
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Dynamic Discovery, Creation and

Invocation of Type Adaptors for

Web Service Workflow

Harmonisation

by

Martin Szomszor

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

April 2007

http://www.soton.ac.uk
mailto:mns03r@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Martin Szomszor

Service-oriented architectures have evolved to support the composition and utilisation of

heterogeneous resources, such as services and data repositories, whose deployments can

span both physical and organisational boundaries. The Semantic Web Service paradigm

facilitates the construction of workflows over such resources using annotations that ex-

press the meaning of the service through a shared conceptualisation. While this aids

non expert users in the composition of meaningful workflows, sophisticated middleware

is required to cater for the fact that service providers and consumers often assume differ-

ent data formats for conceptually equivalent information. When syntactic mismatches

occur, some form of workflow harmonisation is required to ensure that data incompat-

ibilities are resolved, a step we refer to as syntactic mediation. Current solutions are

entirely manual; users must consider the low-level interoperability issues and insert Type

Adaptor components into the workflow by hand, contradicting the Semantic Web Service

ideology.

By exploiting the fact that services are connected together based on shared conceptual

interfaces, it is possible to associate a canonical data model with these shared concepts,

providing the basis for workflow harmonisation through this intermediary data model.

To investigate this hypothesis, we have developed a formalism to express the mapping

of elements between data models in a modular and composable fashion. To utilise

such a formalism, we propose additional architecture that facilitates the discovery of

declarative mediation rules and subsequent on-the-fly construction of Type Adaptors

that can translate data between different syntactic representations. This formalism and

proposed architecture have been implemented and evaluated against bioinformatics data

sources to demonstrate a scalable and efficient solution that offers composability with

virtually no overhead. This novel mediation approach scales well as the number of

compatible data formats increases, promotes the sharing and reuse of mediation rules,

and facilitates the automatic inclusion of Type Adaptor components into workflows.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:mns03r@ecs.soton.ac.uk

Contents

Acknowledgements viii

1 Introduction 1

1.1 Thesis Statement and Contributions 4

1.2 Document Structure . 7

1.3 Publications . 8

2 Motivation:
A Bioinformatics Use Case 10

2.1 Bioinformatics Overview . 11

2.2 Semantic Discovery . 13

2.3 Use case . 15

2.4 Syntactic Compatibility . 16

2.5 Data format reuse in Web Services 18

2.6 Conclusions . 19

3 Background 21

3.1 Grid Computing and Web Service 22

3.1.1 Web Service Architecture 23

3.1.2 Web Service Limitations . 23

3.2 Web Services and Semantics . 25

3.2.1 OWL-S . 27

3.2.2 WSMO . 28

3.2.3 WSDL-S . 30

3.2.4 Comparison of Semantic Annotation Techniques 31

3.3 Viewing a Semantic Web Service Architecture 32

3.4 Data Integration . 34

3.4.1 TAMBIS - Data Integration for Bioinformatics 35

3.4.2 XDTM - Supporting Transparent Data Access 35

3.4.3 Ontology-based Geographic Data Set Integration 36

3.4.4 IBIS: Semantic Data Integration 37

3.4.5 Data Format Definition Language 37

3.4.6 Reflection on Data Integration Techniques 37

3.5 XML Semantics . 39

3.6 Automated Workflow Harmonisation 41

ii

CONTENTS iii

3.6.1 Shim based Service Integration 41

3.6.2 Ontology based transformation generation 43

3.7 Discovery and Composition . 43

3.7.1 Grid Based Semantic Service Discovery 43

3.7.2 Web Service Composition with Semantics 44

3.8 Conclusions and Analysis . 45

4 WS-HARMONY:
An Architecture for Automated Workflow Harmonisation 48

4.1 Mediation Approach . 50

4.1.1 Using OWL as an Intermediate Representation 52

4.1.2 Mapping xml to owl and vice versa 56

4.2 Mediation Infrastructure . 57

4.2.1 Conventional Workflow Invocation 57

4.2.2 Direct Mediation Workflow Harmonisation 58

4.2.3 Intermediary-based Workflow Harmonisation 59

4.3 Mediation Specification Requirements 60

4.4 Discovery of Type Adaptors . 61

4.5 Automated Workflow Harmonisation 62

4.6 Conclusions and Contribution Summary 63

5 Transformation Theory 66

5.1 Transformation Requirements . 68

5.2 XML Formalisation . 71

5.2.1 Normalised schema . 72

5.2.2 Model Groups . 73

5.2.3 Components . 75

5.2.4 Typed Documents . 78

5.3 Formalisation Extensions . 79

5.3.1 Document Paths . 79

5.3.2 Simple Predicates . 85

5.4 Transformation Process . 87

5.5 Mappings and the Transformation Process 88

5.5.1 Mapping Paths . 89

5.5.2 Mappings and Bindings . 91

5.5.3 Transformation . 92

5.6 Example Mappings . 100

5.7 XML Syntax for Binding Specification 101

5.8 Conclusions . 103

6 The Configurable Mediator Implementation 105

6.1 Transformation Languages . 106

6.2 FXML-T Representation Overview 108

6.2.1 FXML-T representation of normalised component names . . 108

6.2.2 FXML-T representation of schema components 109

CONTENTS iv

6.2.3 FXML-T representation of typed documents 112

6.2.4 FXML-T Representation of bindings and mappings 113

6.3 FXML-T Function Overview . 115

6.3.1 Transformation Rules in FXML-T 117

6.3.2 Transformation Algorithm and Complexity Analysis 118

6.4 The Configurable Mediator . 127

6.5 Evaluation . 130

6.5.1 Scalability . 130

6.5.2 Composition Cost . 133

6.5.3 Bioinformatics Data Performance 136

6.5.4 Analysis . 136

6.6 Conclusions . 138

7 Invocation and Discovery Architecture 140

7.1 Dynamic Web Service Invocation 142

7.1.1 WSDL and Web Service Invocation 142

7.1.2 XML representation of WSDL messages 146

7.1.3 Dynamic Web Service Invoker 147

7.2 Generation of owl Instance Schemas 149

7.2.1 Algorithm for xml Schema Generation 150

7.3 Type Adaptor Description and Discovery 154

7.3.1 Type Adaptor Discovery Requirements 154

7.3.2 Generic Type Adaptor Description Approach 157

7.3.3 WSDL Generation for M-Bindings 158

7.3.4 Grimoires Repository . 162

7.4 Evaluation . 164

7.4.1 Dynamic WSDL Invoker . 164

7.4.2 Discovery Cost . 165

7.5 Conclusions . 167

8 Conclusions and Future Work 169

8.1 Future Work . 172

8.1.1 Semantic Workflow . 172

8.1.2 Formal Mapping Analysis 173

8.1.3 Automatic Mapping Generation 174

8.1.4 Ontology Mapping . 174

A Sequence Data Record Ontology Definition 176

B Example Mappings 181

C XML Schemas 186

Bibliography 190

List of Figures

1.1 A visual representation of the contributions in this Thesis. 5

2.1 The Taverna Workbench. 12

2.2 A subset of the bioinformatics ontology developed by the myGrid

project. 14

2.3 FETA Discovery Tool within Taverna 15

2.4 An abstraction view of our bioinformatics use case 15

2.5 Two possible concrete workflows for a sequence retrieval and anal-
ysis task. 16

2.6 The DDBJ-XML output is conceptually compatible with the input
to the NCBI-Blast service, but not syntactically compatible. 17

2.7 The DDBJ-XML web service offers a number of operations over the
same xml schema. 18

3.1 owl-s services are described by three facets; a profile, a grounding
and a model . 27

3.2 owl-s atomic processes are grounded to wsdl Service operations.
Each owl-s parameter is grounded to a wsdl message part. 28

3.3 With wsmo, adaptors are placed in front of legacy components,
such as Web Services, to provide a bridge to the wsmo infrastructure. 29

3.4 wsdl-s annotation approach: wsdl Definitions are linked to ex-
ternal semantic models via extensibility elements 31

3.5 A semantically annotated Web Service is a traditional Web service
that has annotations describing the grounding of ontology concepts
to its xml types. 33

3.6 A Semantically enabled Web Service which consumes input and
produces output in the form of ontology instances. 33

3.7 A Three Tier Model to separate physical storage, logical structure
and conceptual meaning of information. 38

4.1 Direct Mediation: Converting data directly between formats 51

4.2 Intermediary Mediation: Converting data to an intermediate rep-
resentation . 51

4.3 Joining of Intermediate representations 52

4.4 An Ontology to describe sequence data records 53

4.5 An owl concept instance to describe a feature from a Sequence
Data Record . 55

v

LIST OF FIGURES vi

4.6 Using an ontology instance as a mediator to harmonise services with
incompatible interfaces. 55

4.7 Current Invocation Framework for Workflow based applications . . 57

4.8 Syntactic Mediation in the context of workflow 58

4.9 Modified Invocation Framework featuring a configurable mediator . 59

4.10 A high-level view of the Configurable Mediator 60

4.11 WSDL is used to describe Type Adaptors which are registered with
Grimoires . 62

4.12 High-level overview of the Grimoires registry and information
sources . 64

5.1 Mappings between elements and attributes in the DDBJXML Se-
quence Data format and elements within the xml serialisation of
the Sequence Data Record owl concept 70

5.2 msl to represent the schema components defined in Listing 5.2 with
listing line numbers for components indicated in square brackets. . . 77

5.3 msl to express the xml document given in Listing 5.3 78

5.4 Rules to define the application of path components to typed docu-
ments . 81

5.5 Rules to define the direct children of typed documents 82

5.6 A rule to define the application of a path expression to a typed
document . 83

5.7 An example path expression evaluation to retrieve the contents of
an attribute . 84

5.8 Rules to define the evaluation of predicate expressions. 86

5.9 Rules to define the evaluation of predicates. 87

5.10 Viewing a typed document as a tree 88

5.11 Transformation through recursion 89

5.12 Rules to define the evaluation of source mapping paths. 90

5.13 Rules to define mapping compatibility 93

5.14 A Source Document with two possible transformations, each using
a different joining operator . 94

5.15 Rules to define the construction of destination documents (base case). 95

5.16 Rules to define the sets of joined and branched destination creation
pairs. 96

5.17 Rules to define the construction of sequences. 96

5.18 Rules to define the construction of the destination document. 98

5.19 Rules to define the evaluation of Bindings. 100

6.1 Component Name representation in fxml-T 109

6.2 Component representation in fxml-T 111

6.3 Typed document representation in fxml-T 112

6.4 Representation of Bindings in fxml-T 116

6.5 The correspondence between fxml-M transformation rules and the
scheme code for fxml-T . 118

LIST OF FIGURES vii

6.6 The Transformation Engine . 127

6.7 A detailed view of the Configurable Mediator in the context of our
use case. 129

6.8 Transformation Performance against increasing xml document size . . . 131

6.9 A summary of translation performance for increasing document sizes.132

6.10 Transformation Performance against increasing xml schema size 133

6.11 A summary of translation performance for increasing schema sizes. . 133

6.12 fxml-T transformation Performance breakdown against increasing xml

schema size . 134

6.13 Transformation Performance against number of bindings 135

6.14 A summary of translation performance for increasing M -Binding
composition. 135

6.15 Transformation Performance against a random selection of Sequence

Data Records from the DDBJ service 137

6.16 A summary of translation performance for bioinformatics data col-
lected from DDBJ. 137

7.1 A simple vehicle ontology . 150

7.2 Differences in execution for direct and intermediary based mediation 156

7.3 Using wsdl to describe different Type Adaptors 158

7.4 The use of a registry to discover Type Adaptors 159

7.5 The relationship between and M-Binding and its wsdl definition 160

7.6 The Binding Publisher Service can be used to automatically generate

wsdl definitions of M -Bindings and register them with Grimoires . . . 161

7.7 An overview of the uddi data model with examples in xml 162

7.8 How the Grimoires repository can be used to discover M-Bindings at

run time . 164

7.9 dwsi and Apache Axis performance invoking the DDBJ-XML Web Service166

8.1 An example showing non-trivial data flow between semantically an-
notated Web Services. 173

Acknowledgements

I would like to thank my two supervisors, Luc Moreau and Terry R. Payne, for

their continued support, encouragement and patience. In particular, I thank them

for helping me develop the academic skills and personal fortitude required to com-

plete this Thesis. I would also like to thanks my colleagues at the University

of Southampton for their stimulating conversation and motivation, particularly

Paul Groth, Mischa Tuffield, Seb Francois, Antonis Loizou, Maria Karam, Rox-

ana Belecheanu, Steve Munroe, Danius Michaelides, Ayomi Bandra, and Hugh

Glaser.

Outside of the University, I extend my biggest thanks to my family. Over the

past three years they have supplied me with an incentive to work hard, given me

valuable advice, and provided a refuge in my times of need.

Finally, I give a special mention to Laura. Her vitality and affection is a constant

inspiration.

viii

Chapter 1

Introduction

During the latter half of the 20th Century, scientists took the initiative to build a

global communication medium to support the transmission of information between

parties located anywhere on the planet. Their efforts culminated in the 1990s with

the appearance of what is now commonly recognised as the Internet: a world-wide

network of interconnected computers supporting the reliable interchange of data.

The Internet itself should not be considered as a monolithic entity but rather a

dynamic and loosely coupled collection of smaller networks managed by businesses,

academic institutions, governments, and individuals, all sharing a diverse range of

information exposed in a rich variety of formats.

With an explosion in the volume and connectivity of computing resources, the

requirements to manage computations across large, geographically separated, het-

erogeneous resources have become more complex. Information can be spread across

different storage end-points in a variety of different formats, each with different ac-

cess models. Grid [44] and Web Services [23] have evolved to support applications

operating in these types of environment, enabling the collation of computing as-

sets to meet complex computing requirements through the use of service-oriented

architectures (SOAs). SOAs are founded on a perspective that facilitates the con-

solidation of loosely coupled, dynamic resources, by adhering to a uniform access

model that hides the underlying implementation. This facilitates cost effective and

rapid adaptation to changes in requirements, and the convenient incorporation of

1

Chapter 1 Introduction 2

new resources, while maintaining high levels of interoperability. By providing uni-

form access to resources spanning both physical and organisational boundaries,

SOAs allow users to gather information from disparate resources, perform inten-

sive computational analysis, and collect results in sophisticated formats. One ap-

plication domain that profits from the benefits of such an architecture is eScience

where bioinformatics [80], high energy physics [50] and astronomy [11] applications

have been developed to assist users in scientific experimentation.

Much of the success of these applications comes from the ability to provide end-

users with simple paradigms onto which they can map conventional scientific prac-

tices. One key example of this is workflow : the specification of a computational

process across multiple resources. This is very similar to the design and execution

of a scientific experiment which is usually expressed as a workflow with a number

of tasks. With SOAs, these scientific tasks are realised by services, allowing users

simply to convert their intended experiment directly to a workflow specification.

To this end, Grid and Web Services communities strive to provide users with the

most productive conditions, supporting them in the discovery of services to meet

their goals, and the specification of meaningful workflows.

Recent advances within the Grid and Web Services community have focused on

helping users in the discovery of services and their composition to form functioning

workflows. As the number of service instances continues to increase, the need for

efficient and user-friendly service matching is more important; searching over ser-

vice descriptions alone is a cumbersome and tedious task. In many cases, service

operations are not documented and operation names have little semantic value;

colloquial terms, acronyms and shorthand concatenations frustrate users and im-

pede the discovery process. However, by utilising Semantic Web [20] approaches,

such as the annotation of service descriptions with concepts from an ontology that

capture the meaning of Web Services, users can formulate and execute queries

using domain specific terminology from a shared conceptualisation, rather than

conventional keyword matching. With suitably rich ontologies, users can find the

services they need easily, quickly and reliably. This has been realised through the

development of ontology languages, such as owl (the Web Ontology Language)

[83], that supports the publishing and sharing of conceptual models on the Web.

Chapter 1 Introduction 3

With the introduction of semantically-annotated Web Services, workflow compo-

sition has shifted to a higher-level design process: users can choose to include

services in workflow to achieve particular goals based on a high-level definition of

the service capability. While tools [89, 48] that exploit these semantic definitions

can make workflow design more accessible to untrained users, it does lead to more

complex architectural requirements. The situation often arises where users wish to

connect two services together that are conceptually compatible but have different

syntactic interfaces. This occurs when service providers use their own data for-

mats to represent information within their application domain. To reconcile any

data incompatibilities in a workflow, syntactic mediation is required, often taking

the form of a translation script, bespoke application code, or mediation Web Ser-

vice. Currently, these Type Adaptor components must be discovered manually and

inserted into the workflow by hand, imposing additional effort on the user [58].

Consequently, they are distracted from the workflow design, spending additional

time understanding why an incompatibility has been encountered and how it can

be resolved.

To improve on the manual selection and insertion of Type Adaptors, existing Web

Service architectures can be augmented to identify when syntactic mediation is

required within a workflow, what components are available to carry it out, and

how they can be invoked. Semantic Web Service research has addressed this issue

to a certain degree [2, 84]: semantic annotations that describe the service capa-

bility can be used to give meaning to the information it consumes and produces.

By extending existing semantic service definitions to capture the structure and se-

mantics of the data consumed and produced, an ontology can be used as a shared

conceptual reference model, facilitating the translation of data between different

syntactic representations.

By combining work from the data integration field, Semantic Web research and

Web Service invocation techniques, we show that it is possible to supply an archi-

tecture that supports automated workflow harmonisation through the automatic

discovery and invocation of appropriate Type Adaptors. By investigating a bioin-

formatics use case, we deduce the requirements for syntactic mediation and the

kinds of complex data translation required. Much of our architecture is centred

on the development and utilisation of a bespoke mapping language to express the

Chapter 1 Introduction 4

relationship between concrete data formats and their corresponding conceptual

models. We derive the requirements for this mapping language from bioinfor-

matics data sets and present a formalism that describes such mappings and the

transformation process derived from them.

1.1 Thesis Statement and Contributions

The following thesis statement summarises our solution to the problem of workflow

harmonisation:

Whenever data representations assumed by Web Services lead to semantically

compatible but syntactically incongruous data flow, automated workflow

harmonisation can be achieved by combining a composable, declarative mapping

language with semantic service annotations, providing a scalable mediation

approach that promotes sharing and reuse.

Workflow harmonisation, the act of identifying syntactic mismatches, finding the

appropriate Type Adaptors, and invoking them, can be driven using data transla-

tion mediated by a canonical intermediary representation derived from the shared

semantics of the service interfaces. In this dissertation, we present an architec-

ture to support automated workflow harmonisation, making use of three principal

contributions (presented graphically in Figure 1.1):

1. Mediation

To enable the translation of data between different syntactic representations,

a scalable mediation approach is employed making use of a declarative, com-

posable and expressive mapping language, and a transformation implemen-

tation:

Chapter 1 Introduction 5

Scalable mediation approach using intermediate representation

Mapping language and transformation formalism (FXML-M)

Mapping language and transformation implementation (FXML-T)

WSDL for Type Adaptor description

Discovery

Service Registry to support the registration, advertisment

and discovery of Type Adaptors

Harmonisation Architecture

Discover suitable mediation components using service registry

Execute data translation using Configurable Mediation

Invoke target Web Services

Figure 1.1: A visual representation of the contributions in this Thesis.

(a) Scalable mediation approach

We conceived an intermediate representation, making use of owl on-

tologies, to capture the structure and semantics of different data for-

mats. With a common representation in place, maximum interoper-

ability can be achieved by providing mappings between each data for-

mat and its corresponding owl model. As more xml data formats

are added, a linear expansion in the number of required mappings is

observed.

(b) A declarative, composable and expressive mapping language

To specify the relationship between a concrete xml representation and

its corresponding conceptual model in owl, the bespoke mapping lan-

guage fxml-M is used to define mappings that associate schema ele-

ments from a source schema to elements in destination schema using

an xpath like notation. Since complex mappings are often required,

fxml-M provides predicate support (to enable the conditional map-

ping of elements), local scoping (so different mappings can be applied

depending on element context), and the mapping of collections of ele-

ments and attributes for composite relations. Mappings are combined

to form an M -Binding document (expressed in xml), which can be

used to drive document transformation. To promote sharing and reuse,

Chapter 1 Introduction 6

M -Bindings may also import mappings from other documents.

(c) A practical and scalable mapping language implementation

fxml-T— our mapping language and transformation implementation,

can be used to translate xml documents by consuming an M -Binding,

the source document schema, and a destination document schema. Em-

pirical testing proves that our Mapping Language approach is practi-

cal, our implementation scales well, M -Binding composition comes with

virtually no cost, and the implementation is efficient when translating

bioinformatics datasets. fxml-T is combined with the ontology reason-

ing api jena [60] to create the Configurable Mediation (C-Mediator):

a reconfigurable Type Adaptor to enable the mediation of data through

a shared conceptual model.

2. A uniform description method for Type Adaptors using wsdl

Because Type Adaptor components may come in many forms: e.g. trans-

lation scripts, bespoke code and Web Services, it is important to describe

their capabilities uniformly. While it is understood that wsdl can be used

to specify Web Service interfaces and invocation methods, we establish that

Type Adaptors can also be described with wsdl, allowing existing Web

Service registry technology to be reused, and support the advertising and

discovery of Type Adaptor components.

3. Automated Workflow Harmonisation Architecture

With a configurable data translation component in place and a mechanism

to specify, advertise and discover different kinds of Type Adaptors, auto-

mated workflow harmonisation can be achieved by discovering the appropri-

ate Type Adaptors at runtime. We present our Web Services Harmonisation

architecture, WS-HARMONY, that combines our mapping language im-

plementation and Type Adaptor discovery technology to support automatic

type conversion by extrapolating the conversion requirements from service

definitions within a given workflow, discovering and executing the necessary

Type Adaptors, and invoking the target services. Testing shows that our

automated mediation approach is practical, and comes with relatively low

performance cost in the context of a typical Web Service workflow execution.

To invoke previously unseen Web Services, our Dynamic Web Service Invoker

Chapter 1 Introduction 7

(dwsi) is used, offering improvements over existing Web Service invocation

apis such as Apache Axis [10] and jax-rpc in terms of performance and

practicality.

1.2 Document Structure

We begin in Chapter 2 by investigating a bioinformatics grid application to see

why workflow design and execution is impeded by service providers assuming dif-

ferent representations for conceptually equivalent information. Using a common

bioinformatics task as a use case, we find that existing workflow harmonisation

techniques are entirely manual: users must identify when mismatches in data for-

mat occur, what components are available to resolve them, and how they should

be inserted into the workflow, drawing their attention away from the scientific

process at hand.

In Chapter 3, we analyse related work in the areas of Semantic Web technology,

data integration and automated service integration. Through assessment of the

state of the art, we conclude that Semantic Web Service technology can be incor-

porated with existing data integration techniques to facilitate automated workflow

harmonisation.

Chapter 4 presents WS-HARMONY: an architecture to support automated

workflow harmonisation. The use of owl as an intermediate representation is

discussed with examples to show how our use case scenario can be harmonised us-

ing a common conceptual model. Software to support the automated discovery and

execution of Type Adaptors is presented with an emphasis on the C-Mediator

and how it is used to create the required Type Adaptors on-the-fly.

Chapter 5 focuses on the xml data transformation problem where a formalised

mapping language and transformation theory is presented in the form of fxml-

M. Through the analysis of data sources within our bioinformatics use case, we

derive the requirements for xml mapping and transformation which are shown to

be complex.

Chapter 1 Introduction 8

In Chapter 6, we outline our transformation library fxml-T. This implementation

of the fxml-M language is presented in detail with particular attention to the way

in which rules from the formalisation are implemented. The inner workings of the

C-Mediator are shown, and a detailed example is provided to demonstrate how

syntactic mediation is provided in our use case scenario. Empirical testing of

the transformation implementation is made to establish fxml-T as scalable and

efficient transformation implementation that offers M -Binding composability with

virtually zero cost.

Finally, the architecture components required to make use of our C-Mediator

and support the automated discovery and inclusion of Type Adaptors is presented

in Chapter 7. A method for the description of Type Adaptor capabilities using

wsdl and their subsequent registration, advertisement, and discovery through a

service registry is demonstrated along with a presentation of our Dynamic Web

Service Invoker (dwsi). Conclusions and future work are given in Chapter 8 to

show how our contributions can be reused in the advancement of Semantic Web

Service technology.

1.3 Publications

During the development of this Thesis, the following work has been published:

Szomszor, M., Payne, T. and Moreau, L. (2005) - Using Semantic Web Tech-

nology to Automate Data Integration in Grid and Web Service Archi-

tectures. In Proceedings of Semantic Infrastructure for Grid Computing Applica-

tions Workshop in Cluster Computing and Grid (CCGRID) - IEEE, Cardiff, UK.

http://eprints.ecs.soton.ac.uk/10916/

Chapter 1 Introduction 9

Szomszor, M., Payne, T. and Moreau, L. (2006) - Dynamic Discovery of Com-

posable Type Adapters for Practical Web Services Workflow. In Proceed-

ings of UK e-Science All Hands Meeting 2006, Nottingham, UK.

http://eprints.ecs.soton.ac.uk/12753/

Szomszor, M., Payne, T. and Moreau, L. (2006) - Automated Syntactic Me-

dation for Web Service Integration. In Proceedings of IEEE International

Conference on Web Services (ICWS 2006), Chicago, USA.

http://eprints.ecs.soton.ac.uk/12764/

Chapter 2

Motivation:

A Bioinformatics Use Case

The Web Services computing vision promises an environment where services can

be discovered, composed, executed and monitored easily. However, through the

inspection of a real world Web Services application, we find that this vision has not

been fully realised: the composition and execution of services is often hindered by

the fact that service providers use different data formats to represent conceptually

equivalent information. In order to resolve these mismatches, additional processing

is required to translate data between different formats. Current solutions to this

problem are entirely manual and require skilled user intervention.

This Chapter characterises the workflow composition and execution problem, re-

vealing the current solutions, as well as a description of a more user-friendly

approach. This Chapter begins with Section 2.1, providing an introduction to

bioinformatics and an overview of the myGrid [80] project. Section 2.2 follows,

containing a description of how semantic annotations are used to augment the ser-

vice discovery procedure. In Section 2.3, we present our use case scenario before

outlining the problems it reveals in Section 2.4. Section 2.5 examines the schema

reuse often employed in service interface definitions and the implications it holds

for a mediation solution. We conclude in Section 2.6 by discussing the current

solutions and how they can be improved.

10

Chapter 2 Motivation:

A Bioinformatics Use Case 11

2.1 Bioinformatics Overview

Bioinformatics is the application of computational techniques to the management,

analysis, and visualisation of biological information. With the collection and stor-

age of large quantities of genomic and proteomic data, coupled with advanced

computational analysis tools, a bioinformatician is able to perform experiments

and test a hypothesis without using conventional ‘wet bench’ equipment — a

technique commonly referred to as in silico experimentation [49]. To support this

kind of science, multiple vendors offer access to a variety of resources creating a

loosely coupled, dynamic, and large scale environment which scientists can exploit

to achieve their scientific aims.

The myGrid [80] project provides an open-source Grid middleware that sup-

ports in silico biology. Using a service-oriented architecture, a complex infras-

tructure has been created to provide bioinformaticians with a virtual workbench

with which they can perform biological experiments. Access to data and com-

putational resources is provided through Web Services which can be composed

using the workflow language XSCUFL [97] and executed with the FreeFluo [46]

enactment engine. The biologist is provided with a user interface (Taverna [89])

which presents the services available, enables the biologist to compose and view

workflows graphically, execute them, and browse the results. A screenshot of the

Taverna workbench is shown in Figure 2.1 and contains four windows: Available

Services, Workflow Diagram, Run Workflow, and Enactor Invocation.

The Available Services window in the top left shows a list of services the user has

access to and the operations each service offers. The Workflow Diagram window

in the bottom left shows a graphical representation of the current workflow. Each

box represents a service invocation and the arrows joining them represent the flow

of data. The user is able to drag and drop services from the available services list

into the graphical editor to add a service to the current workflow. The graphical

representation of the workflow is mirrored in xml in the form of an XSCUFL

workflow document. The Run Workflow and Enactor Invocation windows

enable the user to view the workflow’s invocation steps and any intermediate

results, as well as the status of any currently running processes.

Chapter 2 Motivation:

A Bioinformatics Use Case 12

Figure 2.1: The Taverna Workbench.

Chapter 2 Motivation:

A Bioinformatics Use Case 13

Within the Taverna application, one of the most difficult tasks the user faces is

finding the service instances they require. Typically, the user has planned their

experimentation process prior to their interaction with the Taverna workbench.

Most likely, this has been done on paper with various abstract definitions of the

types of service required for each stage in the process. To find a particular service

which achieves a goal they desire, the user has to inspect the services available

in the Available Services window and manually choose the most appropriate

one. Given the terse and often cryptic service descriptions, and the sheer number

of services offered (over 1000 in myGrid) [58, 71], the discovery of services is

awkward. Hence, recent research from the myGrid project has been centred on

the incorporation of Semantic discovery.

2.2 Semantic Discovery

According to the basic premise of the Semantic Web [20], information should be

presented in a way where the meaning is captured in a machine processable format

so computers can understand the semantics of the data and exchange information

accurately. This vision has been partially realised through the use of ontologies: a

language to formally define a common vocabulary of terms for a given domain and

how such terms relate to each other [51], and in particular, through the develop-

ment of ontology languages, such as owl [83], that provide mechanisms to support

the publishing, sharing, and collaboration of ontology definitions using the Web.

By annotating service definitions with concepts from these shared ontologies, users

can find services based on conceptual definitions of the service capability, rather

than the low-level interface definitions.

Figure 2.2 is a graphical representation showing part of an ontology created to cap-

ture the kinds of terms used in the description of bioinformatics data [94]. With

this domain model in place, and the appropriate service annotations, a bioinfor-

matician can discover services according to the task it performs (e.g. retrieving,

processing or visualising data), the resources it uses (e.g. particular databases),

and the type of inputs and outputs (e.g. consumes sequence data and produces an

alignment result), rather than simply the labels used or the data types specified in

Chapter 2 Motivation:

A Bioinformatics Use Case 14

GenBank_record

protein_family_record

nucleotide_sequence_record
bioinformatics_record

PIR_record

RefSeq_record

RNA_sequence

UniGene_record

TREMBL_record

protein_interaction_record

biological_structure

protein_sequence

protein_sequence_record

phylogenetic_record

EMBL_record

proteomics_record

genotype_phenotype_record

SWISS-PROT_record

pathway_record

UniProt_record

nucleotide_sequence

biological_sequence

dbEST_record
microarray_database_record

biological_location
Entrez_genbank_protein_record

sequence_record

bioinformatics_report

bioinformatics_data

literature_citation

genome_map_record

DDBJ_record

DNA_sequence

enzyme_record

protein_structure_record

dbSNP_record

Figure 2.2: A subset of the bioinformatics ontology developed by the myGrid

project.

the service interface definition. To implement this feature in Taverna, the Pedro

[48] tool is used to annotate service definitions with concepts from the bioinfor-

matics ontology. These semantic annotations can then be consumed by FETA

[71], a light-weight architecture for user-oriented semantic service discovery, that

in turn, provides a query interface to search over services. The most recent release

of the Taverna workbench provides a graphical query interface to FETA, which is

illustrated in Figure 2.3. The query window here allows the user to find services

based on values of certain service attributes which have been set previously using

the Pedro annotation tool. In this example, some of the required attributes are:

1. the service name must contain the string "DNA";

2. it must perform the task with concept "retrieving";

3. it must make use of the "SWISS-PROT" resource (a database in this case).

Any service instances matching those criteria will be returned to the user when

the query is submitted.

Chapter 2 Motivation:

A Bioinformatics Use Case 15

Figure 2.3: FETA Discovery Tool within Taverna

Accession ID
Get Sequence

Data Record

Sequence
Data

Sequence

Alignment

Alignment
Results

Use Accession ID to get the
full sequence data record.

Pass the sequence data to a
sequence alignment service to

find matching sequences.

Figure 2.4: An abstraction view of our bioinformatics use case

2.3 Use case

For our use case, we examine a typical bioinformatics task: retrieve sequence data

from a database and pass it to an alignment tool, such as Blast [6], to check for

similarities with other known sequences. According to the service-oriented view

of resource access adhered to by myGrid, this interaction can be modelled as a

simple workflow with two stages: an initial stage to retrieve the sequence data,

and a second stage to check for similarities with other sequences. We show this

simple workflow at an abstract level in Figure 2.4.

To turn this abstract definition into a concrete workflow, the user must discover

Chapter 2 Motivation:

A Bioinformatics Use Case 16

suitable services for each step. Many Web Services are available to retrieve se-

quence data, for our example, we could use one available from EMBL [96], or

alternatively, one from DDBJ [36]. For the second stage of the workflow, an align-

ment service available from NCBI [81] could be used. Therefore, two concrete

workflows can be created to perform the analysis: one using the XEMBL service

and another using the DDBJ-XML service, illustrated in Figure 2.5.

Accession ID
Sequence

Data
Alignment
Results

and DDBJ-XML both provide
sequence data records.

NCBI-Blast performs
Sequence Alignment

XEMBL

DDBJ-XML

NCBI-Blast

Figure 2.5: Two possible concrete workflows for a sequence retrieval and anal-
ysis task.

2.4 Syntactic Compatibility

While both sequence retrieval services are similar, in that an accession id is passed

as input to the service and an xml document is returned containing all the se-

quence data, the format of the xml documents is different: XEMBL returns an

EMBL-EBI formatted document1, whereas DDBJ-XML returns a document us-

ing their own custom format2. When considering the compatibility of the data

flow between the services, it can be seen that the output from neither sequence

retrieval service is directly compatible for input to the NCBI-Blast service. Figure

2.6 illustrates this example: the DDBJ-XML service produces a DDBJ formatted

sequence data record, and the NCBI-Blast service consumes a FASTA formatted

sequence.

1http://www.ebi.ac.uk/embl/schema/EMBL Services V1.0.xsd
2http://getentry.ddbj.nig.ac.jp/xml/DDBJXML.dtd

Chapter 2 Motivation:

A Bioinformatics Use Case 17

Sequence
Data

DDBJ-XML NCBI-Blast

DDBJ-XML
Format

Fasta
Format

At a conceptual level, the output of the DDBJ-XML Service is
compatible with the input to the NCBI-Blast Service.

At a syntactic level, the output from the DDBJ-XML Service is
not compatible with the input to the NCBI-Blast Service.

Conceptual Level

Syntactic Level

 <DDBJXML xmlns='http://themindelectric.com'>
 <ACCESSION>AB000059</ACCESSION>
 <FEATURES>
 <cds>
 <location>1..1755</location>
 <qualifiers name="product">capsid protein 2</qualifiers>
 <qualifiers name="protein_id">BAA19020.1</qualifiers>
 <qualifiers name="translation">MSDGAV...</qualifiers>
 </cds>
 </FEATURES>
 <SEQUENCE>atgagtgatggagcagt..</SEQUENCE>
 </DDBJXML>

>AB000059
atgagtgatggagcagtatgagtgatggagcagtatgagtgatggagcagt...

Figure 2.6: The DDBJ-XML output is conceptually compatible with the input
to the NCBI-Blast service, but not syntactically compatible.

To execute a workflow where the output from the DDBJ-XML service is passed as

input to the NCBI-Blast service, the differences in data format assumed by each

provider must be reconciled, a process we refer to as workflow harmonisation.

Within Taverna, this is a manual task: users must identify when a syntactic

mismatch has occurred, what components are available to carry out the necessary

translation, and in many cases, new ones must be created. The transformation

of data between different representations by an external software components, or

syntactic mediation, can be achieved using a variety of techniques: a bespoke

mediator could be programmed using a language such as java; a transformation

language such as xslt [34] is used to specify how the translation is performed; or

another mediation Web Service could be invoked. We use the term Type Adaptor

to describe any software component that enables the translation of data, either

declaratively (in the case of a script) or procedurally (in the case of a program or

Web Service).

Chapter 2 Motivation:

A Bioinformatics Use Case 18

2.5 Data format reuse in Web Services

Upon further examination of services in myGrid, it is apparent that a single

Web Service may offer a number of different operations. The service interface

definition (expressed using wsdl [33]) defines the input and output types for each

operation by referencing an xml schema type (referred to as the syntactic type),

and semantic annotations attached using the Pedro tool define the conceptual

type for each input and output by referencing a concept from the bioinformatics

ontology (the semantic type). Often, it is the case that a Web Service offers

operations with inputs and outputs that utilise parts of the same global data

structure. For example, the DDBJ-XML Service in our use case offers many

operations over sequence data records. A single xml schema exists to describe the

format of the sequence data record, and each operation defines the output type by

referencing an element within this schema. We illustrate this scenario in Figure

2.7 by showing the DDBJ-XML interface definition (right box), and how semantic

annotations relate message parts to concepts from the bioinformatics ontology (left

box).

The DDBJ-XML service offers access to many sequence data repositories: SWISS,

EMBL and UNIPROT are three of them. Each of these databases is maintained

separately so users may elect to retrieve sequence data from one source over an-

other. To support this, the DDBJ-XML service offers separate operations to supply

DDBJ-XML

Get SWISS record

DDBJ-XML

Accession_id Get EMBL record

Get UNIPROT record

xsd:string

DDBJ-XML

xsd:string

DDBJ-XML

xsd:string

Get Sequence Features

Features

xsd:string

The DDBJ-XML service
 offers a number

of operations

input

output

input

output

input

output

input

output

Sequence_Data

Sequence_Feature

Ontology

Each line represents the semantic
type of the input or output.

WSDL

Figure 2.7: The DDBJ-XML web service offers a number of operations over
the same xml schema.

Chapter 2 Motivation:

A Bioinformatics Use Case 19

access to each repository. Each of these three operations has the same input and

output types, both in terms of the syntactic type and the semantic type. The

DDBJ-XML service also offers operations to retrieve only parts of the sequence

data record. In Figure 2.7, we show the “Get Sequence Features” operation that

allows users to retrieve only the features of a sequence data record. In this case,

the output syntactic type is the <Feature> element from the DDBJ-XML schema

and the semantic type is the Sequence Feature concept. With this kind of schema

reuse, one can imagine that a single Type Adaptor component may be suitable

for use with many service operations, even those which operate over a subset of a

global schema. In our use case, a single Type Adaptor could translate sequence

data from DDBJ-XML format to FASTA format, and would therefore be suitable

for any of the operations shown in Figure 2.7.

2.6 Conclusions

To achieve workflow harmonisation in a workflow-driven service-oriented environ-

ment that encourages users to discover services through high-level conceptual de-

scriptions, some form of syntactic mediation is often required to translate data

between different representations. Current solutions require users to find man-

ually manually (or possibly create) any required translation components. Given

the wide variety of heterogeneous services typically offered in large-scale eScience

applications, syntactic mediation components often take up a significant propor-

tion of the composition when compared to the actual services required to achieve

experiment goals. Naturally, this hinders the scientific process because users fre-

quently spend time harmonising the services in their composition rather than

actually designing and using it. Furthermore, it contradicts the basic Semantic

Web Service ideology because users must consider low-level interoperability issues.

Therefore, our aim is to automate the process of workflow harmonisation so users

can create meaningful workflows without concern for the interoperability issues

that arise from heterogeneous data representations. This means the identification

of syntactic mismatches, discovery of Type Adaptors, and their execution must

be addressed. As we highlighted in Section 2.5, services often provide operations

that consume or produce information using the same or subsets of the same data

Chapter 2 Motivation:

A Bioinformatics Use Case 20

formats. Consequently, an automated workflow harmonisation approach should

embrace the reuse of format specification, which in turn, can reduce the chances

of Type Adaptor duplication.

Chapter 3

Background

In Chapter 2, we analysed a bioinformatics Grid application and found that work-

flow composition and execution is often hindered by the differences in data rep-

resentation assumed by service providers. Our aim is to improve on the current

manual solutions and support autonomous workflow harmonisation through the

discovery and invocation of necessary Type Adaptors at runtime. This Chapter

examines background material in the areas of Grid, Web Services, and Semantic

Web, as well as a review of related work in the fields of data integration, service

integration and workflow composition.

We begin in Section 3.1 with an introduction to Grid and Web Services, sum-

marising the fundamental technologies and their limitations. Section 3.2 shows

how Semantic Web technology can augment existing Grid and Web Service envi-

ronments, supporting more intuitive service discovery and facilitating autonomous

service invocation. We describe the current technologies that aim to support the

application of Semantic Web techniques to Web Service architectures and finish

with a comparison of their approaches.

In Section 3.4, an overview of relevant data integration work is presented, high-

lighting the similarity of problems addressed with those underpinning the workflow

harmonisation problem. We present existing workflow harmonisation technology

in Section 3.6 and discuss the relevance to our workflow harmonisation problem.

In Section 3.7, we look into high-level service discovery and workflow composition

21

Chapter 3 Background 22

techniques to see how they support the creation of meaningful workflows in scien-

tific applications. We conclude in Section 3.8 by discussing how data integration

approaches can be combined with Semantic Web Service technology to support

automated service integration.

3.1 Grid Computing and Web Service

Ever since the early 1970’s, when computers were first linked together by networks,

the concept of harnessing computational power from multiple machines to perform

a single task has become a fundamental computer science field. Research in this

field has been driven mainly by the high performance computing community who

concentrate on splitting up large computational tasks, allocating them to multiple

machines for calculation, and reintegrating the final results.

In the 1990’s the distributed computing community saw new opportunities arise

through the emergence of the Internet. The Internet provides a global network

on which any two machines on the planet can communicate across a simple and

reliable transport mechanism. This explosion in connectivity and computing power

has been matched by the increasing complexity of tasks users want to perform.

Particularly motivated by scientific fields such as astronomy, particle physics and

biology, users now demand access to powerful computational systems that hold

vast amounts of data collected from a range of disparate sources.

The Grid is a distributed computing infrastructure designed to support exactly

this type of complex behaviour: co-ordinated resource sharing across dynamic and

geographically separated organisations [44]. This resource sharing covers a wide

range of computing assets including computational power, information storage and

observational equipment. With this variety of heterogeneous resource types expos-

ing a diverse mix of functionality, a fundamental problem that must be addressed

by the Grid is how to provide a homogeneous access model to all types of resource.

For example, whether a resource exposes data stored within a database or software

which processes data, a homogeneous resource description and access model must

be used to ensure maximum interoperability. This issue was addressed by the Open

Grid Services Architecture (ogsa) [45] where a service-oriented view of resource

Chapter 3 Background 23

access is employed. Essentially, this means that access to every type of resource

is modelled as though it is a service. To implement this type of architecture, Web

Services can be used.

