

been largely overlooked, a problem exemplified in this dissertation.

8.1 Future Work

The contributions of this dissertation can be used to further the state of the art

in the following ways:

8.1.1 Semantic Workflow

Much effort has been placed into the research and development of workflow lan-
guages that enable the specification of complex tasks over multiple providers at
a high level of abstraction [73, 38, 31, 30]. While current workflow languages
support the amalgamation of computing assets to meet intricate user require-
ments, a considerable amount of technical knowledge is still required to create
stable and functioning workflows. Enabling scientists to express the requirements
of their experimentation process at a high level of abstraction using intuitive pro-

cess control requires even more complex middleware. For example, when dataflow
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The DDBJ-XML Service The BlastP Service consumes
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FIGURE 8.1: An example showing non-trivial data flow between semantically
annotated Web Services.

between two services is used, it is often the case that only a subset of the in-
formation from the source service is required for input to the destination ser-
vice. This can be illustrated in terms of our use case easily because many ser-
vices operate over subsets of a sequence data record. Sequence data records
that describe proteins contain a translation of the DNA sequence to a protein
sequence (e.g. atgagtgatggagcagttcaaccagacggtggtcaacctg is translated to
MSDGAVQPDG). This protein sequence itself can then be passed to a computational
analysis tool such as BlastP, illustrated in Figure 8.1. To hide the fact that a part
of the sequence data record must be extracted (and possibly transformed to an-
other representation), existing middleware must be augmented. In this example,
our mapping technology could be reused easily to support the extraction of data.
In other cases, where large sets or lists of records are produced by services (e.g.
Blast results), feeding the output to another service which consumes only single

records requires more data manipulation.

8.1.2 Formal Mapping Analysis

Our XML mapping and translation formalism, FXML-M, has been used to specify
how mappings between XML schema components can be used to drive the transla-
tion of XML documents. The FXML-M formalism could be extended in two ways

to provide some notion of binding validity:

1. Binding Completeness

When mapping XML components from a particular XML schema, it would be
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valuable to know that every possible combination of document that validates
against that schema would be successfully transformed by a binding and
that all elements would be mapped to the destination document. In cases
where not all components are mapped, it would be useful to know which

components would be omitted.

2. Binding Validation
The current FXML-M specification makes no checks that bindings produce
valid documents. While it is possible to use an XML validator to check a
transformed document against its schema, it could be more cost effective to
check that the binding produces a valid document before attempting to use
it in a translation. This is pertinent in a scientific environment where data

instances can be very large and translation would be an expensive process.

Since FXML-M covers a large number of constructs from XPATH, FXML-M could

be used as a basis to formalise XSLT and XQUERY.

8.1.3 Automatic Mapping Generation

Our workflow harmonisation solution relies on mappings that convert data to and
from a shared conceptual model. The binding creation process is time consum-
ing, error prone and requires a good understanding of both XML and OwWL. The
ability to automatically generate these bindings would be of great value, but it
is not a trivial task. Other research [7, 8, 39] has investigated this idea in the
context of traditional data integration, using a combination of linguistic analysis,
structural comparison and loosely defined documentation to generate mappings
without human intervention. In some cases these approaches are still infeasible
and some high level correspondence between elements can be used in combination

with other techniques to generate mappings.

8.1.4 Ontology Mapping

To successfully integrate semantically equivalent but heterogeneous data formats,

a single ontology definition is required to encapsulate the data contained within
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each format. While this approach works well for small scale and manageable
applications, it does not scale well, not necessarily in a performance sense, but
more from an engineering perspective: it is difficult to get large and disparate
communities of people to agree on singular conceptual model. It is more realistic
to assume that different conceptual models would evolve and themselves would
require some integration. Our transformation technology could prove to be fruitful
in this research area where differently structured models need to be converted to

between different representations.



Appendix A

Sequence Data Record Ontology

Definition

In this Appendix, we provide full OWL listings for the Sequence Data Ontology

used in our use case.