3.1.1 Web Service Architecture

The Grid architecture relies on a service-oriented view of resource access inspired

by the use of the Web Services Architecture [23]. This allows resource providers

to describe their capabilities in terms of a Web Service, most commonly through

the use of wsdl [33]. wsdl is a specification language that describes the abstract

operational characteristics of a service using a message-based paradigm. Services

are defined by operations (which are analogous to methods from traditional pro-

gramming paradigms), each of which has an input message and an output message

(like the parameters and result of a method). Each message may contain a number

of parts, each of which is defined by a reference to a schema type (typically xml

Schema [41]). These abstract definitions are bound to concrete execution mod-

els to explain the invocation method (for example soap [52] encoding over http

transport).

Other Web Service technologies are also available to support more intricate service

functionality such as service discovery (uddi [1]), secure message exchange (WS-

Security [61]) and the specification of collaborations between resources (ws-cdl

[62]). Many software implementations are available to support the Web Services

Architecture, such as the Apache Axis Web Service Project [10] and IBM’s Web-

Sphere Software suite [59]. To this end, the Web Service Architecture provides a

fundamental model on which to build Grid computing applications through a set

of widely recognised standards and a range of software tools to support them.

3.1.2 Web Service Limitations

While the use of wsdl provides us with a common way to view the invocation

parameters of a Web Service, such as the format of a valid message and the concrete

execution model, it does not supply any information on what the service does - a

Chapter 3 Background 24

notion usually referred to as the semantics of the service. This leads to two major

problems:

1. Unsophisticated service discovery

Service discovery is the process through which we can find services that

perform a given task. Although current Web Service standards such as

uddi and ebxml [40] support the registration and indexing of large numbers

of services, their information models are constrained, allowing only simple

string matching on business and service types. In extreme cases, interface

definitions are completely undocumented and operation names bear little

relation to the actual functionality provided. Paolucci et al [82] demonstrates

that human comprehension of a service description is required before we can

be sure that it matches any given requirements. Hence, the level of autonomy

we can achieve is limited.

2. Limited automatic invocation

Assuming a candidate service has been discovered, we would then wish to

invoke it. wsdl describes the structure and required data types of the mes-

sage contents, so we can determine a valid message format. However, it does

not state what the parts of the message contents represent. For example, a

service may expose an operation to calculate the distance between two cities.

The interface for such a service could take two strings as input: one for the

source city name and one for the destination city name. Without additional

semantics, an automated invocation component would not know which city

name to place in which part since they both have the same type, namely a

string. Since service vendors are unlikely to subscribe to a predefined mes-

sage layout, we cannot assume that a client will know how to create the

correct message [77].

To overcome these problems we require additional high-level service descriptions

(service annotations) that express the service behaviour in an unambiguous, ma-

chine interpretable format. Expressing service properties in such a manner is

commonly referred to as a semantic service description or formal semantic model.

Chapter 3 Background 25

3.2 Web Services and Semantics

The Semantic Web [20] is an extension of the existing Web that aims to support

the description of Web resources in formats that are machine understandable.

According to the Semantic Web approach, resources are given well-defined mean-

ing by annotating them with concepts and terminology that typically correlate

with those used by humans. To share knowledge at a high-level using well-defined

semantics, we can use an ontology: a modelling language to formally define a com-

mon vocabulary of terms for a given domain and how such terms relate to each

other [51]. The Web Ontology Language (owl) [83] is an example of an ontology

language that is specifically designed to facilitate the publication and sharing of

domain models on the Web. owl is an extension of the existing Resource De-

scription Framework (RDF) [66], incorporating features from the DARPA Agent

Markup Language (DAML) [91] and Ontology Inference Layer (OIL) [56] to cre-

ate a rich conceptual modelling language with well defined reasoning procedures

founded on description logics [12].

In owl, classes (or concepts) are used to define groups of items or individuals that

should be collected together because they share common attributes. For example,

the individuals Anne, Barry, and Colin would all be members of the Person class.

Properties are used to state relationships between classes of individuals, (called

object properties, and from classes to specific data values (called datatype proper-

ties). Class hierarchies can be used to specify classes which are considered more

specific or general than other classes (e.g. the class Male is more specific than the

class Person). Individuals (or concept instances) can then be specified in terms

of defined classes with object properties to relate them to other individuals, and

datatype properties that define their attributes using literal values such as strings

or integers. With owl, both the ontology definition and its concept instances can

be represented using an xml syntax, with datatype properties instantiated using

xml schema types. Through the use of ontologies, the Semantic Web supplies

computers with rich annotations enabling them to reason on resources distributed

across the Web through a common, high-level conceptual model.

By applying the Semantic Web approach to a Web Services architecture, existing

Web Service interface definitions can be annotated with semantic descriptions.

Chapter 3 Background 26

This approach supports: (a) more advanced service discovery [72] because queries

on a service’s functionality can be formulated in terms of the high level, human

oriented descriptions; and (b) better automation [9] because service interfaces will

be annotated with semantics that describe what the data represents and not just

its syntactic type.

To enable the annotation of Web Services with semantics, the use of ontologies

is critical. Given that any particular service instance operates within a set of

domains (e.g. a book buying service works in the purchasing and book information

domains), we can encode the operational characteristics of the service using an

ontology. For example, a purchasing ontology would have concepts describing

payment, shipping, ordering, etc. and a book information ontology would describe

books, authors, publishers, etc. To create these service description ontologies, we

must ensure that we encapsulate the necessary information:

• Information processing

What are the inputs and outputs of the service? Given that service providers

will often use their own bespoke data structures, an ontology describing the

service information requirements should state what the inputs and outputs

are using terms from a shared conceptualisation, enabling clients to deter-

mine what each part of a service’s interface means. This enables clients

to invoke services properly by ensuring that data given to the service for

processing is both the correct syntactic type (specified in the interface def-

inition) and appropriate semantic type (the concept referenced within the

ontology).

• Behaviour

How does this service change the state of the system? Many services have

effects other than the immediate processing of data. For example, a service

which allows a customer to purchase an item needs to represent the notion

that after a successful invocation the customer’s credit card account will

be reduced by a certain amount and the requested item will be shipped to

them. Capturing this behaviour is essential since two different services that

consume and produce conceptually equivalent data need to be distinguished

from each other by the effects they have on the real world.

Chapter 3 Background 27

The combination of Semantic Web technology with Web Services to produce Se-

mantic Web Services has received a great deal of attention. In the following sub-

sections, we investigate the major technologies that aim to support the Semantic

Web Service vision, before comparing their approaches.

3.2.1 OWL-S

owl-s is a set of ontology definitions (expressed using the owl ontology language)

designed to capture the behaviour of Web Services. The top level service ontology

presents the service profile, a description of what the service does (e.g. that a ser-

vice is used to buy a book). The service is described by the service model, which

tells us how the service works (e.g. a book buying service requires the customer

to select the book, provide credit card details and shipping information and pro-

duces a transaction receipt). Finally, the service supports the service grounding

that specifies the invocation method for the service. Figure 3.1 shows the basic re-

lationship between these top level ontologies. In terms of data representation and

service invocation, our interest lies primarily in the service grounding ontology

because it describes the relationship between the high-level service description,

encapsulated within the owl-s ontology definition of the service, and the actual

service interface.

Service

Service Profile

Service Grounding

Service Model

supports

The Service profile describes what the
service does.

The Service Grounding describes
how to invoke the service.

The Service Model describes how to interact
with the service.

presents

described by

Figure 3.1: owl-s services are described by three facets; a profile, a grounding
and a model

Chapter 3 Background 28

OWL-S Process

OWL-S
Parameter

OWL-S
Parameter

input parameter

output parameter

WSDL Operation

Message

Message

Part

Part

input message

output message

OWL-S Input Parameters are
grounded to WSDL Input Message Parts

OWL-S Output Parameters are
grounded to WSDL Output Message Parts

OWL-S Atomic Processes are grounded
to WSDL Service Operations

Figure 3.2: owl-s atomic processes are grounded to wsdl Service operations.
Each owl-s parameter is grounded to a wsdl message part.

The current owl-s release (Version 1.2 Beta [2]) supports the annotation of wsdl

interfaces for services that use soap invocation only. The basic grounding premise

is that each owl-s atomic process (the most basic process element) is grounded

to a wsdl operation. The input parameters to an atomic process, which represent

the conceptual type of the input, are grounded to wsdl input message parts.

The same applies for the output parameters: they are grounded to wsdl output

message parts (Figure 3.2).

To annotate an existing Web Service that has a wsdl definition, xslt scripts

are used to describe how an input owl concept instance (serialised in xml) is

translated to a soap envelope so it can be sent directly to the service for invocation.

The reverse applies for the service output: xslt is used to translate the output

soap envelope into an owl concept instance. While this is a rather restrictive

approach since only one style of Web Service invocation and data encoding is

supported, it is only one implementation style that has been explored by the owl-s

community: owl-s is designed to be extensible and support other encoding types

and invocation styles, although this has yet to be explored.

3.2.2 WSMO

The Web Services Modelling Ontology (wsmo) [84] is an evolving technology built

upon, and extending the earlier UPML [43] framework. wsmo is designed to pro-

vide a framework to support automated discovery, composition, and execution of

Chapter 3 Background 29

WSMO Infrastructure

Web Service

Adapter

XML SOAP Encoding

over HTTP Transport

WSML Message

in F-Logic Format

A bespoke Adapter is used to

provide an interaction mechanism

between any software components

and the WSMO Infrastucture

Adapter

Database

ODBC Access

WSML Message

in F-Logic Format

Ontologies

Mediators

GoalsServices

Figure 3.3: With wsmo, adaptors are placed in front of legacy components,
such as Web Services, to provide a bridge to the wsmo infrastructure.

Web Services based on logical inference mechanisms. Conceptually, wsmo is based

on an event driven architecture so services do not directly invoke each other, in-

stead goals are created by clients and submitted to the wsmo infrastructure which

automatically manages the discovery and execution of services. Like owl-s, wsmo

uses ontologies to describe both the behaviour of Web Services and the informa-

tion they consume and produce. This is achieved using the bespoke F-Logic based

language wsml [37]. It is assumed that components within the wsmo architec-

ture communicate using a standardised message format: an xml serialisation of

the wsml language. Essentially, this means that all participants within a wsmo

framework are expected to communicate at a conceptual level using xml serialisa-

tions of wsml concepts. To accommodate differences in conceptual representation,

the wsmo infrastructure also contains explicit mediator components that support

the translation of information between different wsml representations.

To elevate conventional computing resources, such as Web Services and databases,

into the wsmo framework, message adaptors are placed in-front of the resource

to deal with the translations to and from traditional syntactic interfaces (such

Chapter 3 Background 30

as a soap interface to a Web Service or an ODBC interface to a database) and

the wsml message layer as we show in Figure 3.3 These Adaptors are a super

set of what we defined earlier as Type Adaptors because they are responsible

for more than the translation of data between different syntactic representations:

conversions between different access models (e.g. relational databases and xml

data), different transport types (e.g. http, and ftp), and different interaction

protocols (e.g. request / response Web Services, and remote method invocation).

An example of such an adaptor can be found in Section 5.3 of [76] which performs

translations between wsml and Universal Business Language [74] (ubl). With

this approach, the syntactic interface to a business service is hidden because its

interface is exposed only through the wsmo framework.

3.2.3 WSDL-S

wsdl-s (Web Service Semantics, a W3C Member submission) [5] is an extension

of the existing wsdl interface definition language that supports meta-data at-

tachment. wsdl-s assumes formal semantic models (i.e. models that describe

the service behaviour using semantics) exist outside the wsdl document and are

referenced via wsdl extensibility elements. wsdl-s is technology agnostic so any

formal semantic model can be used, such as owl-s or wsmo. We provide a visual

representation in Figure 3.4 that shows a conventional wsdl document referencing

an owl ontology (to provide formal semantics for the data types) and an owl-s

definition (formal semantics for the service behaviour). To support the relation-

ship between concrete data (in xml) and its conceptual representation (in owl),

wsdl-s has two annotation models:

1. Bottom Level Annotation

For simple cases, when a one-to-one correspondence exists between an xml

element within the wsdl message and an owl concept, bottom level an-

notations can be used to specify the mapping by means of an extensibility

element. While this model is limited (complex types are not supported), it

is sufficient for many cases.

Chapter 3 Background 31

OWL Ontology

wsdls:definition

wsdls:type

wsdls:message

wsdls:portType

wsdls:binding

wsdls:service

OWL-S Service

Formal semantic model exists

outside WSDL definintion, in this

example OWL ontologies with

OWL-S Service defintions

WSDL-S Extensibility elements

link WSDL interface definitions to

their formal semantic models

Extensibility

Elements

Figure 3.4: wsdl-s annotation approach: wsdl Definitions are linked to
external semantic models via extensibility elements

2. Top Level Annotation

With the top level annotation approach, an external mapping can be refer-

enced that specifies the full translation between xml and owl. This allows

complex data representations to be assigned a model in owl. Again, wsdl-

s is technology agnostic so any form of mapping can be used, such as xslt

or xquery [22].

3.2.4 Comparison of Semantic Annotation Techniques

owl-s, wsmo, wsdl-s and the annotation policy adopted by FETA (discussed

previously in Chapter 2) are oriented around the idea of high-level service de-

scriptions specified using an ontology based language: owl in the case of owl-s,

wsml for wsmo, and rdfs [25] for FETA. The description approaches are simi-

lar: inputs and outputs to services are specified using concepts from an ontology

describing the domain in which the service operates. Changes to the state of the

world are defined using pre-condition and effect based constructs, i.e. some state

of the system must be true before execution is permitted and successful invocation

results in new facts being added. The difference in approach lies fundamentally

Chapter 3 Background 32

in their implementation methodology. owl-s and FETA are used as an annota-

tion model, supplying language constructs to describe the behaviour of services

at a conceptual level without imposing any standard message exchange format or

invocation style. While current owl-s implementations are based around some-

what restricted models, i.e. wsdl interface annotation with soap invocation,

the model is designed to be extensible and therefore support other types of Web

resource and access methods. Implementation of the wsmo architecture can be

considered more mature than those supporting owl-s. The wsmx framework

which implements wsmo already supplies a integrated annotation, discovery and

invocation environment - something which has yet to be fully realised by the owl-

s community. However, this has been achieved mainly because of the restrictions

placed on wsmo participants, namely a standardised message exchange format

and imposed invocation style. Since wsdl-s is only an annotation approach that

relies on the existence of an external formal model, it cannot be compared directly

to owl-s, wsmo, or FETA. However, it does subscribe to the same basic princi-

ple i.e. services are described using high-level, conceptual definitions expressed in

an ontology.

3.3 Viewing a Semantic Web Service Architec-

ture

The amalgamation of the term “semantic” with “web service” to produce Semantic

Web Service has been used frequently, but also indiscriminately. Sometimes it is

used to refer to the notion that existing Web Services are augmented with Semantic

Web technology to aid computers in understanding what the service does and

how it works. All other times, it used to refer to a new type of service that

sits on the Semantic Web, directly consuming and producing information at the

conceptual level. To distinguish between these different views, we introduce the

terms semantically annotated Web Service and semantically enabled Web Service.

Semantically annotated Web Services are conventional Web Services, such as those

described by wsdl, that have been annotated with a semantic description. This al-

lows the service to continue interacting with traditional clients, as well as allowing

Chapter 3 Background 33

more advanced components, such as a discovery service, to utilise the additional

annotations and reason on the capabilities of the service. We illustrate this type

of service in Figure 3.5. With these types of service, some mechanism must exist

to describe how conceptual information structures, such as ontology instances, are

grounded to concrete data representations such as xml.

Semantically
Annotated

Web Service

Ontology
Instances

Ontology
Instances

Service Input Service Output

Web Service

XML Data

<a>
 foo<\b>
 bar<\b>

XML Data

<x>
 <y>5<\y>
 <z>10<\z>
</x>

Transform Ontology

Instance to XML

XML Input XML Output

Transform XML to

Ontology Instance

Figure 3.5: A semantically annotated Web Service is a traditional Web service
that has annotations describing the grounding of ontology concepts to its xml

types.

Semantically enabled Web Services are services that consume input and produce

output at a conceptual level. We assume these types of service are able to reason

on the data received and have a suitable mark-up mechanism to describe their

functionality. We illustrate these types of service in Figure 3.6.

Semantically
Enabled

Web Service

Ontology
Instances

Ontology
Instances

Service Input Service Output

Figure 3.6: A Semantically enabled Web Service which consumes input and
produces output in the form of ontology instances.

With semantically enabled Web Services, conceptual service definitions are created

and maintained by service providers. This restricts compatibility since any poten-

tial clients must understand the domain ontologies used by the provider. Given

the distributed nature of the Web and the diverse range of communities utilising

Chapter 3 Background 34

it, it is likely that several ontologies will develop to explain the same domain using

slightly different structures and terms. Service providers must also anticipate the

requirements of the client which can be problematic because different clients may

use the same service to achieve different goals. For example, the Amazon Web

Service (www.amazon.com) can be used to purchase CDs, but a client may wish to

use the service to find album track listings or cover art. In addition, for a service

to be semantically enabled, the provider is forced to provide a semantic descrip-

tion; a complex task which they may not be qualified to perform or wish to spend

resources doing so.

A semantically annotated Web Service permits multiple annotations for a single

service instance. This allows different organisations and communities to describe

Web Services with their own ontologies according to their own interpretations. It

also means service providers can still use conventional wsdl documents to expose

their capabilities and rely on third party annotations to give them semantics.

Finally, by annotating existing definitions rather than altering them, we can ensure

compatibility between semantic and non-semantic clients.

The bioinformatics application in which our work is situated is a semantically

annotated environment. Services expose their functionality using conventional

interface definitions such as wsdl. These interface definitions are then annotated

with terms from a bioinformatics ontology, supplying semantics and capturing the

meaning of the service.

3.4 Data Integration

The workflow problem we present in our use case emanates from the variety of data

formats assumed by service providers. Data Integration (the means of gathering

information from multiple, heterogeneous sources) also addresses this problem,

providing solutions which enable the harvesting of information across differing

syntactic representations. Given the similarity of the problem, we investigate the

following data integration research: a bioinformatics application that utilises on-

tologies to capture the meaning of information content; a physics Grid technology

that enables transparent access to data ranging over multiple, divergent sources; a

Chapter 3 Background 35

geographic dataset integration solution; a semantic data integration system for the

web; and a Grid data definition language to support the meaningful interchange

of Grid data.

3.4.1 TAMBIS - Data Integration for Bioinformatics

The Transparent Access to Multiple Bioinformatics Information Sources [87] (TAM-

BIS) framework is designed to support the gathering of information from various

data sources through a high-level, conceptually-driven query interface. In this sys-

tem, information sources are typically proprietary flat-file structures, the outputs

of programs, or the product of services, with no structured query interface such as

sql or xquery [22], and no standard representation format. A molecular biology

ontology, expressed using a description logic, is used in conjunction with functions

that specify how every concept is accessed within each data source to deliver an

advanced querying interface that supports the retrieval of data from multiple in-

formation sources assuming different data representations. The requirements for

syntactic mediation are similar to those of data integration: syntactic mediation

requires a common way to view and present information from syntactically incon-

gruous sources; data integration systems, such TAMBIS, have achieved this by

using conceptual models to describe information source in a way that is indepen-

dent of representation. While the TAMBIS approach is useful when considering

the consolidation of Web Service outputs, it does not support the creation of new

data in a concrete format, a process that is required when creating inputs to Web

Services.

3.4.2 XDTM - Supporting Transparent Data Access

The need to integrate data from heterogeneous sources has also been addressed

by Moreau et al [78] within the Grid Physics Network, GriPhyN [50]. Like the

bioinformatics domain, data sources used in physics Grids range across a variety of

legacy flat file formats. To provide a homogeneous access model to these varying

data sources, Moreau et al [78] propose a separation between logical and physical

file structures. This allows access to data sources to be expressed in terms of the

Chapter 3 Background 36

logical structure of the information rather than the way in which it is physically

represented. To achieve this, an xml schema is used to express the logical structure

of an information source, and mappings are used to relate xml schema elements to

their corresponding parts within a physical representation. The XML Data Type

and Mapping for Specify Datasets (XDTM) prototype provides an implementation

which allows data sources to be navigated using xpath. This enables users to re-

trieve and iterate across data stored across multiple, heterogeneous sources. While

this approach is useful when amalgamating data from different physical represen-

tations, it does not address the problem of data represented using different logical

representations. Within a Web Service environment where service are described

using wsdl, we can assume homogeneous logical representation because inter-

face types are described using xml schema. Our workflow harmonisation problem

arises from the fact that service providers use different logical representations of

conceptually equivalent information, i.e. differently organised xml schemas to

hold the same conceptual items.

3.4.3 Ontology-based Geographic Data Set Integration

Geographic data comes in a variety of formats: digitised maps, graphs and tables

can be used to capture and visualise a range information from precipitation lev-

els to population densities. As new data instances appear, it is important with

geographic data sets to recognise their spatial attributes so information can be

organised and discovered by regional features such as longitude and latitude, as

well as political or geographic location. Uitermark et al [92] address the prob-

lem of geographic data set integration: the process of establishing relationships

between corresponding object instances from disparate, autonomously producing

information sources. Their work is situated in the context of update propagation

so geographically equivalent data instances from different sources, in different for-

mats, can be identified and viewed as the same instance. Abstraction rules dictate

the correspondence between elements from different data models which means the

relationship between instances of data in different models can be derived, e.g. they

are in the same location or they fall within the same region.

Chapter 3 Background 37

3.4.4 IBIS: Semantic Data Integration

The Internet-Based Information System (IBIS) [29] is an architecture for the

semantic integration of heterogeneous data sources. A global-as-view approach

[19, 32] is employed meaning a single view is constructed over disparate infor-

mation sources by associating each element in a data source to an element in a

global schema. A relational model is used as the global schema with non-relational

sources wrapped as legacy file formats; Web data and databases models can all be

queried using a standard access model. A novel feature of the IBIS architecture

is the ability to deal with information gathered via Web forms. This is achieved

by exploiting and implementing techniques developed for querying sources with

binding patterns [69].

3.4.5 Data Format Definition Language

The Data Format Definition Language (DFDL) [16] is a proposed standard for the

description of data formats that intends to facilitate the meaningful interchange of

data on the Grid. Rather than trying to impose standardised data formats across

vendors, the DFDL language can be used to specify the structure and contents of

a file format at an abstract level, with mappings that define how abstract data

elements are serialised within the data format. The DFDL api can then be used

to parse data and operate over it without regard for the physical representation

of the data. This approach has the benefit that information providers can choose

to represent their data using the most appropriate format. This is an important

consideration for Grid applications because data sets can be large and complex,

and therefore, enforcing a particular representation language such as xml is not

feasible.

3.4.6 Reflection on Data Integration Techniques

Viewing information sources through a three-tier model [86] allows us to separate

different data integration solutions and position our work against them. Figure 3.7

Chapter 3 Background 38

XML Schema

Relational Schema

JAVA Bean

Description Logic

OntologyER Model

XML
CSV

DOC

BIN

XLS

RTFVCARD

Physical Layer:

How the data is stored

Logical Layer:

How the data is structured

Conceptual Layer:

What the data means

Figure 3.7: A Three Tier Model to separate physical storage, logical structure
and conceptual meaning of information.

illustrates the relationship between physical representation, logical organisation,

and the meaning of data:

1. Physical Representation - How the file is stored

Data can be stored in a variety of formats: proprietary binary files, text files,

xml files and databases encompass the most common methods.

2. Logical Organisation - How the information is structured

On top of the physical representation layer, the logical organisation of the

data dictates the structure of the information, e.g. xml schema, relational

models, etc.

3. Conceptual - What the data means

On top of the logical organisation layer, the conceptual model of an in-

formation source specifies what the information means at a high-level of

abstraction.

It is common for data integration solutions to use a common representation or

uniform access model to facilitate the gathering and processing of information from

Chapter 3 Background 39

different representations. In terms of the three-tier model presented in Figure 3.7,

a set of heterogeneous formats in one layer can be abstracted in the layer above to

support homogeneous data access. For example, different physical file formats can

be integrated through a common structural representation, a technique used by

DFDL, XDTM and IBIS. If different logical organisations of data exist, a common

conceptual model can be used to access data sources through a single view, an

approach used by TAMBIS and the integration of geographic datasets. In either

case, some form of mappings or wrapper programs are used to translate data. The

workflow harmonisation problem that we presented earlier in Chapter 2 stems from

the fact that different service providers assume different logical organisations of

data (under the assumption that xml schema are used to describe the input and

output of Web Services). Therefore, a common conceptual model that describes

the contents of different xml schemas can be used to drive the translation of data

between different formats. To achieve this, some method is required to assign

meaning to xml schema components expressed in a high-level language such as a

description logic or ontology. This notion, commonly referred to as xml semantics,

is discussed in the following section.

3.5 XML Semantics

The idea of assigning semantics (or meaning) to elements and attributes inside

xml schemas has been explored in a variety of different ways. In some cases, it

is used for data integration purposes; many different xml instances that assume

different logical structures are viewed through a common conceptual model so

queries across different representations and their results are expressed in terms

of the meaning of the data that is captured in a high-level model. Kim and

Park [64] have developed the xml Meta Model (XMM) to support this kind of

functionality. The XMM captures the semantics of xml schemas using a simple Is-

A relationships: each element and attribute within an xml schema is an instance

of a particular concept within the xml meta model.

Schuetzelhofer and Goeschka [85] have employed a set theory approach to assign

domain semantics to information represented in xml. A three-layer meta-model

Chapter 3 Background 40

graph breaks xml into three levels: (i) the instance-level graph models the exis-

tence of elements, attributes, and literals as nodes of a graph and types as their

edges (ii) the type-level graph models the xml schema with element and attribute

definitions represented as nodes, and type definitions represented as edges (iii) the

meta-type-level is comprised of meta-type nodes that model the domain concepts,

and meta-type links that represent the relationship between domain concepts.

With this three-layer meta model representation of xml, instances of elements

in different schemas that share the same meta-type-level nodes are conceptually

equivalent. Therefore, a homogeneous view for querying xml data across different

logical representations (i.e. different xml schemas) can be achieved through the

meta-type level.

Liu et al [70] present the xml Semantics Definition Language (XSDL) to support

the modelling of xml semantics. Using owl ontologies to capture the semantics

and structure of xml documents, and mappings that declare the relationship be-

tween xml schemas and owl ontologies, different representations of conceptually

equivalent information can be viewed through a common ontological model. This

approach is also used by An et al [7] who define a mapping language to express

the relationship between xml DTDs and owl ontologies.

While these data integration techniques facilitate the viewing and querying of data

across different xml representations through a common conceptual model, they

do not enable the conversion of data between different formats. For workflow har-

monisation, when the output format from one service does not match the input

format to another service, data needs to be converted from one representation to

another. To apply data integration techniques that utilise a shared conceptual

model of data to the workflow harmonisation problem requires a two-way conver-

sion process: information from one format that is viewed through the conceptual

model must be serialised to a different format. This idea has been explored by

Balzer and Liebig [14] in the context of Semantic Web Service integration. Again,

owl ontologies are used as a common conceptual model to capture the semantics

of xml data structures. Unlike the research presented above, their mapping ap-

proach enables the conversion of data from xml to owl and from owl to xml

providing the mechanism necessary to support workflow harmonisation. However,

their mapping language is quite limited: a one-to-one correspondence between

Chapter 3 Background 41

xml elements and owl concepts is assumed. Through the investigation of real

bioinformatics data later in Chapter 5, we find that data structures are not so neat

and often the combination of more than one element constitutes a single concept,

particular elements can have different semantics depending on their context, and

some element’s semantics change depending on the values of other elements and

attributes.

3.6 Automated Workflow Harmonisation

In this Section, we examine two systems that provide support for automated me-

diation in service-oriented architectures: a classification based approach where

mediator services are used to harmonise data incompatibilities, and an ontology-

based approach that generates transformations between syntactically discordant

interfaces.

3.6.1 Shim based Service Integration

Hull et al [58] have investigated the workflow harmonisation problem within the

myGrid project. They dictate that conversion services, or shims, can be placed

in between services whenever some form of translation is required. They explicitly

state that a shim service is experimentally neutral in the sense that it has no

effect on the result of the experiment. By enumerating the types of shims required

in bioinformatics Grids and classifying all instances of shim services, it is hoped

that the necessary translation components could be automatically inserted into

a workflow or suggested to the user at workflow composition time. However,

their work encapsulates a variety of conversion services, not just ones to perform

syntactic mediation. Shim services are classified in the following way:

• Dereferencer

In our use case, an accession id is used to retrieve a sequence data record. In

bioinformatics services, it is often the case that results from analysis services

are references to a record and not the actual record itself. When results from

Chapter 3 Background 42

one service invocation are passed as input to another service, sometimes it

is necessary to insert an additional service to retrieve the entire record. This

type of intermediate service is classified as a dereferencer shim.

• Syntax Translator

When services assume different representation of the same information, a

syntax translator shim is inserted.

• Semantic Translator

Sometimes a conversion between conceptually similar information is required.

For example, a DNA sequence may need to be converted to a protein se-

quence. This type of service is classified as a semantic translator shim.

• Mapper

In our use case, the two sequence retrieval services use the same unique record

identifiers (or accession id’s). Other bioinformatics services exist to retrieve

sequence data, but using different unique identifiers. Services that convert

a reference from one system to another are classified as mapper shims.

• Iterator

When the output from one service is a set of records, and the input to the

next service is a single record, an iterator shim can be placed in between

services to process each member of the record set individually and combine

the results.

For the purpose of this analysis, we consider only the syntax translator shim;

the other types of shim service cover integration problems outside the scope of

syntactic mediation. The notion that particular types of service can be grouped

together (e.g. services for syntax translation) is useful because users can readily

identify services that will help them resolve syntactic incompatibilities. From an

automation perspective, the classification approach would work if the capability

of the conversion service (namely the source type consumed and the destination

type produced) can be queried because software components could then find Type

Adaptors to meet specific translation requirements at runtime.

Chapter 3 Background 43

3.6.2 Ontology based transformation generation

The seek project [24] specifically addresses the problem of heterogeneous data

representation in service oriented architectures. Within their framework, each

service has a number of ports which expose a given functionality. Each port

advertises a structural type that represents the format of the data the service

is capable of processing. These structural types are specified by references to

xml schema types. If the output of one service port is used as input to another

service port, it is defined as structurally valid when the two types are the same.

Each service port can also be allocated a semantic type which is defined by a

reference to a concept within an ontology. The plugging together of two service

ports is semantically valid if the output from the first port is subsumed by the

input to the second port. Structural types are linked to semantic types by a

registration mapping using a custom mapping language based on xpath. If the

plugging together of two ports is semantically valid, but not structurally valid,

an xquery transformation can be generated to harmonise the two ports, making

the link structurally feasible. While the seek project does present a solution to

the problem of harmonising syntactically incompatible services, their work is only

compared to the services within the bespoke seek framework — the use of specific

Web Service technologies such as wsdl or soap are not discussed.

3.7 Discovery and Composition

Within any large-scale Grid or Web Services application, the discovery of services

and the composition of workflows is a fundamental process. We inspect the tech-

nology that facilitates these processes and discuss recent research within these

fields.

3.7.1 Grid Based Semantic Service Discovery

Grid environments are not static: new services can appear, services can disappear

and existing interfaces can be modified at any time. To cope with this dynamic

Chapter 3 Background 44

scenario, service registries are often used to keep track of the services available.

Within the myGrid project, the Taverna workbench uses a service registry to

maintain a list of available services and presents them to the user. As we mentioned

in Section 3.1.2, existing Web Service discovery technologies, such as uddi, are only

able to provide primitive discovery mechanisms based on simple string matching

of service descriptions and classifications of service instances. Next generation

discovery components, such as FETA [71], supply more advanced service location

mechanics by exploiting semantic service annotations. To support this kind of

discovery, the service registry has evolved into a more complex component. Instead

of simply storing interface definitions, it is now necessary for Grid registries to

support the annotation of service interfaces with additional semantics by both

service providers and third parties. To enable semantic service discovery, query

interfaces must be provided to support the searching and retrieval of services in

terms of the service semantics.

The Grimoires service registry [93] is an example of such a next generation Grid

registry, supporting advanced service annotation and discovery. Grimoires works

on top of existing Web Service standards providing annotation support for wsdl

service definitions and uddi service records. Meta-data is stored using rdf [66]

triples and a query interface is provided using rdql. The meta-data attachment

policy is generic so it can support a range of annotation approaches such as owl-s

and wsdl-s.

3.7.2 Web Service Composition with Semantics

In scientific Grid applications, such as Taverna, workflows are used to capture the

experimentation process. With the introduction of semantic service annotations,

conventional workflow models can be augmented in two ways:

1. Abstract Workflow Definitions

Traditional workflows are specified over service instances. For example, the

workflow we present in our use case is specified over the DDBJ-XML or

XEMBL sequence retrieval services and the NCBI-Blast service. Given that

semantic annotations describe service interfaces at conceptual level, new

Chapter 3 Background 45

workflow models are being formulated to allow users to specify service com-

positions at an abstract level [38, 73]. This allows users to express their

desired workflow in terms of the kind of service used, rather than the actual

service instances. Our use case scenario could be expressed as a sequence

retrieval service which gets a record and passes it to an alignment service.

This abstract workflow definition can then be mapped onto an enactable

workflow instance using a semantic service discovery component [95].

2. Automated Composition

By utilising planning techniques from the artificial intelligence community,

it is possible to generate a service composition that achieves a high-level

goal that is not achievable by a single service instance [18, 21]. For example,

our use case workflow could be specified as a single task that consumes a

sequence accession id and produces sequence alignment results.

In both of these scenarios, we find that services may be plugged together because

their semantic descriptions deem them compatible. However, as we have shown

in Chapter 2, semantically interoperable services (services that share the same se-

mantic types) are not necessarily syntactically compatible. Therefore, automated

workflow harmonisation is critical to the success of these applications.

3.8 Conclusions and Analysis

We have shown that the application of Semantic Web technology to Web Services

can facilitate more advanced service discovery and autonomous invocation. By

using a bioinformatics ontology, such as the one presented by Wroe et al [94], a Web

Service’s characteristics can be defined using high-level terminology from a shared

conceptualisation that is familiar to users. To support this type of annotation,

next generation service registries, such as Grimoires, can be used in combination

with advanced discovery components, such as FETA, to supply a rich Web Service

environment that supports users in the composition of workflows and facilitates

the scientific process.

Chapter 3 Background 46

In Chapter 2, Section 2.4, we identified that workflow composition is hindered by

the fact that service providers and consumers often assume different representa-

tions for conceptually equivalent information. While existing manual solutions do

provide the necessary syntactic mediation for workflow harmonisation, an auto-

mated solution is preferable for two main reasons:

1. The Semantic Web Service philosophy is centered around the notion that

users should be able to coordinate the exchange and processing of informa-

tion between parties using high-level terms from shared conceptualisations

without concern for the interoperability issues. When users are forced to

consider the data formats assumed by providers and consumers and how

they relate to each other, this basic premise is violated.

2. A considerable amount of effort is required for users to insert the appropriate

mediation components. While it may be the case that a Type Adaptor exists

to harmonise a particular dataflow between services, users are unable to share

and discover them, so duplication is rife. Furthermore, users in these types of

domain, such as bioinformatics, are not experts in Web Service composition

so the harmonisation of dataflow is a daunting and complex task.

Through our investigation in related work, we identified that previous data inte-

gration work also tackles to problem of heterogeneous data representation; projects

such as TAMBIS and seek have successfully used shared conceptual models to

provide a homogeneous access model across disparate information formats. This

type of approach can be implemented using a mapping language that provides a

data representation with clear semantics, allowing pieces of information in different

formats to be identified through a common term or concept. However, existing ap-

proaches that apply semantics to xml data structures to drive homogeneous data

access are usually one way processes: information can be gleaned from different

formats and viewed through a common model, but it cannot be converted be-

tween different syntactic models. The workflow harmonisation problem we tackle

requires the conversion of data between formats, and therefore, further work is

required.

Chapter 3 Background 47

In the next Chapter, we present the WS-HARMONY architecture: a frame-

work to support automated workflow harmonisation. Data integration techniques

that rely on common conceptualisations to capture the structure and semantics of

different data formats are used, along with Web Service discovery technology, to

facilitate the automatic discovery and inclusion of the appropriate Type Adaptors

at runtime.

Chapter 4

WS-HARMONY:

An Architecture for Automated

Workflow Harmonisation

In Chapter 2, we presented the problem that occurs in semantically-annotated

Web Service environments when a service provider and a service consumer assume

different syntactic representations for conceptually equivalent information. While

this motivating use case highlights the impact of this problem when users are

composing services based on their semantic definitions (e.g. high-level conceptual-

isations of the service inputs and outputs), we can also imagine similar problems

arising when automatic planning techniques are used to generate workflows.

As indicated in Chapter 3, Section 3.7, much research has been undertaken to

convert abstract workflows to concrete specifications [38, 73], as well as the gener-

ation of workflows to fulfill tasks not achievable by a single service [18, 21]. In both

of these examples, services may be joined by a planning algorithm because they

are deemed semantically compatible (through inspection of the service’s semantic

annotations). Since the planing techniques listed above do not consider low-level

interoperability issues when joining services, they may generate workflows that

cannot be reliably invoked. Therefore, the harmonisation solution presented in

this dissertation is important not only for the development of applications like

Taverna that provide users with an interaction to semantically-annotated Web

48

Chapter 4 WS-HARMONY:

An Architecture for Automated Workflow Harmonisation 49

Services, but also to the Semantic Web research field as a whole: there are many

situations when services are connected because they should fit, even though they

may not agree on the same syntactic model.

In this Chapter, we present the Web Service Harmonisation Architecture (WS-

HARMONY) that supports the invocation of Web Services and automatic rec-

onciliation of data formats whenever semantically compatible but syntactically

incongruous service interfaces are joined. For this architecture, we do not believe

it necessary to conform to a particular Semantic Web Service annotation model

(such as owl-s, wsdl-s or FETA) because the same harmonisation problem can

arise when using any of them, and the same solution can be employed. The as-

sumptions we make are that all service interfaces are defined using wsdl with

their respective message parts specified using xml schema. This makes our solu-

tion compatible with any technology that conforms to these widely used standards,

including user-oriented applications and automatic composition software.

Broadly, the architecture can be split into two sections: the syntactic mediation

approaches supported and the infrastructure created to enable them; and the

discovery of Type Adaptors to automate the process of syntactic mediation and

the invocation of target services. The contributions of this Chapter are:

1. Scalable mediation approach

To support the translation of data between different formats, we make use

of shared conceptual models expressed with the ontology language owl.

Individual data formats are mapped to a conceptual model using a declara-

tive and composable mapping language so conceptually equivalent elements

within different representations are linked via a common concept. This ap-

proach provides better scalability as the number of compatible data formats

increases than directly translating data between formats.

2. Type Adaptor generation from mapping rules

By consuming mappings that specify the meaning of xml schema compo-

nents through a shared conceptual model, our Configurable Mediator is able

to masquerade as a bespoke Type Adaptor on demand to fulfill a given

translation requirement.

Chapter 4 WS-HARMONY:

An Architecture for Automated Workflow Harmonisation 50

3. Middleware to facilitate the sharing and automatic discovery of

Type Adaptors

One novel aspect of the WS-HARMONY architecture is the use of wsdl to

describe Type Adaptors and mapping specifications. This enables us to reuse

existing registry technology to enable the sharing and discovery of adaptor

components.

The first half of this Chapter is concerned with mediation, beginning in Section 4.1

with a classification of mediation approaches and how owl can be used to drive

data translation with an intermediate representation. Section 4.2 shows how medi-

ation components fit into existing workflow execution frameworks and introduces

the Configurable Mediator: a software component that translates data using map-

pings specified between xml schemas and owl ontologies. Section 4.3 discusses the

requirements of our mediation approach and argues for the de-coupling of transla-

tion specifications from service descriptions, as well as highlighting the benefits of

a modular language to describe translation. The latter half of the Chapter shows

how we automate the process of syntactic mediation, starting in Section 4.4 with

an overview of our advertising and discovery techniques before the presentation of

the WS-HARMONY architecture as a whole in Section 4.5.

The WS-HARMONY architecture presented in this Chapter is given at a high

level: many of the technical aspects are reserved for later Chapters where they are

presented in more detail. References to more detailed explanations are given at

the appropriate place, as well a summary of contributions at the end in Section

4.6.

4.1 Mediation Approach

The conversion of data between different formats in large-scale and open systems,

such as the Grid and Web Services, can be separated into two approaches:

1. Direct Mediation

When many different formats exist to represent conceptually equivalent in-

formation, Type Adaptors may convert data between formats directly. We

Chapter 4 WS-HARMONY:

An Architecture for Automated Workflow Harmonisation 51

a b

c

de

f

With a direct mediation approach,

Type Adaptors must be created to

convert between every pair of

compatible data formats

Data format

Type Adaptor

Figure 4.1: Direct Mediation: Converting data directly between formats

a b

c

de

f

By introducing an intermediate

representation (i), to which all

data formats are converted, less

Type Adaptors are required to

achieve maximum interoperability

i

Figure 4.2: Intermediary Mediation: Converting data to an intermediate rep-
resentation

illustrate this approach in Figure 4.1 where we show six compatible data for-

mats (a to f) and the number of Type Adaptors required (connecting lines).

As the number of compatible data formats increases, the number of Type

Adaptors required is O(n2). Whenever a new format is introduced, O(n)

Type Adaptors must be created (one for each existing format) to ensure

maximum interoperability.

2. Intermediary-based Mediation

By introducing an intermediate representation to which all data formats are

translated (Figure 4.2), the number of Type Adaptors required is O(n) as

the number of compatible formats increases. Also, when a new data format

is conceived, only one Type Adaptor is required to convert this new format

to the intermediate representation.

Current systems (such as the Taverna application discussed in Chapter 2) employ

a direct mediation approach: conversion components translate data directly from

Chapter 4 WS-HARMONY:

An Architecture for Automated Workflow Harmonisation 52

one format to another. Given the poor scalability of this approach and the large

overhead when introducing new formats, the WS-HARMONY architecture is

centered around the use of an intermediate representation.

While it is outside the scope of this dissertation, a natural progression for this

view of data translation is to consider the impact of multiple intermediate repre-

sentations. We can imagine that a single ontology is constructed to capture the

structure and semantics of some data (such as a sequence data record in our use

case) to provide a particular application with a single view over heterogeneous

formats. However, it is likely that different ontologies would be developed for the

same data source because other communities will have different interpretations of

the data structure and the terms used. To illustrate this idea, Figure 4.3 shows

three different intermediate representations (i1, i2 and i3) and a number of differ-

ent data formats (including x and y). If a transformation exists between i1 and

i3, x has a transformation to i1, and y has a transformation from i3, then an item

in format x may be converted to format y via the intermediate representations i1

and i2.

Figure 4.3: Joining of Intermediate representations

4.1.1 Using OWL as an Intermediate Representation

The Web Ontology Language (owl) [83] is an ontology specification language

that enables the publishing and sharing of conceptual models on the Web. By

Chapter 4 WS-HARMONY:

An Architecture for Automated Workflow Harmonisation 53

extending the existing mark-up capabilities of rdf and rdfs and combining rea-

soning capabilities from the description logic community [57, 54], owl embraces

the name-spacing and linking benefits of the Web to support sharing and reuse,

and provides the necessary language constructs to model complex domain knowl-

edge. Using owl to capture the structure and semantics of xml data has been

reviewed in Chapter 3, Section 3.5 and is a proven data integration technique. To

illustrate this idea against our bioinformatics use case, we present an ontology to

describe Sequence Data Records in Figure 4.4. Complete owl listings for this

ontology can be found in Appendix A, Listing A.1.

The main concept, Sequence Data Record (centre of Figure 4.4), has the datatype

properties accession id (denoting the unique id of the dataset) and description

(a free-text annotation). Each sequence data record has a Sequence that con-

tains the string of sequence data, the length of the record and its type1. A se-

quence data record contains a number of References that point to publications

that describe the particular gene or protein. Each reference has a list of au-

thors, the journal name, and the paper publication title. Sequence data records

also have a number of different features, each having a Feature Location that

contains the start and end position of the feature. There are many different

1Type here does not denote a syntactic type - it is a kind of sequence.

DP

OP

Reference

authors
journal
title

DPDP

DP

DP

Sequence_Feature

locationDPOP

Feature_Source

lab_host
isolate
organism

DPDP

DP

DP

Feature_CDS

translation
product
protein_id

DPDP

DP

DP

Feature_Location

start
end

DPDP

DP

has_feature

location

has_reference

Key

DataType Property

Object Property

Sub-Concept

DDBJ_Sequence_Data_Record

molecular form
taxonomy
date_last_updated

DPDP

DP

DP

EMBL_Sequence_Data_Record

data_class
date_created
release_created

DPDP

DP

DP

Sequence

data
length
type

DPDP

DP

DP

Sequence_Data_Record

accession_id
description
has_reference
has_sequence
has_feature

DPDP

DP

OP

OP

OP

has_sequence

Figure 4.4: An Ontology to describe sequence data records

Chapter 4 WS-HARMONY:

An Architecture for Automated Workflow Harmonisation 54

types of feature; we show two common ones in this example: Feature Source

and Feature CDS. Both of these concepts are sub-classes of the Sequence Feature

concept which means they inherit properties assigned to the parent class. In

the case of a sequence feature, they all contain a location, but each has its

own list of properties: lab host, isolate and organism are properties of the Fea-

ture Source class; and translation, product and protein id are properties of the

Feature CDS class. The Sequence Data Record concept also has two sub-concepts:

DDBJ Sequence Data Record and EMBL Sequence Data record. These classes cap-

ture the fact that while both the DDBJ and XEMBL formats contain mainly the

same information, there are attributes of each record that are unique to their for-

mat. For example, repository-specific information such as the date created or date

last updated.

Fragments of xml describing a sequence feature in both DDBJ and EMBL formats

are given in Listing 4.1 and 4.2 These two representations essentially contain the

same information in different formats: The Feature type is CDS, it has a product,

protein id, translation and location. Figure 4.5 gives a visual representation of

the concept instances that would be used to capture this sequence feature infor-

mation. An instance of the Feature CDS class would be used with three datatype

properties holding the translation, product and protein id. The feature location

<feature name="CDS">

<qualifier name="product">capsid protein 2</qualifier >

<qualifier name="protein_id">BAA19020 .1</qualifier >

<qualifier name="translation">MSDGAVQPDGGQPAVR ...</qualifier >

<location type="single" complement="false">

<locationElement type="range" accession="AB000059">

<basePosition type="simple">1</basePosition >

<basePosition type="simple">1755</basePosition >

</locationElement >

</location >

</feature >

Listing 4.1: Sample xml from a EMBL formatted Sequence Data Record

<FEATURES >

<cds>

<location >1..1755 </location >

<qualifiers name="product">capsid protein 2</qualifiers >

<qualifiers name="protein_id">BAA19020 .1</qualifiers >

<qualifiers name="translation">MSDGAVQPDGGQPAVR ...</ qualifiers >

</cds>

</FEATURES >

Listing 4.2: Sample xml from a DDBJ-XML formatted Sequence Data Record

Chapter 4 WS-HARMONY:

An Architecture for Automated Workflow Harmonisation 55

Feature_CDS

translation:MSDGAVQPDGGQPAVR...
product:capsid protein 2
protein_id:BAA19020.1

DP

DP

DP

DP

Feature_Location

start:1
end:1755

DPDP

DP

location

locationOP

Figure 4.5: An owl concept instance to describe a feature from a Sequence
Data Record

information would be represented using an instance of the Feature Location class

and would be linked to the Feature CDS via the object property location. With

a common ontology in place to describe bioinformatics data, syntactically incon-

gruous dataflow between two services operating in this domain can be harmonised

by translating data from one representation to another via the intermediate owl

model. This idea is exemplified in Figure 4.6 against our bioinformatics use case

from Chapter 2. In this example, the output from the DDBJ-XML service is con-

verted to its corresponding concept instance (the Sequence Data Record concept),

which can in turn be converted to FASTA format for input to the NCBI-Blast

service. We define two terms to distinguish between these conversion processes:

• Conceptual Realisation

The conversion of an xml document to an owl concept instance.

• Conceptual Serialisation

The conversion of an owl concept instance to an xml document.

DDBJ-XML NCBI_Blast
DDBJXML
Format

FASTA
Format

DDBJ Sequence

Data Record
The output from the DDBJ-XML

service is converted to an instance
of the DDBJ Sequence Data Record concept

The Sequence Data Record concept
instance is converted to FASTA format
for input to the NCBI_Blast service

co
n

ce
p

tu
a

l r
ea

lis
a

ti
o

n

co
n

ce
p

tu
a

l s
er

ia
lis

a
ti

o
n

Figure 4.6: Using an ontology instance as a mediator to harmonise services
with incompatible interfaces.

Chapter 4 WS-HARMONY:

An Architecture for Automated Workflow Harmonisation 56

To facilitate these conversion processes, we assume a canonical representation for

owl concept instances. This allows us to view conceptual realisation and concep-

tual serialisation as xml to xml transformations. While it is common for owl

users to specify owl concept instances using rdf/ xml syntax, xml schemas do

not usually exist to validate them. Therefore we automatically generate schemas

using the OWL-XIS generator, presented in full in Chapter 7, Section 7.2.

4.1.2 Mapping xml to owl and vice versa

To enable the transformation of xml data to owl and vice versa, we present

the declarative mapping language fxml-M (formalised xml mapping). fxml-M

is modular and composable to embrace xml schema reuse meaning xml schema

components2 can be mapped individually to owl concepts and properties. We

formalise this mapping language and the transformation process in Chapter 5 after

deriving requirements from real bioinformatics data sets. fxml-M is designed

to accommodate complex relationships: collections of xml components can be

mapped to single elements (and vice versa); components can be mapped differently

based on the existence and values of other elements and attributes; components

can be mapped depending on their context within an xml document, and some

basic string manipulation support is offered through the use of regular expressions.

To this end, fxml-M provides a set of novel language constructs that do not exist

in other approaches [64, 85, 70, 7, 14].

An implementation of the fxml-M language is provided through a scheme [63]

library called fxml-T, presented in Chapter 6. Through empirical testing, we

show that our implementation scales well with respect to increasing document and

schema sizes, offers composability with almost zero cost, and is efficient compared

to other translation implementations when used with bioinformatics data sets.

2We use the term components to refer to xml elements, attributes and literal values

Chapter 4 WS-HARMONY:

An Architecture for Automated Workflow Harmonisation 57

4.2 Mediation Infrastructure

In Section 4.1, we specified two mediation approaches: direct and intermediary-

based. Although direct mediation does not scale well, current Grid and Web

Services infrastructures already expose this functionality. Therefore, the WS-

HARMONY architecture is designed to cope with both approaches. To present

our architecture, and position our contribution against existing technology, the

following sub-sections show current workflow invocation models, how they are

affected with a direct mediation approach, and what changes intermediary-based

mediation requires.

4.2.1 Conventional Workflow Invocation

Since we are augmenting an existing Grid infrastructure, we begin by showing the

current topology in Figure 4.7. When executing workflows in a service-oriented

environment, a Workflow Enactment Engine, such as FreeFluo [46] or activeBPEL

[3], is used to control the invocation of Web Services. The Workflow Enactment

Engine takes a workflow specification document describing the services to invoke,

the order in which to invoke them, the dataflow between services, and optionally

Web Service 2

Workflow
Input

Workflow
Specification

(BPELWS, XSCUFL)

Workflow
Enactment

Engine

Workflow
Output Dynamic

WS Invoker

Web Service 1
Dynamic

WS Invoker

Web Service invocation
(e.g. SOAP/HTTP)

Web Service invocation
(e.g. SOAP/HTTP)

The Workflow Enactment Engine
consumes a workflow specification and

 optional workflow input

On completing all tasks within the workflow,
the Workflow Enactment Engine may

produce an output

The Workflow Enactment Engine
uses the Dynamic WS Invoker

to execute Web Services

Figure 4.7: Current Invocation Framework for Workflow based applications

Chapter 4 WS-HARMONY:

An Architecture for Automated Workflow Harmonisation 58

some workflow inputs. To support the invocation of arbitrary Web Services, the

WS-HARMONY architecture includes a Dynamic Web Service Invoker (dwsi).

While current Web Service invocation technologies, such as Apache Axis [10], are

adequate in static environments where service definitions are known at design /

compilation time, they do not cater well for the invocation of previously unseen

services. The dwsi is able to call arbitrary wsdl [33] defined services that bind

with soap [52] encoding over http transport. This part of the WS-HARMONY

architecture is presented in full later in Chapter 7 where a performance evaluation

against Apache Axis shows that the dwsi has a lower invocation overhead.

4.2.2 Direct Mediation Workflow Harmonisation

To cater for any syntactically incompatible services, extra stages must be inserted

into the workflow to perform syntactic mediation. Figure 4.8 shows various kinds

of Type Adaptor (an xslt script, java class, or Web Service invocation) that

could be used as a direct mediator to harmonise the data incompatibility. Current

solutions require the manual discovery and insertion of adaptor components into

the workflow specification, and thus the workflow designer must consider low-level

interoperability issues.

Web Service 2

Workflow
Input

Workflow
Specification

(BPELWS, XSCUFL)

Workflow
Enactment

Engine

Workflow
Output

Dynamic
WS Invoker

Web Service 1
Dynamic

WS Invoker

When the output from Web Service 1 is not compatible for input
to Web Service 2, data translation may be executed in a

variety of ways. This figure shows how a translation script,
Mediation Web Service, and JAVA Class could be used.

Mediator

Translation
Specification

XSLT Script

Mediation
Web Service

JAVA

The Mediator may take the
 form of an XSLT Engine, Web

 Service invoker, orJava execution

Figure 4.8: Syntactic Mediation in the context of workflow

Chapter 4 WS-HARMONY:

An Architecture for Automated Workflow Harmonisation 59

4.2.3 Intermediary-based Workflow Harmonisation

In order to translate xml data from one format to another via an intermediate rep-

resentation in owl, as we described in Section 4.1.1, two translation specifications

are required: one for conceptual realisation and one for conceptual serialisation

(Figure 4.9). The WS-HARMONY architecture supports on-the-fly creation of

Type Adaptors using mapping specifications in fxml-M through the Configurable

Mediator (C-Mediator) component. The C-Mediator, pictured in detail in

Figure 4.10, consumes a serialisation and realisation specification (expressed us-

ing fxml-M) and uses them to transform an xml document in one format to an

xml document in a different format via an intermediate owl concept instance.

The Translation Engine, built using fxml-T, transforms xml data by consuming

mapping rules expressed in fxml-M, and jena is used to hold the intermediate

owl model. A full breakdown of the C-Mediator and Translation Engine are

provided in Chapter 6.

Web Service 2

Workflow
Input

Workflow
Specification

(BPELWS, XSCUFL)

Workflow
Enactment

Engine

Workflow
Output

Dynamic
WS Invoker

Web Service 1
Dynamic

WS Invoker

The Workflow Enactment Engine uses the Configurable
Mediator to convert the output of Web Service 1 into

the correct format for input to Web Service 2

Configurable
Mediator

Realisation
Translation

m1= a/b->x/y
m2= a/c->x/z

Serialisation
Translation

m1= x/y->p/q
m2= x/z->p/r

Ontology
Instance

The Configurable Mediator uses the realisation translation to generate an OWL
concept instance from the output of Web Service 1. This concept instance servces as the

intermediate representation. The serialisation translation is then used to convert the
concept instance to a different XML representation that is suitable for input to Web Service 2.

intermediate
representation

in OWL

Figure 4.9: Modified Invocation Framework featuring a configurable mediator

Chapter 4 WS-HARMONY:

An Architecture for Automated Workflow Harmonisation 60

Realisation
Translation

m1= a/b->x/y
m2= a/c->x/z

Serialisation
Translation

m1= x/y->p/q
m2= x/z->p/r

Transformation
Engine

Transformation
Engine

OWL
Concept
Instance

(JENA)

Input
<type a>

Output
<type p>

C
o

n
fi

g
u

ra
b

le
 M

e
d

ia
to

r
The Configurable Mediator transforms
xml data from one format to another

using an intermediate representation in OWL

Figure 4.10: A high-level view of the Configurable Mediator

4.3 Mediation Specification Requirements

The specification of mappings between xml and owl is central to our workflow

harmonisation solution since they provide the mechanisms necessary to perform

syntactic mediation. At a fundamental level, we have split the mediation process

into two translation operations: conceptual serialisation, the process of converting

xml to owl, and conceptual realisation, the process of converting owl to xml.

A single Web Service may offer a number of operations: for example, the DDBJ-

XML Service we use in our use case offers many operations over sequence data

records. As we highlighted in Chapter 2, Section 2.5, xml schema definitions are

often reused when services offer multiple operations over the same, or subsets of

the same data. A simple service annotation approach defines translations for each

Web Service operation. This is the approach taken by owl-s where xslt scripts

are used to define the transformation for each operation input and output. If this

technique is used to annotate the DDBJ-XML service, separate annotations would

be needed to describe the “Get SWISS record”, “Get EMBL record” and “Get

UNIPROT record” operations. Furthermore, when we consider the “Get Sequence

Features” operation, we see that a subset of the same transformation is required

because the output is a subset of the full sequence data record. This annotation

approach has two major limitations:

Chapter 4 WS-HARMONY:

An Architecture for Automated Workflow Harmonisation 61

1. Close coupling of mapping specification

For the DDBJ-XML service, which offers operations over exactly the same

data types, it would be better to de-couple the mapping specifications from

the service description for two reasons: (a) the same mappings could be

reused by each operation resulting in less work during the annotation process,

(b) if the data format and its corresponding ontology definition are modified,

only one change to the mapping would be required. The DDBJ-XML service

offers 60 different operations to retrieve sequence data records so de-coupling

is an important consideration.

2. No support for mapping reuse

As we illustrated earlier in Figure 2.7, the DDBJ-XML service provides op-

erations that return subsets of complete sequence data records. Rather than

use separate mappings to describe how each possible subset of the sequence

data record is translated to and from an owl concept instance, it is better

to describe how each part of the sequence data record is translated using a

declarative language, in effect, providing building blocks to construct Type

Adaptors.

Therefore, the WS-HARMONY architecture offers a scalable mediation solution,

both in terms of the mediation approach (which is based on an intermediate repre-

sentation), and in the way mappings are de-coupled from the interface definition.

4.4 Discovery of Type Adaptors

The mediation infrastructure presented in Section 4.2 assumes that all Type Adap-

tor components, either for direct mediation or through an intermediate owl repre-

sentation, are known. To enable automated mediation, i.e. discover the appropriate

translation components without human direction, WS-HARMONY makes use

of a registry that stores Type Adaptor information. Since Type Adaptors come

in many forms, e.g. application code, scripts, mapping specifications and Web

Services, we separate their definitions into abstract capability (what the input

and output types are) and concrete implementation (how the Type Adaptor is in-

voked). Under this assumption, all Type Adaptors can be described using wsdl,

Chapter 4 WS-HARMONY:

An Architecture for Automated Workflow Harmonisation 62

and retrieved according to their input and output types. Because wsdl is used to

define Type Adaptor functionality, existing Web Service registry technology can

be reused. WS-HARMONY relies on the Grimoires [93] registry to support

the advertising, sharing and discovery of wsdl Type Adaptor definitions, as we

illustrate in Figure 4.11. This part of the WS-HARMONY architecture is pre-

sented in full in Chapter 7 where a full explanation of wsdl and the Grimoires

registry is given.

GRIMOIRES

WSDL Definition

XML Schemas

BSML
Schema

AGAVE
Schema

DDBJ-XML
Schema

INSD-XML
Schema

XSLT
Script

Java
Code

Mediation

Web Service

Realisation
Translation

Serialisation
Translation

intermediate OWL
Representation

The GRIMOIRES registry

is used to advertise and

discover Type Adaptors

Direct Type Adaptors

are described using WSDL

Grounding specifications

are described using WSDL

Figure 4.11: WSDL is used to describe Type Adaptors which are registered
with Grimoires

4.5 Automated Workflow Harmonisation

With a mediation infrastructure in place that supports the translation of data

using direct and intermediary mediators, and a registry containing mediator de-

scriptions, the complete WS-HARMONY architecture can be viewed in terms of

Web Services, xml schemas, owl ontologies, and the Grimoires registry, as we

show in Figure 4.12:

Chapter 4 WS-HARMONY:

An Architecture for Automated Workflow Harmonisation 63

• Web Services

Web Services (bottom left of Figure 4.12) are described using wsdl by the

service provider. The syntactic type of any operation input or output is

defined by a reference to an xml schema type or element.

• XML Schemas

xml schemas (bottom right) are created by service providers to describe the

datasets consumed and produced by their Web Services. Direct Mediators

(e.g. xslt scripts, Web Services and bespoke programs) may translate data

directly between formats. Mappings supply the necessary translation spec-

ification to perform conceptual serialisation and conceptual realisation and

enable intermediary-based mediation. In effect, this allows xml data to be

turned to and from an owl concept instance.

• Ontologies

Ontologies (top) capture the structure and semantics of the xml data for-

mats and provide the semantic types for service inputs and outputs necessary

for semantic service discovery.

• Registry

The service registry (centre) is used to store wsdl interfaces for Web Ser-

vices and their corresponding semantic annotations. Any Type Adaptors

(both direct and intermediary) are also described using wsdl so the exist-

ing Grimoires query interface can be used for discovery according to the

required input and output types.

4.6 Conclusions and Contribution Summary

To supply the invocation and mediation framework presented in this Chapter,

we make three distinct contributions that are presented in detail in the following

Chapters:

1. A Modular Transformation Theory

As we stated earlier in Section 4.3, a good transformation approach for con-

ceptual serialisation and conceptual realisation is modular. On investigating

C
h
a
p
ter

4
W

S
-H

A
R

M
O

N
Y

:

A
n

A
rch

itectu
re

fo
r

A
u
to

m
a
ted

W
o
rk

fl
o
w

H
a
rm

o
n
isa

tio
n

64

BSML
Schema

AGAVE
Schema

DDBJ-XML
Schema

INSD-XML
Schema

Direct
Mediator

Sequence_Data

accession_id
sequence
description
has_reference
has_feature

DPDP

DP

DP

OP

OP

Reference

authors
journal
title

DPDP

DP

DP

Sequence_Feature

locationDPOP

Feature_Location

start
end

DPDP

DP

OWL Ontology

DDBJ-XML

XEMBL

NCBI_Blast

SoapLab

Web Services

WSDL Interface
Defintion

•Types
•Messages
•Ports
•Bindings
•Services

Web Services are
described using WSDL

Semantic
Web Service
Annotation

[OWL concept]

<WSDL message>

Semantic Web Service
annotations relate WSDL
message parts to concepts
within an ontology

Mappings define the translation
of XML data to OWL concept instances

and vice versa. The combination of a
realisation and serialisation translation

can be used by the Configurable Mediator
to build a Type Adaptor

WSDL message parts are
defined using XML Schema

GRIMOIRES
Registry

Realisation
Translation

[OWL concept]

<XML Component>

Serialisation
Translation

[OWL concept]

<XML Component>

WSDL Interface
Description

WSDL Interface
Description

WSDL Interface
Description

Service's WSDL Interfaces and
corresponding semantic

 annotations are stored in
the GRIMOIRES registry

All Type Adaptors
are descirbed using

 WSDL and registerd
with GRIMOIRES

F
ig

u
r
e

4
.1

2
:

H
igh

-lev
el

ov
erv

iew
of

th
e

G
r
im

o
ir

e
s

registry
an

d
in

form
ation

sou
rces

Chapter 4 WS-HARMONY:

An Architecture for Automated Workflow Harmonisation 65

this requirement within a bioinformatics Grid application, we found a modu-

lar transformation is difficult to achieve with complex data sets. Our solution

comes in the form of fxml-M (Chapter 5): a declarative and composable

mapping language with a well defined transformation process. fxml-M has

novel features that allow complex mappings to be specified: predicate sup-

port is included so mapping can be specified in terms of the existence and

values of other elements; mappings can be given scope so different map-

pings are applied depending on the context of a particular element within

a document; string manipulation constructs are included through regular

expressions support to allow different characters within a string value to be

split and assigned to different elements.

2. A Configurable Mediator

The Transformation Engine, (built with fxml-T), implements the mapping

and transformation theory presented in Chapter 5 to enable the conversion of

xml documents. The C-Mediator (Chapter 6) combines the Transforma-

tion Engine with the ontology processing api jena to supply a dynamically

configurable Type Adaptor. The C-Mediator consumes mappings that

specify the processes of conceptual realisation and conceptual serialisation,

along with an ontology definition in owl, and uses them to drive the con-

version of data between syntactically incongruous data formats.

3. Architecture for the registration, sharing, and discover of Type

Adaptors

With a mediation infrastructure in place, WS-HARMONY supports au-

tomatic workflow harmonisation through the discovery of appropriate Type

Adaptors at runtime. To achieve this, all Type Adaptor components (both

direct and intermediary) are described using wsdl and registered with the

Grimoires service registry. This means the existing Grimoires query in-

terface can be reused to support the discover of Type Adaptors according to

the desired input and output types. To overcome the limitations of existing

Web Service invocation apis, such as Apache Axis and jax-rpc, with respect

to the invocation of previously unseen services, the Dynamic Web Service

Invoker is used. These additional architecture components are presented in

Chapter 7.

Chapter 5

Transformation Theory

To harmonise dataflow between two syntactically incompatible service interfaces,

data transformations can be used to convert a data instance from one represen-

tation to another. In Chapter 4, we identified two ways in which this mediation

can be performed: direct (where translation is performed from one format straight

to another) and intermediary-based (where a common format is used as a lingua

franca). Since direct mediation has poor scalability and is difficult to use in large

communities where many different formats are used, we have concentrated our

efforts on the intermediary-based approach because it supports better scalability

and eases the introduction of new data formats (Chapter 4, Section 4.1).

By using owl ontologies to capture the structure and semantics of data structures,

owl concept instances can be used as the intermediate representation allowing

all semantically equivalent data formats to become interchangeable (Chapter 4,

Section 4.1.1). Existing semantic service annotation techniques, such as owl-s,

wsdl-s and the FETA annotation model, already use the notion of a semantic

type: a concept from an ontology which is assigned to each input and output type

for a service interface. These annotations are reused within the WS-HARMONY

architecture, effectively assigning each concrete type a corresponding conceptual

model in owl via the semantic type. By assuming a canonical xml representation

for owl concept instances, we simplify the transformation problem allowing real-

isation and serialisation transformations to be expressed as xml transformations.

66

Chapter 5 Transformation Theory 67

The contribution of this Chapter is a modular and composable xml mapping lan-

guage and translation formalisation to support the transformation of data between

different formats. The novelty of the language is the combination of the following

features:

• A declarative and composable mapping language to support mapping reuse

and schema composition.

• Composite mappings so a single element in the source document can be

mapped to a combination of elements in the destination document (and vice

versa).

• Predicate support to allow elements and attributes to be mapped differently

depending on their content or structure.

• Basic string manipulation so literal values can be split and mapped to dif-

ferent elements in a destination document.

• Scoping to allow different mappings to be applied depending on the context

of an element within the document.

• xml syntax for the specification of mappings.

• A formalism to define the mapping language and transformation process,

giving precise semantics for the language and the specification of an abstract

implementation.

The Chapter begins in Section 5.1 where we derive our transformation require-

ments using data sets from our use case. In Section 5.2 we give a brief overview

of xml and xml schema, showing how they are represented within an existing

formalisation [26]. This formalism is then extended in Section 5.3 to describe the

mechanics involved in a transformation process. Section 5.4 describes our trans-

formation theory at a high level, before we present its formalisation in Section 5.5.

In Section 5.6, example mappings for conceptual realisation of the DDBJ bioinfor-

matics service output are presented, along with their corresponding xml syntax

in Section 5.7. We conclude in Section 5.8 by summarising our transformation

theory and present additional features that could be included in future work.

Chapter 5 Transformation Theory 68

5.1 Transformation Requirements

We stated in Chapter 4 that we simplify the transformation requirements for

conceptual serialisation and conceptual realisation by assuming a canonical xml

representation of owl concept instances. This way, we can view the translation

process as an xml to xml translation. While it is common for owl users to specify

owl concepts and their instances using xml syntax, xml schemas do not usually

exist to validate them. Therefore, we automatically generate schemas using the

OWL-XIS generator (owl xml instance schema generator), presented in full in

Chapter 7. An example instance schema for the Sequence Data ontology used in

our use case can be found in Appendix C. By using this xml schema, we are able

to describe an instance of the Sequence Data Record concept using the xml given

in Listing 5.1.

To provide a modular transformation solution, we use mappings to express the

relationship between the xml elements and attributes in a source schema, and

their corresponding elements and attributes in a destination schema. We illustrate

this idea in Figure 5.1 where we show a subset of a full sequence data record in

DDBJ format and its corresponding owl concept instance (serialised in xml).

We consider six different mapping types, with examples given in Figure 5.1, that

highlight our mapping requirements:

1. Single element to element mapping

In simple cases, elements and attributes in a source schema correspond di-

rectly to elements and attributes in a destination schema. For example, in

Figure 5.1, the <DDBJXML> element is mapped to the <Sequence Data Record>

element.

2. Element contents mapping

When elements and attributes contain literal values (e.g. strings and num-

bers), it is necessary to copy the literal value from the source document and

include it in the destination document. For example, the text value AB000059

contained in the <ACCESSION> element must be copied to the destination doc-

ument and inserted as the contents of the <accession id> element.

Chapter 5 Transformation Theory 69

1 <?xml version="1.0" encoding="iso −8859−1" ?>
2 <Sequence Data Record xmlns="http://www.ecs.soton.ac.uk/˜mns03r/sch ema/Sequence −Ont" >
3 <accession id >AB000059</accession id >
4 <sequence >atgagtgatggagcagttcaaccagacggtggtcaacctgctgtcagaaa. .. </sequence >

5 <description >Feline panleukopenia virus DNA for capsid protein 2 </description >

6 <has reference >

7 <Reference >

8 <authors >Horiuchi M. </authors >

9 <journal >Submitted (22 −DEC−1996) to the EMBL/GenBank/DDBJ databases.
10 Motohiro Horiuchi, Obihiro University of Agriculture and V eterinary Medicine,
11 Veterinary Public Health; Inada cho, Obihiro, Hokkaido 080 ,
12 Japan (E −mail:horiuchi@obihiro.ac.jp, Tel:0155 −49−5392) </journal >

13 </Reference >

14 </has reference >

15 <has reference >

16 <Reference >

17 <authors >Horiuchi M. </authors >

18 <title >evolutionary pattern of feline panleukopeina
19 virus differs fromn that of canine parvovirus </title >

20 <journal >Unpublished Reference </journal >

21 </Reference >

22 </has reference >

23 <has feature >

24 <Feature Source >
25 <location >

26 <Feature Location >

27 <start >1</start >

28 <end>1755</end >
29 </Feature Location >

30 </location >

31 <lab host >Felis domesticus </lab host >
32 <isolate >Som1</isolate >

33 <organism >Feline panleukopenia virus </organism >

34 </Feature Source >
35 </has feature >

36 <has feature >

37 <Feature CDS>
38 <location >

39 <Feature Location >

40 <start >1</start >

41 <end>1755</end >
42 </Feature Location >

43 </location >

44 <translation >MSDGAVQPDGGQPAVRNERATGSGNGSGGGGGGGSGGVGISTG...</translation >

45 <product >capsid protein 2 </product >

46 </Feature CDS>
47 </has feature >

48 </Sequence Data>

Listing 5.1: An XML representation for an instance of a Sequence Data con-
cept

3. Multiple element mapping

In some cases, the relationship between elements in a source and destination

schema is not atomic; a combination of elements in the source document

may constitute a single element (or another combination of elements) in

the destination document. For example, the <FEATURES> element containing

a <source> element is mapped to the <has feature> element containing a

<Feature Source> element in our example.

Chapter 5 Transformation Theory 70

 </source>

 </Features>

</DDBJXML>

 <Feature_Location>

 </Feature_Location>

 </location>

 </Feature_Source>

 </has_feature>

</Sequence_Data_Record>

1

2

3

 <start>1</start>
4

5

 <FEATURES>

 <source>

 <location>1..1755</location> <location>1..1755</location> <location>1..1755</location> <location>1..1755</location> <location>1..1755</location> <location>1..1755</location>

<Sequence_Data_Record><Sequence_Data_Record><Sequence_Data_Record><Sequence_Data_Record>

 <has_feature>

 <Feature_Source>

 <end>1755</end> <end>1755</end> <end>1755</end> <end>1755</end>

 <start>1</start> <start>1</start> <start>1</start> <start>1</start>

Sequence data record in DDBJXML Format

An Instance of the Sequence_Data_Record concept

 <qualifiers name="lab_host">Felis domesticus</qualifiers> <qualifiers name="lab_host">Felis domesticus</qualifiers>

 <lab_host>Felis domesticus</lab_host>

 <qualifiers name="isolate">Som1</qualifiers>

 <qualifiers name="lab_host">Felis domesticus</qualifiers>

6

 <ACCESSION>AB000059</ACCESSION>

 <accession_id>AB000059</accession_id> <accession_id>AB000059</accession_id> <accession_id>AB000059</accession_id>

 <isolate>Som1</isolate> <isolate>Som1</isolate> <isolate>Som1</isolate>

 <qualifiers name="isolate">Som1</qualifiers> <qualifiers name="isolate">Som1</qualifiers> <qualifiers name="isolate">Som1</qualifiers> <qualifiers name="isolate">Som1</qualifiers> <qualifiers name="isolate">Som1</qualifiers>

Figure 5.1: Mappings between elements and attributes in the DDBJXML

Sequence Data format and elements within the xml serialisation of the

Sequence Data Record owl concept

4. String manipulation support

In complex cases, the contents of a string literal may contain two or more

distinct pieces for information. In Figure 5.1, the <location> element has

text containing the start and end position, delimited by "..". Each of these

positions must be mapped to separate elements in the destination document

because they are assigned separate properties in the ontology.

5. Predicate support

Sometimes, an element or attribute from a source schema may be mapped

differently depending on the value of an attribute or element, or even the

presence of other elements within the document. This can be seen in Figure

5.1 where the <qualifiers> element is mapped differently depending on the

value of the @name attribute - in the case of Mapping 5, when the string

equals "lab host" , the element is mapped to the <lab host> element.

Chapter 5 Transformation Theory 71

6. Local Scoping

In some scenarios, we may wish to map elements differently based on their

context. For example, in a DDBJ record, the contents of the <qualifiers>

element (a string value) is mapped differently depending on the value of

the @name attribute. In mapping 6, the string contents of the <qualifiers>

element is mapped to the contents of the <isolate> element. To support this

kind of behaviour, our mapping language supports local scoping so different

rules can be applied in different contexts.

Because of these complex mapping requirements, we specify our mapping language

and the transformation of xml documents using a formalisation. This facilitates

a sound and efficient implementation (presented later in Chapter 6) and helps us

capture the more difficult transformation properties such as predicate support and

local scoping.

5.2 XML Formalisation

We have elected to base our mapping and translation theory on an existing xml

and xml schema formalisation [26] called Model Schema Language (msl) - a W3C

working draft [27]. While other xml and xml schema formalisms have been pro-

posed [17] [79], msl captures the most complex xml constructs such as type inher-

itance and cardinality constraints, as well as lending itself to the specification of

mappings between different xml schemas and the process of document translation

driven by such mappings.

In this Section, we outline the principal features of msl: how elements, attributes

and types are referenced (Section 5.2.1), how groups of elements are specified

for type declarations (Section 5.2.2), how xml schema components1 are defined

(Section 5.2.3), and how xml documents are represented (Section 5.2.4). This

will give the reader enough knowledge to understand our mapping and translation

formalisation, which appears later in the Chapter in Section 5.5.

1We use the term components to encompass elements, attributes and literal values.

Chapter 5 Transformation Theory 72

1 <?xml version="1.0" encoding="iso −8859−1" ?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSche ma"
3 targetNamespace="http://www.ecs.soton.ac.uk/˜mns03r /schema/Example −Source"
4 xmlns="http://www.ecs.soton.ac.uk/˜mns03r/schema/Ex ample−Source" >
5

6 <xsd:element name="a" >

7 <xsd:complexType >

8 <xsd:all >

9 <xsd:element name="b" type="xsd:string" minOccurs="1" ma xOccurs="1"/ >

10 <xsd:element ref="c" minOccurs="1" maxOccurs="1"/ >

11 </xsd:all >

12 <xsd:attribute name="id" type="xsd:string"/ >

13 </xsd:complexType >

14 </xsd:element >

15

16 <xsd:element name="c" type="c −type"/ >

17

18 <xsd:complexType name="c −type" >

19 <xsd:sequence >

20 <xsd:element ref="b" minOccurs="1" maxOccurs="2"/ >

21 </xsd:sequence >

22 </xsd:complexType >

23

24 <xsd:complexType name="c −extended" >

25 <xsd:complexContent >

26 <xsd:extension base="c −type" >

27 <xsd:sequence >

28 <xsd:element ref="d" minOccurs="1" maxOccurs="3" >

29 </xsd:sequence >

30 </xsd:extension >

31 </xsd:complexContent >

32 </xsd:complexType >

33

34 <xsd:element name="b" type="xsd:integer"/ >

35 <xsd:element name="d" type="xsd:integer"/ >

36

37 </xsd:schema >

Listing 5.2: A Simple XML Schema

5.2.1 Normalised schema

msl references the components of an xml schema, such as elements, attributes and

types, using a normalised format. Normalisation assigns a unique, universal name

to each schema part and provides a flat representation of the components found

within a schema document. This allows us to distinguish between components

with the same name that have been declared within different scopes. To exemplify

this notation, we provide the normalised form for all xml components declared in

the simple xml schema shown in Listing 5.2 with corresponding line numbers in

square brackets to show where they are defined. These references are simply used

to point to xml schema components: the definition of actual elements and types

is presented later in Section 5.2.2.

Chapter 5 Transformation Theory 73

[6] http://www.ecs.soton.ac.uk/~mns03r/schema/Example-Source/#element::a

[7] http://www.ecs.soton.ac.uk/~mns03r/schema/Example-Source/#element::a/type::*

[12] http://www.ecs.soton.ac.uk/~mns03r/schema/Example-Source/#element::a/type::*/attribute::id

[9] http://www.ecs.soton.ac.uk/~mns03r/schema/Example-Source/#element::a/type::*/element::b

[16] http://www.ecs.soton.ac.uk/~mns03r/schema/Example-Source/#element::c

[18] http://www.ecs.soton.ac.uk/~mns03r/schema/Example-Source/#type::c-type

[24] http://www.ecs.soton.ac.uk/~mns03r/schema/Example-Source/#type::c-extended

[34] http://www.ecs.soton.ac.uk/~mns03r/schema/Example-Source/#element::b

[35] http://www.ecs.soton.ac.uk/~mns03r/schema/Example-Source/#element::d

The first part of the normalised schema reference, up to the first occurrence of the

symbol, is the namespace. The second part (following the # symbol) is a path

of sort / name pairs (delimited by ::), each containing a sort (e.g. #element,

#attribute, or #type) designating the kind of component referenced, and a name

(e.g. a or id) which is the local name assigned to the component. For example, the

element a is defined in the global scope (line 6 of Listing 5.2) and is referenced with

the namespace prefix http://www.ecs.soton.ac.uk/ mns03r/schema/Example-Source and

the normalised path reference element::a . The element a contains an anonymous

complex type definition (line 7) which is referenced using the path element::a/

type::* (where "*" represents an anonymous type and should not be confused

with a wild card character). This complex type has a locally defined element (line

9) named b which can be distinguished from the globally defined element named

b (line 34) because they have different normalised schema references (element::a/

type::*/element::b and element::b respectively). The type refinement given in

line 24 is used later to illustrate type inheritance within msl.

For compactness, a short form notation is used throughout the rest of this Chapter

to refer to schema components where the namespace is dropped along with the

sort definition. This allows us to reference the element a simply using a, the

anonymously defined type within the scope of a using a/*, and the attribute id

(line 12) using a/*/@id.

5.2.2 Model Groups

In xml, elements and attributes are assigned types to describe their contents. For

elements containing data values, this is one of the pre-defined xml types such as

xsd:string or xsd:int, or a simple type that restricts the content of an existing

Chapter 5 Transformation Theory 74

type (for example, numbers between 1 and 10). For elements that contain other

elements, such as element a in our example above (Listing 5.2), their type is a

complex type. A complex type falls into one of three categories, specified using one

of the following indicators:

• <xsd:sequence> - contains a sequence of elements in a specified order.

• <xsd:all> - contains a collection of elements in any order.

• <xsd:choice> - contains one element from a choice of elements.

Occurrence indicators may be set to specify the number of times each content

element should appear (e.g. an element in a sequence can only appear once).

In msl, the contents of an xml type is specified by a model group using traditional

regular expression notation [4]. We let g range over model groups.

group g ::= ǫ empty sequence

| θ empty choice

| g1, g2 a sequence of g1 followed by g2

| g1 | g2 choice of g1 or g2

| g1&g2 an interleaving of g1 and g2 in any order

| g{m,n} g repeated between minimum m and maximum n times

| a[g] attribute with name a containing g

| e[g] element with name e containing g

| p atomic datatype (such as string or integer)

| x component name (in normalised form)

These model groups are used in the definition of schema components, as we de-

scribe in the following section.

Chapter 5 Transformation Theory 75

5.2.3 Components

In msl, schema components (xml elements, attributes, etc. . .) can be one of

seven sorts2: element, attribute, simply type, complex type, attribute group or model

group. We let srt range over sorts.

sort srt ::= attribute

| element

| simpleType

| complexType

| attributeGroup

| modelGroup

In xml, it is possible to express rudimentary type inheritance. When defining a

type, a base type must be specified (by default this is assumed to be xsd:UrType).

A type may either extend the base type or refine it. Extension is used in the case

where the subtype allows more elements and attributes to be contained within

it, such as the type c-extended in Listing 5.2. Refinement is used to constrict

the existing elements and attributes defined by the base type, for example, by

imposing more restrictive cardinality constraints.

We let cmp range over components where x is a reference to another normalised

2the term sort is used to avoid confusion with the xml term type

Chapter 5 Transformation Theory 76

component name, der ranges over the two types of derivation (extension or refine-

ment), ders is a set of der’s, b is a boolean value and g is a model group.

components cmp ::= component(

sort = srt

name = x

base = x

derivation = der

refinement = ders

abstract = b

content = g

)

A derivation specifies how the component is derived from its base type. We let

der range over derivations, and ders range over sets of derivations:

derivation der ::= extension

| refinement

derivation set ders ::= {der1, . . . , derl}

The refinement field of a component definition states the permissible derivations

that can be made using this component as base. With a means to specify schema

components, the components from our example schema (Listing 5.2) can be defined

as in Figure 5.2 (preceded with corresponding line numbers in square brackets to

indicate where they are defined in the schema listing). The content of an element

or attributes is its type (e.g. element a has the content a/*), and the content of

a complex type is a list of the elements and attributes it contains (e.g. type a/*

contains an interleaving of a/*/@id, a/*/b, and c).

Chapter 5 Transformation Theory 77

[6]
component(
 sort = element,
 name = a,
 base = xsd:UrElement,
 derivation = restriction,
 refinement = {},
 abstract = false,
 content = a/*
)

[7]
component(
 sort = complexType,
 name = a/*,
 base = xsd:UrType,
 derivation = restriction,
 refinement = {restriction,extension}
 abstract = false
 content = a/*/@id{1,1} & a/*/b{1,1} & c{1,1}
)

[12]
component(
 sort = attribute,
 name = a/*/@id,
 base = xsd:UrAttribute,
 derivation = restriction,
 refinement = {restriction}
 abstract = false
 content = xsd:string
)

[9]
component(
 sort = element,
 name = a/*/b,
 base = xsd:UrElement,
 derivation = restriction,
 refinement = {}
 abstract = false
 content = xsd:string
)

[16]
component(
 sort = element,
 name = c,
 base = xsd:UrElement,
 derivation = restriction,
 refinement = {},
 abstract = false,
 content = c-type
)

[18]
component(
 sort = complexType,
 name = c-type,
 base = xsd:UrType,
 derivation = restriction,
 refinement = {restriction, extension}
 abstract = false
 content = b{1,2}
)

[24]
component(
 sort = complexType,
 name = c-extended,
 base = c-type,
 derivation = extension,
 refinement = {restriction, extension}
 abstract = false
 content = d{1,3}
)

[34]
component(
 sort = element,
 name = b,
 base = xsd:UrElement,
 derivation = restriction,
 refinement = {},
 abstract = false,
 content = xsd:integer
)

[35]
component(
 sort = element,
 name = d,
 base = xsd:UrElement,
 derivation = restriction,
 refinement = {},
 abstract = false,
 content = xsd:integer
)

Figure 5.2: msl to represent the schema components defined in Listing 5.2
with listing line numbers for components indicated in square brackets.