<rdf:RDF
xmins="http://jaco.ecs.soton.ac.uk/ont/sequencedata #"
xmins:rdf="http://www.w3.0rg/1999/02/22 —rdf —syntax —ns#"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmins:rdfs="http://www.w3.0rg/2000/01/rdf —schema#"
xmins:owl="http://www.w3.0rg/2002/07/owl#"
xml:base="http://jaco.ecs.soton.ac.uk/ont/sequenced ata" >

<owl:Class rdf:ID="Sequence _Data _Record" >
<rdfs:subClassOf rdf:resource="http://www.w3.0rg/2002 /07/owi#Thing"/ >
<rdfs:subClassOf >
<owl:Restriction >
<owl:onProperty >
<owl:ObjectProperty rdf:ID="has _sequence"/ >
</owl:onProperty >
<owl:cardinality
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#int" >1</owl:cardinality >
</owl:Restriction >
</rdfs:subClassOf >
<rdfs:subClassOf >

<owl:Restriction >
<owl:cardinality
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#int" >1</owl:cardinality >
<owl:onProperty >
<owl:DatatypeProperty rdf:ID="accession ad' >
</owl:onProperty >
</owl:Restriction >

</rdfs:subClassOf >
</owl:Class >

<owl:DatatypeProperty rdf:about="#accession Jd" >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema#tstring"/ >
<rdfs:domain rdf:resource="#Sequence _Data _Record"/ >
</owl:DatatypeProperty >

176



Appendix A Sequence Data Record Ontology Definition

177

<owl:DatatypeProperty rdf:about="#description" >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema##string"/ >
<rdfs:domain rdf:resource="#Sequence _Data _Record"/ >

</owl:DatatypeProperty >

<owl:ObjectProperty rdf:ID="has _reference" >
<rdfs:range rdf:resource="#Reference"/ >
<rdfs:domain rdf:resource="#Sequence _Data _Record"/ >

</owl:ObjectProperty >

<owl:ObjectProperty rdf:about="#has _sequence" >
<rdfs:domain rdf:resource="#Sequence _Data _Record"/ >
<rdfs:range rdf:resource="#Sequence"/ >

</owl:ObjectProperty >

<owl:ObjectProperty rdf:about="#has _feature” >
<rdfs:domain rdf:resource="#Sequence _Data _Record"/ >
<rdfs:range rdf:resource="#Feature"/ >

</owl:ObjectProperty >

<owl:Class rdf:ID="DDBJ _Sequence _Data _Record" >
<rdfs:subClassOf rdf:resource="#Sequence _Data _Record"/ >
<owl:disjointWith rdf:resource="#EMBL _Sequence _Data _Record"/ >
<rdfs:subClassOf >
<owl:Restriction >
<owl:maxCardinality rdf:datatype="http://www.w3.0rg/2 001/XMLSchema#int"
>1</owl:maxCardinality >
<owl:onProperty >
<owl:DatatypeProperty rdf:ID="taxonomy"/ >
</owl:onProperty >
</owl:Restriction >

</rdfs:subClassOf >
<rdfs:subClassOf >
<owl:Restriction >
<owl:maxCardinality rdf:datatype="http://www.w3.org/2 001/XMLSchema#int"
>1</owl:maxCardinality >
<owl:onProperty >
<owl:DatatypeProperty rdf:ID="date _last _updated"/ >
</owl:onProperty >
</owl:Restriction >
</rdfs:subClassOf >
<rdfs:subClassOf >
<owl:Restriction >
<owl:maxCardinality rdf:datatype="http://www.w3.0rg/2 001/XMLSchema#int"
>1</owl:maxCardinality >
<owl:onProperty >
<owl:DatatypeProperty rdf:ID="molecular _form"/ >
</owl:onProperty >
</owl:Restriction >
</rdfs:subClassOf >
</owl:Class >

<owl:DatatypeProperty rdf:about="#molecular _form" >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chematstring"/ >
<rdfs:domain rdf:resource="#DDBJ _Sequence _Data _Record"/ >
</owl:DatatypeProperty >
<owl:DatatypeProperty rdf:about="#taxonomy" >
<rdfs:domain rdf:resource="#DDBJ _Sequence _Data _Record"/ >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema##string"/ >

</owl:DatatypeProperty >
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<owl:DatatypeProperty rdf:about="#date _last _updated" >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema#string"/
<rdfs:domain rdf:resource="#DDBJ _Sequence _Data _Record"/ >
</owl:DatatypeProperty >

<owl:Class rdf:ID="EMBL _Sequence _Data _Record" >

<owl:disjointWith rdf:resource="#DDBJ _Sequence _Data _Record"/ >
<rdfs:subClassOf >
<owl:Class rdf:about="#Sequence _Data _Record"/ >

</rdfs:subClassOf >
</owl:Class >

<owl:DatatypeProperty rdf:about="#data _class" >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema#tstring"/
<rdfs:domain rdf:resource="#EMBL _Sequence _Data _Record"/ >
</owl:DatatypeProperty >
<owl:DatatypeProperty rdf:about="#date _created" >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chematstring"/
<rdfs:domain rdf:resource="#EMBL _Sequence _Data _Record"/ >
</owl:DatatypeProperty >
<owl:DatatypeProperty rdf:about="#release _created" >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chematstring"/
<rdfs:domain rdf:resource="#EMBL _Sequence _Data _Record"/ >
</owl:DatatypeProperty >
<owl:Class rdf:ID="Reference"/ >
<owl:DatatypeProperty rdf:ID="author" >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chemattstring"/
<rdfs:domain rdf:resource="#Reference"/ >
</owl:DatatypeProperty >
<owl:DatatypeProperty rdf:ID="journal" >
<rdfs:domain rdf:resource="#Reference"/ >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema#string"/
</owl:DatatypeProperty >
<owl:DatatypeProperty rdf:ID="title" >
<rdfs:domain rdf:resource="#Reference"/ >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema#string"/
</owl:DatatypeProperty >
<owl:ObjectProperty rdf:ID="has _reference _location" >
<rdfs:range rdf:resource="#Location"/ >
<rdfs:domain rdf:resource="#Reference"/ >

</owl:ObjectProperty >
<owl:Class rdf:ID="Location"/ >

<owl:DatatypeProperty rdf:ID="start" >

<rdfs:domain rdf:resource="#Location"/ >

<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema#string"/
</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:ID="end" >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema#string"/
<rdfs:domain rdf:resource="#Location"/ >

</owl:DatatypeProperty >

<owl:Class rdf:ID="Feature" >
<owl:disjointWith rdf:resource="#Reference"/ >
</owl:Class >
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<owl:ObjectProperty rdf:ID="has _position" >
<rdfs:range rdf:resource="#Location"/ >
<rdfs:domain rdf:resource="#Feature"/ >

</owl:ObjectProperty >

<owl:Class rdf:ID="Feature _Source" >
<rdfs:subClassOf rdf:resource="#Feature"/ >
<owl:disjointWith rdf:resource="#Feature _CDS"/>

</owl:Class >

<owl:DatatypeProperty rdf:ID="organism" >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema#string"/
<rdfs:domain rdf:resource="#Feature _Source"/ >
</owl:DatatypeProperty >
<owl:DatatypeProperty rdf:ID="isolate" >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema#string"/
<rdfs:domain rdf:resource="#Feature _Source"/ >
</owl:DatatypeProperty >
<owl:DatatypeProperty rdf:ID="lab —host" >
<rdfs:domain rdf:resource="#Feature _Source"/ >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema#string"/
</owl:DatatypeProperty >
<owl:Class rdf:ID="Feature _CDS">
<rdfs:subClassOf rdf:resource="#Feature"/ >
<owl:disjointWith rdf:resource="#Feature _Source"/ >

</owl:Class >

<owl:DatatypeProperty rdf:ID="translation" >
<rdfs:domain rdf:resource="#Feature _CDS"I>
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chemattstring"/
</owl:DatatypeProperty >
<owl:DatatypeProperty rdf:ID="protein —id" >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema#string"/
<rdfs:domain rdf:resource="#Feature _CDS"/>
</owl:DatatypeProperty >
<owl:DatatypeProperty rdf:ID="product" >
<rdfs:domain rdf:resource="#Feature _CDS"/>
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema#tstring"/
</owl:DatatypeProperty >
<owl:Class rdf:ID="Sequence"/ >
<owl:DatatypeProperty rdf:ID="data" >
<rdfs:domain rdf:resource="#Sequence"/ >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema#string"/
</owl:DatatypeProperty >
<owl:DatatypeProperty rdf:ID="length" >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema#string"/
<rdfs:domain rdf:resource="#Sequence"/ >
</owl:DatatypeProperty >
<owl:ObjectProperty rdf:ID="has _base _count" >
<rdfs:range rdf:resource="#Base _count”/ >
<rdfs:domain rdf:resource="#Sequence"/ >

</owl:ObjectProperty >
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<owl:DatatypeProperty rdf:ID="type" >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chemattstring"/ >
<rdfs:domain rdf:resource="#Sequence"/ >