Chapter 5 Transformation Theory 78

5.2.4 Typed Documents

In the previous Sections (5.2.1, 5.2.2 and 5.2.3), we have described how msl can

be used to specify xml schema components. To represent instances of the schema

components, or xml documents, msl uses typed documents. We let td range over

typed documents:

document td ::= ǫ empty document

| td1, td2 a sequence of typed documents

| c a constant (e.g. a string or an integer)

| a[s ∋ c] an attribute a of type s with contents c

| e[t ∋ td] an element e of type t with contents td

As an example, Figure 5.3 contains msl to express the xml document given in

Listing 5.3 adhering to the schema presented earlier in Listing 5.2. The root

element a, of type a/*, is a sequence containing the attribute a/*/@id (with

the string value "foo"), the element a/*/b (with the string value "bar"), and

the element c. The element c, of type c-type, contains a sequence with two b

elements each containing the integer values 1 and 2.

a[a/* ∋
a/*/@id[xsd:string ∋ "foo"],

a/*/b[xsd:string ∋ "bar"],

c[c-type ∋
b[xsd:integer ∋ 1],

b[xsd:integer ∋ 2]

]

]

Figure 5.3: msl to express the xml document given in Listing 5.3

<?xml version ="1.0" encoding ="iso -8859 -1" ?>

bar

<c>

1

2

</c>

Listing 5.3: An example xml document

Chapter 5 Transformation Theory 79

5.3 Formalisation Extensions

Before describing our xml mapping and transformation methodology, we present

two extensions to the msl formalisation: we describe a notion of document paths,

which allow us to specify a selection of components from within an xml document,

and simple predicates which will be used later to specify conditional mappings.

5.3.1 Document Paths

To specify a selection of child elements, attribute or literal values located deep

within a given typed document, we use a document path. This is an important

xml construct and is already implemented in xpath [35]. However, xpath has

not been formalised within msl, so we present our own simple document path

formalism. We let path components θ range over attribute names, element names,

the keyword value, the keyword value with a regular expression, and the empty

document ǫ:

path component θ ::= a attribute name

| e element name

| value value extraction

| value{regexp} regular expression

| ǫ empty document

regular expression regexp ::= string

The empty document ǫ is included so empty xml elements (e.g. <x/> can be

matched). A path expression is then specified by a sequence of path components.

path expression Θ = 〈θ1, θ2, . . . , θn〉

Definition 1 (Path Components) To evaluate a path expression Θ against a

source typed document tds, each path component (θn) in the expression must match

components within tds. Given a typed document tds that contains the components

Chapter 5 Transformation Theory 80

tdm that match θ, we write:

θ ⊢ tds → tdm

To define this behaviour, and others throughout the rest of this Chapter, we use

inference rule notation [47]. In this notation, when all statements above the line

hold, then the statement below the line also holds. We present rules to define

the matching of path components against typed documents in Figure 5.4. Rule

PATHC.A states that a path component θ referencing an attribute a matches the

typed document a[t ∋ tdc], and therefore θ ⊢ tds → a[t ∋ tdc] holds. Rule

PATHC.E uses the same principle to define the matching of elements. PATHC.C

states that a path component θ = value will match a typed document only if it

is a constant value (i.e. tds = c). To match regular expressions against constants

(rule PATHC.REG), we assume the existence of a function eval(regexp, c) = r which

evaluates the regular expression regexp against the string c giving the result r. The

matching of the empty document is defined in rule PATHC.EMP. Rules NOT.PATHC.A,

NOT.PATHC.E, NOT.PATHC.C, NOT.PATHC.REG, and NOT.PATHC.EMP define the cases

where the path component θ is not matched against the typed document tds, so

θ ⊢ tds →⊥ holds. When matching any path component against a typed document

that is a sequence of other typed documents, there are four possible cases: only

the first element in the sequence is matched (PATHC.SA), only the second element

in the sequence is matched (PATHC.SB), both elements are matched (PATHC.SAB),

or neither element is matched (NOT.PATHC.S).

Definition 2 (Child Documents) When evaluating a path expression, each path

component is matched in order against components in the source document. To

traverse into the document and take direct children of an element or attribute, a

notion of typed document contents is required. The direct child of a parent typed

document tdp is a child typed document tdc and is denoted by:

child(tdp) = tdc

To evaluate a path expression (which is a sequence of path components), it is

necessary to take the contents of an element or attribute so it can be evaluated

against the next path component in the sequence. Inference rules to describe this

behaviour are given in Figure 5.5. Rule CHILD.A states that a typed document

Chapter 5 Transformation Theory 81

PATHC.A
θ = a tds = a[t ∋ tdc]

θ ⊢ tds → a[t ∋ tdc]

NOT.PATHC.A
θ = a tds 6= a[t ∋ tdc]

θ ⊢ tds →⊥

PATHC.E
θ = e tds = e[t ∋ tdc]

θ ⊢ tds → e[t ∋ tdc]

NOT.PATHC.E
θ = e tds 6= e[t ∋ tdc]

θ ⊢ tds →⊥

PATHC.C
θ = value tds = c

θ ⊢ tds → c

NOT.PATHC.C
θ = value tds 6= c

θ ⊢ tds →⊥

PATHC.REG
θ = value{regexp} tds = c eval(regexp, c) = r

θ ⊢ tds → r

NOT.PATHC.REG
θ = value{regexp} tds 6= c

θ ⊢ tds →⊥

PATHC.EMP
θ = ǫ tds = ǫ

θ ⊢ tds → ǫ

NOT.PATHC.EMP
θ = ǫ tds 6= ǫ

θ ⊢ tds →⊥

PATHC.SA
θ tds = tda, tdb θ ⊢ tda → tdr θ ⊢ tdb →⊥

θ ⊢ tds → tdr

PATHC.SB
θ tds = tda, tdb θ ⊢ tda →⊥ θ ⊢ tdb → tdr

θ ⊢ tds → tdr

PATHC.SAB
θ tds = tda, tdb θ ⊢ tda → tdp θ ⊢ tdb → tdq

θ ⊢ tds → tdp, tdq

Figure 5.4: Rules to define the application of path components to typed
documents

Chapter 5 Transformation Theory 82

CHILD.A
tds = a[t ∋ tdc]

child(a[t ∋ tdc]) = tdc

CHILD.E
tds = e[t ∋ tdc]

child(e[t ∋ tdc]) = tdc

CHILD.C
tds = c

child(c) = c

CHILD.EMP
tds = ǫ

child(ǫ) = ǫ

CHILD.SEQ
tds = tda, tdb

child(tda, tdb) = tda, tdb

Figure 5.5: Rules to define the direct children of typed documents

tds that is the attribute definition a[t ∋ tdc] contains the document tdc. A similar

definition is used to define the contents of an element in rule CHILD.E. The other

three rules define the contents of the empty document (CHILD.EMP), a constant

(CHILD.C), and a sequence of typed documents (CHILD.SEQ) to be itself.

Definition 3 (Path Expressions) The application of path expression Θ to a

typed document tds yields a result typed document tdr. This action represents

the extraction of elements deep within a typed document according to the path

components specified in the path expression. To denote this, we write:

Θ ⊢ tds → tdr

With rules in place to describe the contents of typed documents and the matching

of path components, the evaluation of a path expression can be specified as in

Figure 5.6. The result document, tdn, is taken from the contents of the final

component matched (child(tdn−1′) = tdn).

As an example, the path expression Θ = 〈a, a/ ∗ /@id, value〉 can be evaluated

against the typed document given in Figure 5.3 to give the result "foo", and would

be equivalent to applying the xpath statement a/@id/text(). To illustrate this

Chapter 5 Transformation Theory 83

PATH.EVAL

Θ = 〈θ1, θ2, . . . , θn〉

θ1 ⊢ tds → tds′ child(tds′) = td1,

θ2 ⊢ td1 → td1′ child(td1′) = td2,
. . . ,

θn ⊢ tdn−1 → tdn−1′ child(tdn−1′) = tdn
Θ ⊢ td1 → tdn

Figure 5.6: A rule to define the application of a path expression to a typed
document

evaluation, Figure 5.7 shows the steps involved with and explanation of the rules

used below:

1. The source document is tds and the path expression is Θ. Rather than

write the full typed document, . . . is used to denote element and attribute

contents. Rule PATH.EVAL is used to derive the result document and is

comprised of three steps: α, β, and γ, each denoting the application of a

path component from Θ (e.g. [α]) and its child document (e.g. [α′]).

2. [α] - The first path component in Θ is matched against the root document

(a ⊢ tds → a[a/∗ ∋ . . .]) using rule PATHC.E.

3. [α′] - The direct child of the matched document is found using rule CHILD.E.

The direct child is a sequence of typed documents containing the attribute

a/*/@id, the element a/*/b, and the element c.

4. [β] - The second path component in Θ is then matched against the se-

quence using rule PATHC.SA since only the first document in the sequence

matches (rule PATHC.A) and the remaining two do not (rules NOT.PATH.A

and NOT.PATH.S).

5. [β′] - The direct child of the matched document is found using rule CHILD.A.

The direct child of the attribute is the literal value foo.

6. [γ] - The final path component in Θ is matched against the literal value using

rule PATHC.C (value ⊢ ”foo” → ”foo”).

7. [γ′] - The direct child of the literal value is itself (from rule CHILD.C) and is

the final result of the application of the path expression Θ to tds.

C
h
a
p
ter

5
T
ra

n
sfo

rm
a
tio

n
T

h
eo

ry
84

(PATH.EVAL)

tds = a[a/∗ ∋ . . .]

Θ = 〈a, a/ ∗ /@id, value〉

[α] [α′]

[β] [β′]

[γ] [γ′]

Θ ⊢ tds → foo

(PATHC.E) [α]
θ = a tds = a[a/∗ ∋ . . .]

a ⊢ tds = a[a/∗ ∋ . . .]

(CHILD.E) [α′]
tds = a[a/∗ ∋ . . .]

child(a[a/∗ ∋ . . .]) = a/ ∗ /@id[. . .], a/ ∗ /b[. . .], c[. . .]

(PATHC.SA) [β]

θ = a/ ∗ /@id tds = a/ ∗ /@id[. . .]
a/ ∗ /@id ⊢ a/ ∗ /@id[. . .] → a/ ∗ /@id[. . .]

θ = a/ ∗ /@id tds = a/ ∗ /b[. . .]
a/ ∗ /@id ⊢ a/ ∗ /b[. . .] →⊥

θ = a/ ∗ /@id tds = c[. . .]
a/ ∗ /@id ⊢ c[. . .] →⊥

a/ ∗ /@id ⊢⊥,⊥→⊥

a/ ∗ /@id ⊢ a/ ∗ /@id[. . .],⊥→ a/ ∗ /@id[. . .]

(CHILD.A) [β′]
tds = a/ ∗ /@id[. . .]

child(a/ ∗ /@id[xsd : string ∋ foo]) = foo

(PATHC.C) [γ]
θ = value tds = foo

value ⊢ foo → foo

(CHILD.C) [γ′]
tds = foo

child(foo) = foo

Figure 5.7: An example path expression evaluation to retrieve the contents of an attribute

Chapter 5 Transformation Theory 85

5.3.2 Simple Predicates

To cope with complex mappings where the semantics of an element or attribute

vary depending on the existence of other elements or their values, predicate support

is necessary. This notion was presented earlier in Section 5.1, example mapping

5, where the <qualifiers> element is mapped differently depending on the value

of the @name attribute. We let predicate atoms patom range over path expressions

and constants (such as a string or a number):

predicate atom patom ::= Θ path expressions

| c constant

A predicate ψ is then defined as:

predicate ψ ::= ∃ patom Evaluation of patom is not the empty document ǫ

| ψ1 && ψ2 Evaluation of both ψ1 and ψ2 must be true

| ψ1 || ψ2 Evaluation of either ψ1 or ψ2 must be true

| patom1 < patom2 The evaluation of patom1 is less than the evaluation of patom2

| patom1 > patom2 The evaluation of patom1 is greater than the evaluation of patom2

| patom1 = patom2 The evaluation of patom1 is equal to the evalaluation of patom2

| ¬ ψ′
The evaluation of ψ is false

| true Always true

Definition 4 (Predicate Evaluation) Predicates can be used to: check for exis-

tence of elements and attributes located within a typed document; the comparison

of literal values against each other; and the comparison of literal values to defined

constants. A predicate atom (patom) can be applied to a typed document tds to

give a result document tdr and is written:

apply(patom, tds) = tdr

Chapter 5 Transformation Theory 86

PEXPR.TD
Θ ⊢ tds → tdr

apply(Θ, tds) = tdr

PEXPR.C
tds

apply(c, tds) = c

Figure 5.8: Rules to define the evaluation of predicate expressions.

The evaluation of a predicate ψ against a typed document tds is either true or

false:

ψ ⊢ tds → b

Since predicate atoms range over path expressions and constants, we specify two

rules (PEXPR.TD and PEXPR.C in Figure 5.8) to define their evaluation against a

typed document. Rule PEXPR.TD states that when a predicate atom patom is

equal to a path expression Θ, and Θ ⊢ tds → tdr (from rule PATH.EVAL), then the

evaluation of patom against tds is equal to tdr. When a predicate atom patom

is equal to a constant c, the evaluation of patom to c is the constant itself (rule

PEXPR.C). This rule is used when a comparison is made to a defined constant, e.g.

the value of an element must be greater than 10.

Rules to define the evaluation of predicates are given in Figure 5.9. Rule PEVAL.E

states that the evaluation of the predicate atom patom against tds must not equal

the empty document. This predicate can be used to check for the existence of ele-

ments and attributes. Rule PEVAL.NEG states that the evaluation of the predicate

ψ′ against tds must be false. Rule PEVAL.AND states that the evaluation of both

predicates ψ1 and ψ2 must be true. Rule PEVAL.OR states that the evaluation of ei-

ther predicate ψ1 or ψ2 must be true. Rule PEVAL.LESS states that the evaluation

of patoma to tds must be less than the evaluation of patomb to tds. Rule PEVAL.GR

states that the evaluation of patoma to tds must be more than the evaluation of

patomb to tds. Rule PEVAL.EQ states that the evaluation of patoma to tds must be

equal to the evaluation of patomb to tds.

Chapter 5 Transformation Theory 87

PEVAL.E
ψ = ∃ patom apply(patom, tds) = tdr tdr 6=⊥

ψ ⊢ tds → true

PEVAL.NEG
ψ = ¬ ψ′ ψ′ ⊢ tds → false

ψ ⊢ tds → true

PEVAL.AND
ψ = ψa && ψb td ψa ⊢ tds → ba ψb ⊢ tds → bb

ψ ⊢ tds → ba ∧ bb

PEVAL.OR
ψ = ψa || ψb td ψa ⊢ tds → ba ψb ⊢ tds → bb

ψ ⊢ tds → ba ∨ bb

PEVAL.LESS

ψ = patoma < patomb

apply(patoma, tds) = ca

apply(patomb, tds) = cb
ψ ⊢ tds → ca < cb

PEVAL.GR

ψ = patoma > patomb

apply(patoma, tds) = ca

apply(patomb, tds) = cb
ψ ⊢ tds → ca > cb

PEVAL.EQ

ψ = patoma = patomb

apply(patoma, tds) = ca

apply(patomb, tds) = cb
ψ ⊢ td→ ca = cb

Figure 5.9: Rules to define the evaluation of predicates.

5.4 Transformation Process

When using the msl formalisation of xml, we view the transformation process

as an action which consumes a source document, tds and produces a destination

document, tdd. Since typed documents are specified in a hierarchical manner, with

element and attribute documents containing other typed documents, we can view

an xml document as a tree structure with nodes corresponding to xml compo-

nents, and edges corresponding to xml types. This is illustrated in Figure 5.10

where three representations of the same xml document are given, one in standard

Chapter 5 Transformation Theory 88

a

b b

"val1" "val2"

a/* a/*

xsd:string xsd:string

td1 = a [a/* ' td2]

td2 = td3 , td4

td3 = b [xsd:string ' td5]

td4 = b [xsd:string ' td6]

td5 = "val1"

td6 = "val2"

a [a/* '

 b [xsd:string ' "val1"] ,

 b [xsd:string ' "val2"]

]

Example Typed Document Typed Document in atomic form Typed Document in tree form

Figure 5.10: Viewing a typed document as a tree

typed document notation, one with each typed document specified individually,

and finally a tree representation. By viewing an xml document as a tree, we

can visualise the transformation process using a recursion over the source docu-

ment where groups of elements, attributes or constant values correspond directly

to groups of elements, attributes or constant values in the destination document.

This idea is presented visually in Figure 5.11 using a trivial transformation. With

this method of transformation, we can describe a translation using a number of

mappings which relate components in the source schema to components in the

destination schema. At each stage of the recursion over the source document,

mappings are used to create the appropriate parts in the destination document.

We define this process formally in section 5.5 where we also describe more complex

mapping constructs.

5.5 Mappings and the Transformation Process

In this Section, we describe the specification of mappings and how mappings are

used to direct a transformation. First, we define two kinds of mapping path: source

mapping paths and destination mapping paths. Source mapping paths are used to

specify the selection of components from the source document and destination

mapping paths are used to describe the creation of components in the destination

document.

Chapter 5 Transformation Theory 89

a

b b

"val1" "val2"

a/* a/*

xsd:string

x

y y

"val1" "val2"

x/* x/*

xsd:string xsd:string xsd:string

Source Document Destination Document

(a) Desired Transformation

Source element a, of type a/*, containing

 elements b corresponds to destination

 element x, of type x/*, containing elements y

"val1" "val2"

xsd:string xsd:string

x/*

b

a/*a/*

b

a/*
a

y

x/*x/*

y

x/*
x

(b) Translation Step 1

Source elements b, of type xsd:string, with string contents v

corresponds to destination elements y, of type xsd:string,

 with contents v a

"val2"

a/*a/* a/*
x

x/*x/* x/*

b

"val1"

a/*

xsd:string

b

"val2"

a/*

xsd:string

y

"val1"

x/*

xsd:string

y

"val2"

x/*

xsd:string

(c) Translation Step 2

Figure 5.11: Transformation through recursion

5.5.1 Mapping Paths

A source mapping path ρ is defined as a sequence of source mapping pairs:

ρ =〈[θ1 × ψ1], [θ2 × ψ2], . . . , [θn × ψn]〉

θ ranges over path components

ψ ranges over predicates

Definition 5 (Source Mapping Pairs) Each pair in a source mapping path

contains a path component (θ) that matches xml components from the source

Chapter 5 Transformation Theory 90

SMPAIR
[θ × ψ] θ ⊢ tds → tdm ψ ⊢ tdm → true

[θ × ψ] ⊢ tds → tdm

SMPATH

ρ = 〈[θ1 × ψ1], [θ2 × ψ2], . . . , [θn × ψn]〉

[θ1 × ψ1] ⊢ tds → tds′ child(tds′) = td1,

[θ2 × ψ2] ⊢ td1 → td1′ child(td1′) = td2,
. . . ,

[θn × ψn] ⊢ tdn−1 → tdn−1′ child(tdn−1′) = tdn
ρ ⊢ tds → tdn

Figure 5.12: Rules to define the evaluation of source mapping paths.

document, and a predicate (ψ) that must evaluate to true. This pairing technique

allows any part of a source mapping path to be assigned a predicate so complex

component selections can be made. The evaluation of a source mapping pair [θ×ψ]

against a typed document tds results in a matched document tdm and is written:

[θ × ψ] ⊢ tds → tdm

Definition 6 (Source Mapping Paths) The evaluation of a source mapping

path ρ against a source document tds yields a result document tdr (the components

successfully selected by ρ) and is written:

ρ ⊢ tds → tdr

Figure 5.12 contains the two rules that define source mapping path evaluation.

Rule SMPAIR states that when the path component θ matches tds with tdm and

the predicate ψ applied to those matched components evaluates to true, then

[θ×ψ] ⊢ tds → tdm holds. The application of source mapping path (or a sequence

of source mapping path pairs) can then be describe by the rule SMPATH.

When defining the creation of components in the destination document a joining

operator is used. We let ω range over joining operators:

joining operator ω ::= join

| branch

Chapter 5 Transformation Theory 91

A destination mapping path, δ, is used to specify the creation of elements, at-

tributes and values in the destination document, and is defined as a sequence of

destination mapping pairs:

δ = 〈[θ1 × ω1], [θ2 × ω2], . . . , [θn × ωn]〉

Each pair contains a path expression θn which describes the elements, attributes

and values to be created, and a joining operator ωn. The evaluation of destina-

tion mapping paths is done during the transformation process and is described in

Section 5.5.2, as is the joining operator.

5.5.2 Mappings and Bindings

A mapping describes a selection of nodes from a source document and their corre-

sponding representation in a destination document. We letm range over mappings:

mapping m ::= 〈ρ, δ, B〉

ρ is the source mapping path, δ is the destination mapping path, and B is a local

binding containing mappings that should only be considered for application when

the parent mapping has been applied. A binding, B, is defined as a sequence of

mappings:

binding B ::= 〈m1,m2, . . . ,mn〉

A binding can be constructed from any number of mappings to describe the trans-

lation of components within a source document to components in a destination

document. A binding is defined using a sequence because the order in which the

mappings are defined is the order in which they are applied.

Chapter 5 Transformation Theory 92

5.5.3 Transformation

The application of a Binding to a typed document gives the destination typed

document which is the result of all compatible mapping applications. This trans-

formation process is split into four stages:

1. Mapping selection

Given tds and a binding B, identify mappings from B that are compatible

for application to tds.

2. Source Document Selection

Given the set of applicable mappings Ma, and a source document tds, for

each mapping mx ∈ Ma the source mapping path ρ from mx is applied to

give a result document ρ ⊢ tds → tdr.

3. Recursion

The result of each source mapping path (tdr) is itself translated using B to

give tdr′ (where local mappings defined in the parent mapping are added

to the global binding B and their ordering is preserved). The recursion

continues until no mappings are valid, the empty document is encountered,

or a constant value is found.

4. Destination Document Construction

For each mapping applied, the destination mapping path δ is evaluated and

used to create new components in the destination document. The contents

of each new component created is the result of the recursive call.

Definition 7 (Mapping Compatibility) When a mapping m can be applied to

a typed document td, we write:

isCompatible(m, td)

The rule COMP.ME in Figure 5.13 states that when the first component referenced in

a source mapping path is the element e, and the source document td is the element

e, then mapping m can be applied to td. Rule COMP.MA is similarly defined for at-

tribute compatibility. As in the msl formalism, we assume the existence of a fixed

Chapter 5 Transformation Theory 93

COMP.ME
m = 〈ρ, δ, Bl〉 ρ = 〈[e× ψ], . . .〉 td = e[t ∋ tdc]

isCompatible(m, td)

COMP.MA
m = 〈ρ, δ, Bl〉 ρ = 〈[a× ψ], . . .〉 td = a[t ∋ tdc]

isCompatible(m, td)

Figure 5.13: Rules to define mapping compatibility

dereferencing map that takes a component name x and gives the corresponding

component, so features of the component (such as its type) can be determined:

deref(x) = cmp

e.g. deref(x).type = t

e.g. deref(x).sort = element

The most complex stage in the translation process is to construct the destination

typed document. This stage is complicated because we have to handle the cre-

ation of multiple elements in order to map components from the source domain

to multiple components in the destination schema. We illustrate this problem

in Figure 5.14 where we show the translation of a simple source document to

two possible destination documents. The destination documents differ only by

the joining of element y. In the left translation, the destination mapping path

〈[x× join], [y× join], [z × branch]〉 indicates that all elements discovered by the

application of 〈[a × true], [b × true]〉 (or elements a which contain elements b)

should be translated to elements z contained within a single element y, contained

within the element x. The right translation shows a similar mapping but with

unique y elements created for each match.

Definition 8 (Destination Creation Pairs) During the transformation process,

source mapping paths (ρ) are applied to the source document (tds) to select xml

components (written ρ ⊢ tds → tdc from rule SMPATH). The result typed document

(tdc), is paired with the destination mapping path (δ) to give a destination creation

pair P = [δ×tdc] where δ are the components to construct and tdc is their content.

Chapter 5 Transformation Theory 94

a

b b

"val1" "val2"

a/* a/*

xsd:string

x

y y

"val1" "val2"

x/* x/*

xsd:string

xsd:string xsd:string

Source Document

Destination Document

 with branching

z z

y/* y/*

x

"val1" "val2"

xsd:string xsd:string

z z

x/*

y
y/* y/*

Destination Document

 with joining

<[a x true], [b x true]> -> <[x x join], [y x join], [z x branch]>

<[b x true], [value x true]> -> <[z x branch], [value x branch]>

<[a x true], [b x true]> -> <[x x join], [y x branch], [z x branch]>

<[b x true], [value x true]> -> <[z x branch], [value x branch]>

Figure 5.14: A Source Document with two possible transformations, each
using a different joining operator

To denote the construction of the destination document, we write:

construct([δ × tdc]) = tdr

For the base case, when the destination mapping path δ in P contains only one

destination mapping pair (δ = 〈[θ×ω]〉), P can construct the destination document

by the rules shown in Figure 5.15. Rule BPAIR.EVAL.E states that When P =

[δ × tdc] and δ = 〈[e × branch]〉, the destination document contains the element

e, of type t, with the contents tdc. Rules BPAIR.EVAL.A, BPAIR.EVAL.C, and

BPAIR.EVAL.EMP define the construction of attributes, constants, and the empty

document in a similar way.

Definition 9 (Destination Creation Set) During the transformation process,

multiple mappings may be applied to a given source document. Each mapping is

applied independently to give a destination creation pair (P) that are combined to

form a destination creation set R = {P1, P2, . . . , Pn}. When creating elements

in the destination document, joining operators define whether a set of the same

elements should be combined to form one element (join) or used to create a se-

quence of elements (branch). Therefore, a destination creation set R can be split

Chapter 5 Transformation Theory 95

BPAIR.EVAL.E
P = [δ × tdc] δ = 〈[e× branch]〉 deref(e).type = t

construct(P) = e[t ∋ tdc]

BPAIR.EVAL.A
P = [δ × tdc] δ = 〈[a× branch]〉 deref(a).type = t

construct(P) = a[t ∋ tdc]

BPAIR.EVAL.C
P = [δ × c] δ = 〈[value× branch]〉

construct(P) = c

BPAIR.EVAL.EMP
P = [δ × ǫ] δ = 〈[ǫ× branch]〉

construct(P) = ǫ

Figure 5.15: Rules to define the construction of destination documents (base
case).

into two subsets: Rjoin (where all destination creation pairs P have the joining

operator join in the first destination mapping pair), and Rbranch (where all desti-

nation creation pairs P have the joining operator branch in the first destination

mapping pair). To denote this, we write:

R = Rjoin ∪Rbranch

Figure 5.16 contains rules to define when a destination creation pair P in in the

set of Rjoin (rule RJOIN) or Rbranch (rule RBRANCH).

Definition 10 (Root of the joined destination creation set) To construct

the destination document from the set of joined destination creation pairs in Rjoin,

the first component x referenced in each destination creation pair P must be the

same (because they are to be joined). We write the following to locate the element

x:

Rjoin ⊲ x

Rule ROOT.RJOIN in Figure 5.16 defines the path component x located in the set

of joined destination creation pairs Rjoin.

Definition 11 (Create Sequence) During the creation of the destination typed

document, it is necessary to combine typed documents to form a sequence. To

Chapter 5 Transformation Theory 96

RBRANCH
P ∈ R P = [δ × td] δ = 〈[θ × branch], . . .〉

P ∈ Rbranch

RJOIN
P ∈ R P = [δ × td] δ = 〈[θ × join], . . .〉

P ∈ Rjoin

ROOT.RJOIN

Rjoin = {P1, P2, . . . , Pn}

P1 = [ρ1, td1] ρ1 = 〈[x× join], . . . 〉,

P2 = [ρ2, td2] ρ2 = 〈[x× join], . . . 〉,
. . . ,

Pn = [ρn, tdn] ρn = 〈[x× join], . . . 〉

Rjoin ⊲ x

Figure 5.16: Rules to define the sets of joined and branched destination
creation pairs.

MAKE.SEQA
tda 6= ǫ ∧ tdb = ǫ

tda ⊓ tdb = tda

MAKE.SEQB
tda = ǫ ∧ tdb 6= ǫ

tda ⊓ tdb = tdb

MAKE.SEQAB
tda 6= ǫ ∧ tdb 6= ǫ

tda ⊓ tdb = tda, tdb

Figure 5.17: Rules to define the construction of sequences.

combine tda and tdb we write:

tda ⊓ tdb = tdr

Figure 5.17 contains three rules to define the creation of a sequence from two

documents tda and tdb. Rule MAKE.SEQA is used when tdb is equal to the empty

document (ǫ), so tda ⊓ tdb = tda. Rule MAKE.SEQB is used when tda is equal to the

emtpy document (ǫ), so tda ⊓ tdb = tdb. Finally, when both tda and tdn are not

equal to the empty document, tda ⊓ tdb is equal to a typed document that is the

sequence tda, tdb.

Definition 12 (Destination Document Construction) When mappings have

been applied to a source document to make the set of destination creation pairs R

Chapter 5 Transformation Theory 97

(where R = {P1, P2, . . . , Pn} and Pn = [δ × tdc]), R can be used to construct the

destination document tdr using Definition 8. To denote this we write:

construct(R) = tdr

Figure 5.18 contains rules to define the construction of documents using the set

of destination creation pairs R. Rule R.EVAL states the set R is divided into two

subsets called Rjoin and Rbranch that are used to construct two result documents

tdj and tdb. Therefore, the construction of a destination document using R is

equal to the combination of tdb and tdb (see previous rules in Figure 5.17).

Rule RJOIN.EVAL defines the construction of a destination document using the

set Rjoin. Each destination creation pair Pi has the first destination mapping

pair removed to give P ′
i (next(Pi) = P ′

i using rule NEXT.C.PAIR). These new

destination content pairs are then combined in the set R′ which is itself used to

construct the result document tdr. The root element x is located (Rjoin ⊲ x), and

its type is determined (deref(x).type = t) so the destination document x[t ∋ tdr]

can be created.

Rule RBRANCH.EVAL defines the construction of a destination document using the

set Rjoin. Each destination creation pair Pn ∈ Rbranch is used to construct a des-

tination document tdn using rules BPAIR.EVAL.E, BPAIR.EVAL.A, BPAIR.EVAL.C,

or BPAIR.EVA.EMP (defined earlier in Figure 5.15) if the destination mapping path

δ contains only one pair, or rule BPAIR.EVAL.LIST if there is more than one pair

in the destination mapping path. Rule BPAIR.EVAL.LIST defines the construction

of a destination document using a destination creation pair P that contains a des-

tination mapping path δ with more than one pair. The first component referenced

(x) and its type (t) are determined, and the destination creation pair P has its

first destination mapping pair removed to give P ′ (written next(P) = P ′). A set

of new destination creation pairs R is created that contains only P ′. R is then

used to construct the destination document tdr (with rule R.EVAL), and therefore

P constructs the document x[t ∋ tdr].

Definition 13 (Mapping Application) The evaluation of a mapping m from

the binding B against a typed document tds gives a destination creation pair P

where P = [δ× tdr]. The typed document tdr is the result of the application of the

Chapter 5 Transformation Theory 98

R.EVAL

R = Rjoin ∪Rbranch

construct(Rjoin) = tdj construct(Rbranch) = tdb
construct(R) = tdj ⊓ tdb

RJOIN.EVAL

Rjoin = {P1, P2, . . . , Pi}

next(P1) = P ′
1, next(P2) = P ′

2, . . . ,next(Pi) = P ′
i

R′ = {P ′
1, P

′
2, . . . , P

′
i}

construct(R′) = tdr

Rjoin ⊲ x deref(x).type = t

construct(Rjoin) = x[t ∋ tdr]

RBRANCH.EVAL

Rbranch = {P1, P2, . . . , Pk}

construct(P1) = td1,

construct(P2) = td2,
. . . ,

construct(Pn) = tdn

construct(Rbranch) = td1 ⊓ td2 ⊓ . . . ⊓ tdn

NEXT.C.PAIR

P = [δ, tds]

δ = 〈[θh × ωh], [θr × ωr], . . .〉

δrest = 〈[θr × θr], . . .〉

next(P) = [δrest × tds]

BPAIR.EVAL.LIST

P = [δ × tds]

δ = 〈[x× branch], [θr × ωr], . . .〉

deref(x).type = t

next(P) = P ′

R = {P ′}

construct(R) = tdr
construct(P) = x[t ∋ tdr]

Figure 5.18: Rules to define the construction of the destination document.

Chapter 5 Transformation Theory 99

source mapping path ρ from m to tds, and δ is the destination mapping path:

m,B ⊢ tds → [δ × tdr]

Because more than one mapping may be applied to a given typed document, we

define the application of a set of applicable mappings Ma to a typed document tds

as a set of result pairs R where R = {P1, P2, . . . , Pn}:

evaluate(Ma, tds) = R

Rules for the application of mappings are given in Figure 5.19. Rule MAP.EVAL

states that when the mapping m in B is valid for application to a source typed

document tds, the result of the application of ρ to tds is tdr. Local mappings Bl

are combined with the global binding B to give B′ (where ordering is preserved)

that is used to transform the result document tdr into tdr′ . The result of the

recursion (tdr′) is then combined with the destination mapping path δ to give the

destination creation pair [δ × tdr′].

Rule MAPSET.EVAL describes how a set of compatible mappings Ma are each eval-

uated against a source document tds to give the set of result pairs R where

R = {P1, P2, . . . , Pn}.

Definition 14 (Document Transformation) The transformation of a source

document tds using mappings from the binding B creates a destination document

tdr and is denoted by:

transform(B, tds) = tdr

Rule BINDING.EVAL in Figure 5.19 defines this behaviour. The set of compatible

mappings Ma is calculated and evaluated to give a set of destination creation

pairs R (evaluate(Ma, tds) = R). R is then used to construct the destination tdr

(construct(R) = tdr) — the result of the transformation process.

Chapter 5 Transformation Theory 100

MAP.EVAL

m ∈ B

m = 〈ρ, δ, Bl〉

isCompatible(m, tds)

ρ ⊢ tds → tdr

B′ = B ∪Bl

transform(B′, tdr) = tdr′

m,B ⊢ tds → [δ × tdr′]

MAPSET.EVAL

tds B

Ma = 〈m1,m2, . . . ,mn〉

isCompatible(m1, tds),

isCompatible(m2, tds),
. . .

isCompatible(mn, tds)

m1 ∈ B,m2 ∈ B, . . . ,mn ∈ B

m1, B ⊢ tds → P1, m2, B ⊢ tds → P2, . . . , mn, B ⊢ tds → Pn
evaluate(Ma, tds) = {P1, P2, . . . , Pn}

BINDING.EVAL

B tds

Ma = 〈m1, m2, . . . ,mn〉

isCompatible(m1, tds),

isCompatible(m2, tds),
. . .

isCompatible(mn, tds)

m1 ∈ B,m2 ∈ B, . . . ,mn ∈ B

evaluate(Ma, tds) = R

construct(R) = tdr
transform(B, tds) = tdr

Figure 5.19: Rules to define the evaluation of Bindings.

5.6 Example Mappings

To demonstrate our mapping language, we provide a subset of mappings to trans-

form an instance of a DDBJ sequence data record to a Sequence Data Record

concept instance (the full set of mappings can be found in in Appendix B). For

compactness, assume all source mapping path predicates are true unless otherwise

specified (see mapping 12 and 14):

Chapter 5 Transformation Theory 101

m1 = 〈 〈DDBJXML,ACCESSION〉 , 〈[Sequence Data Record × join], [accession id × branch]〉 , ∅〉

m2 = 〈 〈ACCESSION, value〉 , 〈[accession id × join], value〉 , ∅〉

m3 = 〈 〈DDBJXML,DEFINITION〉 , 〈[Sequence Data Record × join], [definition × branch]〉 , ∅〉

m4 = 〈 〈DEFINITION, value〉 , 〈[definition × join], value〉 , ∅〉

m7 = 〈 〈source, location〉 , 〈[Feature Source × join], [has position × branch], [Location × branch]〉 , ∅〉

m9 = 〈 〈location, value{“ˆ[ˆ.]+”}〉 , 〈[Location × join], [start × branch], value〉 , ∅〉

m10 = 〈 〈location, value{“[ˆ.]+”}〉 , 〈Location × join], [end × branch], value〉 , ∅〉

m11 = 〈 〈DDBJXML,FEATURES, source〉 ,

〈[Sequence Data Record × join], [has feature × branch], [Feature Source × branch]〉 , ∅〉

m12 = 〈 〈source, [qualifiers × {qualifiers, qualifiers/*/@namevalue = “isolate”}]〉 ,

〈[Feature Source × join], [isolate × branch]〉 , (m13)〉

m13 = 〈 〈qualifiers, value〉 , 〈[isolate × join], value〉 , ∅〉

m14 = 〈 〈source, [qualifiers × {qualifiers, qualifiers/*/@namevalue = “lab host”}]〉 ,

〈[Feature Source × join], [lab host × branch}]〉 , (m15)〉

m15 = 〈 〈qualifiers, value〉 , 〈[lab host × join], value〉 , ∅〉

These mappings are then used to define a binding B as follows:

B = 〈m1,m2,m3,m4,m7,m9,m10,m11,m12,m14〉 (5.1)

Mappings m13 and m15 are excluded from the sequence B because they are defined

locally within other mappings. A source document in DDBJ format can then be

evaluated using this binding to give a destination document which is the sequence

data record in its corresponding owl representation.

5.7 XML Syntax for Binding Specification

The specification of mappings and bindings in xml format is supported, as we

illustrate in Listing 5.4, where an equivalent binding is given to the one specified

in Section 5.6. Mapping ids are consistent so the reader can easily find the corre-

sponding mapping in mathematical notation. This kind of xml document is called

an M -Binding and can be used to drive the translation of xml documents, as we

show later in Chapter 6. Our xml binding format is designed to look similar to

conventional xpath notation so users familiar with xml tools will find it intuitive.

Chapter 5 Transformation Theory 102

1 <binding name="DDBJ −to−sequencedata"
2 xmlns="http://jaco.ecs.soton.ac.uk/schema/binding"
3 xmlns:sns="http://jaco.ecs.soton.ac.uk/schema/DDBJ"
4 xmlns:dns="http://jaco.ecs.soton.ac.uk/ont/sequence data"
5 targetNamespace="http://jaco.ecs.soton.ac.uk/bindin g/DDBJ−to−sequencedata" >

6 <mapping id=’m1’ >

7 <source match="sns:DDBJXML/sns:ACCESSION"/ >

8 <destination create="dns:DDBJ Sequence Data Record[join]/dns:accession id[branch]/"/ >

9 </mapping >

10

11 <mapping id=’m2’ >

12 <source match="sns:ACCESSION/$"/ >

13 <destination create="dns:accession id[join]/$"/ >

14 </mapping >

15

16 <mapping id=’m3’ >

17 <source match="sns:DDBJXML/sns:DEFINITION"/ >

18 <destination create="dns:DDBJ Sequence Data Record[join]/dns:definition[branch]/"/ >

19 </mapping >

20

21 <mapping id=’m4’ >

22 <source match="sns:DEFINITION/$"/ >

23 <destination create="dns:definition[join]/$"/ >

24 </mapping >

25

26 <mapping id=’m7’ >

27 <source match="sns:source/sns:location"/ >

28 <destination create="dns:Feature Source[join]/dns:has position[branch]/dns:Location[branch]"/ >

29 </mapping >

30

31 <mapping id=’m9’ >

32 <source match="sns:location/$ˆ[ˆ.]+"/ >

33 <destination create="dns:Location[join]/dns:start[bra nch]/$"/ >

34 </mapping >

35

36 <mapping id=’m10’ >

37 <source match="sns:location/$[ˆ.]+$"/ >

38 <destination create="dns:Location[join]/dns:end[branc h]/$"/ >

39 </mapping >

40

41 <mapping id=’m11’ >

42 <source match="sns:DDBJXML/sns:FEATURES/sns:source"/ >

43 <destination create="dns:DDBJ Sequence Data Record[join]/dns:has feature[branch]/dns:Feature Source[branch]"/ >

44 </mapping >

45

46 <mapping id=’m12’ >

47 <source match=’sns:source/sns:qualifiers[sns:qualifie rs/sns:name/$ = "isolate"]’/ >

48 <destination create="dns:Feature Source[join]/dns:isolate[branch]"/ >

49 <mapping id=’m13’ >

50 <source match="sns:qualifiers/$"/ >

51 <destination create="dns:isolate[join]/$"/ >

52 </mapping >

53 </mapping >

54

55 <mapping id=’m14’ >

56 <source match=’sns:source/sns:qualifiers[sns:qualifie rs/sns:name/$ = "lab host"]’/ >

57 <destination create="dns:Feature Source[join]/dns:lab −host[branch]"/ >

58 <mapping id=’m15’ >

59 <source match="sns:qualifiers/$"/ >

60 <destination create="dns:lab −host[join]/$"/ >

61 </mapping >

62 </mapping >

63 </binding >

Listing 5.4: An XML representation for a Binding

Local mappings can be defined easily by including their definition within the par-

ent mapping element (see mappings 12 and 14). To extract literal values from the

content of an element or attribute, the $ symbol is used, and can be suffixed with

a string to denote a regular expression (mappings 9 and 10).

Chapter 5 Transformation Theory 103

5.8 Conclusions

The mapping and transformation formalism presented in this Chapter provides an

xml to xml transformation technology based on the msl formalisation of xml

and xml schema. While we use this language to describe the conversion of an

xml document to, and from, a canonical owl serialisation, the formalism can be

used as a generic xml to xml translation tool. Mapping statements describe the

association of xml components (elements, attributes and literal values) in a source

schema to components in a destination schema, so such mappings can be used to

drive the transformation of a source document. The following advanced mapping

constructs are supported:

• Document paths

Simple transformations can be expressed using 1 to 1 mappings. To accom-

modate scenarios where a single component maps to a set of components

(1 to n), or a set of components map to a single component (n to 1), map-

ping statements can be expressed using document paths. For example, m11

from the example mapping in Section 5.6 maps DDBJXML/FEATURES/source to

Sequence Data Record .

• Predicate support

When the mapping of a component is dependent on the value of another at-

tribute or element, such as the <qualifiers> element in the DDBJ sequence

data record, predicate evaluation is used - see m12. In this example, the

value of the @name attribute must be “isolate” for the <qualifiers> element

to be mapped to the <isolate> element.

Chapter 5 Transformation Theory 104

• Scoping

Sometimes the mapping of a particular element or attribute depends on

context. For example, the value of the <qualifiers> element is mapped

differently in mappings m13 (local to mapping m12), and m15 (local to m14).