</owl:DatatypeProperty >

<owl:Class rdf:ID="Base _count"/ >

<owl:DatatypeProperty rdf:ID="A" >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema#tstring"/ >
<rdfs:domain rdf:resource="#Base _count"/ >

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:ID="T" >
<rdfs:domain rdf:resource="#Base _count"/ >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chemattstring"/ >

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:ID="C" >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema##string"/ >
<rdfs:domain rdf:resource="#Base _count"/ >

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:ID="G" >
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLS chema##string"/ >
<rdfs:domain rdf:resource="#Base _count"/ >

</owl:DatatypeProperty >

</rdf:RDF >

LisTING A.1: OWL Definition for a Sequence Data Records Ontology
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Example Mappings

This appendix contains example mappings to convert a DDBJ-XML sequence data

record to an instance of the Sequence_Data_Record concept. Mathematical nota-

tion is given first, followed by the XML representation in M-Binding format.

(DDBJXML, ACCESSION) , ([Sequence_Data_Record X join], [accession_id X branch]) ,0)
(ACCESSION, value) , {[accession_id X join], value) ,0)

(DDBJXML, DEFINITION) , ([Sequence_Data_Record x join], [definition x branch]) , D)
(DEFINITION, value) , ([definition x join], value) , D)

(source, location) , ([Feature_Source x join], [has_position x branch], [Location x branch]) ,0)
(location, value{“"[".]4+”}) , ([Location X join], [start X branch], value) , D)

(location, value{“[".]+"}) , (Location X join|, [end X branch], value) , 0)

(DDBJXML, FEATURES, source) ,

([Sequence_Data_Record X join], [has_feature x branch], [Feature_Source x branch]) ,0)

( (source, [qualifiers x {qualifiers, qualifiers/* /@namevalue = “isolate” }]) ,

([Feature_Source X join], [isolate x branch]) , (m13))

(
(

(qualifiers, value) , ([isolate X join], value) , Q)
(source, [qualifiers x {qualifiers, qualifiers/* /@namevalue = “lab_host” }]) ,
([Feature_Source X join], [lab_host X branch}]) , (mis))

( (qualifiers, value) , ([lab_host x join], value) , D)

181
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<?xm version="1.0"? >
<binding name="DDBJ —to —sequencedata"
xmIns="http://jaco.ecs.soton.ac.uk/schema/binding"
xmins:sns="http://jaco.ecs.soton.ac.uk/schema/DDBJ"
xmins:dns="http://jaco.ecs.soton.ac.uk/ont/sequence data"
targetNamespace="http://jaco.ecs.soton.ac.uk/bindin g/DDBJ—to —sequencedata” >
<mapping >
<source match="sns:DDBJXML/sns:ACCESSION"/ >
<destination create="dns:DDBJ _Sequence _Data _Record[join]/dns:accession _id[branch]/"/ >
</mapping >

<mapping >
<source match="sns:ACCESSION/$"/ >
<destination create="dns:accession _id[join}/$"/ >

</mapping >

<mapping >

<source match="sns:DDBJXML/sns:DEFINITION"/ >

<destination create="dns:DDBJ _Sequence _Data _RecordJjoin])/dns:definition[branch]/"/ >
</mapping >

<mapping >
<source match="sns:DEFINITION/$"/ >
<destination create="dns:definition[join])/$"/ >

</mapping >

<mapping >

<source match="sns:DDBJXML/sns:DIVISION"/ >

<destination create="dns:DDBJ _Sequence _Data _RecordJjoin]/dns:division[branch]/"/ >
</mapping >

<mapping >
<source match="sns:DIVISION/$"/ >
<destination create="dns:division[join]/$"/ >

</mapping >
<!— Feature Location —>

<mapping >
<source match="sns:source/sns:location"/ >
<destination create="dns:Feature _Source[join}/dns:has _position[branch}/
dns:Location[branch]"/ >
</mapping >

<mapping >

<source match="sns:cds/sns:location"/ >
<destination create="dns:Feature _CDSJjoin)/dns:has _position[branch]/
dns:Location[branch]"/ >
</mapping >

<mapping >

<source match="sns:location/$".]+"/ >

<destination create="dns:Location[join]/dns:start[bra nch)/$"/ >
</mapping >

<mapping >

<source match="sns:location/$[".]+$"/ >

<destination create="dns:Location[join]/dns:end[branc h)/$" >
</mapping >
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<!— Feature Source —>

<mapping >
<source match="sns:DDBJXML/sns:FEATURES/sns:source"/ >
<destination create="dns:DDBJ _Sequence _Data _Record]join]/
dns:has _feature[branch]/dns:Feature _Source[branch]"/ >
</mapping >
<mapping >
<source match="sns:source/sns:qualifiers[sns:qualifie rs/sns:name/$ = "isolate"]/ >
<destination create="dns:Feature _Sourcef[join}/dns:isolate[branch]"/ >
<mapping >
<source match="sns:qualifiers/$"/ >
<destination create="dns:isolate[join)/$"/ >
</mapping >
</mapping >
<mapping >
<source match="sns:source/sns:qualifiers[sns:qualifie rs/sns:name/$ = "lab _host")/ >
<destination create="dns:Feature _Source[join)/dns:lab —host[branch]"/ >
<mapping >
<source match="sns:qualifiers/$"/ >
<destination create="dns:lab —host[join)/$"/ >
</mapping >
</mapping >
<mapping >
<source match="sns:source/sns:qualifiers[sns:qualifie rs/sns:name/$ = "mol _type"]/ >
<destination create="dns:Feature _Sourcel[join)/dns:molecular —type[branch]"/ >
<mapping >
<source match="sns:qualifiers/$"/ >
<destination create="dns:molecular —type[join]/$"/ >
</mapping >
</mapping >
<mapping >
<source match="sns:source/sns:qualifiers[sns:qualifie rs/sns:name/$ = "organism"]/ >
<destination create="dns:Feature _Sourceljoin)/dns:organism[branch]"/ >
<mapping >
<source match="sns:qualifiers/$"/ >
<destination create="dns:organism[join}/$"/ >
</mapping >
</mapping >
<!— Feature CDS —>
<mapping >
<source match="sns:DDBJXML/sns:FEATURES/sns:cds"/ >
<destination create="dns:DDBJ _Sequence _Data _Record[join]/
dns:has _feature[branch]/dns:Feature _CDSJbranch]"/ >
</mapping >
<mapping >
<source match="sns:cds/sns:qualifiers[sns:qualifiers/ sns:name/$ = "product"]/ >
<destination create="dns:Feature _CDSJjoin)/dns:product[branch]"/ >
<mapping >
<source match="sns:qualifiers/$"/ >
<destination create="dns:product[join}/$"/ >
</mapping >

</mapping >
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<mapping >
<source match="sns:cds/sns:qualifiers[sns:qualifiers/ sns:name/$ = "protein _id"]/
<destination create="dns:Feature _CDSJjoin)/dns:protein —id[branch]"/ >
<mapping >
<source match="sns:qualifiers/$"/ >
<destination create="dns:protein —id[join]/$"/ >
</mapping >
</mapping >

<mapping >
<source match="sns:cds/sns:qualifiers[sns:qualifiers/ sns:name/$ = "translation"]’/
<destination create="dns:Feature _CDSJjoin)/dns:translation[branch]"/ >
<mapping >
<source match="sns:qualifiers/$"/ >
<destination create="dns:translation[join]/$"/ >
</mapping >
</mapping >

<!— Reference —>

<mapping >
<source match="sns:DDBJXML/sns:REFERENCE"/ >
<destination create="dns:DDBJ _Sequence _Data _Record][join]/
dns:has _reference[branch]/dns:Reference"/ >
</mapping >

<mapping >

<source match="sns:REFERENCE/sns:authors"/ >

<destination create="dns:Reference[join]/dns:author[b ranch])/"/ >
</mapping >

<mapping >

<source match="sns:authors/$"/ >

<destination create="dns:author[join]/$"/ >
</mapping >

<mapping >

<source match="sns:REFERENCE/sns:title"/ >

<destination create="dns:Reference[join]/dns:title[br anch]/"/ >
</mapping >

<mapping >

<source match="sns:title/$"/ >

<destination create="dns:title[join]/$"/ >
</mapping >

<mapping >

<source match="sns:REFERENCE/sns:journal"/ >

<destination create="dns:Reference[join}/dns:journall branch]// >
</mapping >

<mapping >

<source match="sns:journal/$"/ >

<destination create="dns:journal[join]/$"/ >
</mapping >

<!— Sequence Data Record Metadata —>

<mapping >

<source match="sns:DDBJXML/sns:KEYWORDS"/ >

<destination create="dns:DDBJ _Sequence _Data _RecordJjoin])/dns:keyword[branch]/"/
</mapping >