• String Manipulation

When the value of an element contains two distinct entities, such as the

<location> element in the DDBJ record, regular expressions can be used to

extract different characters from an elements content. An example of this

construct can be found in mappings m9 and m10.

The translation process is a recursion over the source document that applies com-

patible mappings at each element or attribute encountered to create elements and

attributes in the destination document. By using a modular specification approach

we facilitate the reuse of mappings when service operations are defined across the

same or subsets of the same xml schema.

One mapping construct not supported is list processing. Within xml schema,

elements can contain sequences of other elements. Although it is not necessary

to meet the requirements from our bioinformatics data set, it would be desirable

to add mapping constructs that enable elements within a sequence to be mapped

differently depending on their position. For example, map the first instance to one

element and the rest to another. This is supported in xpath where array indexes

can be used, for example, a/b[0] will return the first element contained within

<a> .

While the use of the joining operator is critical to our translation formalism, it is

also cumbersome. By analysing the destination schema to see what destination

documents are valid, the user could be freed of this burden.

Chapter 6

The Configurable Mediator

Implementation

To enable a client within the WS-HARMONY architecture to perform workflow

harmonisation, the Configurable Mediator (introduced in Chapter 4) can be used

to create a Type Adaptor on-the-fly by consuming the appropriate realisation and

serialisation mappings. In Chapter 5, an xml mapping and transformation for-

malism (fxml-M) was presented to enable complex mappings to be made between

xml schema components that can be used to drive the transformation of a doc-

ument. In this Chapter, we present an implementation of this formalisation in

the form of a scheme [63] library called fxml-T (Formalised XML Translation)

which offers the following functionality:

1. A scheme representation for msl [26] components and typed documents.

2. A number of functions to import conventional xml documents, xml schemas

and M -Binding documents into fxml-T s-expressions.

3. A scheme representation for mappings and M -Bindings, supporting docu-

ment paths and predicate evaluation.

4. Functions to perform document translation using an M -Binding according

to the rules presented earlier in Chapter 5.

105

Chapter 6 The Configurable Mediator Implementation 106

This scheme library is used to construct a Translation Engine which is combined

with the jena ontology processing api to create the Configurable Mediator. To

evaluate the practicality and scalability of our mapping language implementation,

as well as examine the relative cost of composing M -Bindings, we test the fxml-

T library using increasing document sizes, increasing schema sizes, increasingly

complex M -Binding composition, and real bioinformatics data. Evaluation shows

our implementation scales well and M -Binding composition comes with virtually

zero performance cost. We also examine the complexity of our transformation algo-

rithm and show that translation cost is O(c, n) where c is the number of compatible

mappings, and n is the size of the input document. Hence, the contribution of

this Chapter is the Configurable Mediator: An efficient software component that

is dynamically configured by realisation and serialisation M -Bindings to create

intermediary-based Type Adaptors.

We begin this Chapter in Section 6.1 with a brief discussion of macro languages and

our implementation of fxml-M relates to these. Section 6.2 provides the fxml-T

representation of normalised schema names, schema components, typed documents

and mappings, providing example scheme code to illustrate their representation.

Section 6.3, contains definitions of the functions offered by the fxml-T library to

enable the conversion of xml documents, xml schemas and M -Binding documents

to fxml-T, as well as the transformation of documents using M -Bindings. Sec-

tion 6.3.2 presents pseudocode for our transformation algorithm and an analysis

of its complexity. We then show how these functions can be combined to provide

a Transformation Engine in Section 6.3, before presenting the internal workings of

the Configurable Mediator in Section 6.4. Section 6.5 gives details of our evalua-

tion including a comparison with other xml translation technologies. Finally, we

conclude the Chapter in Section 6.6.

6.1 Transformation Languages

Transformation languages have been studied within the computer science discipline

[67] since the 1960s when the first programming languages were developed. When

using the first generation of computers, programmers were limited to writing code

Chapter 6 The Configurable Mediator Implementation 107

using assembly languages where instructions in the source program have a one-

to-one correspondence to the instructions executed by the central processing unit.

Programmers realised early on that much of the code written was duplicated so

some simple reuse mechanisms were introduced so that symbols could be used

to denote the inclusion of a large block of code. As these reuse mechanisms

matured, facilities were added to include different code based on the value of some

parameters, and the first macro languages we conceived, including the General-

Purpose Macro Processor (GPM) [88], Macro Language One (ML/1) [28], and

TRAC [75].

As programming languages and compiler engineering advanced, the requirements

for macro languages became more complex. It was recognised that simple text

rewriting was not sufficient when trying to express intricate transformations of

data and programs. To overcome these limitations, tree rewriting systems were

developed, giving programmers the means to express elaborate data transforma-

tions. A good example of this is the R5RS scheme [63] macro system that has

two notable features:

1. Hygienic Macros

When a macro is expanded, the system automatically creates private symbols

that bind to the macro parameters. This avoids the problem of variable

capture where statements in the macro expression share names with variables

already in the environment, resulting in unexpected behaviour.

2. Pattern Matching

Instead of using scheme code to define pattern matching, a declarative

syntax is provided to give programmers a more intuitive interface to the

macro system.

In addition, there is a vast amount of literature providing theoretical foundations

to tree rewriting system, an example of which is the Lambda Calculus [15].

When implementing the fxml-M language, we are essentially creating a tree

rewriting system; the input is an xml document (a tree structure) and the output

is a different xml document. Like the scheme macro system, we use a declara-

tive approach for pattern matching to maximise accessibility. Since xml pattern

Chapter 6 The Configurable Mediator Implementation 108

matching is already widely used in the community through xpath [35], we ensure

that our pattern matching syntax is close to xpath. For the implementation of our

transformation algorithm, we choose scheme because: (1) the similarity between

xml tree structures to scheme s-expressions means there is little overhead to

model xml documents (2) as we show in later in Section 6.3.1, the transformation

rules defined formally in Chapter 5 can be easily specified in scheme.

6.2 FXML-T Representation Overview

In this Section, we describe how aspects of msl and our mapping formalisation

(fxml-M) are represented in fxml-T. We show the format of normalised com-

ponent names, schema components, typed documents and mappings, providing

example scheme s-expressions to illustrate their representation.

6.2.1 FXML-T representation of normalised component

names

In msl, normalised component names are used to reference elements, attributes

and types. We define the structure of a normalised component name in fxml-T

using BNF [13] notation:

〈fxml : cname〉 ::= (〈uri〉 . 〈localname∗〉)

〈uri〉 ::= 〈string〉

〈localname∗〉 ::= 〈 〉 | (〈localname〉 . 〈localname∗〉)

〈localname〉 ::= (〈sort〉 . 〈string〉)

〈sort〉 ::= element | attribute | complexType | simpleType

〈string〉 ::= “〈sequence of characters〉”

An 〈fxml : cname〉 is a pair containing a namespace uri and a list of localnames.

Each localname is a pair containing the component sort and component name. We

provide an example in Figure 6.1 that gives a component name, in msl notation,

Chapter 6 The Configurable Mediator Implementation 109

and the corresponding scheme s-expression to represent it. The bounding box

illustrates where the namespace "http://jaco.ecs.soton.ac.uk/schema/DDBJ" ap-

pears in both representations.

6.2.2 FXML-T representation of schema components

In msl, components describe the elements, attributes and types of an xml schema.

An xml schema is represented in fxml-T using an 〈fxml : schema〉, defined as

http://jaco.ecs.soton.ac.uk/schema/DDBJ#element::qualifiers/type::*/attribute::name

'("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "qualifiers")
 (type . "*")
 (attribute . "name"))

MSL Notation

Scheme S-Expression

Figure 6.1: Component Name representation in fxml-T

Chapter 6 The Configurable Mediator Implementation 110

follows:

〈fxml : schema〉 ::= 〈list of fxml : component〉

〈fxml : component〉 ::= (〈sort〉

〈fxml : cname〉

〈base〉

(〈derivation〉)

〈refinement〉

〈content〉)

〈base〉 ::= 〈fxml : cname〉

〈derivation〉 ::= restriction | extension

〈refinement〉 ::= 〈list of derivation〉

〈content〉 ::= (G-Sequence 〈content∗〉)

| (G-Choice 〈content∗〉)

| (G-Interleave 〈content∗〉)

| (G-Repetition 〈min〉〈max〉〈content〉)

| (G-Attribute 〈fxml : cname〉〈content〉)

| (G-Element 〈fxml : cname〉〈content〉)

| (G-Component-Name 〈fxml : cname〉)

〈content∗〉 ::= 〈list of content〉

〈min〉 ::= 〈integer〉

〈max〉 ::= 〈integer〉 | infinite

An 〈fxml : component〉 is a list containing a sort1, the name of the component, the

name of the base component, the derivation type, the permitted refinements and

the content. To illustrate the 〈fxml : component〉 representation, Figure 6.2 gives

example scheme s-expressions to create two components from the DDBJ sequence

data schema. The qualifiers element contains string content and has exactly one

1The term sort is used to avoid confusion with the xml term type.

Chapter 6 The Configurable Mediator Implementation 111

attribute called name. Using this notation, an xml schema is represented in fxml-

T as a list of 〈fxml : component〉.

component(
 sort = element,
 name = qualifiers,
 base = xsd:UrElement,
 derivation = restriction,
 refinement = {restriction, extension},
 content = qualifiers[qualifiers/*]
)

component(
 sort = complexType,
 name = qualifiers/*,
 base = xsd:string,
 derivation = extension,
 refinement = {extension},
 content = qualifiers/*/@name{1,1}
)

MSL Notation

'(element
 ("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "qualifiers"))
 ("http://www.w3.org/2001/XMLSchema" (element . "UrElement"))
 restriction
 (restriction extension)
 (G-Component-Name
 ("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "qualifiers")
 (type . "*"))))

'(complexType
 ("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "qualifiers")
 (type . "*"))
 (cons "http://www.w3.org/2001/XMLSchema" (type "string"))
 extension
 (extension)
 (G-Component-Name
 (G-Repetition
 1
 1
 ("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "qualifiers")
 (type . "*")
 (attribute . "name")))))

Scheme S-Expression

Figure 6.2: Component representation in fxml-T

Chapter 6 The Configurable Mediator Implementation 112

6.2.3 FXML-T representation of typed documents

In msl, xml documents are formed using typed documents. In fxml-T, typed

documents are defined as follows:

〈fxml : td〉 ::= (TD-Empty)

| (TD-Constant 〈string〉)

| (TD-Sequence 〈fxml : td〉〈fxml : td〉)

| (TD-Element 〈name〉〈type〉〈fxml : td〉)

| (TD-Attribute 〈name〉〈type〉〈fxml : td〉)

〈name〉 ::= 〈fxml : cname〉

〈type〉 ::= 〈fxml : cname〉

An 〈fxml : td〉 is one of five sorts: The empty document (for empty xml elements),

a constant value (e.g. a string literal or integer value), a sequence containing two

typed documents (for elements containing other elements), an element (with a

name and type) containing a typed document, or an attribute(with a name and

type) containing a typed document. We give an example scheme s-expression

in Figure 6.3 to create a small DDBJ sequence data document. The <DDBJXML>

element contains a sequence of two typed documents holding the <ACCESSION> and

<SEQUENCE> elements, each having string content.

'(TD-Element
 ("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "DDBJXML"))
 ("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "DDBJXML")
 (type . "*"))
 (TD-Sequence
 (TD-Element
 ("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "ACCESSION"))
 ("http://www.w3.org/2001/XMLSchema" (type . "string"))
 (TD-Constant "AB000059"))
 (TD-Element
 ("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "SEQUENCE"))
 ("http://www.w3.org/2001/XMLSchema" (type . "string"))
 (TD-Constant "atgagtgatggagcagttcaaccagacgg..."))))

Scheme Code

MSL Notation

DDBJXML[DDBJXML/*
 ACCESSION[xsd:string "AB000059"],
 SEQUENCE[xsd:string "atgagtgatggagcagttcaaccagacgg..."]
]

∈

∈

∈

Figure 6.3: Typed document representation in fxml-T

Chapter 6 The Configurable Mediator Implementation 113

6.2.4 FXML-T Representation of bindings and mappings

In Chapter 5, a binding is defined as a sequence of mappings where a binding

may be represented in xml format as an M -Binding document. Each mapping

specifies the relation between xml components in a source schema to components

in a destination schema. Such a binding can then be used to direct the translation

of an xml document to a different representation. In fxml-T, bindings and

mappings are defined as follows:

〈fxml : binding〉 ::= 〈 〉 | (〈fxml : mapping〉 . 〈fxml : binding〉)

〈fxml : mapping〉 ::= (〈id〉〈scope〉〈spairs∗〉〈dpairs∗〉〈local〉)

〈id〉 ::= 〈string〉

〈scope〉 ::= global | local

〈spairs∗〉 ::= 〈 〉 | (〈spair〉 . 〈spair∗〉)

〈spair〉 ::= (〈spath〉 . 〈fxml : predicate〉)

〈spath〉 ::= 〈fxml : cname〉 | (empty) | 〈svalue〉

〈svalue〉 ::= (value 〈regexp〉) | (value)

〈regexp〉 ::= 〈string〉

〈fxml : predicate〉 ::= (true)

| (exists 〈fxml : pexpr∗〉)

| (not 〈fxml : pexpr∗〉)

| (and 〈fxml : predicate〉〈fxml : predicate〉)

| (or 〈fxml : predicate〉〈fxml : predicate〉)

| (= 〈fxml : pexpr∗〉〈fxml : pexpr∗〉)

| (> 〈fxml : pexpr∗〉〈fxml : pexpr∗〉)

| (< 〈fxml : pexpr∗〉〈fxml : pexpr∗〉)

Chapter 6 The Configurable Mediator Implementation 114

〈pexpr∗〉 ::= 〈 〉 | (〈pexpr〉 . 〈pexpr∗〉)

〈pexpr〉 ::= 〈fxml : cname〉 | 〈constant〉 | value

〈dpairs∗〉 ::= 〈 〉 | (〈dpair〉 . 〈dpair∗〉)

〈dpair〉 ::= (〈dpath〉 . 〈operator〉)

〈dpath〉 ::= 〈fxml : cname〉 | (value) | (empty)

〈operator〉 ::= (branch) | (join)

〈local〉 ::= 〈 〉 | (〈fxml : mapping〉 . 〈local〉)

〈constant〉 ::= 〈string〉

An 〈fxml : binding〉 is a list of mappings. Each 〈fxml : mapping〉 is a list

containing an identifier, the scope of the mapping (either local or global), a source

mapping path (〈spairs∗〉), a destination mapping path (〈dpairs∗〉), and a list of

local mappings. A 〈spair〉 is a pair containing a source path and a predicate. A

〈spath〉 is either an 〈fxml : cname〉, the keyword empty, or an 〈svalue〉 expression

which can include a regular expression to extract particular characters from a

string value. An 〈fxml : predicate〉 can be one of eight sorts: true, exists, not,

and, or, =, <, or >. A 〈dpair〉 is a pair containing a destination path and a joining

operator. To demonstrate the construction of a binding in fxml-T, Figure 6.4

contains a scheme s-expression to create a subset of mappings that describe the

translation of a DDBJ document to a Sequence Data Record concept instance

(The full set of mappings can be found in Appendix B).

m1 = 〈 〈DDBJXML,ACCESSION〉 , 〈[Sequence Data Record × join], [accession id × branch]〉 , ∅〉

m2 = 〈 〈ACCESSION, value〉 , 〈[accession id × join], value〉 , ∅〉

m7 = 〈 〈source, location〉 , 〈[Feature Source × join], [has position × branch], [Location × branch]〉 , ∅〉

m9 = 〈 〈location, value{“ˆ[ˆ.]+”}〉 , 〈[Location × join], [start × branch], value〉 , ∅〉

m10 = 〈 〈location, value{“[ˆ.]+”}〉 , 〈Location × join], [end × branch], value〉 , ∅〉

m12 = 〈 〈source, [qualifiers × {qualifiers, qualifiers/*/@namevalue = “isolate”}]〉 ,

〈[Feature Source × join], [isolate × branch]〉 , (m13)〉

m13 = 〈 〈qualifiers, value〉 , 〈[isolate × join], value〉 , ∅〉

Chapter 6 The Configurable Mediator Implementation 115

In Figure 6.4, each mapping identifier is highlighted so they can be easily matched

to the mapping definition given above. Mappingm1 is a simple association between

the DDBJXML/ACCESSION elements and the Sequence Data Record/accession id ele-

ments. Mappings m7 and m8 contain simple regular expressions to assign the start

and end locations contained in one string to different elements in the destination

document. Mapping m12 contains a simple predicate expression that ensures the

qualifiers element is transformed into an isolate element only when the string

content of the name attribute is equal to "isolate" .

6.3 FXML-T Function Overview

The fxml-T library provides functions to convert xml schemas to fxml:schema

structures, xml documents to fxml:td (typed documents), and M -Bindings ex-

pressed in xml to fxml:binding format.

xmls->fxml:schema : 〈string〉 → 〈fxml : schema〉

xml->fxml:td : 〈string〉〈fxml : schema〉 → 〈fxml : schema〉

xml->fxml:binding : 〈string〉〈fxml : schema〉〈fxml : schema〉 → 〈fxml : binding〉

The xmls->fxml:schema function converts an xml schema document to an

fxml:schema. It takes one string as input which refers to the location of the xml

schema file. Files may be loaded from the local file system or over a network via

http. The xml->fxml:td function converts an xml document to an fxml:td. To

perform this translation, an fxml:schema must be provided along with a reference

to the location of the xml document. The xml->fxml:binding function converts

an M -Binding document (a binding specified in xml) to an fxml:binding by

taking a file location, and the input and output schema files. To transform an

xml document, the fxml:transform function is used:

fxml:transform : 〈fxml : schema〉〈fxml : td〉〈fxml : schema〉〈fxml : binding〉

→ 〈fxml : td〉

Chapter 6 The Configurable Mediator Implementation 116

 global
 ;source mapping path
 (("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "DDBJ") (true))
 ("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "ACCESSION") (true)))
 ;destination mapping path
 (("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element . "Sequence_Data_Record") (join))
 ("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element . "accesion_id") (branch)))
 ;no local mappings

 global
 ;source mapping path
 (("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "ACCESSION") (true))
 (value))
 ;destination mapping path
 (("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element . "accession_id") (join))
 (value))
 ;no local mappings
 ())

 global
 ;source mapping path
 (("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "cds") (true))
 ("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "location") (true)))
 ;destination mapping path
 (("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element . "Feature_CDS") (join))
 ("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element . "Location") (branch)))
 ;no local mappings
 ())

 global
 ;source mapping path
 (("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "location") (true))
 (value "^[^.]+"))
 ;destination mapping path
 (("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element . "Location") (join))
 ("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element . "start") (branch))
 (value))
 ;no local mappings

"
 global
 ;source mapping path
 (("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "location") (true))
 (value "[^.]+"))
 ;destination mapping path
 (("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element . "Location") (join))
 ("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element . "end") (branch))
 (value))
 ;no local mappings
 ())

 global
 ;source mapping path
 (("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "source") (true))
 ("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "qualifiers")
 ;predicate to ensure the qualifier value is organism
 (= (("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "qualifiers"))
 ("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "qualifiers") (type . "*") (attribute . "name")))
 "isolate")))
 ;destination mapping path
 (("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element . "Feature_Source") (join))
 ("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element . "isolate") (branch)))

 local
 ;source mapping path
 (("http://jaco.ecs.soton.ac.uk/schema/DDBJ" (element . "qualifiers") (true))
 (value))
 ;destination mapping path
 (("http://jaco.ecs.soton.ac.uk/ont/sequencedata" (element . "isolate") (join))
 (value))
 ;no local mappings
 ())))

'("m1"
(define binding
'("m1"

 ("m2" ("m2"

 ("m7" ("m7"

 ("m9" ("m9"

 ("m10 ("m10

 ("m12" ("m1

 ("m13"
 ; one local mapping
 ("m1

Scheme S-Expression

Figure 6.4: Representation of Bindings in fxml-T

Chapter 6 The Configurable Mediator Implementation 117

The fxml:transform function takes four arguments: an fxml:schema describing

the source document, a source fxml:td, an fxml:schema describing the desti-

nation document, and an fxml:binding. The output is an fxml:td which is the

result of the application of mappings in the fxml:binding to the source document

according to the rules specified in Chapter 5, Section 5.5.3. Finally, we provide

the fxml:td->xml function which allows us to convert an fxml:td to conventional

xml syntax.

fxml:td->xml : 〈fxml : td〉 → 〈string〉

6.3.1 Transformation Rules in FXML-T

fxml-T is implemented in scheme because its inherent data structures (s-expressions)

correlate closely to the structures used in fxml-M. When defining code to per-

form document translations, it is simple to implement the rules defined earlier

in Chapter 5. To highlight the correspondence between fxml-M rules and the

scheme functions that implement them, we give scheme code to evaluate docu-

ment paths in Figure 6.5 and the rule names that they implement. The function

match-pathcomponent takes a path component (pc) and a typed document (td)

as input. This function implements the rules defined earlier in Chapter 5, Figure

5.4 for the matching of path components. The function get-pc-sort returns a

symbol denoting the kind of component referenced which will be one of element,

attribute, value, valuereg, or empty. Once the path component sort has

been determined, simple conditional cases check that the path component refer-

enced matches the typed document passed as input. If no rules for matching are

true, then the empty list is returned.

The td-child function takes a typed document (td) as input and returns the

child document, as defined by the rules in Chapter 5, Figure 5.5. Finally, the

evaluate-pathexpression function is shown which implements the rule for eval-

uating path expressions (Figure 5.6 in Chapter 5). This function recurses through

the sequence of path components, matching them against each typed document

td and returning the contents. Because of this clear relationship between scheme

Chapter 6 The Configurable Mediator Implementation 118

(define match-pathcomponent

 (lambda (pc td)

 (let ((pc-sort (get-pc-sort pc)))

 (cond ((and (eq? pc-sort 'element) (eq? pc (cadr td))) td)

 ((and (eq? pc-sort 'attribute) (eq? pc (cadr td))) td)

 ((and (eq? pc-sort 'value) (eq? (car td) 'TD-Constant)) td)

 ((and (eq? pc-sort 'valuereg) (eq? (car td) 'TD-Constant))

 (list 'TD-Constant (eval-regexp (cdr pc) (cadr td))))

 ((and (eq? pc-sort 'empty) (eq? (car td) 'TD-Empty)) td)

 ((eq? (car td) 'TD-Sequence)

 (let ((head (match-pathcomponent pc (cadr td)))

 ((tail (match-pathcomponent pc (caddr td)))))

 (cond ((null? (car tail)) head)

 ((null? (car head)) tail)

 ((and (pair? head) (pair? tail))

 (list 'TD-Sequence head tail))

 (else '()))))

 (else '())))))

(define td-child

 (lambda (td)

 (let ((td-sort (car td)))

 (cond ((eq? td-sort 'TD-Element) (cadddr td))

 ((eq? td-sort 'TD-Attribute) (cadddr td))

 ((eq? td-sort 'TD-Constant) td)

 ((eq? td-sort 'TD-Empty) td)

 ((eq? td-sort 'TD-Sequence) td)

 (else "Error: Unknow Document Encountered")))))

(define evaluate-pathexpression

 (lambda (pe td)

 (if (null? pe)

 td

 (let* ((match (match-pathcomponent (car pe) td))

 (content (td-child match)))

 (evaluate-pathexpression (cdr pe) content)))))

Scheme

PATHC.E
PATHC.A
PATHC.C
PATHC.REG
PATHC.EMP

CHILD.E
CHILD.A
CHILD.C
CHILD.EMP
CHILD.SEQ

PATH.EVAL

Rules defining the
matching of path

components

Rules defining
document children

Rule defining path
expression evaluation

PATH.SA
PATH.SB
PATH.SAB
NOT.PATH.S

NOT.PATHC.E
NOT.PATHC.A
NOT.PATHC.C
NOT.PATHC.REG
NOT.PATHC.EMP

Figure 6.5: The correspondence between fxml-M transformation rules and
the scheme code for fxml-T

function definitions and fxml-M rules, extensions or changes to the formalism

can be easily implemented in fxml-T.

6.3.2 Transformation Algorithm and Complexity Analysis

To derive the complexity of the fxml-T transformation algorithm, we break down

the translation process into a number of small functions that can be analysed

individually. Pseudocode is used to present the transformation algorithm, and is

given in listings 6.1 and 6.2. In fxml-T, components can be dereferenced by their

namespace and local name using a component hash table. The use of hash tables

ensures component dereferencing occurs in constant time, providing the hash table

is sized appropriately. When reading an xml schema using the fxml-T library, a

heuristic is used to size the component hash table based on the file size of the xml

schema. Like the component hash table, mappings are indexed in the binding hash

Chapter 6 The Configurable Mediator Implementation 119

table by their source mapping path’s first component so that applicable mappings

for any given document can found in constant time.

When reading the pseudocode, parts of a structure are referenced using a

structure.part notation. For example, a mapping contains a source mapping

path, a destination mapping path, and local binding. The source mapping path

is denoted by mapping.sourcemappingpath, the destination mapping path is de-

noted by mapping.destinationmappingpath, etc. Since these parts of a structure

can be obtained directly, they are considered to operate in constant time, or O(1).

A number of basic functions are also assumed: head(x) and tail(x) are used

in cases when a structure, such as a mapping path, is a list and either the first

element or the rest of the list are required. We describe the pseudocode functions

listed below:

• transform(td, bindingmap) - (line 1)

The transform function consumes a source typed document and a binding

hash table as input. The set of compatible mappings is retrieved from the

binding hash table (line 2) and evaluated against the source typed document

(line 3) to give a set of destination creation pairs. These pairs are then

used to construct the destination document (line 4) which is returned as the

function output.

• evaluate(compatiblemappings, td, bindingmap) - (line 8)

The evaluate function takes a set of compatible mappings, a source docu-

ment, and the binding hash table. Each mapping in the set of compatible

mappings is evaluated separately (line 11) to generate a destination creation

pair that is added to a result set.

• evaluatemapping(mapping, td, bindingmap) - (line 15)

A mapping contains a source mapping path, a destination mapping path, and

a set of local bindings. The evaluate-mapping function evaluates the source

mapping path against the source document (line 20), obtaining a matched

document as output. This matched document is itself translated (line 21)

using the transform function defined above, with local bindings added to the

binding hash table.

Chapter 6 The Configurable Mediator Implementation 120

• evaluate-smpath(smpath, td) - (line 26)

The evaluate-smpath function takes the first source mapping pair refer-

enced in the source mapping path and extracts the path component (line

28) and predicate (line 29). The path component is matched against td

(line 30) and the predicate is evaluated (line 31) to ensure the mapping is

valid for application. If the predicate evaluates to true, the child document

of the matched document is obtained (line 32). If the source mapping path

contains more source mapping pairs, a recursion is made (line 34), passing

the tail of the source mapping path and the child of the matched document

as input. If there are no more pairs to process in the source mapping path,

the child of the matched document is returned.

• match-pathcomponent(pc, td) - (line 41)

To match path components to a typed document, the kind (or variety) of

the path component is determined (line 42). The path component pc is then

checked against td to see if they match (lines 44 - 53). If td is a sequence,

a recursive call is made on each of the documents in the sequence (lines 55

and 56). Either both documents in the sequence match (line 57), only one

is matched (lines 61 and 63), or neither match (line 59).

• child-td(td) - (line 69)

The child-td function determines the kind of typed document passed as

input and returns the appropriate content. If td is either an attribute or

element, the tail is returned (where tail is the content document). If td is

the empty document, a constant, or a sequence, td itself is returned.

• predeval(predicate, td) - (line 77)

This function finds the kind of predicate passed as input (line 78) which will

be one of: exists, neg, and, or, less, greater, equal, or true. If a pred-

icate contains a patom (where a predicate atom is either a path expression

or a constant), such as the exists predicate, predicate.patom is used to

obtain the predicate atom. For the other cases, predicate.subpredicate

is used to obtain sub-predicates that are used in the definition of a parent

predicate, for example, the and predicate, that evaluates to true when both

sub-predicates also evaluate to true.

Chapter 6 The Configurable Mediator Implementation 121

• apply(patom, td) - (line 92)

The application of a predicate atom to a typed document is simple: either

the predicate atom is a path expression (line 94) that can be evaluated using

the evaluate-pe function; or the predicate atom is a constant, in which case

the constant itself is returned (line 95).

• evaluate-pe(pe, td) - (line 98)

The evaluate-pe function consumes a path expression and a typed docu-

ment. The first path component in the path expression is matched against

td (line 99) and the child of the result is taken. If more path components

are defined in the path expression, a recursive call is made, passing the tail

of the path expression and the child of the matched document as input. If

there are no more path components in the path expression, the child of the

matched document is returned.

• construct(dpairs) - (line 107)

The construct function takes a set of destination creation pairs as input

and uses them to construct the destination document. The set of destination

creation pairs is split into two subsets called rjoin and rbranch. Each of

these is used separately to construct destination documents (lines 110 and

111) that are then combined in a sequence to give the destination document.

• construct-rjoin(rjoin) - (line 115)

When constructing a destination document from rjoin, a new set of desti-

nation creation pairs is constructed by iterating through each pair in rjoin

and removing the head of the destination mapping path (line 118). The first

component referenced (x) in each pair’s destination mapping path is deter-

mined (line 120) and its type (t) is obtained (line 121). The construct

function is then called using the new set of destination creation pairs (line

122) to get a content document. The construct-rjoin function returns

a new document created using the component x, of type t, with content

contentdocument.

• construct-rbranch(rbranch) - (line 126)

Each destination creation pair in rbranch is used to construct a separate

Chapter 6 The Configurable Mediator Implementation 122

document (line 129). All these documents are then combined using the

make-sequence function to create the destination document (line 130).

• construct-pair(pair) - (line 133)

This function consumes a destination creation pair (composed of a desti-

nation mapping path and a content document) and produces a destination

document. If there is more than one destination mapping pair in pair’s

destination mapping path (line 135), the first component referenced (x) is

obtained (line 136), and its type (t) is determined (line 137). A new des-

tination creation pair is then constructed (line 138) using the rest of the

destination mapping path and the content document. This new destination

creation pair is used to create a set of destination creation pairs with only

one pair so it can be constructed using the construct function. If there is

are no more destination mapping pairs in pairs’s destination mapping path

(line 141), the first component referenced (x) is found (line 142). Based on

the variety of x (i.e. attribute, element, constant, etc.), a destination

document can be created with the contents from pair.contentdocument.

To calculate the complexity of the mapping evaluation algorithm presented above,

we take a bottom-up approach, calculating the complexity of each function used,

starting with the matching of path components. The match-pathcomponent

function consumes a path component (pc) and a type document (td). If td is

an attribute, element, constant, or the empty document, then the function re-

turns in constant time O(1). If td is a sequence of two typed documents then

match-pathcomponent is called on each of them. The first of the two documents

in the sequence (or the head) must be an element, attribute, constant, or the

empty document, and the second (or tail) may be any kind of typed document

(i.e. it could contain another sequence). Because of this linked-list structure, we

can consider a typed document that is a sequence to be a list of typed documents

with size n. Therefore, the worst case complexity of the match-pathcomponent

function is O(n), where n is the number of components contained in a sequence.

For the rest of this analysis, we refer to the size of a typed document as n, where

n is the number of elements, attributes, constants, or occurrences of the empty

document.

Chapter 6 The Configurable Mediator Implementation 123

Child documents are obtained using the child-td function. Since this function

only checks the kind of the typed document passed as input and directly returns

its content (when the kind is element or attribute), or itself (empty document,

constant, or sequence), it operates in constant time — O(1). The evaluate-pe

function is used to evaluate a path expression (pe) against a typed document (td).

Given that a path expression is a list of path components of size m, and each path

component is matched against a typed document (itself of size n) in O(n) time,

the complexity of the evaluate-pe function is O(m,n) where m is the number of

components in the path expression and n is the size of the typed document.

Predicates are expressions that either contain predicate atoms (e.g. exists, less,

greater, or equal), or other sub-predicates (e.g. neg, and, and or). We assume

the size of a predicate (written p) is equal to the total number of predicate atoms

in the expression, including those defined in sub-predicates. The apply function

is used to apply a predicate atom to a typed document and executes in either

O(1) time (when the predicate atom is a constant), or in O(m,n) time (when the

predicate atom is a path expression of size m). Therefore, the complexity of the

predeval function is O(p, n), where n is the size of the typed document and p is

the number of predicate atoms in the predicate expression.

To evaluate a source mapping path (function evaluate-smpath) with q pairs,

the path component of each pair is matched against td (where td is the child

of the evaluation of the previous pair in the source mapping path, or the source

document for the first pair), and the predicate in each pair is matched against

the result of match-pathcomponent(pc,td). Therefore, the complexity of the

evaluate-smpath is O(q, n) where q is the size of the source mapping path and n

is the size of the typed document.

To construct a destination document from a set of destination creation pairs, the

construct function (line 107) is used. A set of destination creation pairs contains

d pairs, each with r number of destination mapping pairs in their destination map-

ping path. The construct function splits the set of destination creations pairs into

rjoin and rbranch and evaluates them separately using the construct-rjoin

and construct-rbranch functions. To construct a destination document from

rjoin (line 115), each destination creation pair has its first destination mapping

Chapter 6 The Configurable Mediator Implementation 124

pair removed from its destination mapping path (tail(pair.dmpath)). A call is

then made to the construct function, using the new set of destination creation

pairs. Therefore, the construction of destination documents from rjoin operates

in O(r), where r is the number of destination mapping pairs in the destination

mapping path of each destination creation pair. To construct a destination doc-

ument from rbranch (line 126), each pair in rbranch is constructed separately

using the construct-pair function. Hence, construction from rbranch occurs in

O(d), where d is the number of destination creation pairs. When the two func-

tions for the construction of rjoin and rbranch are combined in the construct

function, the resulting complexity is O(d, r).

With the complexity of source mapping path application and destination document

construction in place, we can now derive the complexity of the transformation

process. Each time a document is transformed using the transform function, a

set of compatible mappings, of size c, is retrieved from the binding hash table.

An iteration through each of these compatible mappings is made, evaluating each

mapping individually to construct a destination creation pair. These destination

creation pairs are then combined to make a set of destination creation pairs of size

d. As we stated earlier, the construction of the destination document is O(d, r).

Therefore, the complexity of the transform function is O(n, c), where n is the size

of the source document, and c is the number of compatible mappings. Through

evaluation of the fxml-T library later in Section 6.5, we confirm this result and

show that increasing source document size only increases the transformation time

linearly.

Chapter 6 The Configurable Mediator Implementation 125

1 transform(td, bindingmap) {
2 compatiblemappings <− Hashtable.lookup(bindingmap, td.componentName)
3 resultset <− evaluate(compatiblemappings, td, bindingmap);
4 resultdocument <− construct(resultset)
5 RETURN resultdocument
6 }
7
8 evaluate(compatiblemappings, td, bindingmap) {
9 resultset <− emptyset

10 foreach mapping in compatiblemappings
11 resultset.add(evaluatemapping(mapping, td, bindingmap))
12 RETURN resultset
13 }
14
15 evaluatemapping(mapping, td, bindingmap) {
16 smpath <− mapping.sourcemappingpath
17 dmpath <− mapping.destinationmappingpath
18 localbinding <− mapping.localbinding
19
20 matcheddocument <− evaluate −smpath(smpath, td)
21 result <− transform(matcheddocument, bindingmap.add(localbindi ng))
22
23 RETURN [result . destinationpath]
24 }
25
26 evaluate −smpath(smpath, td) {
27 firstpair <− head(smpath)
28 pc <− firstpair.pathcomponent
29 predicate <− firstpair.predicate
30 matched −td <− match−pathcomponent(pc, td)
31 IF predeval(predicate, matched −td)
32 child −td <− td −child(matched −td)
33 IF tail(smpath)
34 RETURN evaluate −smpath(tail(smpath), child −td)
35 ELSE
36 RETURN child −td
37 ELSE
38 RETURN empty
39 }
40
41 match−pathcomponent(pc, td) {
42 pc−kind <− kind(pc)
43 CONDITIONAL
44 pc−kind = element AND td = pc
45 RETURN td
46 pc−kind = attribute AND td = pc
47 RETURN td
48 pc−kind = value AND td = constant
49 RETURN td
50 pc−kind = valuereg AND td = constant
51 RETURN eval−regexp(pc, td)
52 pc−kind = empty AND td = empty
53 RETURN td
54 td = sequence
55 head <− match−pathcomponent(pc, head(td))
56 tail <− match−pathcomponent(pc, tail(td))
57 IF head != null AND tail != null
58 RETURN make−sequence(head, tail)
59 IF head = null AND tail = null
60 RETURN null
61 IF head = null
62 RETURN tail
63 IF tail = null
64 RETURN tail
65 ELSE
66 RETURN null
67 }
68
69 child −td(td) {
70 td −kind = kind(td)
71 CASE td−kind OF
72 attribute: RETURN tail(td)
73 element: RETURN tail(td)
74 empty: RETURN td
75 constant: RETURN td
76 sequence: RETURN td
77 }

Listing 6.1: Pseudocode for the transformation algorithm

Chapter 6 The Configurable Mediator Implementation 126

77 predeval(predicate, td) {
78 CASE predicate.kind OF
79 exists: result <− apply(predicate.patom, td)
80 IF result != empty RETURN true ELSE RETURN false
81 neg: RETURN ! predeval(predicate.subpredicate, td)
82 and: RETURN predeval(head(predicate.subpredicates), td) AND
83 predeval(tail(predicate.subpredicates), td)
84 or: RETURN predeval(head(predicate.subpredicates), td) OR
85 predeval(tail(predicate.subpredicates), td)
86 less: RETURN apply(head(predicate.patom) < apply(tail(predicate.patom))
87 greater: RETURN apply(head(predicate.patom) > apply(tail(predicate.patom))
88 equal: RETURN apply(head(predicate.patom) = apply(tail(predicate.patom))
89 true: RETURN true
90 }
91
92 apply(patom, td) {
93 CASE patom OF
94 pathexpression: RETURN evaluate −pe(patom.pe, td)
95 constant: RETURN patom.constant
96 }
97
98 evaluate −pe(pe, td) {
99 matched −td <− match−pathcomponent(head(pe), td)

100 child −td <− td −child(matched −td)
101 IF tail(pe)
102 RETURN evaluate −pe(tail(pe), child −td)
103 ELSE
104 RETURN child −td
105 }
106
107 construct(dpairs) {
108 rjoin <− rjoin(dpairs)
109 rbranch <− rbranch(dpairs)
110 td −j <− construct −rjoin(rjoin)
111 td −b <− construct −rbranch(rbranch)
112 RETURN make−sequence(td −j, td −b)
113 }
114
115 construct −rjoin(rjoin) {
116 dpairs <− emptyset
117 for each pair in rjoin
118 dpairs.add([tail(pair.dmpath) . pair.document]))
119
120 x <− root(rjoin)
121 t <− x.type
122 content <− construct(dpairs)
123 RETURN newdocument(x, t , content)
124 }
125
126 construct −rbranch(rbranch) {
127 resultdocument <− emptydocument
128 for each pair in rbranch
129 resultdocument.add(construct −pair(pair))
130 RETURN make−sequence(resultdocument)
131 }
132
133 construct −pair(pair) {
134 dmpath <− pair.dmpath
135 IF tail(dmpath)
136 x <− head(dmpath).component
137 t <− type(x)
138 dpairs <− {[tail(dmpath) . pair.document] }
139 resultdocument <− construct(dpairs)
140 RETURN newdocument(x, t, resultdocument)
141 ELSE
142 x <− head(dmpath).component
143 CASE x.kind OF
144 element: RETURN newdocument(x, type(x), pair.contentdoc ument)
145 attribute: RETURN newdocument(x, type(x), pair.contentd ocument)
146 constant: RETURN pair.contentdocument
147 empty: RETURN emptydocument
148 }

Listing 6.2: Pseudocode for the transformation algorithm

Chapter 6 The Configurable Mediator Implementation 127

6.4 The Configurable Mediator

The C-Mediator is a component that consumes M -Binding documents and uses

them to direct the transformation of data from one format to another via an

intermediate owl representation. This process is broken into three stages: (i)

conversion from the source xml format to owl (conceptual realisation); (ii) mod-

elling of the owl concept instance; (iii) conversion from owl to a destination

xml format (conceptual serialisation). Stages (i) and (ii) are performed by the

Translation Engine that is implemented using the fxml-T functions defined in

Section 6.3. Figure 6.6 shows how these functions are combined to create the

Transformation Engine.

The Transformation Engine takes four inputs: a source xml schema, a source

xml document, a destination xml schema and an M -Binding in xml format.

The xmls->fxml:schema function is used to convert the source and destination

xmls->fxml:schema

Source
Schema
<XMLS>

M-Binding
<XML>

Source
Document

<XML>

Destination
Schema
<XMLS>

xml->fxml:td

Destination
Document

<XML>

The Transformation Engine takes four
documents as input

The Transformation Engine produces
 the destination XML document

fxml:transform

xmls->fxml:schema

fxml:td->xml

Tr
a

n
sf

o
rm

a
ti

o
n

 E
n

g
in

e

xml->fxml:binding

fxml:schema

fxml:schema

fxml:schema

fxml:td

fxml:binding

Figure 6.6: The Transformation Engine

Chapter 6 The Configurable Mediator Implementation 128

xml schemas to fxml:schema structures. The source document is converted to an

fxml:td using the xml->fxml:td function (consuming the source schema already

converted to an fxml:schema). The M -Binding document is converted to an

fxml:binding and then passed with the source fxml:td, source fxml:schema, and

destination fxml:schema to the fxml:transform function. Once the document

translation has been completed, the output is converted from an fxml:td to an

xml document using the fxml:td->xml function.

After the initial conversion from the source xml format to an owl concept instance

(serialised in xml), the concept instance must be validated against its ontology

definition. The C-Mediator uses jena to perform this stage of the mediation,

creating an inference model from the ontology definition and importing the con-

cept instance into it. During this stage, concept hierarchies are calculated and any

instances imported are classified. From the perspective of our use case, this means

that the output from the DDBJXML service (a DDBJ Sequence Data Record con-

cept) is also classified as an instance of the Sequence Data Record concept. There-

fore, input to a service consuming a Sequence Data Record, such as the NCBI-Blast

service, is valid. The C-Mediator and its interaction with our dwsi and the two

target Web Services from our use case is illustrated in Figure 6.7. In this diagram,

the C-Mediator is shown converting data from DDBJXML format to FASTA

format via an instance of the Sequence Data Record concept. We show all the doc-

uments necessary for each conversion process (e.g. xml schemas and M -Binding

documents) and where they originate (e.g. wsdl definitions, manually specified

or automatically generated). To illustrate the mechanics of the C-Mediator, we

follow the conversion process in four stages, as they are labelled in Figure 6.7:

1. The Dynamic wsdl Invoker (dwsi) consumes the accession id and invokes

the DDBJ service to retrieve a complete sequence data record. The document

returned is of type DDBJXML.

2. The DDBJXML sequence data record is converted to an instance of the

sequence data record concept using the Translation Engine. The Transla-

tion Engine consumes the sequence data record, the xml schema describing

it (taken from the DDBJ wsdl definition), a schema describing a valid in-

stance of the sequence data record concept (generated automatically by

Chapter 6 The Configurable Mediator Implementation 129

the OWL-XIS generator), and the realisation M -Binding document. The

Translation Engine produces an instance of the sequence data record con-

cept which is imported into the Mediation Knowledge Base (a jena store).

3. To transform the sequence data record concept instance to FASTA format,

the Translation Engine is used again, this time consuming the owl concept

instance (in xml format), the schema describing it (generated by the OWL-

XIS generator), the schema describing the output format (from the NCBI-

Blast wsdl) and the serialisation M -Binding. The output produced is the

sequence data in FASTA format.

4. The dwsi consumes the FASTA formatted sequence data record and uses it

as input to the NCBI-Blast service.

Out: GetEntryOut

• record [DDBJXML]

In: runAndWaitForIn

• sequence_data[FASTA]

Mediation

KB

(Jena)

Translation

Engine

DDBJ XML Schema

Sequence Data OWL

Instance Schema

DDBJ XML->Seq-Data-Ont

M-Binding

Translation

Engine

NCBI XML Schema

Sequence Data OWL

Instance Schema

Seq-Data-Ont -> FASTA

M-Binding

Sequence_Data_Record

Sequence_Data_Record

Sequence Data Ontology

Concept URI

DDBJ WSDL

OWL-XIS

Generator
Manually

Specified

NCBI Blast WSDL

Manually

Specified

From Semantic Annotation

DDBJ
Service: GetEntry

PortType: GetEntry

Dynamic

WSDL

Invoker

wsdl:GetEntryIn

• accession_id [xsd:string]

NCBI-Blast
Service: runAndWaitFor

PortType: runAndWaitFor

Dynamic

WSDL

Invoker

wsdl:runAndWaitForOut

• result[resultType]

Configurable Mediator

Web Services with WSDL

Descriptions

SOAP / HTTP SOAP / HTTP

Workflow Input Workflow Output

1

2

3

4

Figure 6.7: A detailed view of the Configurable Mediator in the context of
our use case.

Chapter 6 The Configurable Mediator Implementation 130

6.5 Evaluation

To evaluate our implementation of fxml-M, as well as the scalability of the lan-

guage design itself, we devised four tests to examine the performance of our Trans-

lation Engine against increasing document sizes, increasing schema sizes, increas-

ingly complex M -Binding composition, and a large set of Sequence Data Records.

All tests were carried out using a 2.6Ghz Pentium4 PC with 1GB RAM running

Linux (kernel 2.6.15-20-386) using unix utility time to record program user times.

fxml-T is implemented in scheme and run using the Guile Scheme Interpreter

v1.6 [53]. Results are averaged over 30 runs so plotted values are statistically

significant at a 95% confidence interval.

6.5.1 Scalability

We test the scalability of fxml-T in two ways: by increasing input document size

(while maintaining uniform input xml schema size), and by increasing both input

schema size and input document size. The test hypothesis follows:

H1. Expanding document and schema size will increase the translation cost

linearly.

For comparison, fxml-T is tested against the following xml translation tools:

• xslt: Using Perl and the XML::XSLT module - http://xmlxslt.sourceforge.net/.

• xslt: Using java (1.5.0) and Xalan (v2.7.0) - http://xml.apache.org/xalan-j/.

• xslt: Using Python (v2.4) and the 4Suite Module (v0.4) - http://4suite.org/.

• sxml: A scheme implemention for xml parsing and conversion (v3.0)

http://okmij.org/ftp/Scheme/SXML.html.

Since fxml-T is implemented using an interpreted language, and Perl is also in-

terpreted, we would expect them to perform slowly in comparison to java and

Python xslt which are compiled2. Figure 6.8 shows the time taken to transform

2 Although Python is interpreted, the 4Suite library is statically linked to natively compiled
code

Chapter 6 The Configurable Mediator Implementation 131

a source document to a structurally identical destination document for increasing

document sizes. The maximum document size tested is 1.2 MB, twice that of the

Blast results obtained in our use case. From Figure 6.8 we see that fxml-T has

a linear expansion in transformation time against increasing document size: the

correlation coefficient (r2 = σxy/σxσy) is 0.916 (3 decimal places) where 1 is a

straight line and 0 is evenly scattered data. Both Python and java implementa-

tions also scale linearly with better performance than fxml-T due to java and

Python using compiled code. Perl exhibits the worst performance in terms of time

taken, but a linear expansion is still observed. These results are summarised in

the table presented in Figure 6.9. To compare each implementation, we calculate

the line of best fit using the equation y = mx + b. The coefficient m for each

implementation is listed in the table to convey the growth in transformation time.

The difference in growth for each implementation to fxml-T is also listed, and

presented as a percentage to assist the reader in comparison. For example, Perl is

94.0% slower than fxml-T, but Java is 62.4% faster.

 0

 10

 20

 30

 40

 50

 60

 70

0 200 400 600 800 1000 1200

U
se

r
C

P
U

 T
im

e
(S

ec
on

ds
)

Document Size (KBytes)

FXML

Perl

Java

Python

SXML

PERL
PERL Fit

FXML
FXML Fit

JAVA
JAVA Fit

SXML
SXML Fit
PYTHON

PYTHON Fit

Figure 6.8: Transformation Performance against increasing xml document
size

Chapter 6 The Configurable Mediator Implementation 132

Doc Size (KB) fxml (s) perl (s) java (s) sxml (s) python (s)

0.14 0.13 0.22 0.97 0.04 0.16
2.10 0.18 0.34 0.98 0.06 0.16
8.29 0.33 0.70 1.07 0.10 0.20

27.98 0.79 1.83 1.28 0.25 0.28
56.11 1.58 3.44 1.64 0.46 0.40

106.30 2.74 6.32 2.23 0.84 0.63
214.70 5.78 12.41 3.46 1.73 1.08
359.23 9.68 20.71 5.06 2.97 1.72
720.56 20.62 41.44 9.04 6.31 3.32

1091.65 32.94 63.05 13.10 9.61 4.86
m value 0.0296 0.0574 0.0111 0.0088 0.0043

difference 0.0278 -0.0185 -0.0209 -0.0253
percentage 94.0% -62.4% -70.4% -85.4%

Figure 6.9: A summary of translation performance for increasing document
sizes.

Our second performance test examines the translation cost with respect to in-

creasing xml schema size. To perform this test, we generate structurally equiva-

lent source and destination xml schemas and input xml documents which satisfy

them. The xml input document size is directly proportional to schema size; with

2047 schema elements, the input document is 176KBytes, while using 4095 ele-

ments a source document is 378KBytes. Figure 6.10 shows translation time against

the number of schema elements used.

Python and java perform the best - a linear expansion with respect to schema

size that remains very low in comparison to fxml-T and Perl. fxml-T itself has

a quadratic expansion; however, upon further examination (see Figure 6.12), we

find the quadratic expansion emanates from the xml parsing sub-routines used to

read schemas and M -Bindings, whereas the translation itself has a cost linear to

the size of its input (solid line in Figure 6.12). The scheme xml library used for

xml parsing is common to fxml-T and sxml, hence the quadratic expansion for

sxml also. Therefore, our translation cost would be linear if implemented with a

suitable xml parser. A summary of these results is given in table format in Figure

6.11.

Chapter 6 The Configurable Mediator Implementation 133

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

U
se

r
C

P
U

 T
im

e
(S

ec
on

ds
)

Number of Schema Elements

FXML

Perl

Java
Python

SXML

PERL
PERL Fit

SXML
SXML Fit

FXML
FXML Fit

JAVA
JAVA Fit
PYTHON

PYTHON Fit

Figure 6.10: Transformation Performance against increasing xml schema size

Schema Size fxml (s) perl (s) java (s) sxml (s) python (s)

3 0.14 0.22 0.04 1.03 0.17
15 0.19 0.24 0.07 1.08 0.18
85 0.49 0.51 0.21 1.23 0.21

156 0.88 0.99 0.38 1.45 0.26
255 1.42 2.08 0.76 1.60 0.31
511 3.29 7.04 3.69 1.98 0.46

1023 8.02 26.19 25.85 2.50 0.75
2047 23.69 101.10 67.61 3.32 1.42
4095 87.09 412.74 233.90 5.17 2.76

m value 0.0184 0.0850 0.0504 0.0011 0.0006
difference 0.0666 0.0320 -0.0174 -0.0178
percentage 361% 37% -34% -1693%

Figure 6.11: A summary of translation performance for increasing schema
sizes.

6.5.2 Composition Cost

H2. Binding composition comes with virtually no performance cost.

One important feature of our translation language (fxml-M) is the ability to com-

pose M -Bindings at runtime. This can be achieved by creating an M -Binding that

Chapter 6 The Configurable Mediator Implementation 134

 0

 1

 2

 3

 4

 5

0 500 1000 1500 2000 2500 3000 3500 4000 4500

U
se

r
C

P
U

 T
im

e
(S

ec
on

ds
)

Number of Schema Elements

Source Document Read
Source Document Read Fit

Source Schema Read
Source Schema Read Fit

Destination Schema Read
Destination Schema Read Fit

Binding Read
Binding Read Fit

Translation
Translation Fit

Destination Document Write
Destination Write Fit

Figure 6.12: fxml-T transformation Performance breakdown against increas-
ing xml schema size

includes individual mappings from an external M -Binding, or imports all map-

pings from an external M -Binding. For Service interfaces operating over multiple

schemas, M -Bindings can be composed easily from existing specifications. Ide-

ally, this composability should come with minimal cost. To examine M -Binding

cost, we increased the number of M -Bindings imported and observed the time

required to transform the document. To perform the translation, 10 mappings are

required m1,m2, . . . ,m10. M -Binding 1 contains all the required mapping state-

ments: B1 = {m1,m2, . . . ,m10}. M -Binding 2 is a composition of two M -Bindings

where B2 = {m1, . . . ,m5}∪B2a and B2a = {m6, . . . ,m10}. To fully test the cost of

composition, we increased the number of M -Bindings used and ran each test us-

ing 4 source documents with sizes 152Bytes, 411Bytes, 1085Bytes, and 2703Bytes.

While we aim for zero composability cost, we would expect a small increase in

translation time as more M -Bindings are included. By increasing source docu-

ment size, a larger proportion of the translation time will be spent on reading in

the document and translating it. Consequently, the relative cost of composing

M -Bindings will be greater for smaller documents and therefore the increase in

cost should be greater. Figure 6.13 shows the time taken to transform the same

Chapter 6 The Configurable Mediator Implementation 135

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 1 2 3 4 5 6

U
se

r
C

P
U

 T
im

e
(S

ec
on

ds
)

Number of bindings

File Size = 152Bytes [± 1.95%]
Fit, File Size = 152 Bytes

File Size = 411Bytes [± 2.08%]
Fit, File Size = 411Bytes

File Size = 1085Bytes [± 1.87%]
Fit, File Size = 1085Bytes

File Size = 2703Bytes [± 1.85%]
Fit, File Size = 2703Bytes

Figure 6.13: Transformation Performance against number of bindings

Number of Bindings 152KB 411KB 1085KB 2703KB

1 0.156 0.160 0.180 0.215
2 0.152 0.162 0.182 0.216
3 0.156 0.160 0.182 0.212
4 0.156 0.160 0.183 0.216
5 0.157 0.162 0.178 0.216

mvalue 0.0006 0.0002 -0.0003 0.0002
max difference 0.005 0.026 0.059
max percentage 103% 112% 118%

Figure 6.14: A summary of translation performance for increasing M -Binding
composition.

four source documents against the same mappings distributed across an increas-

ing number of M -Bindings. On the whole, a very subtle increase in performance

cost is seen, and as expected, the increase is slightly larger for bigger documents.

Again, a summary of values is given in Figure 6.14 where m values are shown to be

very small. This indicates the that line of best fit is virtually flat, and therefore,

the increase in translation cost is minute.

Chapter 6 The Configurable Mediator Implementation 136

6.5.3 Bioinformatics Data Performance

H3. fxml-T performs well in comparison to other transformation technologies

when used to translate real bioinformatics data sets.

To test the practicality of fxml-T, we randomly retrieve a large selection of se-

quence data records from the DDBJ-XML service and translate them to their

corresponding owl concept instance, serialised in xml. For comparison, the same

translation is performed using an xslt script with two different implementations:

Perl and Python. Previous tests indicate that Perl xslt performs worse than

fxml-T and Python xslt performs better, so we expect fxml-T values to fall

roughly in the middle. Figure 6.15 is a plot of the time taken (in seconds) to

transform a Sequence Data Record to an owl concept instance against the size

of the Sequence Data Record. On average, fxml-T translates a document in

60% of the time that Perl xslt does, with an increase in translation time that

is proportional to the size of the input document. Python performs much better,

translating documents on average 50% quicker than fxml-T and with very little

increase in translation time as document size increases. These results are also

summarised in Figure 6.16.

6.5.4 Analysis

Hypothesis H1 states that the performance cost of translation should be linear

or better for fxml-T to be a scalable implementation. In Section 6.5.1, testing

with increasing input document size shows fxml-T to have a linear increase in

the cost of translation. Although a quadratic expansion is observed when schema

sizes are increased, we discover that this performance overhead emanates from

the xml parsing routines used and not the transformation cost which is shown to

remain linear in Figure 6.12. Hypothesis H2 states the M -Binding composition

should ideally come with virtually zero performance cost. In Section 6.5.2, test-

ing of increasingly complex M -Binding composition shows that the inclusion of

mappings from other documents does not effect the translation performance in a

significant way. Finally, to fulfil hypothesis H3 and ensure fxml-T is a practical

Chapter 6 The Configurable Mediator Implementation 137

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 10 20 30 40 50 60

U
se

r
C

P
U

 T
im

e
(S

ec
on

ds
)

File Size (KBytes)

Perl
Perl Quadratic Fit

FXML
FXML Quadratic Fit

Python
Python Quadratic Fit

Figure 6.15: Transformation Performance against a random selection of Se-
quence Data Records from the DDBJ service

Doc Size (KB) fxml (s) perl (s) python (s)

2.04 0.30 0.36 0.17
5.01 0.30 0.34 0.17

11.00 0.35 0.45 0.18
15.96 0.43 0.72 0.22
20.51 0.43 0.68 0.22
30.89 0.61 1.22 0.27
40.20 0.57 0.78 0.20
52.12 0.74 1.30 0.26

ihline mvalue 0.0088 0.0183 0.0017
difference 0.0095 -0.0072
percentage 107.6% -81.2%

Figure 6.16: A summary of translation performance for bioinformatics data
collected from DDBJ.

Chapter 6 The Configurable Mediator Implementation 138

implementation, we test fxml-T against real bioinformatics data sources. Figure

6.15 illustrates that fxml-T performance is reasonable compared to other xslt

implementations.

6.6 Conclusions

fxml-T implements our transformation formalisation fully. It supports the trans-

lation of documents based on mappings between components within source and

destination schemas. To express complex relations between elements, for exam-

ple the mapping of elements based on other attribute values, fxml-T supports

predicate evaluation. When the manipulation of string values is required, regular

expressions may be used to extract characters of interest. fxml-T also provides

an implementation of the core msl constructs, namely schema components and

typed documents. The msl specification [26] does present inference rules that de-

scribe the process of document validation; i.e. the notation that an xml document

conforms fully to the schema that describes it. However, we have not implemented

this feature within fxml-T since third part schema validators can be used. Valida-

tion must be used otherwise it is possible to specify transformations that produce

invalid documents.

Through evaluation of the fxml-T library against similar xml translation tools,

we have shown that our implementation scales well when input document size is

increased. While a quadratic expansion in translation time is observed when in-

creasing schema sizes, we find that this increase emanates from the xml parsing

subroutines used. The actual cost of translation remains linear with respect to

input schema size. Therefore, our translation cost would be linear if more efficient

xml parsing routines were used. In terms of M -Binding composition, our imple-

mentation performs very well: increasing the number of M -Bindings included has

virtually no cost on the overall translation performance.

The languages fxml-M and xslt [34] are obviously closely related because they

both cater for xml translation. At a basic level, they provide operators that

allow items of text in the source document to be replaced with different text in a

destination document. However, fxml-M offers one significant benefit over xslt:

Chapter 6 The Configurable Mediator Implementation 139

fxml-M supports the composition of mappings in a predictable manner. With

xml schema, the definition of elements, attributes and types can be imported

from an external document. This is a useful feature when combining data from

different sources because schema definitions do not need to be rewritten. If this

were to occur with two xml schemas that both have an M -Binding to define the

translation to another xml representation, the M -Binding definitions may also be

imported, and therefore save considerable effort.

Chapter 7

Invocation and Discovery

Architecture

The goal of the WS-MED architecture is to provide a generalised set of software

components that can be exploited by any technology making use of Web Services

standards (such as wsdl and xml schema) to translate xml data between different

formats via an intermediate owl representation. In the previous two Chapters, we

have focused on the core syntactic mediation technology, namely the mapping lan-

guage fxml-M (Chapter 5), its corresponding implementation fxml-T (Chapter

6), and the internal workings of the Configurable Mediator (C-Mediator). While

these contributions create the necessary infrastructure to support a scalable data

translation approach, more software components are required to complete the big

picture given in Figure 4.12 (Chapter 4). For example, analysis of current applica-

tions shows that the discovery and sharing of Type Adaptors is not well supported:

most users create their own library of adaptors and rarely share them with other

individuals.

If we are to consider the WS-MED architecture as a generic solution to the

workflow harmonisation problem, we must support users and other software com-

ponents in the sharing and discovery of Type Adaptors, the dynamic invocation of

target services, and the generation of canonical xml representations for owl con-

cept instances. A more detailed list of these additional architecture requirements

follows:

140

Chapter 7 Invocation and Discovery Architecture 141

1. Invocation of target services

In a constantly changing environment where services appear and disappear

at any time, services may be discovered to achieve particular goals that have

not been used before. Therefore, it is important for an invocation component

to cater for the execution of previously unseen services defined using wsdl.

2. Derive a canonical model from the intermediary representation

Since our intermediary-based mediation approach relies on a canonical xml

representation of owl concept instances to act as a lingua franca, a mech-

anism is required to automatically derive such a model. To be compatible

with the C-Mediator, an xml schema is required to validate owl concept

instances (called an OWL-XIS).

3. Discovery of Type Adaptors

To find autonomously the appropriate Type Adaptor to harmonise the flow

of data between two services, a discovery and publishing facility is required

that supports the advertising and retrieval of Type Adaptors based on their

conversion capabilities. To conform to existing Web Service standards, we

base this part of the architecture on a uddi compliant registry.

In this Chapter, we present the WS-HARMONY architecture components that

enable the execution of wsdl specified Web Services; the generation of OWL-

XIS (owl instance schemas); and the advertising, sharing, and discovery of Type

Adaptors. We test Type Adaptor discovery cost in the context of workflow execu-

tion times and show that discovery time is minimal in comparison to the execution

of target services. Our Dynamic Web Service Invoker is also tested against an-

other Web Service invocation api (Apache Axis [10]) and is shown to be faster,

particularly as the message size increases.

The contribution of this Chapter is a set of architecture components to satisfy the

requirements above for automatic workflow harmonisation:

• A Dynamic Web Service Invoker that is able efficiently to execute previously

unseen wsdl specified Web Services.

• An owl xml instance schema (OWL-XIS) generator that consumes owl

ontologies and produces xml schemas to validate concept instances.

Chapter 7 Invocation and Discovery Architecture 142

• An approach for the description of Type Adaptor components using wsdl

and a component to automatically generate wsdl definitions of M -Binding

capability.

• A registration, sharing and discovery mechanism for Type Adaptors using

the Grimoires [93] service registry.

This Chapter is organised as follows: Section 7.1 gives an overview of wsdl, how

services are typically invoked, why the invocation of previously unseen services is

problematic, and how the Dynamic Web Service Invoker overcomes such problems.

Section 7.2 discusses the relationship between owl ontologies and xml schema,

with an example to show the OWL-XIS generator at work using an algorithm that

automatically creates OWL-XIS. In Section 7.3, we concentrate on the description

and discovery of Type Adaptors, presenting a uniform description method based

on wsdl. Section 7.4 evaluates our Dynamic Web Service Invoker against a leading

Web Service invocation api, and shows that the discovery of Type Adaptors in

WS-HARMONY is insignificant compared to the execution of target services.

Finally, we conlude in Section 7.5.

7.1 Dynamic Web Service Invocation

In this Section, we describe the problem faced by software components that are

designed to enable the invocation of previously unseen Web Services. After a brief

introduction to wsdl, and an explanation of the invocation problem, we present

a solution that utilises a standardised xml view for service input and output

messages. Finally, our implementation is presented in the form of the Dynamic

Web Service Invoker (dwsi).

7.1.1 WSDL and Web Service Invocation

wsdl [33] is an xml grammar used to specify Web Services and how to access

them. A wsdl document defines a service as a collection of endpoints, or ports.

Chapter 7 Invocation and Discovery Architecture 143

Each port exposes a number of operations which the service supports. An opera-

tion is defined in terms of the input message it consumes and the output message

it produces. A message has a number of uniquely named parts, the type of which

is specified by a reference to an xml schema definition [41]. Custom schema defi-

nitions may also be included in the wsdl definition. The definition of the service,

ports, operations and messages is done at an abstract level and bound to concrete

execution models via the service bindings. The service binding specifies which type

of protocol and datatype encoding is used for each operation, effectively stating

how to invoke the service. By using a two tier model in which the service definition

is given at an abstract level and its implementation is defined in terms of those

abstractions, we are able to view many different Web Service implementations

through a common interface. For example, a soap over http binding, and a jms

[55] binding could both be specified for the same operation allowing clients from

different platforms to utilise the same service.

We give an example wsdl document for the DDBJ-XML Bioinformatics service,

used in our use case, in Listing 7.1. After the namespace declarations, the <types>

element declares the types used by the service. The <DDBJXML> element definition

is imported from an external schema. Following the type specification, the wsdl

document declares two messages: the getEntryIn and getEntryOut messages, each

of which has one part denoting the contents of the message. For the input mes-

sage, there is only one part called accession id of type DDBJ:ACCESSION. The

output message also contains one part of type DDBJ:DDBJXML - a custom type

to hold the Sequence Data Record. The <portType name=’DDBJPortType’> el-

ement describes an endpoint which offers an operation called “GetEntry” which

can be used to get Sequence Data Records. The input and output of this op-

eration is specified by a reference to the previously defined wsdl messages. The

<binding name=’DDBJBinding’ type=’tns:DDBJPortType’> element provides a

binding for the abstractly defined portType GetEntry.

A typical Web Service is implemented using soap [52] encoding over http trans-

port (as the DDBJ-XML service does). In this case, the service binding states

that the message contents is placed inside a soap message and sent over http.

A soap message (or envelope) is an ordinary xml document that conforms to

a specific schema defined at http://www.w3.org/2001/12/soap-envelope. The

Chapter 7 Invocation and Discovery Architecture 144

<?xml version=’1.0’ encoding=’UTF −8’? >
<definitions name=’DDBJService’

targetNamespace=’http://jaco.ecs.soton.ac.uk:8080/D DBJWrapper/ddbj’
xmlns:tns=’http://jaco.ecs.soton.ac.uk:8080/DDBJWra pper/ddbj’
xmlns:DDBJ=’http://jaco.ecs.soton.ac.uk/schema/DDBJ ’
xmlns:soap=’http://schemas.xmlsoap.org/wsdl/soap/’
xmlns:http=’http://schemas.xmlsoap.org/wsdl/http/’
xmlns:mime=’http://schemas.xmlsoap.org/wsdl/mime/’
xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:soapenc=’http://schemas.xmlsoap.org/soap/enco ding/’
xmlns:wsdl=’http://schemas.xmlsoap.org/wsdl/’
xmlns=’http://schemas.xmlsoap.org/wsdl/’ >

<types >

<xsd:schema targetNamespace="http://jaco.ecs.soton.ac .uk:8080/DDBJWrapper/ddbj" >

<xsd:import namespace="http://jaco.ecs.soton.ac.uk/sc hema/DDBJ"
schemaLocation="http://jaco.ecs.soton.ac.uk/schema/ DDBJ.xsd"/ >

</xsd:schema >

</types >

<message name=’getEntryIn’ >

<part name=’accession id’ element=’DDBJ:ACCESSION’/ >

</message >
<message name=’getEntryOut’ >

<part name=’record’ element=’DDBJ:DDBJXML’/ >

</message >

<portType name=’DDBJPortType’ >

<operation name=’GetEntry’ >

<input name=’getEntryIn’ message=’tns:getEntryIn’/ >

<output name=’getEntryOut’ message=’tns:getEntryOut’/ >

</operation >

</portType >

<binding name=’DDBJBinding’ type=’tns:DDBJPortType’ >

<soap:binding style=’document’ transport=’http://schem as.xmlsoap.org/soap/http’/ >

<operation name=’GetEntry’ >

<soap:operation soapAction=’GetEntry’/ >

<input name=’getEntryIn’ >

<soap:body use=’literal’/ >

</input >

<output name=’getEntryOut’ >

<soap:body use=’literal’/ >

</output >

</operation >

</binding >

<service name=’DDBJService’ >

<port name=’DDBJPort’ binding=’tns:DDBJBinding’ >

<soap:address location=’http://jaco.ecs.soton.ac.uk:8 080/DDBJWrapper/ddbj’/ >

</port >

</service >

</definitions >

Listing 7.1: WSDL Document describing the DDBJ-XML sequence retrieval
service

Chapter 7 Invocation and Discovery Architecture 145

<soap:envelope >

<soap:body >

<getEntryIn >

<DDBJ:ACCESSION>AB000059</DDBJ:ACCESSION>
</getEntryIn >

</soap:body >

</soap:envelope >

Listing 7.2: Example SOAP envelope using RPC style

<soap:envelope >

<soap:body >

<DDBJ:ACCESSION>AB000059</DDBJ:ACCESSION>
</soap:body >

</soap:envelope >

Listing 7.3: Example SOAP envelope using Document style

fundamental purpose of soap is to provide a standardised protocol for the ex-

change of information between distributed system components. In terms of Web

Services, these components are the client and the service provider. During the

invocation of a soap encoded wsdl Web Service, a soap envelope is created and

the message parts are placed inside it. The format of this soap envelope depends

on the binding style specified in the wsdl binding. The two types of style sup-

ported are document and rpc. With rpc style (see Listing 7.2), the child element

of the <soap:body> node in the soap envelope has the same name as the wsdl

operation name. The children of this operation node correspond to each of the

message parts: each child element taking the same name as the message part

name. With document style (see Listing 7.3), the children of the <soap:body>

node correspond directly to the message parts (there is no node corresponding to

the operation name - usually the SOAPAction http header is used to distinguish

different operations). They are not named according to the message part names,

instead they are named after the xsd element they refer to.

In trivial cases the part type will be a simple, predefined type such as string or in-

teger. However, xsd allows for the specification of complex types: an xml element

that contains other elements (simple or complex). Existing Web Service apis such

as Apache or jax-rpc use classes to encapsulate the xsd type and serialisers are

registered to transform an object instance into the desired format. With complex

types, such classes have to be created and compiled prior to execution and their

corresponding serialisers registered at runtime. In terms of dynamic invocation,

the problem is simple: without hard-coded classes to represent the complex types

Chapter 7 Invocation and Discovery Architecture 146

specified by the service provider, execution by the client is impossible. Therefore,

we have developed an alternative message representation and invocation technique:

instead of storing the message parts using classes, we define an xml representation

of a wsdl message that is independent of binding style. This allows us to specify

inputs to a wsdl service without knowing its implementation and hence provide

dynamic invocation. It also simplifies the integration of the dwsi with the C-

Mediator since all Web Services messages are instantiated in xml format. Our

java based Dynamic Web Service Invoker (dwsi) is able to invoke wsdl specified

services when given inputs in this xml format, and returns the results in the same

format. The following sections define the xml representation with examples and

the interface to our dwsi.

7.1.2 XML representation of WSDL messages

The root element of the wsdl message xml representation takes the same name

as the wsdl message name. Each of its child elements corresponds to a message

part with each element taking the name of the message part as shown in Listing

7.4.

If complex types are used, they are represented as children of the <part-name>

element. We show an example input message for invocation of the DDBJ-XML

sequence retrieval service in Listing 7.5 and fragment of the output in Listing 7.6.

<message−name>
<part −name> part contents </part −name>
<part −name> part contents </part −name>
...
<part −name> part contents </part −name>
</message −name>

Listing 7.4: An XML representation of a WSDL message.

<getEntryIn >

<accession id >
<ACCESSION xmlns="http://jaco.ecs.soton.ac.uk/schema/ DDBJ">AB000059</ACCESSION>

</accession id >
</getEntryIn >

Listing 7.5: Example Input Message for DDBJ-XML Sequence Retrieval Ser-
vice

Chapter 7 Invocation and Discovery Architecture 147

<getEntryOut >

<record >

<DDBJXML xmlns="http://jaco.ecs.soton.ac.uk/schema/DD BJ">
<ACCESSION>AB000059</ACCESSION>
...
<FEATURES>
<source >

<location >1..1755 </location >

<qualifiers name="isolate" >Som1</qualifiers >

<qualifiers name="lab host" >Felis domesticus </qualifiers >

<qualifiers name="mol type" >genomic DNA</qualifiers >

<qualifiers name="organism" >Feline panleukopenia virus </qualifiers >

</source >

<cds>
<location >1..1755 </location >

<qualifiers name="product" >capsid protein 2 </qualifiers >

<qualifiers name="protein id" >BAA19020.1</qualifiers >

<qualifiers name="translation" >MSDGAV...</qualifiers >

</cds >
</FEATURES>
<SEQUENCE>atgagtgatggagcagt.. </SEQUENCE>

</DDBJXML>
</record >

</getEntryOut >

Listing 7.6: Example Output Message for DDBJ-XML Sequence Retrieval
Service (fragment only).

Since no proper schema definition exists to describe this type of container, we

have created a simple schema generator which will create the correct schema when

passed a wsdl interface, port-type, service name, and desired operation. This soft-

ware component is exposed as a Web Service (available at http://jaco.ecs.soton

.ac.uk:8080/schema), where the wsdl location, port-type, service name, and de-

sired operation are all passed as arguments. Listing 7.7 shows an example schema

to describe the input and output messages of the “getEntry” operation provided

by the DDB-XML service. Because our schema generator is exposed as a Web

Service, the target namespace of the xml document can reference the schema

generator (lines 4 - 8), and therefore, support the validation of wsdl input and

output message documents. By using this xml representation of wsdl messages,

we can view the data sent to and returned from any type of wsdl service execution

through the same data representation.

7.1.3 Dynamic Web Service Invoker

Our Dynamic Web Service Invoker (dwsi) exposes one method named invoke,

with the following signature:

Chapter 7 Invocation and Discovery Architecture 148

1 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSche ma"
2 xmlns:tns="http://jaco.ecs.soton.ac.uk:8080/DDBJWra pper/ddbj"
3 xmlns:DDBJ=’http://jaco.ecs.soton.ac.uk/schema/DDBJ ’
4 targetNamespace="http://jaco.ecs.soton.ac.uk:8080/s chema.jsp?
5 wsdllocation=http://jaco.ecs.soton.ac.uk/wsdl/ddbj. wsdl;
6 servicens=null;servicename=DDBJService;
7 porttypens=null;porttypename=DDBJPortType;
8 operation= GetEntry" >

9 <xsd:element name="GetEntryIn" >

10 <xsd:comlexType >

11 <xsd:sequence >

12 <xsd:element ref="accession id" minOccurs="1" maxOccurs="1"/ >

13 </xsd:sequence >

14 </xsd:comlexType >

15 </xsd:element >

16 <xsd:element name="GetEntryOut" >

17 <xsd:comlexType >

18 <xsd:sequence >

19 <xsd:element ref="record" minOccurs="1" maxOccurs="1"/ >

20 </xsd:sequence >

21 </xsd:comlexType >

22 </xsd:element >

23 <xsd:element name="accession id" >
24 <xsd:comlexType >

25 <xsd:sequence >

26 <xsd:element ref="DDBJ:ACCESSION" minOccurs="1" maxOccu rs="1"/ >

27 </xsd:sequence >

28 </xsd:comlexType >

29 </xsd:element >

30 <xsd:element name="record" >

31 <xsd:comlexType >

32 <xsd:sequence >

33 <xsd:element ref="DDBJ:DDBJXML" minOccurs="1" maxOccurs ="1"/ >

34 </xsd:sequence >

35 </xsd:comlexType >

36 </xsd:element >

37 </xsd:schema >

Listing 7.7: Example xml schema to wrap DDBJ-XML Sequence Retrieval
Service input operation

public static Node invoke(String wsdlLocation, String operation,

String serviceNS, String serviceName,

String portTypeNS, String portTypeName,

Node inputDOM);

The parameters are:

• wsdlLocation - The URL of the wsdl document

• operation - The operation to call

• serviceNS - The service namespace

• serviceName - the service name

• portTypeNS - the port-type namespace

Chapter 7 Invocation and Discovery Architecture 149

• portTypeName - the port-type name

• inputDOM - An org.w3c.dom.Node object holding the input XML

• return - An org.w3c.dom.Node object holding the output XML

Our current version supports soap over http bindings only since they are the

only ones used within our bioinformatics application. The dwsi supports both

types of style (rpc and document) allowing it to invoke Web Services deployed

on any platform including java and .NET, a feature not adequately supported

in any existing java apis. Evaluation of the dwsi is presented later in Section

7.4.1 where invocation of the DDBJ-XML service using the dwsi is compared to

Apache Axis.

7.2 Generation of owl Instance Schemas

We stated earlier in Chapter 4 that we simplify our transformation requirements for

conceptual realisation and conceptual serialisation by assuming a canonical xml

representation of owl concept instances. This way, the realisation and serialisa-

tion translation process can be viewed as an xml to xml translation. While it is

common for owl users to specify owl concepts and instances using an rdf/ xml

syntax, xml schemas do not usually exist to validate them. Therefore, automated

harmonisation can only be achieved if these schemas are generated. To present

this idea, we use a simple vehicle ontology, illustrated in Figure 7.1. The Vehicle

concept has two datatype properties (number of wheels and number of seats) and

two subconcepts: Van and Car. Every vehicle has an Engine (which could be

described by a more specific concept such as Petrol or Diesel) and a Transmis-

sion. Listing 7.8 shows the xml schema created by the OWL-XIS generator to

validate instances from the vehicle ontology. The algorithm is outlined below with

references to parts from the schema listing.

Chapter 7 Invocation and Discovery Architecture 150

Vehicle

number_of_wheels
number_of_seats
has_engine

DPDP

DP

OP

Van

loading_capacityDP

Car

Engine

cubic_capacityDPDP

Petrol_Engine Diesel_Engine

has_engine

DP

OP

Key

DataType Property

Object Property

Sub-Concept

Figure 7.1: A simple vehicle ontology

7.2.1 Algorithm for xml Schema Generation

Klein et al [65] present an algorithm to generate xml schemas that validate OIL

[56] ontology-containers. Using an adapted version of their algorithm to cater for

owl ontologies, we are able to generate xml schemas to validate owl concept

instances for a given ontology definition. The algorithm is outlined below:

1. Materialise the hierarchy

owl provides language constructs to specify concept hierarchies so a particu-

lar concept can be considered a more general classification than another. For

example, the concept Vehicle can be considered more general than the con-

cepts Car or Van. Subsumption, usually denoted as C ⊑ D, is the reasoning

processes through which the concept D (the subsumer) is checked to see if it

is more general than the concept denoted by C (the subsumee). Reasoning

engines, such as jena, provide subsumption reasoning so when an ontology

definition is loaded, all concept hierarchies are calculated automatically.

2. Create an element for each concept

For every owl concept in the ontology, an xsd element is created. For

the vehicle ontology in Figure 7.1, the following elements would be created:

Chapter 7 Invocation and Discovery Architecture 151

<Vehicle>, <Van>, <Car>, <Engine>, <Petrol Engine, and <Diesel Engine>.

These can be found in lines 5 to 10 of Listing 7.8.

3. Create an element for each property

For every owl property in the ontology, an xsd element is created. For

properties that link concepts to other concepts (called an object prop-

erty), such as the has engine property, the type of the element is a complex

type. For properties that link concepts to literal values (called a datatype

property), such as the number of wheels and number of seats properties,

the type is the same as the type given in the owl definition and is likely to

be one of the predefined xsd types such as an integer or string. Property

element definitions can be found in lines 13, 16-19 of Listing 7.8.

4. Create a complex Type definition for each concept

Once the xsd elements have been created, an xml schema complex type

is created for each concept. When creating the complex type, a list of all

possible properties for that concept are extracted by checking the domain

of all properties. The complex type is then specified as a sequence over

these properties with any cardinality constraints from the property reflected

using xml schema occurrence indicators. In cases where a concept is a

subconcept of another, such as the Car concept in the vehicle ontology,

xsd type extension is used to provide the inheritance of properties from the

parent. See lines 22 - 63 of Listing 7.8 for complex Type definitions.

5. Create a type definition for each property

Finally, a type definition is created for every property in the ontology. As

we stated above, datatype properties are assigned a simple type and object

properties are given a complex type. When object property types are cre-

ated, the range of the property is examined and a list of possible concepts

that property links to is determined. When an object property links to a con-

cept which has sub concepts, such as the has engine property in the vehicle

ontology, the complex type is set to be a choice over any of the sub concepts,

e.g. the has engine complex type will be a choice of Engine, Petrol Engine,

or Diesel Engine. The type definition for the has engine property can be

found in lines 66 - 72 of Listing 7.8.

Chapter 7 Invocation and Discovery Architecture 152

1 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSche ma"
2 xmlns="http://jaco.ecs.soton.ac.uk/ont/vehicle ontology"
3 targetNamespace="http://jaco.ecs.soton.ac.uk/ont/ve hicle ontology" >

4 <!−− Concept Elements −−>

5 <xsd:element name="Vehicle" type="Vehicle −TYPE"/>
6 <xsd:element name="Van" type="Van −TYPE"/>
7 <xsd:element name="Car" type="Car −TYPE"/>
8 <xsd:element name="Engine" type="Engine −TYPE"/>
9 <xsd:element name="Petrol Engine" type="Petrol Engine −TYPE"/>

10 <xsd:element name="Diesel Engine" type="Diesel Engine −TYPE"/>
11

12 <!−− Object Property Elements −−>

13 <xsd:element name="has engine" type="has engine −TYPE"/>
14

15 <!−− Datatype Property Elements −−>

16 <xsd:element name="number of wheels" type="xsd:integer"/ >

17 <xsd:element name="number of seats" type="xsd:integer"/ >

18 <xsd:element name="loading capacity" type="xsd:integer"/ >

19 <xsd:element name="cubic capacity" type="xsd:integer"/ >

20

21 <!−− Concept Types −−>

22 <xsd:complexType name="Vehicle −TYPE">
23 <xsd:sequence >

24 <xsd:element ref="has engine"/ >

25 <xsd:element ref="has transmission"/ >

26 <xsd:element ref="number of wheels"/ >

27 <xsd:element ref="number of seats"/ >

28 </xsd:sequence >

29 </xsd:complexType >

30

31 <xsd:complexType name="Van −TYPE">
32 <xsd:complexContent >

33 <xsd:extension base="Vehicle −TYPE">
34 <xsd:sequence >

35 <xsd:element ref="loading capacity"/ >

36 </xsd:sequence >

37 </xsd:extension >

38 </xsd:complexContent >

39 </xsd:complexType >

40

41 <xsd:complexType name="Car −TYPE">
42 <xsd:complexContent >

43 <xsd:extension base="Vehicle −TYPE"/>
44 </xsd:complexContent >

45 </xsd:complexType >

46

47 <xsd:complexType name="Engine −TYPE">
48 <xsd:sequence >

49 <xsd:element ref="cubic capacity"/ >

50 </xsd:sequence >

51 </xsd:complexType >

52

53 <xsd:complexType name="Petrol Engine −TYPE">
54 <xsd:complexContent >

55 <xsd:extension base="Engine −TYPE"/>
56 </xsd:complexContent >

57 </xsd:complexType >

58

59 <xsd:complexType name="Diesel Engine −TYPE">
60 <xsd:complexContent >

61 <xsd:extension base="Engine −TYPE"/>
62 </xsd:complexContent >

63 </xsd:complexType >

64

65 <!−− Property Types −−>

66 <xsd:complexType name="has engine −TYPE">
67 <xsd:choice >

68 <xsd:element ref="Engine"/ >

69 <xsd:element ref="Petrol Engine"/ >

70 <xsd:element ref="Diesel Engine"/ >

71 </xsd:choice >

72 </xsd:complexType >

73 </xsd:schema >

Listing 7.8: Example XML Schema to validate instance of the vehicle ontology

When creating any elements or complex types, the namespace and local name of

the concept is mirrored in the xml schema. This means that a uri pointing to a

particular owl concept or property also refers to the xml schema element that val-

idates it. Pseudocode for the owl instance schema generation algorithm is given in

Listing 7.9. The create-schema function take three arguments: concepts (a ma-

terialised hierarchy of the concepts in the owl ontology); properties (a hierarchy

Chapter 7 Invocation and Discovery Architecture 153

of the properties within the owl ontology); and schema (the schema document to

be created - initially emtpy). For every concept in the ontology, an element dec-

laration is added to the schema using the concept namespace, the concept local

name, and the name of the type (which is the local name concatenated with the

string “-TYPE”). Once the element declaration has been added to the schema,

a complex type definition is created using the create-concept-complex-type.

This function iterates through all properties that have a domain equal to the

concept passed in the argument, and creates a complex type that is equal to a

sequence over these properties.