>
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<mapping >

<source match="sns:KEYWORDS/$"/ >

<destination create="dns:keyword[join]/$"/ >
</mapping >
<mapping >

<source match="sns:DDBJXML/sns:LAST _UPDATE"/>
<destination create="dns:DDBJ _Sequence _Data _Record[join)/dns:date _last _updated[branch]/"/ >
</mapping >

<mapping >

<source match="sns:LAST _UPDATE/$"/ >

<destination create="dns:date _last _updated][join}/$"/ >
</mapping >

<mapping >

<source match="sns:DDBJXML/sns:MOLECULAR _FORM"/>

<destination create="dns:DDBJ _Sequence _Data _Record[join]/dns:molecular _form[branch]/"/ >
</mapping >

<mapping >

<source match="sns:MOLECULAR _FORM/$"/ >

<destination create="dns:molecular _form[join)/$"/ >
</mapping >

<mapping >

<source match="sns:DDBJXML/sns:TAXONOMY"/ >

<destination create="dns:DDBJ _Sequence _Data _Record[join])/dns:taxonomy[branch]/"/ >
</mapping >

<mapping >

<source match="sns:TAXONOMY/$"/ >

<destination create="dns:taxonomy[join}/$"/ >
</mapping >

<!— Sequence Data —>

<mapping >
<source match="sns:DDBJXML/sns:SEQUENCE"/ >
<destination create="dns:DDBJ _Sequence _Data _Record[join]/dns:has _sequence[branch]/
dns:Sequence[branch]"/ >
</mapping >

<mapping >

<source match="sns:SEQUENCE/$"/ >

<destination create="dns:Sequenceljoin]/dns:data[bran ch)/$"/ >
</mapping >

<mapping >

<source match="sns:START/$"/ >

<destination create="dns:start[join])/$"/ >
</mapping >

<mapping >
<source match="sns:END/$"/ >
<destination create="dns:end[join]/$"/ >
</mapping >
</binding >

LisTING B.1: M-Binding document to translate DDBJ-XML documents to and
OWL concept instance
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XML Schemas

In this appendix, an XML schema is provided to validate instance from the Se-

quence Data Record ontology.

<?xm  version="1.0" encoding="UTF  —8'?>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSche
xmIns="http://jaco.ecs.soton.ac.uk/ont/sequencedata
targetNamespace="http://jaco.ecs.soton.ac.uk/ont/se
<xsd:element name="keyword" type="xsd:string"/ >
<xsd:element name="accession _id" type="xsd:string"/
<xsd:element name="release _created" type="xsd:string"/
<xsd:element name="lab
<xsd:element name="has _base _count" type="has
<xsd:element name="Base _count" type="Base
<xsd:element name="T" type="xsd:string"/ >

—host" type="xsd:string"/ >
_base _count —TYPE"/ >
_count —TYPE"/ >

ma

guencedata" >

>

<xsd:element name="has _reference" type="has _reference —TYPE"/ >
<xsd:element name="definition" type="xsd:string"/ >
<xsd:element name="molecular _form" type="xsd:string"/ >
<xsd:element name="author" type="xsd:string"/ >

<xsd:element name="molecular —type" type="xsd:string"/ >

<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element

name="G" type="xsd:string"/ >
name="name" type="xsd:string"/ >
name="C" type="xsd:string"/ >
name="A" type="xsd:string"/ >

name="end" type="xsd:string"/ >

name="taxonomy" type="xsd:string"/ >

<xsd:element name="topology" type="xsd:string"/ >
<xsd:element name="Reference" type="Reference —TYPE"/ >
<xsd:element name="length" type="xsd:string"/ >
<xsd:element name="Sequence" type="Sequence —TYPE"/ >

name="INSD
name="isolate" type="xsd:string"/ >
name="has _position" type="has
name="has
name="start" type="xsd:string"/ >
name="Feature" type="Feature
name="Sequence
name="date _created" type="xsd:string"/
name="Feature _CDS" type="Feature

name="has _feature" type="has _feature
name="title" type="xsd:string"/ >

name="date

name="EMBL
name="db _identifier" type="xsd:string"/
name="has _sequence" type="has
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<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element