Once elements and types have been created for each concept, the create-schema

function iterates through the list of properties and calls the create-property

function. This function first checks the kind of property passed in the argument

to ascertain whether it is an object property or a datatype property. If it is a

datatype property, an element is created with the same xml type as the owl

property. If it is an object property, an element is created using the property’s

1 create −schema(concepts, properties, schema) {
2 foreach concept in concepts
3 schema.addelement(concept.ns, concept.localname, conc ept.localname + " −TYPE")
4 create −concept −complex −type(concept, properties, schema)
5
6 foreach property in properties
7 create −property(property, concepts, properties, schema)
8 }
9

10 create −concept −complex −type(concept, properties) {
11 sequence <− empty
12 foreach property in properties
13 if property.domain = concept
14 sequence.add(property)
15
16 schema.addcomplexType(concept.ns, concept.localname + "−TYPE",
17 sequence, concept.parent)
18 }
19
20 create −property(property, concepts, properties, schema) {
21 if property.kind = datatype
22 schema.addelement(property.ns, property.localname, pr operty.type)
23 else property.kind = object
24 schema.addelement(property.ns, property.localname, pr operty.localname + " −TYPE")
25 sequence <− empty
26 foreach concept in range in property.range()
27 choice <− empty
28 foreach subconcept in concept in range.subconcepts()
29 choice.add(subconcept)
30
31 sequence.add(choice)
32 schema.addcomplexType(property.ns, property.localnam e + "−TYPE",
33 sequence, property.parent)
34 }

Listing 7.9: Pseudocode for the generation of OWL-XIS

Chapter 7 Invocation and Discovery Architecture 154

namespace and localname and a complex type is created. The complexType to

define the element contents is a sequence over all the concepts that are in the

range of the property. If any of these concepts has sub-concepts in the concept

hierarchy, a choice indicator is used to specify that any of the sub-concepts are

also valid.

The OWL-XIS generator is implemented using java and the jena toolkit. The

OWL-XIS generator consumes an owl ontology and produces an xml schema to

validate instances of concepts from the given ontology and is exposed as a Web

Service.

7.3 Type Adaptor Description and Discovery

To fully automate the workflow harmonisation process, it is necessary for the C-

Mediator to be able to access the required resources (i.e. the serialisation and

realisation M -Bindings) at runtime without user intervention. Given wsdl service

interfaces that specify syntactic types (by references to xml Schema elements) and

semantic service annotations that define semantic types (by reference to concepts

within an owl ontology), dataflow between services can be examined for incon-

sistencies. If the output syntactic type from a source service is different from the

input type to a target service, they are not syntactically compatible. However, if

the source output semantic type references the same concept (or is subsumed by

the same concept) as the input to the target service, they are deemed semantically

compatible. When this occurs, a query to registry can be made to find realisa-

tion and serialisation M -Bindings and a Type Adaptor can be created using the

C-Mediator. In the following subsections, we explain how wsdl can be used to

describe Type Adaptor capabilities and support the discovery of Type Adaptors

through the use of a service registry.

7.3.1 Type Adaptor Discovery Requirements

There are many applications and tools that support the translation of data between

different formats. xslt [34] enables the specification of data translation in a

Chapter 7 Invocation and Discovery Architecture 155

script format using pattern matching and template statements. Such a script

can be consumed by an xslt engine to drive the translation of xml data to a

different representation. Other forms of Type Adaptors are not so transparent;

translation programs are often created using languages such as java and Perl. In

other cases, a Type Adaptor may take the form of a distinct mediator Web Service,

described by wsdl and executed using soap over http. When data flow within

a workflow links two syntactically incompatible interfaces (i.e. the output type

from the source service is different to the input type of the destination service),

Type Adaptors must be inserted to harmonise differences in representation. As

we stated in Chapter 2, this is currently a manual process that must be carried

out at workflow design time.

In Chapter 4, Section 4.1, two mediation approaches were identified: direct and

intermediary based. With a direct approach, one type adaptor is required to trans-

late from a source format straight to a destination format. With an intermediary

based approach, where data is transformed to common representation expressed

using an ontology language, two type adaptors are required: one for conceptual

realisation and one for conceptual serialisation, illustrated in Figure 7.2. In these

scenarios, it is assumed that the necessary adaptor components are known and

inserted into the workflow (in the case of direct mediation), or consumed by the

Configurable Mediator (for intermediary based mediation).

Since current Grid and Web Services infrastructures provide no mechanism to

describe, advertise or discover Type Adaptors, adaptor development is often ad

hoc: users create translation components on demand, even though other users way

have already engineered them. Individuals can build their own libraries of adap-

tors, but are unable to obtain those created by others without direct intervention,

for example, by email or file transfer. To reduce user effort through the sharing of

adaptor components, as well as supporting the retrieval of Type Adaptors for au-

tomated harmonisation, an advertising and discovery mechanism is required that

enables users and programs to get Type Adaptors according to type conversion

capabilities. We break down the requirements for such a system as follows:

Chapter 7 Invocation and Discovery Architecture 156

Web Service 1 Web Service 2type: a type: pMediator

Translation
Specification

XSLT Script

Mediation
Web Service

JAVA

With direct mediation, the translation
component may take the form of an
XSLT script, Web Service invocation,
or Java execution

Web Service 1 Web Service 2type: a type: pConfigurable
Mediator

Realisation
Translation

m1= a/b->x/y
m2= a/c->x/z

Serialisation
Translation

m1= x/y->p/q
m2= x/z->p/r

Direct Mediation

Intermediary Based Mediation

With intermediary based
mediation, two translation
scripts are required
to convert data

Figure 7.2: Differences in execution for direct and intermediary based media-
tion

1. A standard way to describe Type Adaptor capabilities

To support the discovery of adaptor components according to their func-

tionality while remaining agnostic of their implementation, a description

approach must be employed that specifies: (i) the abstract functionality of

the adaptor in terms of the source type consumed and the destination type

produced; (ii) the concrete execution model showing how to invoke the com-

ponent.

2. A repository to store Type Adaptor information

With standardised definitions in place, Type Adaptor descriptions can be

uploaded to a registry and shared with others. Such a registry must provide

a suitable query interface that supports the retrieval of adaptor descriptions

based on input and output types. This way, appropriate software can identify

when a syntactic mismatch occurs within a workflow and find the relevant

Type Adaptor autonomously by querying the registry.

Chapter 7 Invocation and Discovery Architecture 157

In Section 7.3.2, we present our method for describing Type Adaptor capabilities

before showing an implementation to generate descriptions automatically.

7.3.2 Generic Type Adaptor Description Approach

To describe the capabilities of all Type Adaptors, irrespective of implementation,

we separate concrete implementation details from the abstract definition. Under

this assumption, all Type Adaptors can be described using wsdl [33].

wsdl is a declarative language used to specify service capabilities and how to

access them through the definition of service end-points. The operations imple-

mented by the service are defined in terms of the messages consumed and produced,

the structure of which is specified by xml Schema. The service, operations and

messages are described at an abstract level and bound to a concrete execution

model via the service binding. The service binding describes the type of proto-

col used to invoke the service and the requested datatype encoding. Because of

this two-tier model, many different Web Service implementations may be viewed

through a common interface. By applying the same principle to data harmoni-

sation components, wsdl can be used to describe the capabilities of any Type

Adaptor. Using this approach allows different implementations of the same Type

Adaptor to be described with the same abstract definition (i.e. in terms of the

input and output xml schema types) and different bindings. This is illustrated in

Figure 7.3, where three Type Adaptors are shown: an xslt script, a java program

and a soap Web Service, all providing the same functionality - to convert data of

type S to D. Although other Web technologies, such as rdf [66], would be ad-

equate for describing Type Adaptor behaviour in this way, wsdl is standardised

and widely used for other Web Service technologies (e.g. the workflow languages

wsfl [68] and bpel4ws [90], and the choreography language ws-cdl [62]), and

therefore facilitates technology reuse in future work.

Chapter 7 Invocation and Discovery Architecture 158

input_message, in1:
 - part: in, type: S
output_message, out1:
 - part: out, type: D

port type:
 - operation: convert
 - input_message, in1
 - output_message, out1

WSDL Description

XSLT Script

<xsl:stylesheet>

 <xsl:template match="S">

 <D> ... </D>

 </xsl:template>

</xsl:stylesheet>

Java

main(String args[]){

 S=args[0];

 convert(S);

}

Web Service

<definitions>

...

 <binding name='adaptorBinding'>

 <soap:Binding style='document' ...>

 <operation name'convert'>

 <soap:operation soapAction='convert'/>

 <input name='convertIn'/>

 <output name='convertOut'/>

 <operation>

 </binding>

</definitions>

The XSLT Script, Java program and

SOAP Service can all be described

using the same abstract WSDL interface

Figure 7.3: Using wsdl to describe different Type Adaptors

With a uniform method for the description of Type Adaptors in the form of wsdl,

we can utilise existing registry technologies to support sharing and discovery - this

feature is described in more detail in Section 7.3.4. Figure 7.4 shows a high level

view of how a registry containing wsdl definitions of Type Adaptors can be used

in our use case workflow to perform syntactic mediation. The output from the

DDBJ Service, of xml type DDBJ, is used as input to the NCBI-Blast Service,

which consumes type FASTA. The binding section of the wsdl definition describes

how to execute the translator, for example, by providing the location of an xslt

script or the java method details.

7.3.3 WSDL Generation for M-Bindings

Within the WS-HARMONY architecture, translation may be performed using an

intermediary based adaptor which converts data from a source type to a destination

type via an intermediate owl representation. Using the mapping language fxml-

M, presented in Chapter 5, and the Configurable Mediator, shown in Chapter 6,

conversion between semantically equivalent data representations can be achieved

using a realisation M-Binding and a serialisation M-Binding. Since we assume a

Chapter 7 Invocation and Discovery Architecture 159

Registry

DDBJ to FASTA

Type Adaptor

find adaptor to

convert from

DDBJ to FASTA

The Type Adaptor can be used to translate instances of DDBJ of

formatted sequence data to FASTA format

input_message, in1:

 - part: in, type: DDBJ

output_message, out1:

 - part: out, type: FASTA

port type:

 - operation: convert

 - input_message, in1

 - output_message, out1

Binding:

 - Type adaptor reference

WSDL DescriptionWhen queried, the Registry returns

the WSDL document describing the

Type Adaptor converting DDBJ to FASTA

The WSDL Binding describes

how to use the Type Adaptor

DDBJ NCBI_Blast
Document

Type: DDBJ

Document

Type: FASTA

Figure 7.4: The use of a registry to discover Type Adaptors

canonical xml representation for owl concept instances, which can be validated

using automatically generated OWL-XIS (owl instance schema), M-Bindings

converting xml to owl and vice-versa can be described as an adaptor converting

from a source xml type to a destination xml type - i.e. the same as a direct

mediation component.

For the sake of automation, we provide a system to generate wsdl definitions

for M -Bindings so their descriptions can be added to a registry automatically.

Since an M -Binding is a sequence of mappings, B = {m1,m2, . . . ,mn}, with each

mapping mi denoting a transformation rule, a wsdl definition must capture all

possible transformations catered for by B - namely an operation for each mapping

mi. When generating a wsdl definition, each mapping is given a corresponding

wsdl operation that consumes an input message and produces an output message,

each with one message part. The input message part references the same element as

the root of the mapping source statement and the output message part references

the same elements as the root of the mapping destination statement, as we show

in Figure 7.5. The wsdl service definition specifies the location of the M -Binding

document using the extensibility point and the <fxml:binding location=’...’>

element. This allows a user or software component to retrieve the M -Binding

document when given the wsdl definition. Pseudocode for the generation of

wsdl documents that describe M -Binding capability is given in Listing 7.10.

Chapter 7 Invocation and Discovery Architecture 160

<definitions>

 <message name='sns#x-to-dns#p-IN'>

 <part name='in' element='sns:x'/>

 </message>

 <message name='sns#x-to-dns#p-OUT'>

 <part name='out' element='dns:p'/>

 </message>

 <message name='sns#y-to-dns#q-IN'>

 <part name='in' element='sns:y'/>

 </message>

 <message name='sns#y-to-dns#q-OUT'>

 <wsdlpart name='out' element='dns:q'/>

 </message>

 ...

 <portType name='TranslationPortType'>

 <operation name='sns#x-to-dns#p'>

 <input name='sns#x-to-dns#p-IN'/>

 <output name='sns#x-to-dns#p-OUT'/>

 </operation>

 <operation name='sns#y-to-dns#q'>

 <input name='sns#y-to-dns#q-IN'/>

 <output name='sns#y-to-dns#q-OUT'/>

 </operation>

 ...

 </portType>

 ...

 <service name='TranslationService'>

 <port name='TranslationPort'

 binding='tns:Translation Binding'>

 <fxml:binding location="example.xml'/>

 </port>

 </service>

<definitions>

m1 = x/y -> p/q

m2 = x/z -> p/r

m3 = y/$ -> q/$

m4 = z/$ -> r/$

example.xml

Each mapping has a corresponding
WSDL operation where each operation

consumes and produces a message
with one part. The input message part

references the same element as the
root of the mapping source and the
output message part references the

same element as the root of the
destination statement.

The WSDL service definition
specifies the location of the

M-Binding document.

Figure 7.5: The relationship between and M-Binding and its wsdl definition

After setting the target namespace of the wsdl to the same as the M -Binding

(line 2), a new service element is created (line 3) using the location of the M -

Binding, a portType is added (line 4), and the source and destination schemas

are imported (lines 5 and 6). For the generation, an iteration is made through all

mappings in the global scope, adding an input message and an output message for

each. The input message type (with the part name “IN”) is the same as the first

component referenced in the source mapping path (line 14). The output message

type (with the part name “OUT”) is the same as the first component referenced

in the destination mapping path (line 15). Once the message have been created,

an operation can be added to the portType (line 17).

Figure 7.6 illustrates our Binding Publisher Service which can be used to auto-

matically generate wsdl definitions of M -Bindings and publish them with the

Chapter 7 Invocation and Discovery Architecture 161

1 create −wsdl(mbinding, wsdl) {
2 wsdl.setTargetNS(mbinding.targetNS)
3 wsdl.addservice(mbinding.location)
4 portType <− wsdl.addPortType("TranslationPortType")
5 wsdl.importType(mbinding.sourceNS)
6 wsdl.importType(mbinding.destinationNS)
7
8 foreach mapping in mbinding
9 inmessage <− wsdl.addMessage("sns#" + mapping.sourceroot.localname + "−to −dns# +

10 mapping.destinationRoot.localname + " −IN")
11
12 outmessage <− wsdl.addMessage("sns#" + mapping.sourceroot.localname + "−to −dns# +
13 mapping.destinationRoot.localname + " −OUT")
14 inmessage.addpart("in", mapping.sourceRoot)
15 outmessage.addpart("out", mapping.destinationRoot)
16
17 portType.addOperation("sns# + mapping.sourceroot.loca lname + " −to −dns#" +
18 mapping.destinationRoot.localname, inmessage, outmess age)
19 RETURN wsdl
20 }

Listing 7.10: Pseudocode for the generation of wsdl definitions that capture
M -Binding capability.

Grimoires registry. The Binding Publisher Service takes three inputs: an M -

Binding, a source xml schema and a destination xml schema (1). After generating

the wsdl description (2), it is published in the Grimoires repository (3) so it can

be found at later time using the standard Grimoires api call findinterface (4).

The wsdl document returned contains the location of the M -Binding document

in message type:S

out message type:D

portType: convert

binding:

 fxml:MBindingURI

Service: convert

Binding Publisher

Service

Source Schema

element: S

type: S/*

element: X

Destination Schema

element: D

type: D/*

element: Y

M-Binding

m1: S/X -> D/Y

m2: X/$ -> Y/$

Register

Binding

Generated WSDL

Produces

GRIMOIRES

Registrysave_service

findInterface

input type: S

output type: D
M-Binding

m1: S/X -> D/Y

m2: X/$ -> Y/$

1

2

3

4

5

Configurable

Mediator

6

Figure 7.6: The Binding Publisher Service can be used to automatically gen-
erate wsdl definitions of M -Bindings and register them with Grimoires

Chapter 7 Invocation and Discovery Architecture 162

(5) which can then be consumed by the C-Mediator (6) to drive translation.

7.3.4 Grimoires Repository

To support the sharing and discovery of Type Adaptor descriptions, we utilise

the Grimoires (www.grimoires.org) registry. Grimoires is an extended uddi

[1] registry that supports publishing, annotation and discovery of service inter-

faces. uddi, the Web Services standard for interface publication, enables service

providers to advertise service descriptions through the use of a standardised model.

This model is broadly broken into three tiers, illustrated in Figure 7.7:

1. Business Entity: The top level container that holds description informa-

tion about a business or entity. Each service provider is allocated a unique

business entity ID to which they can add business services.

2. Business Service: Each service offered by a business entity is allocated a

unique business service ID. A Business entity can provide multiple services.

3. Binding Template: For each business service, a binding template is cre-

ated to specify the actual end point of their service, for example, the wsdl

document location. This information is encapsulated with a tModel data

structure.

Business Entity

Business Service

Binding Template

<businsessEntity businessKey='35AF7F00-1319-21D6-A0DC-000C0E00ACBD'>

 <name>DDBJ</name>

 <description>DNA Data Bank of Japan</description>

</businessEntity>

<businessService serviceKey='2AB336C0-2182-43B0-756B-0003CC35CC1D'>

 <name>BLAST</name>

 <description>Execute BLAST specified with query sequence</description>

</businessService>

<bindingTemplate bindingkey='4BC7C340-2498-12E6-887C-0005AC34CC2D'>

 <accessPoint URLType="http">http://xml.nig.ac.jp/xddbj/Blast</accessPoint>

 <tModel>

 <overviewDoc>

 <description>wsdl link</description>

 </overviewURL>http://xml.nig.ac.jp/wsdl/Blast.wsdl</overviewURL>

 </overviewDoc>

 </tModel>

</bindingTemplate>

tModel

Figure 7.7: An overview of the uddi data model with examples in xml

Chapter 7 Invocation and Discovery Architecture 163

Because uddi only provides a contact point for service descriptions, it lacks the

ability to support the discovery of services according to interface properties such

as the input or output message parts. Grimoires has been developed to solve

this problem, providing an extended uddi registry offering two notable features:

• Meta-data annotation

By storing all uddi models and wsdl definitions in rdf, Grimoires sup-

ports arbitrary annotation of interface definitions. For example, any part of

the wsdl definition can be linked to a concept in an ontology to give wsdl

message parts a semantic type or classify a wsdl operation. Grimoires

provides a meta-data query interface so services can be discovered according

to their meta-data attachments.

• wsdl query interface

Given the wide use of wsdl, and the inability of conventional uddi registries

to support the retrieval of services according to wsdl features, Grimoires

offers a wsdl query interface that enables searching over wsdl features.

To use the Grimoires registry for the advertising and discovery of Type Adaptors,

we create three business entities: one to hold direct mediation definitions, and

another two to hold intermediary based mediation definitions (one for conceptual

serialisation and one for conceptual realisation). This separation is used so users or

software components can query for specific types of mediators, ensuring that other

services are excluded from the search. In Figure 7.8, we show how Grimoires

can be used in our use case scenario to find the necessary M-Bindings to perform

syntactic mediation via an intermediate owl representation. The output of the

DDBJ-XML service, of type DDBJ, is not suitable for input to the NCBI-Blast

service because it consumes FASTA format. Since both data types have been

assigned the same semantic type (the Sequence Data concept), an owl concept

instance can be used as the intermediate representation. Therefore, two queries

are sent to the Grimoires repository: one for a Type Adaptor that converts from

DDBJ to Sequence Data , and another that converts from Sequence Data to FASTA

format. The wsdl documents returned from this query point to the relevant M -

Bindings so they can be consumed by the C-Mediator to drive translation.

Chapter 7 Invocation and Discovery Architecture 164

DDBJ NCBI_Blast
Document

Type: DDBJ

Document

Type: FASTA

Configurable

Mediator

DDBJ
to

[Sequence_Data]

M-Binding

[Sequence_Data]
to

FASTA

M-Binding

GRIMOIRES

Repository

findInterfaceinput: DDBJ

output: [Sequence_Data]

findInterface input: [Sequence_Data]

output: FASTA

[Sequence_Data]

semantic type

[Sequence_Data]

semantic type

The first query to the GRIMOIRES

repository finds a realisation

M-Binding to convert from DDBJ

format (the output syntactic type)

to a Sequence_Data concept

(the semantic type)

The second query to the GRIMOIRES

repository finds a serialisation

M-Binding to convert from a

Sequence_Data concept to FASTA

format (the input syntactic type

to the NCBI_Blast service)

Figure 7.8: How the Grimoires repository can be used to discover M-
Bindings at run time

7.4 Evaluation

To evaluate the middleware components we have presented in this Chapter, we

perform two tests: (i) to check the performance of the dwsi; and (ii) to ensure

that the discovery of M -Binding documents is not significant compared to the cost

of invoking the target services. The test setup is the same as was specified earlier

in Chapter 6, Section 6.5.

7.4.1 Dynamic WSDL Invoker

We test the performance of the dwsi by invoking the DDBJ-XML web service

multiple times to retrieve random Sequence Data Records with a range of sizes

from 2KBytes to 140KBytes. For comparison, we test the dwsi against the java

based Apache Axis toolkit. The test hypothesis follows:

H4. The Dynamic Web Service Invoker performs well in comparison to other

invocation frameworks and scales linearly as input or output document size is

increased.

Chapter 7 Invocation and Discovery Architecture 165

Figure 7.9 is a graph that shows invocation time (in milliseconds) against the size of

Sequence Data Record retrieved. For relatively small output documents, around

20KBytes, the dwsi and Apache Axis implementations are roughly the same.

However, as the document size increases, the dwsi is able to retrieve the document

between 30% and 50% quicker than Apache Axis. During the invocation of a Web

Service, a significant amount of time is spent sending the soap envelope over the

network, waiting for the service to respond, and receiving the response envelope.

When the message size is fairly small, the time taken by each implementation to

create the envelope, either by parsing the xml document in the case of the dwsi

or serialising the java objects for Apache Axis, is relatively small in comparison.

However, as the output document size increases, the soap envelope creation time

is more significant. The times recorded in this test indicate the point where either

the xml output document is created (for the dwsi), or the java objects are

instantiated in memory (for Apache Axis). In the WS-HARMONY architecture,

the output of the service may be passed to a C-Mediator for translation. When

this occurs, the C-Mediator can directly consume the output xml document. If

Apache Axis was used, a further processing step would be required to convert the

java objects to an xml representation.

7.4.2 Discovery Cost

To evaluate our discovery implementation, we consider the relative cost of using

Grimoires to discover M -Bindings in the context of workflow execution. The

hypothesis is as follows:

H5. The cost of M-Binding discovery using Grimoires is not significant when

compared to the cost of executing the target services.

We test our hypothesis against our use case workflow using the DDBJ-XML and

NCBI-Blast services. The Table below shows the average time taken (from 10 runs)

for each step of the mediation process using owl as an intermediary representation.

The translation process is broken into 5 steps:

Chapter 7 Invocation and Discovery Architecture 166

 0

 1000

 2000

 3000

 4000

 5000

 6000

0 20 40 60 80 100 120 140

In
vo

ca
tio

n
T

im
e

(M
ill

i S
ec

on
ds

)

File Size (KBytes)

Apache Axis
Axis Fit

DWSI
DWSI Fit

Figure 7.9: dwsi and Apache Axis performance invoking the DDBJ-XML
Web Service

1. Discover realisation M-Binding

The dwsi is used to query the Grimoires repository for a Type Adaptor

that converts from DDBJXML to Sequence Data Record.

2. Conceptual Realisation

The DDBJXML record is transformed to an instance of the Sequence Data

concept.

3. Modelling of owl concept instance

The Sequence Data Record concept instance is imported into jena.

4. Discover serialisation M-Binding

The dwsi is used to query the Grimoires repository for a Type Adaptor

that converts from Sequence Data Record to FASTA.

5. Conceptual Serialisation

The Sequence Data Record concept instance is transformed to FASTA format

by the Translation Engine.

Chapter 7 Invocation and Discovery Architecture 167

Activity Average

DDBJ Execution 2.50

Realisation Discovery 1. 0.22

Realisation Transformation 2. 0.47

Jena Mediation 3. 0.62

Serialisation Discovery 4. 0.23

Serialisation Translation 5. 0.27

Total Mediation 1.81

Results show that the total mediation time is just under 2 seconds, with the largest

portion of the time taken importing the owl instance into jena. The discovery

overhead (finding realisation and serialisation M -Bindings) is small in comparison,

0.22 seconds and 0.23 seconds respectively, which totals 20% of the time taken to

execute the DDBJ-XML service. Other services, such as the NCBI-Blast service,

can take much longer to execute — times in excess of 1 minute are not uncommon

— so discovery time within this context is low. Although Grimoires implements

uddi, our discovery mechanism requires the use of additional Grimoires func-

tionality, namely, the retrieval of service based on their input and output types.

This is not implemented in uddi but can be achieved with Grimoires using meta

data attachment. Fang et al [42] show that Grimoires discovery time scales well

as more descriptions are added, so we infer that our discovery process comes with

an acceptable performance cost.

7.5 Conclusions

In this Chapter, we have presented the middleware components of the WS-HARMONY

architecture that enable the invocation of wsdl services, generation of OWL-XIS,

and the discovery of Type Adaptor specifications. Our Dynamic Web Service In-

voker provides an effective way to invoke previously unseen wsdl services that

would otherwise be problematic using existing Web Service invocation apis. The

OWL-XIS provides the bridge between owl ontologies and their corresponding se-

rialisations in xml, supporting the specification of mappings between xml schemas

and owl ontologies. By using wsdl to describe adaptor capabilities, both direct

Chapter 7 Invocation and Discovery Architecture 168

and intermediary based mediators can be shared among users, reducing effort in

the development of adaptor components and facilitating the autonomous discovery

of harmonisation components. By automatically generating wsdl descriptions of

M -Binding capabilities and registering them with the Grimoires repository, the

C-Mediator can find serialisation and realisation M -Bindings at run time, pro-

viding an automatic harmonisation infrastructure that we demonstrate against a

bioinformatics use case. Empirical testing shows that the discovery process comes

with a relatively low cost in comparison to the execution of target services, and

would scale well as more descriptions are added providing an efficient registry

implementation, such as Grimoires, is used. Caching mechanisms that track

the discovery of Type Adaptors could be implemented to improve discovery per-

formance and would be useful if particular adaptors are searched for more than

others. Using a logical separation between Type Adaptors and normal services

within the repository, through the use of uddi business entities, means queries

for adaptor components will not return other sorts of service that could effect the

meaning of the workflow.

Chapter 8

Conclusions and Future Work

In scientific, service oriented environments, where access to a variety of data repos-

itories and computational analysis tools is exposed via Web Services, scientists rely

on the similarity between workflow design and experiment design to perform in

silico science. Users decompose their experimental processes into a set of tasks,

then discover service instances to realise them, mapping the process control onto

a workflow over these service instances. With the recent inclusion of semantic

service annotations, the service discovery process has evolved: instead of search-

ing over interface definitions alone (which are often terse and undocumented),

users can find the services they need by specifying the functional requirements

of a service using terminology from a domain ontology. After finding service in-

stances to fulfil the tasks within their experimentation process, the user creates a

workflow to control the order of execution and the flow of data between services.

However, Chapter 2 showed that workflow design is often complicated because

service providers can assume different representations for conceptually equivalent

data. This confuses users because semantically interoperable service interfaces, i.e.

those which produce and consume information that is assigned the same concept

from an ontology, may be syntactically incompatible. The current solutions to this

problem require the manual insertion of Type Adaptor components to perform the

necessary syntactic mediation, effectively enforcing workflow harmonisation on the

workflow designer. The result is a convoluted workflow design pattern in which

users have to consider not only the scientific aims of their design, but also the low-

level interoperability issues between services. Consequently, this distracts users

169

Chapter 8 Conclusions and Future Work 170

from the real scientific problem they want to address and reduces accessibility to

non-technical users.

Through an investigation of related work in Chapter 3, we discovered that a com-

bination of Semantic Web Service technology with existing data integration tech-

niques can yield solutions that support users in the creation of meaningful work-

flows without concern for the interoperability issues that arise from heterogeneous

data representations. Such a solution is presented in Chapter 4 in the form of our

Web Service mediation framework, WS-HARMONY. From a global perspective,

we separate the mediation of data into two categories: direct, where transforma-

tion is performed straight from one format to another; and intermediary-based,

where a common data model is used to mediate between the two formats. With

a direct approach, scalability is poor; as the number of compatible data formats

increases, the number of translation components required is O(n2). When intro-

ducing a new data format for which there already exists conceptually equivalent

formats, translation components must be written from the new format to all ex-

isting formats to achieve maximum interoperability. With an intermediary-based

approach scalability is much better; a constant increase in the number of transla-

tion components will occur as the number of compatible data formats is increased

- O(n). In addition, the introduction of new data formats is made easier be-

cause only a translation to and from the intermediary format is required. While

we focus our efforts on an intermediary-based approach, discovery of direct Type

Adaptors is supported to cater for the conversion components that already exist

within myGrid.

Intermediary-based mediation within the WS-HARMONY architecture is sup-

ported using owl ontologies that capture the structure and semantics of data

formats, with mappings that specify how data instances are transformed to and

from a conceptual representation. WS-HARMONY uses an owl concept in-

stance as an intermediate representation to translate conceptually equivalent data

between different syntactic formats. The transformation of data is handled by the

Configurable Mediator (C-Mediator) - a software component that consumes a

mapping, a source data instances, schemas for the source and destination data

format, and an ontology definition in owl, and produces a data instance in the

destination format. Because service providers often expose many operations that

Chapter 8 Conclusions and Future Work 171

consume and produce information over the same, or subsets of the same, data for-

mat, we champion a mapping approach that is both modular and composable to

facilitate the reuse of mapping definitions. In terms of the mapping specification,

it is beneficial to de-couple it from the service interface definition, so that service

providers can continue to expose access to their resources in the conventional man-

ner without having to add mapping definitions. Also, when multiple operations

are exposed over the same, or subsets of the same data type, only a single mapping

definition for that type is needed, rather than one for each operation.

To express the relation between xml schema components and owl concepts, we

define the mapping language fxml, presented in Chapter 5. Examination of the

data formats from our use case shows that the translation between xml data

sources and their corresponding conceptual models in owl is often complex when

considered from a modular perspective. Therefore, we developed a formalisation

to express the mapping of schema components and the translation process between

data formats. This low-level approach has allowed us to understand and capture

the complex translation requirements, notably document paths, predicate-based

evaluation, local scoping and string manipulation, as well as providing a solid foun-

dation on which we built our transformation engine fxml-T. Chapter 6, presents

the implementation of the C-Mediator, with particular emphasis on the transla-

tion engine fxml-T. Through empirical testing, we show that the implementation

is scalable with respect to increasing document sizes and increasing schema size,

as well demonstrating that binding composition comes with virtually zero cost.

Automated workflow harmonisation: the discovery of appropriate mappings on

behalf of the user at runtime, can be achieved using a registry that supports the

advertising and discovery Type Adaptors based on conversion capabilities. Chap-

ter 7 presented a method to describe the capabilities of Type Adaptors in such

a way that they may be discovered according to their functionality by using the

Web Services Description language wsdl. Because wsdl separates the abstract

functionality of a software component from the implementation specifics, Type

Adaptors can be described and discovered in terms of their conversion capabilities

without consideration for implementation. Using wsdl means translation speci-

fications, such as xslt scripts and M -Bindings, as well as applications, such as

java programs and web services, can all be specified using wsdl with the binding

Chapter 8 Conclusions and Future Work 172

portion of a wsdl document giving the appropriate instructions on how to invoke

the Type Adaptor. The WS-HARMONY architecture uses the Grimoires grid

registry for the advertising and discovery of Type Adaptors and provides a reg-

istration service that automatically generates wsdl descriptions for M -Binding

documents. Existing Grimoires api calls are used to support the discovery of

Type Adaptors by the input type and desired output type. This approach works

for both direct and intermediary-based adaptors so existing conversion components

can be shared easily amongst users.

In general, the contributions of this dissertation can be considered a fundamental

step towards the realisation of a Semantic Web Services vision. While a signif-

icant portion of research in this area has focused on the methods for capturing

the meaning of service interfaces and how to orchestrate their coordination, the

relationship between high-level descriptions and low-level interface definitions has

been largely overlooked, a problem exemplified in this dissertation.

8.1 Future Work

The contributions of this dissertation can be used to further the state of the art

in the following ways:

8.1.1 Semantic Workflow

Much effort has been placed into the research and development of workflow lan-

guages that enable the specification of complex tasks over multiple providers at

a high level of abstraction [73, 38, 31, 30]. While current workflow languages

support the amalgamation of computing assets to meet intricate user require-

ments, a considerable amount of technical knowledge is still required to create

stable and functioning workflows. Enabling scientists to express the requirements

of their experimentation process at a high level of abstraction using intuitive pro-

cess control requires even more complex middleware. For example, when dataflow

Chapter 8 Conclusions and Future Work 173

Accession ID
Sequence

Data Record
Alignment
Results

The DDBJ-XML Service
produces a Sequence

Data Recod

The BlastP Service consumes
a protein translation

DDBJ-XML BlastP

Protein
Translation

The Protien Translation
must be extracted from

the Sequence Data Record

contains

Figure 8.1: An example showing non-trivial data flow between semantically
annotated Web Services.

between two services is used, it is often the case that only a subset of the in-

formation from the source service is required for input to the destination ser-

vice. This can be illustrated in terms of our use case easily because many ser-

vices operate over subsets of a sequence data record. Sequence data records

that describe proteins contain a translation of the DNA sequence to a protein

sequence (e.g. atgagtgatggagcagttcaaccagacggtggtcaacctg is translated to

MSDGAVQPDG). This protein sequence itself can then be passed to a computational

analysis tool such as BlastP, illustrated in Figure 8.1. To hide the fact that a part

of the sequence data record must be extracted (and possibly transformed to an-

other representation), existing middleware must be augmented. In this example,

our mapping technology could be reused easily to support the extraction of data.

In other cases, where large sets or lists of records are produced by services (e.g.

Blast results), feeding the output to another service which consumes only single

records requires more data manipulation.

8.1.2 Formal Mapping Analysis

Our xml mapping and translation formalism, fxml-M, has been used to specify

how mappings between xml schema components can be used to drive the transla-

tion of xml documents. The fxml-M formalism could be extended in two ways

to provide some notion of binding validity:

1. Binding Completeness

When mapping xml components from a particular xml schema, it would be

Chapter 8 Conclusions and Future Work 174

valuable to know that every possible combination of document that validates

against that schema would be successfully transformed by a binding and

that all elements would be mapped to the destination document. In cases

where not all components are mapped, it would be useful to know which

components would be omitted.

2. Binding Validation

The current fxml-M specification makes no checks that bindings produce

valid documents. While it is possible to use an xml validator to check a

transformed document against its schema, it could be more cost effective to

check that the binding produces a valid document before attempting to use

it in a translation. This is pertinent in a scientific environment where data

instances can be very large and translation would be an expensive process.

Since fxml-M covers a large number of constructs from xpath, fxml-M could

be used as a basis to formalise xslt and xquery.

8.1.3 Automatic Mapping Generation

Our workflow harmonisation solution relies on mappings that convert data to and

from a shared conceptual model. The binding creation process is time consum-

ing, error prone and requires a good understanding of both xml and owl. The

ability to automatically generate these bindings would be of great value, but it

is not a trivial task. Other research [7, 8, 39] has investigated this idea in the

context of traditional data integration, using a combination of linguistic analysis,

structural comparison and loosely defined documentation to generate mappings

without human intervention. In some cases these approaches are still infeasible

and some high level correspondence between elements can be used in combination

with other techniques to generate mappings.

8.1.4 Ontology Mapping

To successfully integrate semantically equivalent but heterogeneous data formats,

a single ontology definition is required to encapsulate the data contained within

Chapter 8 Conclusions and Future Work 175

each format. While this approach works well for small scale and manageable

applications, it does not scale well, not necessarily in a performance sense, but

more from an engineering perspective: it is difficult to get large and disparate

communities of people to agree on singular conceptual model. It is more realistic

to assume that different conceptual models would evolve and themselves would

require some integration. Our transformation technology could prove to be fruitful

in this research area where differently structured models need to be converted to

between different representations.

Appendix A

Sequence Data Record Ontology

Definition

In this Appendix, we provide full owl listings for the Sequence Data Ontology

used in our use case.

<rdf:RDF
xmlns="http://jaco.ecs.soton.ac.uk/ont/sequencedata #"
xmlns:rdf="http://www.w3.org/1999/02/22 −rdf −syntax −ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf −schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xml:base="http://jaco.ecs.soton.ac.uk/ont/sequenced ata" >

<owl:Class rdf:ID="Sequence Data Record" >
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002 /07/owl#Thing"/ >

<rdfs:subClassOf >

<owl:Restriction >

<owl:onProperty >

<owl:ObjectProperty rdf:ID="has sequence"/ >

</owl:onProperty >

<owl:cardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" >1</owl:cardinality >

</owl:Restriction >

</rdfs:subClassOf >

<rdfs:subClassOf >

<owl:Restriction >

<owl:cardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" >1</owl:cardinality >

<owl:onProperty >

<owl:DatatypeProperty rdf:ID="accession id"/ >

</owl:onProperty >

</owl:Restriction >

</rdfs:subClassOf >

</owl:Class >

<owl:DatatypeProperty rdf:about="#accession id" >
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

<rdfs:domain rdf:resource="#Sequence Data Record"/ >

</owl:DatatypeProperty >

176

Appendix A Sequence Data Record Ontology Definition 177

<owl:DatatypeProperty rdf:about="#description" >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

<rdfs:domain rdf:resource="#Sequence Data Record"/ >

</owl:DatatypeProperty >

<owl:ObjectProperty rdf:ID="has reference" >

<rdfs:range rdf:resource="#Reference"/ >

<rdfs:domain rdf:resource="#Sequence Data Record"/ >

</owl:ObjectProperty >

<owl:ObjectProperty rdf:about="#has sequence" >
<rdfs:domain rdf:resource="#Sequence Data Record"/ >

<rdfs:range rdf:resource="#Sequence"/ >

</owl:ObjectProperty >

<owl:ObjectProperty rdf:about="#has feature" >

<rdfs:domain rdf:resource="#Sequence Data Record"/ >

<rdfs:range rdf:resource="#Feature"/ >

</owl:ObjectProperty >

<owl:Class rdf:ID="DDBJ Sequence Data Record" >
<rdfs:subClassOf rdf:resource="#Sequence Data Record"/ >

<owl:disjointWith rdf:resource="#EMBL Sequence Data Record"/ >

<rdfs:subClassOf >

<owl:Restriction >

<owl:maxCardinality rdf:datatype="http://www.w3.org/2 001/XMLSchema#int"
>1</owl:maxCardinality >

<owl:onProperty >

<owl:DatatypeProperty rdf:ID="taxonomy"/ >

</owl:onProperty >

</owl:Restriction >

</rdfs:subClassOf >

<rdfs:subClassOf >

<owl:Restriction >

<owl:maxCardinality rdf:datatype="http://www.w3.org/2 001/XMLSchema#int"
>1</owl:maxCardinality >

<owl:onProperty >

<owl:DatatypeProperty rdf:ID="date last updated"/ >

</owl:onProperty >

</owl:Restriction >

</rdfs:subClassOf >

<rdfs:subClassOf >

<owl:Restriction >

<owl:maxCardinality rdf:datatype="http://www.w3.org/2 001/XMLSchema#int"
>1</owl:maxCardinality >

<owl:onProperty >

<owl:DatatypeProperty rdf:ID="molecular form"/ >

</owl:onProperty >

</owl:Restriction >

</rdfs:subClassOf >

</owl:Class >

<owl:DatatypeProperty rdf:about="#molecular form" >
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

<rdfs:domain rdf:resource="#DDBJ Sequence Data Record"/ >

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:about="#taxonomy" >

<rdfs:domain rdf:resource="#DDBJ Sequence Data Record"/ >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

</owl:DatatypeProperty >

Appendix A Sequence Data Record Ontology Definition 178

<owl:DatatypeProperty rdf:about="#date last updated" >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

<rdfs:domain rdf:resource="#DDBJ Sequence Data Record"/ >

</owl:DatatypeProperty >

<owl:Class rdf:ID="EMBL Sequence Data Record" >
<owl:disjointWith rdf:resource="#DDBJ Sequence Data Record"/ >

<rdfs:subClassOf >

<owl:Class rdf:about="#Sequence Data Record"/ >

</rdfs:subClassOf >

</owl:Class >

<owl:DatatypeProperty rdf:about="#data class" >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

<rdfs:domain rdf:resource="#EMBL Sequence Data Record"/ >

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:about="#date created" >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

<rdfs:domain rdf:resource="#EMBL Sequence Data Record"/ >

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:about="#release created" >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

<rdfs:domain rdf:resource="#EMBL Sequence Data Record"/ >

</owl:DatatypeProperty >

<owl:Class rdf:ID="Reference"/ >

<owl:DatatypeProperty rdf:ID="author" >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

<rdfs:domain rdf:resource="#Reference"/ >

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:ID="journal" >

<rdfs:domain rdf:resource="#Reference"/ >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:ID="title" >

<rdfs:domain rdf:resource="#Reference"/ >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

</owl:DatatypeProperty >

<owl:ObjectProperty rdf:ID="has reference location" >

<rdfs:range rdf:resource="#Location"/ >

<rdfs:domain rdf:resource="#Reference"/ >

</owl:ObjectProperty >

<owl:Class rdf:ID="Location"/ >

<owl:DatatypeProperty rdf:ID="start" >

<rdfs:domain rdf:resource="#Location"/ >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:ID="end" >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

<rdfs:domain rdf:resource="#Location"/ >

</owl:DatatypeProperty >

<owl:Class rdf:ID="Feature" >

<owl:disjointWith rdf:resource="#Reference"/ >

</owl:Class >

Appendix A Sequence Data Record Ontology Definition 179

<owl:ObjectProperty rdf:ID="has position" >

<rdfs:range rdf:resource="#Location"/ >

<rdfs:domain rdf:resource="#Feature"/ >

</owl:ObjectProperty >

<owl:Class rdf:ID="Feature Source" >
<rdfs:subClassOf rdf:resource="#Feature"/ >

<owl:disjointWith rdf:resource="#Feature CDS"/>
</owl:Class >

<owl:DatatypeProperty rdf:ID="organism" >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

<rdfs:domain rdf:resource="#Feature Source"/ >

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:ID="isolate" >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

<rdfs:domain rdf:resource="#Feature Source"/ >

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:ID="lab −host" >

<rdfs:domain rdf:resource="#Feature Source"/ >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

</owl:DatatypeProperty >

<owl:Class rdf:ID="Feature CDS">
<rdfs:subClassOf rdf:resource="#Feature"/ >

<owl:disjointWith rdf:resource="#Feature Source"/ >

</owl:Class >

<owl:DatatypeProperty rdf:ID="translation" >

<rdfs:domain rdf:resource="#Feature CDS"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:ID="protein −id" >
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

<rdfs:domain rdf:resource="#Feature CDS"/>
</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:ID="product" >