_Sequence _Data _Record" type="INSD

_position
_database _reference" type="has

_Sequence _Data _Record —TYPE"/ >

—TYPE"/ >

_database _reference -TYPE"/>

—~TYPE"/ >
_Data _Record" type="Sequence

_Data _Record —TYPE"/ >
>

_CDS-TYPE"/ >
—TYPE"/ >

_last _updated" type="xsd:string"/ >
_Sequence _Data _Record" type="EMBL

_Sequence _Data _Record —TYPE"/ >
>

_sequence —TYPE"/ >



Appendix C XML Schemas 187

<xsd:element name="Database _Reference" type="Database _Reference —TYPE"/ >
<xsd:element name="product" type="xsd:string"/ >

<xsd:element name="Feature _Source" type="Feature _Source —TYPE"/ >

<xsd:element name="release _last _updated" type="xsd:string"/ >

<xsd:element name="has _reference _location" type="has _reference _location —TYPE"/>
<xsd:element name="journal" type="xsd:string"/ >

<xsd:element name="protein —id" type="xsd:string"/ >

<xsd:element name="translation" type="xsd:string"/ >

<xsd:element name="Location" type="Location —TYPE"/ >

<xsd:element name="DDBJ _Sequence _Data _Record" type="DDBJ _Sequence _Data _Record —TYPE"/ >
<xsd:element name="db  _location" type="xsd:string"/ >

<xsd:element name="organism" type="xsd:string"/ >

<xsd:element name="version" type="xsd:string"/ >

<xsd:element name="division" type="xsd:string"/ >

<xsd:element name="data" type="xsd:string"/ >

<xsd:element name="type" type="xsd:string"/ >

<xsd:complexType name="DDBJ _Sequence _Data _Record —TYPE">
<xsd:complexContent >

<xsd:extension base="Sequence _Data _Record —TYPE">
<xsd:sequence >
<xsd:element ref="date _last _updated”/ >
<xsd:element ref="molecular _form"/ >
<xsd:element ref="taxonomy"/ >

<Ixsd:sequence >
<Ixsd:extension >
</xsd:complexContent >
<Ixsd:complexType >

<xsd:complexType name="has _sequence —TYPE">

<xsd:all >
<xsd:element ref="Sequence"/ >
<Ixsd:all >

<Ixsd:complexType >

<xsd:complexType name="has _base _count —TYPE">

<xsd:all >
<xsd:element ref="Base _count"/ >
<Ixsd:all >

<Ixsd:complexType >

<xsd:complexType name="Feature _CDS-TYPE">
<xsd:complexContent >

<xsd:extension base="Feature —TYPE"™>
<xsd:sequence >
<xsd:element ref="product" maxOccurs="unbounded"/ >
<xsd:element ref="protein —id" maxOccurs="unbounded"/ >
<xsd:element ref="translation" maxOccurs="unbounded"/ >

<Ixsd:sequence >
<Ixsd:extension >
</Ixsd:complexContent >
<Ixsd:complexType >

<xsd:complexType name="Database _Reference —TYPE">
<xsd:sequence >
<xsd:element ref="db _identifier" maxOccurs="unbounded"/ >
<xsd:element ref="db _location" maxOccurs="unbounded"/ >

<Ixsd:sequence >
<Ixsd:complexType >
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<xsd:complexType name="EMBL _Sequence _Data _-Record —TYPE">
<xsd:complexContent >

<xsd:extension base="Sequence _Data _Record —TYPE">
<xsd:sequence >

<xsd:element ref="date _created" maxOccurs="unbounded"/ >
<xsd:element ref="date _last _updated"/ >
<xsd:element ref="name" maxOccurs="unbounded"/ >
<xsd:element ref="release _created" maxOccurs="unbounded"/ >
<xsd:element ref="release _last _updated" maxOccurs="unbounded"/ >
<xsd:element ref="version" maxOccurs="unbounded"/ >

</xsd:sequence >
</xsd:extension >
</xsd:complexContent >
<Ixsd:complexType >
<xsd:complexType name="has _position —TYPE">
<xsd:all >
<xsd:element ref="Location"/ >
<Ixsd:all >
<Ixsd:complexType >
<xsd:complexType name="Sequence —TYPE">
<xsd:sequence >