<rdfs:domain rdf:resource="#Feature CDS"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

</owl:DatatypeProperty >

<owl:Class rdf:ID="Sequence"/ >

<owl:DatatypeProperty rdf:ID="data" >

<rdfs:domain rdf:resource="#Sequence"/ >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:ID="length" >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

<rdfs:domain rdf:resource="#Sequence"/ >

</owl:DatatypeProperty >

<owl:ObjectProperty rdf:ID="has base count" >

<rdfs:range rdf:resource="#Base count"/ >

<rdfs:domain rdf:resource="#Sequence"/ >

</owl:ObjectProperty >

Appendix A Sequence Data Record Ontology Definition 180

<owl:DatatypeProperty rdf:ID="type" >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

<rdfs:domain rdf:resource="#Sequence"/ >

</owl:DatatypeProperty >

<owl:Class rdf:ID="Base count"/ >

<owl:DatatypeProperty rdf:ID="A" >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

<rdfs:domain rdf:resource="#Base count"/ >

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:ID="T" >

<rdfs:domain rdf:resource="#Base count"/ >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:ID="C" >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

<rdfs:domain rdf:resource="#Base count"/ >

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:ID="G" >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLS chema#string"/ >

<rdfs:domain rdf:resource="#Base count"/ >

</owl:DatatypeProperty >

</rdf:RDF >

Listing A.1: OWL Definition for a Sequence Data Records Ontology

Appendix B

Example Mappings

This appendix contains example mappings to convert a DDBJ-XML sequence data

record to an instance of the Sequence Data Record concept. Mathematical nota-

tion is given first, followed by the xml representation in M -Binding format.

m1 = 〈 〈DDBJXML,ACCESSION〉 , 〈[Sequence Data Record × join], [accession id × branch]〉 , ∅〉

m2 = 〈 〈ACCESSION, value〉 , 〈[accession id × join], value〉 , ∅〉

m3 = 〈 〈DDBJXML,DEFINITION〉 , 〈[Sequence Data Record × join], [definition × branch]〉 , ∅〉

m4 = 〈 〈DEFINITION, value〉 , 〈[definition × join], value〉 , ∅〉

m7 = 〈 〈source, location〉 , 〈[Feature Source × join], [has position × branch], [Location × branch]〉 , ∅〉

m9 = 〈 〈location, value{“ˆ[ˆ.]+”}〉 , 〈[Location × join], [start × branch], value〉 , ∅〉

m10 = 〈 〈location, value{“[ˆ.]+”}〉 , 〈Location × join], [end × branch], value〉 , ∅〉

m11 = 〈 〈DDBJXML,FEATURES, source〉 ,

〈[Sequence Data Record × join], [has feature × branch], [Feature Source × branch]〉 , ∅〉

m12 = 〈 〈source, [qualifiers × {qualifiers, qualifiers/*/@namevalue = “isolate”}]〉 ,

〈[Feature Source × join], [isolate × branch]〉 , (m13)〉

m13 = 〈 〈qualifiers, value〉 , 〈[isolate × join], value〉 , ∅〉

m14 = 〈 〈source, [qualifiers × {qualifiers, qualifiers/*/@namevalue = “lab host”}]〉 ,

〈[Feature Source × join], [lab host × branch}]〉 , (m15)〉

m15 = 〈 〈qualifiers, value〉 , 〈[lab host × join], value〉 , ∅〉

181

Appendix B Example Mappings 182

<?xml version="1.0"? >

<binding name="DDBJ −to −sequencedata"
xmlns="http://jaco.ecs.soton.ac.uk/schema/binding"
xmlns:sns="http://jaco.ecs.soton.ac.uk/schema/DDBJ"
xmlns:dns="http://jaco.ecs.soton.ac.uk/ont/sequence data"
targetNamespace="http://jaco.ecs.soton.ac.uk/bindin g/DDBJ−to −sequencedata" >

<mapping>
<source match="sns:DDBJXML/sns:ACCESSION"/ >

<destination create="dns:DDBJ Sequence Data Record[join]/dns:accession id[branch]/"/ >

</mapping >

<mapping>
<source match="sns:ACCESSION/$"/ >

<destination create="dns:accession id[join]/$"/ >

</mapping >

<mapping>
<source match="sns:DDBJXML/sns:DEFINITION"/ >

<destination create="dns:DDBJ Sequence Data Record[join]/dns:definition[branch]/"/ >

</mapping >

<mapping>
<source match="sns:DEFINITION/$"/ >

<destination create="dns:definition[join]/$"/ >

</mapping >

<mapping>
<source match="sns:DDBJXML/sns:DIVISION"/ >

<destination create="dns:DDBJ Sequence Data Record[join]/dns:division[branch]/"/ >

</mapping >

<mapping>
<source match="sns:DIVISION/$"/ >

<destination create="dns:division[join]/$"/ >

</mapping >

<!−− Feature Location −−>

<mapping>
<source match="sns:source/sns:location"/ >

<destination create="dns:Feature Source[join]/dns:has position[branch]/
dns:Location[branch]"/ >

</mapping >

<mapping>

<source match="sns:cds/sns:location"/ >

<destination create="dns:Feature CDS[join]/dns:has position[branch]/
dns:Location[branch]"/ >

</mapping >

<mapping>
<source match="sns:location/$ˆ[ˆ.]+"/ >

<destination create="dns:Location[join]/dns:start[bra nch]/$"/ >

</mapping >

<mapping>
<source match="sns:location/$[ˆ.]+$"/ >

<destination create="dns:Location[join]/dns:end[branc h]/$"/ >

</mapping >

Appendix B Example Mappings 183

<!−− Feature Source −−>

<mapping>
<source match="sns:DDBJXML/sns:FEATURES/sns:source"/ >

<destination create="dns:DDBJ Sequence Data Record[join]/
dns:has feature[branch]/dns:Feature Source[branch]"/ >

</mapping >

<mapping>
<source match=’sns:source/sns:qualifiers[sns:qualifie rs/sns:name/$ = "isolate"]’/ >

<destination create="dns:Feature Source[join]/dns:isolate[branch]"/ >

<mapping>
<source match="sns:qualifiers/$"/ >

<destination create="dns:isolate[join]/$"/ >

</mapping >

</mapping >

<mapping>
<source match=’sns:source/sns:qualifiers[sns:qualifie rs/sns:name/$ = "lab host"]’/ >

<destination create="dns:Feature Source[join]/dns:lab −host[branch]"/ >

<mapping>
<source match="sns:qualifiers/$"/ >

<destination create="dns:lab −host[join]/$"/ >

</mapping >

</mapping >

<mapping>
<source match=’sns:source/sns:qualifiers[sns:qualifie rs/sns:name/$ = "mol type"]’/ >

<destination create="dns:Feature Source[join]/dns:molecular −type[branch]"/ >

<mapping>
<source match="sns:qualifiers/$"/ >

<destination create="dns:molecular −type[join]/$"/ >

</mapping >

</mapping >

<mapping>
<source match=’sns:source/sns:qualifiers[sns:qualifie rs/sns:name/$ = "organism"]’/ >

<destination create="dns:Feature Source[join]/dns:organism[branch]"/ >

<mapping>
<source match="sns:qualifiers/$"/ >

<destination create="dns:organism[join]/$"/ >

</mapping >

</mapping >

<!−− Feature CDS −−>

<mapping>
<source match="sns:DDBJXML/sns:FEATURES/sns:cds"/ >

<destination create="dns:DDBJ Sequence Data Record[join]/
dns:has feature[branch]/dns:Feature CDS[branch]"/ >

</mapping >

<mapping>
<source match=’sns:cds/sns:qualifiers[sns:qualifiers/ sns:name/$ = "product"]’/ >

<destination create="dns:Feature CDS[join]/dns:product[branch]"/ >

<mapping>
<source match="sns:qualifiers/$"/ >

<destination create="dns:product[join]/$"/ >

</mapping >

</mapping >

Appendix B Example Mappings 184

<mapping>
<source match=’sns:cds/sns:qualifiers[sns:qualifiers/ sns:name/$ = "protein id"]’/ >

<destination create="dns:Feature CDS[join]/dns:protein −id[branch]"/ >

<mapping>
<source match="sns:qualifiers/$"/ >

<destination create="dns:protein −id[join]/$"/ >

</mapping >

</mapping >

<mapping>
<source match=’sns:cds/sns:qualifiers[sns:qualifiers/ sns:name/$ = "translation"]’/ >

<destination create="dns:Feature CDS[join]/dns:translation[branch]"/ >

<mapping>
<source match="sns:qualifiers/$"/ >

<destination create="dns:translation[join]/$"/ >

</mapping >

</mapping >

<!−− Reference −−>

<mapping>
<source match="sns:DDBJXML/sns:REFERENCE"/ >

<destination create="dns:DDBJ Sequence Data Record[join]/
dns:has reference[branch]/dns:Reference"/ >

</mapping >

<mapping>
<source match="sns:REFERENCE/sns:authors"/ >

<destination create="dns:Reference[join]/dns:author[b ranch]/"/ >

</mapping >

<mapping>
<source match="sns:authors/$"/ >

<destination create="dns:author[join]/$"/ >

</mapping >

<mapping>
<source match="sns:REFERENCE/sns:title"/ >

<destination create="dns:Reference[join]/dns:title[br anch]/"/ >

</mapping >

<mapping>
<source match="sns:title/$"/ >

<destination create="dns:title[join]/$"/ >

</mapping >

<mapping>
<source match="sns:REFERENCE/sns:journal"/ >

<destination create="dns:Reference[join]/dns:journal[branch]/"/ >

</mapping >

<mapping>
<source match="sns:journal/$"/ >

<destination create="dns:journal[join]/$"/ >

</mapping >

<!−− Sequence Data Record Metadata −−>

<mapping>
<source match="sns:DDBJXML/sns:KEYWORDS"/ >

<destination create="dns:DDBJ Sequence Data Record[join]/dns:keyword[branch]/"/ >

</mapping >

Appendix B Example Mappings 185

<mapping>
<source match="sns:KEYWORDS/$"/ >

<destination create="dns:keyword[join]/$"/ >

</mapping >

<mapping>

<source match="sns:DDBJXML/sns:LAST UPDATE"/>
<destination create="dns:DDBJ Sequence Data Record[join]/dns:date last updated[branch]/"/ >

</mapping >

<mapping>
<source match="sns:LAST UPDATE/$"/ >
<destination create="dns:date last updated[join]/$"/ >

</mapping >

<mapping>
<source match="sns:DDBJXML/sns:MOLECULAR FORM"/>
<destination create="dns:DDBJ Sequence Data Record[join]/dns:molecular form[branch]/"/ >

</mapping >

<mapping>
<source match="sns:MOLECULAR FORM/$"/>
<destination create="dns:molecular form[join]/$"/ >

</mapping >

<mapping>
<source match="sns:DDBJXML/sns:TAXONOMY"/ >

<destination create="dns:DDBJ Sequence Data Record[join]/dns:taxonomy[branch]/"/ >

</mapping >

<mapping>
<source match="sns:TAXONOMY/$"/ >

<destination create="dns:taxonomy[join]/$"/ >

</mapping >

<!−− Sequence Data −−>

<mapping>
<source match="sns:DDBJXML/sns:SEQUENCE"/ >

<destination create="dns:DDBJ Sequence Data Record[join]/dns:has sequence[branch]/
dns:Sequence[branch]"/ >

</mapping >

<mapping>
<source match="sns:SEQUENCE/$"/ >

<destination create="dns:Sequence[join]/dns:data[bran ch]/$"/ >

</mapping >

<mapping>
<source match="sns:START/$"/ >

<destination create="dns:start[join]/$"/ >

</mapping >

<mapping>
<source match="sns:END/$"/ >

<destination create="dns:end[join]/$"/ >

</mapping >

</binding >

Listing B.1: M -Binding document to translate DDBJ-XML documents to and

owl concept instance

Appendix C

XML Schemas

In this appendix, an xml schema is provided to validate instance from the Se-

quence Data Record ontology.

<?xml version="1.0" encoding="UTF −8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSche ma"

xmlns="http://jaco.ecs.soton.ac.uk/ont/sequencedata "
targetNamespace="http://jaco.ecs.soton.ac.uk/ont/se quencedata" >

<xsd:element name="keyword" type="xsd:string"/ >

<xsd:element name="accession id" type="xsd:string"/ >

<xsd:element name="release created" type="xsd:string"/ >

<xsd:element name="lab −host" type="xsd:string"/ >

<xsd:element name="has base count" type="has base count −TYPE"/>
<xsd:element name="Base count" type="Base count −TYPE"/>
<xsd:element name="T" type="xsd:string"/ >

<xsd:element name="has reference" type="has reference −TYPE"/>
<xsd:element name="definition" type="xsd:string"/ >

<xsd:element name="molecular form" type="xsd:string"/ >

<xsd:element name="author" type="xsd:string"/ >

<xsd:element name="molecular −type" type="xsd:string"/ >

<xsd:element name="G" type="xsd:string"/ >

<xsd:element name="name" type="xsd:string"/ >

<xsd:element name="C" type="xsd:string"/ >

<xsd:element name="A" type="xsd:string"/ >

<xsd:element name="taxonomy" type="xsd:string"/ >

<xsd:element name="end" type="xsd:string"/ >

<xsd:element name="topology" type="xsd:string"/ >

<xsd:element name="Reference" type="Reference −TYPE"/>
<xsd:element name="length" type="xsd:string"/ >

<xsd:element name="Sequence" type="Sequence −TYPE"/>
<xsd:element name="INSD Sequence Data Record" type="INSD Sequence Data Record −TYPE"/>
<xsd:element name="isolate" type="xsd:string"/ >

<xsd:element name="has position" type="has position −TYPE"/>
<xsd:element name="has database reference" type="has database reference −TYPE"/>
<xsd:element name="start" type="xsd:string"/ >

<xsd:element name="Feature" type="Feature −TYPE"/>
<xsd:element name="Sequence Data Record" type="Sequence Data Record −TYPE"/>
<xsd:element name="date created" type="xsd:string"/ >

<xsd:element name="Feature CDS" type="Feature CDS−TYPE"/>
<xsd:element name="has feature" type="has feature −TYPE"/>
<xsd:element name="title" type="xsd:string"/ >

<xsd:element name="date last updated" type="xsd:string"/ >

<xsd:element name="EMBL Sequence Data Record" type="EMBL Sequence Data Record −TYPE"/>
<xsd:element name="db identifier" type="xsd:string"/ >

<xsd:element name="has sequence" type="has sequence −TYPE"/>

186

Appendix C XML Schemas 187

<xsd:element name="Database Reference" type="Database Reference −TYPE"/>
<xsd:element name="product" type="xsd:string"/ >

<xsd:element name="Feature Source" type="Feature Source −TYPE"/>
<xsd:element name="release last updated" type="xsd:string"/ >

<xsd:element name="has reference location" type="has reference location −TYPE"/>
<xsd:element name="journal" type="xsd:string"/ >

<xsd:element name="protein −id" type="xsd:string"/ >

<xsd:element name="translation" type="xsd:string"/ >

<xsd:element name="Location" type="Location −TYPE"/>
<xsd:element name="DDBJ Sequence Data Record" type="DDBJ Sequence Data Record −TYPE"/>
<xsd:element name="db location" type="xsd:string"/ >

<xsd:element name="organism" type="xsd:string"/ >

<xsd:element name="version" type="xsd:string"/ >

<xsd:element name="division" type="xsd:string"/ >

<xsd:element name="data" type="xsd:string"/ >

<xsd:element name="type" type="xsd:string"/ >

<xsd:complexType name="DDBJ Sequence Data Record −TYPE">
<xsd:complexContent >

<xsd:extension base="Sequence Data Record −TYPE">
<xsd:sequence >

<xsd:element ref="date last updated"/ >

<xsd:element ref="molecular form"/ >

<xsd:element ref="taxonomy"/ >

</xsd:sequence >

</xsd:extension >

</xsd:complexContent >

</xsd:complexType >

<xsd:complexType name="has sequence −TYPE">
<xsd:all >

<xsd:element ref="Sequence"/ >

</xsd:all >

</xsd:complexType >

<xsd:complexType name="has base count −TYPE">
<xsd:all >

<xsd:element ref="Base count"/ >

</xsd:all >

</xsd:complexType >

<xsd:complexType name="Feature CDS−TYPE">
<xsd:complexContent >

<xsd:extension base="Feature −TYPE">
<xsd:sequence >

<xsd:element ref="product" maxOccurs="unbounded"/ >

<xsd:element ref="protein −id" maxOccurs="unbounded"/ >

<xsd:element ref="translation" maxOccurs="unbounded"/ >

</xsd:sequence >

</xsd:extension >

</xsd:complexContent >

</xsd:complexType >

<xsd:complexType name="Database Reference −TYPE">
<xsd:sequence >

<xsd:element ref="db identifier" maxOccurs="unbounded"/ >

<xsd:element ref="db location" maxOccurs="unbounded"/ >

</xsd:sequence >

</xsd:complexType >

Appendix C XML Schemas 188

<xsd:complexType name="EMBL Sequence Data Record −TYPE">
<xsd:complexContent >

<xsd:extension base="Sequence Data Record −TYPE">
<xsd:sequence >

<xsd:element ref="date created" maxOccurs="unbounded"/ >

<xsd:element ref="date last updated"/ >

<xsd:element ref="name" maxOccurs="unbounded"/ >

<xsd:element ref="release created" maxOccurs="unbounded"/ >

<xsd:element ref="release last updated" maxOccurs="unbounded"/ >

<xsd:element ref="version" maxOccurs="unbounded"/ >

</xsd:sequence >

</xsd:extension >

</xsd:complexContent >

</xsd:complexType >

<xsd:complexType name="has position −TYPE">
<xsd:all >

<xsd:element ref="Location"/ >

</xsd:all >

</xsd:complexType >

<xsd:complexType name="Sequence −TYPE">
<xsd:sequence >

<xsd:element ref="data" maxOccurs="unbounded"/ >

<xsd:element ref="has base count" maxOccurs="unbounded"/ >

<xsd:element ref="length" maxOccurs="unbounded"/ >

<xsd:element ref="type" maxOccurs="unbounded"/ >

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="Base count −TYPE">
<xsd:sequence >

<xsd:element ref="A" maxOccurs="unbounded"/ >

<xsd:element ref="C" maxOccurs="unbounded"/ >

<xsd:element ref="G" maxOccurs="unbounded"/ >

<xsd:element ref="T" maxOccurs="unbounded"/ >

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="Reference −TYPE">
<xsd:sequence >

<xsd:element ref="author" maxOccurs="unbounded"/ >

<xsd:element ref="has reference location" maxOccurs="unbounded"/ >

<xsd:element ref="journal" maxOccurs="unbounded"/ >

<xsd:element ref="title" maxOccurs="unbounded"/ >

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="Location −TYPE">
<xsd:sequence >

<xsd:element ref="end" maxOccurs="unbounded"/ >

<xsd:element ref="start" maxOccurs="unbounded"/ >

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="Sequence Data Record −TYPE">
<xsd:sequence >

<xsd:element ref="accession id"/ >

<xsd:element ref="definition"/ >

<xsd:element ref="division"/ >

<xsd:element ref="has feature" maxOccurs="unbounded"/ >

<xsd:element ref="has reference" maxOccurs="unbounded"/ >

<xsd:element ref="has sequence"/ >

<xsd:element ref="keyword" maxOccurs="unbounded"/ >

</xsd:sequence >

</xsd:complexType >

Appendix C XML Schemas 189

<xsd:complexType name="has feature −TYPE">
<xsd:choice >

<xsd:element ref="Feature"/ >

<xsd:element ref="Feature CDS"/>
<xsd:element ref="Feature Source"/ >

</xsd:choice >

</xsd:complexType >

<xsd:complexType name="has reference location −TYPE">
<xsd:all >

<xsd:element ref="Location"/ >

</xsd:all >

</xsd:complexType >

<xsd:complexType name="INSD Sequence Data Record −TYPE">
<xsd:sequence >

<xsd:element ref="date created" maxOccurs="unbounded"/ >

<xsd:element ref="date last updated"/ >

<xsd:element ref="name" maxOccurs="unbounded"/ >

<xsd:element ref="release created" maxOccurs="unbounded"/ >

<xsd:element ref="release last updated" maxOccurs="unbounded"/ >

<xsd:element ref="topology" maxOccurs="unbounded"/ >

<xsd:element ref="version" maxOccurs="unbounded"/ >

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="Feature −TYPE">
<xsd:sequence >

<xsd:element ref="has database reference" maxOccurs="unbounded"/ >

<xsd:element ref="has position" maxOccurs="unbounded"/ >

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="has reference −TYPE">
<xsd:all >

<xsd:element ref="Reference"/ >

</xsd:all >

</xsd:complexType >

<xsd:complexType name="Feature Source −TYPE">
<xsd:complexContent >

<xsd:extension base="Feature −TYPE">
<xsd:sequence >

<xsd:element ref="isolate" maxOccurs="unbounded"/ >

<xsd:element ref="lab −host" maxOccurs="unbounded"/ >

<xsd:element ref="molecular −type" maxOccurs="unbounded"/ >

<xsd:element ref="organism" maxOccurs="unbounded"/ >

</xsd:sequence >

</xsd:extension >

</xsd:complexContent >

</xsd:complexType >

<xsd:complexType name="has database reference −TYPE">
<xsd:all >

<xsd:element ref="Database Reference"/ >

</xsd:all >

</xsd:complexType >

</xsd:schema >

Listing C.1: An XML Schema to validate instances from the Sequence Data

Record ontology, created automatically by the OWL-XIS generator

Bibliography

[1] UDDI technical white paper, September 2000. URL:

http://uddi.org/pubs/uddi-tech-wp.pdf.

[2] OWL-S: Semantic markup for web service. Technical report, The OWL

Services Coalition, 2006. URL: http://www.ai.sri.com/daml/services/owl-

s/1.2/overview/.

[3] activeBPEL Project Homepage. URL: http://www.activebpel.org/.

[4] Alfred V. Aho. Algorithms for finding patterns in strings. 1990.

[5] R. Akkiraju, J. Farrell, J.Miller, M. Nagarajan, M. Schmidt, and A. Shethand.

Web service semantics - WSDL-S: W3c member submission. Technical report,

2005. URL: http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.pdf.

[6] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller,

and D. J. Lipman. Gapped BLAST and PSI–BLAST: a new generation of

protein database search programs. Nucleic Acids Res., 25:3389–3402, 1997.

URL: citeseer.ist.psu.edu/altschul97gapped.html.

[7] Yuan An, Alexander Borgida, and John Mylopoulos. Inferring complex se-

mantic mappings between relational tables and ontologies from simple corre-

spondences. In OTM Conferences (2), pages 1152–1169, 2005.

[8] Yuan An, John Mylopoulos, and Alexander Borgida. Building semantic map-

pings from databases to ontologies. In AAAI, 2006.

[9] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D. McDer-

mott, S. A. McIlraith, S. Narayanan, M. Paolucci, T. R. Payne, and K. Sycara.

DAML-S: Web service description for the semantic web. In Proceedings of

the first International Semantic Web Conference (ISWC 02), 2002. URL:

http://xml.coverpages.org/ISWC2002-DAMLS.pdf.

[10] Apache AXIS Project Homepage. URL: http://ws.apache.org/axis/.

[11] AstroGrid Project Homepage. URL: http://www.astrogrid.org/.

190

http://uddi.org/pubs/uddi-tech-wp.pdf
http://www.ai.sri.com/daml/services/owl-s/1.2/overview/
http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.pdf
file:citeseer.ist.psu.edu/altschul97gapped.html
http://xml.coverpages.org/ISWC2002-DAMLS.pdf

BIBLIOGRAPHY 191

[12] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,

Implementation, and Applications, 2003. Cambridge University Press. ISBN

0-521-78176-0.

[13] J. W. Backus, J. H. Wegstein, A. van Wijngaarden, M. Woodger, F. L. Bauer,

J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser, K. Samelson,

and B. Vauquois. Report on the algorithmic language ALGOL 60. Commu-

nication of the ACM, 3(5):299–314, May 1960.

[14] Steffen Balzer and Thorsten Liebig. Bridging the Gap Between Abstract and

Concrete Services – A Semantic Approach for Grounding OWL-S –. In Pro-

ceedings of the Workshop on Semantic Web Services: Preparing to Meet the

World of Business Applications, pages 16–30, Hiroshima, Japan, November

2004.

[15] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North

Holland; 2 edition, 1985.

[16] Mike Beckerle. DFDL proposal and examples. Tech-

nical report, Global Grid Forum, 2004. URL:

http://forge.gridforum.org/sf/docman/do/downloadDocument/projects.dfdl-

wg/docman.root.current/doc5412.

[17] D. Beech, A. Malhotra, and M. Rys. A formal data model and algebra for

xml, 1999. URL: citeseer.ist.psu.edu/beech99formal.html.

[18] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini,

and Massimo Mecella. e-service composition by description logics based rea-

soning. In Proc. of the 2003 Description Logic Workshop (DL 2003), pages

75–84. CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-81/,

2003.

[19] Sonia Bergamaschi, Silvana Castano, Maurizio Vincini, and Domenico Ben-

eventano. Semantic integration of heterogeneous information sources. Data

Knowl. Eng., 36(3):215–249, 2001. ISSN 0169-023X.

[20] T. Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific

American, pages 34 – 43, 2001.

[21] Jim Blythe, Ewa Deelman, and Yolanda Gil. Planning for workflow construc-

tion and maintenance on the grid. In ICAPS 2003 Workshop on Planning for

Web Services, 2003.

[22] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu, Jonathan

Robie, and Jerome Simeon. Xquery 1.0: An XML query langauge. Technical

report, W3C, 2003. URL: http://www.w3.org/TR/xquery/.

http://forge.gridforum.org/sf/docman/do/downloadDocument/projects.dfdl-wg/docman.root.current/doc5412
file:citeseer.ist.psu.edu/beech99formal.html
http://www.w3.org/TR/xquery/

BIBLIOGRAPHY 192

[23] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Cham-

pion, Chris Ferris, and David Orchard. Web services architecture. Techni-

cal report, W3C, 2004. URL: http://www.w3.org/TR/2004/NOTE-ws-arch-

20040211/.

[24] S. Bowers and B. Ludascher. An ontology-driven framework for data trans-

formation in scientific workflows. In Intl. Workshop on Data Integration in

the Life Sciences (DILS’04), 2004. URL: http://www.sdsc.edu/ ludaesch/-

Paper/dils04.pdf.

[25] Dan Brickley and R. V. Guha. RDF vocabulary description lan-

guage 1.0: RDF schema. Technical report, W3C, 2004. URL:

http://www.w3.org/TR/rdf-schema/.

[26] Allen Brown, Matthew Fuchs, Jonathan Robie, and Philip Wadler. Msl - a

model for w3c xml schema. In WWW, pages 191–200, 2001.

[27] Allen Brown, Matthew Fuchs, Jonathan Robie, and Philip Wadler. XML

schema: Formal description. Technical report, W3C, 2001. URL:

http://www.w3.org/TR/2001/WD-xmlschema-formal-20010320/.

[28] P. J. Brown. The ml/i macro processor. Commun. ACM, 10(10):618–623,

1967. ISSN 0001-0782.

[29] Andrea Cal, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini,

Paolo Naggar, and Fabio Vernacotola. IBIS: semantic data integration at

work. Lecture Notes in Computer Science, Advanced Information Systems

Engineering, 2681/2003:79–94, 2003.

[30] Jorge Cardoso and Amit Sheth. Semantic e-workflow composition. J. Intell.

Inf. Syst., 21(3):191–225, 2003. ISSN 0925-9902.

[31] Fabio Casati, Stefano Ceri, Barbara Pernici, and Giuseppe Pozzi. Semantic

workflow interoperability. In Extending Database Technology, pages 443–462,

1996. URL: citeseer.ist.psu.edu/casati96semantic.html.

[32] Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ire-

land, Yannis Papakonstantinou, Jeffrey D. Ullman, and Jennifer Widom. The

TSIMMIS project: Integration of heterogeneous information sources. In 16th

Meeting of the Information Processing Society of Japan, pages 7–18, Tokyo,

Japan, 1994. URL: citeseer.ist.psu.edu/chawathe94tsimmis.html.

[33] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weer-

awarana. Web services description language (WSDL) 1.1, March 2001. W3C.

[34] James Clark. XSL transformations (XSLT) version 1.0. Technical report,

W3C, 1999. URL: http://www.w3.org/TR/xslt.

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.sdsc.edu/~ludaesch/Paper/dils04.pdf
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/2001/WD-xmlschema-formal-20010320/
file:citeseer.ist.psu.edu/casati96semantic.html
file:citeseer.ist.psu.edu/chawathe94tsimmis.html
http://www.w3.org/TR/xslt

BIBLIOGRAPHY 193

[35] James Clark and Steve DeRose. XML path language (XPath) version 1.0.

Technical report, W3C, 1999. URL: http://www.w3.org/TR/xpath.

[36] DDBJ Web Service. URL: http://xml.ddbj.nig.ac.jp/.

[37] Jos de Bruijin and Holger Lausen. Web service modeling language (WSML),

June 2005. WSMO Working Draft.

[38] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Black-

burn, A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda. Mapping

abstract complex workflows onto grid environments. Journal of Grid Com-

puting, 1(1):25–39, 2003.

[39] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. imap: Dis-

covering complex semantic matches between database schemas, 2004. URL:

citeseer.ist.psu.edu/dhamankar04imap.html.

[40] Brian Eisenberg and Duane Nickull. ebXML technical architec-

ture specification v1.0.4. Technical report, ebXML, 2001. URL:

http://www.ebxml.org/specs/ebTA.pdf.

[41] David C. Fallside. XML schema part 0: Primer. Technical report, W3C,

2001. URL: http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/.

[42] Weijian Fang, Sylvia C. Wong, Victor Tan, Simon Miles, and Luc Moreau.

Performance analysis of a semantics enabled service registry. In Proceedings

of the fourth UK e-Science Programme All Hands Meeting (AHM2005), Not-

tingham, UK, 2005.

[43] Dieter Fensel, Richard Benjamins, Enrico Motta, and Bob Wielinga. UPML:

A framework for knowledge system reuse. In Proceedings of the Interna-

tional Joint Conference on AI (IJCAI-99), Stockholm, Sweden, 1999. URL:

ftp://ftp.aifb.uni-karlsruhe.de/pub/mike/dfe/paper/upml.ijcai.pdf.

[44] Ian Foster and Carl Kesselmann. The Grid: Blueprint for a new computing

infrastrucutre. Morgan Kaufmann, 1999.

[45] Ian Foster, Carl Kesslemann, Jeffery M. Nick, and Steven Tuecke. The phys-

iology of the grid, an open grid services architecture for distributed systems

integration, June 2002.

[46] FreeFluo Project Homepage. URL: http://freefluo.sourceforge.net/.

[47] Gottlob Frege. Begriffsschrift, a formula language, modeled upon that of arith-

metic, for pure thought. 1967.

http://www.w3.org/TR/xpath
file:citeseer.ist.psu.edu/dhamankar04imap.html
http://www.ebxml.org/specs/ebTA.pdf
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
ftp://ftp.aifb.uni-karlsruhe.de/pub/mike/dfe/paper/upml.ijcai.pdf

BIBLIOGRAPHY 194

[48] Kevin Garwood, Phillip Lord, Helen Parkinson, Norman W. Paton, and Car-

ole Goble. Pedro ontology services: A framework for rapid ontology markup.

In Proceedings of the European Semantic Web Symposium / Conference, Her-

aklion, Crete, Greece, 2005.

[49] C.A. Goble, S. Pettifer, R. Stevens, and C. Greenhalgh. Knowledge Inte-

gration: In silico Experiments in Bioinformatics. In Ian Foster and Carl

Kesselman, editors, The Grid: Blueprint for a New Computing Infrastructure

Second Edition. Morgan Kaufmann, November 2003.

[50] Griphyn Project Homepage. URL: http://www.griphyn.org/.

[51] T. R. Gruber. A translation approach to portable ontology specification.

Knowledge Acquisition, (5):199–220, 1993.

[52] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and

Henrik Frystyk Nielsen. SOAP version 1.2 part 1: Messaging framework.

Technical report, W3C, 2003. URL: http://www.w3.org/TR/soap12-part1/.

[53] Guile Project Homepage. URL: http://www.gnu.org/software/guile/guile.html.

[54] V. Haarslev and R. Moller. Racer: An owl reasoning agent for the seman-

tic web. In In Proceedings of the International Workshop on Applications,

Products and Services of Web-based Support Systems, Halifax Canada, pages

91–95, 2003. URL: citeseer.ist.psu.edu/article/haarslev03racer.html.

[55] Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, and Kate Stout.

Java message service. Technical report, Sun Microsystems, 2002.

[56] I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann, C. Goble, F. van

Harmelen, M. Klein, S. Staab 4, R. Studer, , and E. Motta. he ontology

inference layer OIL. Technical report, Vrije Universteit Amsterdam, 2000.

[57] I. Horrocks and P. Patel-Schneider. Reducing OWL entailment to description

logic satisfiability. In Proc. of the 2nd International Semantic Web Conference

(ISWC), 2003. URL: citeseer.ist.psu.edu/article/horrocks03reducing.html.

[58] Duncan Hull, Robert Stevens, and Phillip Lord. Describing web services for

user-oriented retrieval. W3C Workshop on Frameworks for Semantics in Web

Services, Digital Enterprise Research Institute, (DERI), Innsbruck, Austria,

2005.

[59] IBM Websphere Project Homepage. URL: http://www-

306.ibm.com/software/websphere/.

[60] JENA Project Homepage. URL: http://jena.sourceforge.net/.

http://www.w3.org/TR/soap12-part1/
file:citeseer.ist.psu.edu/article/haarslev03racer.html
file:citeseer.ist.psu.edu/article/horrocks03reducing.html

BIBLIOGRAPHY 195

[61] Chris Kaler. Specification: Web services security

(WS-Security). Technical report, IBM, 2002. URL: http://www-

106.ibm.com/developerworks/webservices/library/ws-secure/.

[62] Nickolas Kavantzas, David Burdet, Gregory Ritzinger, and Tony Fletcher.

WS-CDL web services choreography description language version 1.0. Tech-

nical report, W3C, 2004. URL: http://www.w3.org/TR/2004/WD-ws-cdl-

10-20041217/.

[63] R. Kesley, W. Clinger, and J. Rees. Revised (5) report on the alogrithmic

language scheme. Higher-Order and Symbolic Computation, pages 7 – 105,

1998.

[64] Hyon Hee Kim and Seung-Soo Park. Semantic integration of heterogeneous

xml data sources. In OOIS ’02: Proceedings of the 8th International Confer-

ence on Object-Oriented. Information Systems, pages 95–107, London, UK,

2002. Springer-Verlag. ISBN 3-540-44087-9.

[65] Michel Klein, Dieter Fensel, Frank van Harmelen, and Ian Horrocks. The rela-

tion between ontologies and schema-languages: Translating oil-specifications

in xml-schema. In Proceedings of the ECAI’00 workshop on applications of

ontologies and problem-solving methods, Berlin, August 2000.

[66] Graham Klyne and Jeremy J Carroll. Resource description framework

(RDF): Concepts and abstract syntax. Technical report, W3C, 2004. URL:

http://www.w3.org/TR/rdf-concepts/.

[67] Paul J. Layzell. The history of macro processors in programming language

extensibility. Comput. J., 28(1):29–33, 1985.

[68] Frank Leymann. Web services flow language (WSFL 1.0), May 2001.

[69] Chen Li and Edward Y. Chang. Answering queries with use-

ful bindings. Database Systems, 26(3):313–343, 2001. URL: cite-

seer.ist.psu.edu/li01answering.html.

[70] Shenping Liu, Jing Mei, Anbu Yue, and Zuoquan Lin. XSDL: Making xml

semantics explicit. In Proceedings of the 2nd Workshop on Semantic Web and

Databases (SWDB2004), pages 64–83. Springer-Verlag, 2005.

[71] Phillip Lord, Pinar Alper, Chris Wroe, and Carole Goble. Feta: A light-

weight architecture for user oriented semantic service discovery. In The Se-

mantic Web: Research and Applications: Second European Semantic Web

Conference, ESWC 2005, Heraklion, Crete, Greece, pages 17 – 31, January

2005.

http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/
http://www.w3.org/TR/rdf-concepts/
file:citeseer.ist.psu.edu/li01answering.html

BIBLIOGRAPHY 196

[72] Phillip Lord, Chris Wroe, Robert Stevens, Carole Goble, Simon Miles, Luc

Moreau, Keith Decker, Terry Payne, and Juri Papay. Semantic and per-

sonalised service discovery. In W. K. Cheung and Y. Ye, editors, Proceed-

ings of Workshop on Knowledge Grid and Grid Intelligence (KGGI’03), in

conjunction with 2003 IEEE/WIC International Conference on Web Intel-

ligence/Intelligent Agent Technology, pages 100–107, Halifax, Canada, 2003.

Department of Mathematics and Computing Science, Saint Mary’s University,

Halifax, Nova Scotia, Canada. URL: http://www.ecs.soton.ac.uk/ lavm/pa-

pers/kggi03.pdf.

[73] B. Ludascher, I. Altintas, and A. Gupta. Compiling abstract scientific

workflows into web service workflows. In 15th Intl. Conference on Sci-

entific and Statistical Database Management, page 251, July 2003. URL:

http://kbis.sdsc.edu/SciDAC-SDM/ludaescher-compiling.pdf.

[74] Bill Meadows and Lisa Seaburg. Universal business language 1.0. Technical

report, OASIS, 2004. URL: http://docs.oasis-open.org/ubl/cd-UBL-1.0/.

[75] C. N. Mooers and L. P. Deutsch. Programming languages for non-numeric

processing: Trac, a text handling language. In Proceedings of the 1965 20th

national conference, pages 229–246, New York, NY, USA, 1965. ACM Press.

Chairman-R. W. Floyd.

[76] Matthew Moran. D13.5v0.1 WSMX implementation, July 2004. WSMO

Working Draft.

[77] Luc Moreau, Simon Miles, Juri Papay, Keith Decker, and Terry Payne.

Publishing semantic descriptions of services. Technical report, Global Grid

Forum, 2003. URL: http://www.ecs.soton.ac.uk/ lavm/papers/ggf9.ps.

[78] Luc Moreau, Yong Zhao, Ian Foster, Jens Voeckler, and Michael Wilde.

XDTM: the XML Dataset Typing and Mapping for Specifying Datasets. In

Proceedings of the 2005 European Grid Conference (EGC’05), Amsterdam,

Nederlands, February 2005. URL: http://www.ecs.soton.ac.uk/ lavm/paper-

s/egc05.pdf.

[79] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. Tax-

onomy of xml schema languages using formal language theory. ACM Trans.

Inter. Tech., 5(4):660–704, 2005. ISSN 1533-5399.

[80] MyGrid Project Homepage. URL: http://www.mygrid.org.uk/.

[81] NCBI Web Service. URL: http://www.ncbi.nlm.nih.gov/BLAST/.

[82] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Importing the semantic

web in UDDI, 2002.

http://www.ecs.soton.ac.uk/~lavm/papers/kggi03.pdf
http://kbis.sdsc.edu/SciDAC-SDM/ludaescher-compiling.pdf
http://docs.oasis-open.org/ubl/cd-UBL-1.0/
http://www.ecs.soton.ac.uk/~lavm/papers/ggf9.ps
http://www.ecs.soton.ac.uk/~lavm/papers/egc05.pdf

BIBLIOGRAPHY 197

[83] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL web ontol-

ogy language semantics and abstract syntax. Technical report, W3C, 2004.

[84] Dumitru Roman, Holger Lausen, and Uwe Keller. D2v1.0. web service mod-

eling ontology (WSMO), September 2004. WSMO Working Draft.

[85] W. Schuetzelhofer and K. Goeschka. A set theory based approach on applying

domain semantics to xml structures. In HICSS ’02: Proceedings of the 35th

Annual Hawaii International Conference on System Sciences (HICSS’02)-

Volume 4, page 120, Washington, DC, USA, 2002. IEEE Computer Society.

ISBN 0-7695-1435-9.

[86] J. F. Sowa and J. A. Zachman. Extending and formalizing the framework for

information systems architecture. IBM Syst. J., 31(3):590–616, 1992. ISSN

0018-8670.

[87] Robert Stevens, Carole Goble, Norman W. Paton, Sean Bechhofer, Gary Ng,

Patricia Baker, and Andy Brass. Complex Query Formulation Over Diverse

Information Sources in TAMBIS. In Zoe Lacroix and Terence Critchlow,

editors, Bioinformatics: Managing Scientific Data. Morgan Kaufmann, May

2003. ISBN 1-55860-829-X.

[88] Andrew S. Tanenbaum. A general-purpose macro processor as a poor man’s

compiler-compiler. IEEE Trans. Software Eng., 2(2):121–125, 1976.

[89] Taverna Project Homepage. URL: http://taverna.sourceforge.net/.

[90] Satish Thatte. Business process execution language for web

services version 1.1. Technical report, IBM, 2003. URL:

ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf.

[91] The DARPA Agent Markup Language Homepage. URL:

http://www.daml.org.

[92] H. Uitermark, P. V. Oosterom, N. Mars, and M. Molenaar. Ontology-based

geographic data set integration. In Proceedings of Workshop on Spatio-

Temporal Database Management, pages 60–79, Edinburgh, Scotland, 1999.

[93] S. C. Wong, V. Tan, W. Fang, S. Miles, and L Moreau. Grimoires:

Grid registry with metadata oriented interface: Robustness, efficiency, se-

curity — work-in-progress. In In Proceedings of Work in Progress Ses-

sion in Cluster Computing and Grid (CCGrid), Cardiff, UK., 2005. URL:

http://eprints.ecs.soton.ac.uk/10862/01/wip2005.pdf.

[94] C Wroe, R Stevens, C Goble, A Roberts, and M Greenwood. A suite of

DAML+OIL ontologies to describe bioinformatics web services and data. In-

ternational Journal of Cooperative Information Systems, 12(2):197–224, 2003.

ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
http://eprints.ecs.soton.ac.uk/10862/01/wip2005.pdf

BIBLIOGRAPHY 198

[95] Chris Wroe, Carole Goble, Mark Greenwood, Phillip Lord, Simon Miles, Juri

Papay, Terry Payne, and Luc Moreau. Automating experiments using se-

mantic data on a bioinformatics grid. IEEE Intelligent Systems, pages 48–55,

2004.

[96] XEMBL Web Service. URL: http://www.ebi.ac.uk/xembl.

[97] XScufl Language Reference. URL: http://www.ebi.ac.uk/ tmo/mygrid/XS-

cuflSpecification.html.