<xsd:element ref="data" maxOccurs="unbounded"/ >
<xsd:element ref="has _base _count" maxOccurs="unbounded"/ >
<xsd:element ref="length" maxOccurs="unbounded"/ >
<xsd:element ref="type" maxOccurs="unbounded"/ >

<Ixsd:sequence >

<Ixsd:complexType >

<xsd:complexType name="Base _count —TYPE">
<xsd:sequence >

<xsd:element ref="A" maxOccurs="unbounded"/ >
<xsd:element ref="C" maxOccurs="unbounded"/ >
<xsd:element ref="G" maxOccurs="unbounded"/ >
<xsd:element ref="T" maxOccurs="unbounded"/ >
<Ixsd:sequence >
<Ixsd:complexType >
<xsd:complexType name="Reference —TYPE">
<xsd:sequence >
<xsd:element ref="author" maxOccurs="unbounded"/ >
<xsd:element ref="has _reference _location" maxOccurs="unbounded"/ >
<xsd:element ref="journal" maxOccurs="unbounded"/ >
<xsd:element ref="title" maxOccurs="unbounded"/ >
<Ixsd:sequence >
<Ixsd:complexType >
<xsd:complexType name="Location —TYPE">
<xsd:sequence >
<xsd:element ref="end" maxOccurs="unbounded"/ >
<xsd:element ref="start" maxOccurs="unbounded"/ >
<Ixsd:sequence >
<Ixsd:complexType >
<xsd:complexType name="Sequence _Data _Record —TYPE">
<xsd:sequence >
<xsd:element ref="accession _d" >
<xsd:element ref="definition"/ >
<xsd:element ref="division"/ >
<xsd:element ref="has _feature" maxOccurs="unbounded"/ >
<xsd:element ref="has _reference” maxOccurs="unbounded"/ >
<xsd:element ref="has _sequence"/ >
<xsd:element ref="keyword" maxOccurs="unbounded"/ >

</xsd:sequence >
<Ixsd:complexType >



Appendix C XML Schemas

189

<xsd:complexType name="has _feature —TYPE">
<xsd:choice >

<xsd:element ref="Feature"/ >
<xsd:element ref="Feature _CDS"/>
<xsd:element ref="Feature _Source"/ >

</xsd:choice >
<Ixsd:complexType >
<xsd:complexType name="has _reference _location —TYPE">

<xsd:all >
<xsd:element ref="Location"/ >
<Ixsd:all >

<Ixsd:complexType >
<xsd:complexType name="INSD _Sequence _Data _Record —TYPE">
<xsd:sequence >

<xsd:element ref="date _created" maxOccurs="unbounded"/ >
<xsd:element ref="date _last _updated"/ >

<xsd:element ref="name" maxOccurs="unbounded"/ >
<xsd:element ref="release _created" maxOccurs="unbounded"/ >
<xsd:element ref="release _last _updated" maxOccurs="unbounded"/
<xsd:element ref="topology" maxOccurs="unbounded"/ >
<xsd:element ref="version" maxOccurs="unbounded"/ >

<Ixsd:sequence >
<Ixsd:complexType >

<xsd:complexType name="Feature —TYPE">
<xsd:sequence >
<xsd:element ref="has _database _reference" maxOccurs="unbounded"/
<xsd:element ref="has _position" maxOccurs="unbounded"/ >

</xsd:sequence >
<Ixsd:complexType >
<xsd:complexType name="has _reference —TYPE">

<xsd:all >
<xsd:element ref="Reference"/ >
<Ixsd:all >
</xsd:complexType >
<xsd:complexType name="Feature _Source —TYPE">
<xsd:complexContent >
<xsd:extension base="Feature —TYPE">
<xsd:sequence >
<xsd:element ref="isolate" maxOccurs="unbounded"/ >
<xsd:element ref="lab —host" maxOccurs="unbounded"/ >
<xsd:element ref="molecular —type" maxOccurs="unbounded"/
<xsd:element ref="organism" maxOccurs="unbounded"/ >

<Ixsd:sequence >
</xsd:extension >
</xsd:complexContent >
<Ixsd:complexType >
<xsd:complexType name="has _database _reference —-TYPE">
<xsd:all >
<xsd:element ref="Database _Reference"/ >
<Ixsd:all >
<Ixsd:complexType >
<Ixsd:schema >

>

>

>

Listing C.1: An XML Schema to validate instances from the Sequence Data
Record ontology, created automatically by the OWL-XZS generator
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