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Abstract. The “order for free” exhibited by some classes of system has
been exploited by natural selection in order to build systems capable
of exhibiting complex behaviour. Here we explore the impact of one or-
dering constraint, spatial embedding, on the dynamical complexity of
networks. We apply a measure of functional complexity derived from
information theory to a set of spatially embedded network models in
order to make some preliminary characterisations of the contribution of
space to the dynamics (rather than mere structure) of complex systems.
Although our measure of behavioural complexity hinges on a balance be-
tween functional integration and segregation, which seem related to an
understanding of the small-world property, we demonstrate that small-
world structures alone are not enough to induce complexity. However,
purely spatial constraints can produce systems of high intrinsic com-
plexity by introducing multiple scales of organisation within a network.

1 Introduction

From its outset, artificial life has concentrated on how simple properties can give
rise to complex organisation and behaviour. The interplay between, inter alia,
non-linear, local interactions, physical constraints, noise, and processes of copy-
ing or competitive exclusion have been shown to give rise to self-organisation,
auto-catalysis, path dependence, and emergent behaviour in many different ways
[1, 2]. For most complex systems, spatial embedding is a potential source of en-
abling constraint. By projecting a system of interacting elements into a low
dimensional space, local correlations are imposed and maintained. These cor-
relations can predispose systems to exhibit behaviour that would otherwise be
unstable [3].

The recent explosion of interest in the “new science of networks” has focused
attention on the application of graph-theoretic approaches to the characterisa-
tion of natural and engineered systems. While the influence of space is at least
implicit in certain of the graph structures discussed and employed in this litera-
ture, its contribution has yet to be systematically explored. For instance, Stanley
Milgram’s now infamous demonstration of the “six degrees of separation” that
apparently link members of society to each other through mutual acquaintance
relies upon space. His instruction to each experimental subject was to deliver
a package to a person identified only by name and place of residence. Subjects



were clearly required to combine their social and geographical knowledge to meet
this challenge.

Likewise, when Watts and Strogatz [4] went on to formalise the notion as
the “small-world property”, they also made explicit use of spatial embedding.
They construct a lattice where the pattern of connectivity reflects the regu-
lar (isotropic, homogeneous) spatial organisation of the nodes, and find that
repeated application of random rewiring events gradually erodes the spatial or-
ganisation until a random graph results. Intermediate between the ordered lattice
and the disordered random graph, Watts and Strogatz characterised small-world
structures that simultaneously exhibit a small characteristic path length and a
high degree of clustering.

Here we are interested in the relationship between spatial constraints, net-
work topology, and functional complexity, an information-theoretic measure of
which has been developed in order to characterise some important properties
of both vertebrate and invertebrate nervous systems [5]. In particular, it has
been used to identify, and quantify, a tension that lies at the heart of neural
information processing. On the one hand, the brain must integrate distributed
information in order to produce coherent behaviour, on the other, a great deal
of experimental work demonstrates that neural regions specialise [6]. It has been
suggested that a measure of complexity might reconcile the notions of neural
segregation and integration within a single theoretical framework [5]. In partic-
ular, biological networks have high complexity by this measure, which has been
linked to spatial constraints on connectivity (along with other structural proper-
ties, e.g., hierarchical organisation) [5]. Furthermore, it has been suggested that
both the small-world property and high complexity are coincident in biological
neural networks [7]. This paper examines these issues, first exploring the extent
to which spatially constructed small worlds are associated with high complexity,
and then assessing the more general impact of spatial embedding and spatial
structure on network complexity.

2 The Complexity Measures

Consider a network X comprising a set of n nodes interacting according to an
adjacency matrix Ω. Each element is subject to a low magnitude noise signal,
but there is no other external input. By assuming that the interactions between
elements are linear and that the dynamics of the system is well approximated by
a multi-dimensional stochastic process such that temporally extended trends in
the dynamics can be ignored, a measure of intrinsic complexity can be derived [5].

While such systems seem somewhat removed form what one would expect
of the average artificial recurrent neural network (e.g., sensory input, nonlinear
behaviour with rich temporal dynamics), these idealisations are useful in under-
standing certain biological network formulations [5]. More generally systems that
interact weakly, and hence almost linearly, have been studied in neuroscience and
are thought to be a good approximation of the dynamics in some regions of the



nervous system [8]. Note: even linear interactions between nodes can still give
rise to interesting dynamics in large systems.

The level of dependence and independence between sets of elements in such
a system can be measured through the concept of mutual information. Equa-
tion (1) gives the mutual information, MI(X), between the jth of k subsets of
X and its complement X − Xk

j , in terms of the entropy, H(x). Entropy is de-
rived from consideration of the covariance between the activity of each of the
elements, denoted by the covariance matrix COV which can be considered to
quantify the dependence between each of the elements [5].

MI(Xk
j ; X − Xk

j ) = H(Xk
j ) + H(X − Xk

j ) − H(X), (1)

H(X) = 0.5 ln((2π exp)
n |COV|)

An estimate of the integration (i.e., the shared information) between the elements
of a subset is given by equation (2), which measures the difference between the
sum of the deviations from independence of each element taken independently,
and the entropy of the system as a whole.

I(X) = Σn
i=1

H(xi) − H(x) (2)

Integration is minimal where dependence between elements is uniform, and max-
imal where the elements are highly and heterogeneously interdependent. Com-
plexity is then given by equation (3), which measures the integration within
network subsets of different sizes, denoted by k. Complexity is proportional to
the difference between the average value of integration for a subset Xk

j (over all
it j permutations) and the integration expected for a linear increase in system
size summed over all subset sizes.

CN (X) = Σn
i=1

[(k/n)I(X)− < I(Xk
j ) >] (3)

Like other notions of complexity, this measure is low when either all elements
are independent and hence completely segregated, or conversely, the system is
completely integrated. Complexity is maximal in a system that is globally inte-
grated at the level of large subsets, but simultaneously exhibits a high degree of
segregation in smaller subsets.

3 A Network Model

For the rest of this paper, complexity is calculated for a network of N nodes
and K connections, with noise of magnitude R = 0.1 added to each node. Each
network is encoded as an adjacency matrix Ω comprised of N ∗ N elements.
Following [5], the sum of the absolute afferent input is normalised such that
it equals a constant value. Each node is provided with a small inhibitory self-
connection ωii = −0.001.

In order to measure complexity, we need to determine the covariance ma-
trix of the system, COV. This can calculated numerically by constructing and
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Fig. 1. How complexity, integration, path length and clustering vary as a one-
dimensional ring lattice is gradually eroded by random rewiring. The ring comprises
N = 256 nodes connected to their k = 10 nearest neighbours. The left-hand panel
shows the scaled characteristic path length, λ/λ(0) and the scaled clustering coeffi-
cient, γ/γ(0), versus the log of the probability of rewiring, log10(p) (circles and crosses,
respectively). The right-hand panel shows the scaled complexity, C/C(0), and scaled
integration, I/I(0), versus the log of the probability of rewiring, log10(p) (solid and
dashed lines respectively). Where λ(0), γ(0), I(0) and C(0) are measures taken on a
ring lattice with p = 0.

simulating a weakly coupled system. However, this route in computationally de-
manding for large ensembles of networks. Instead, here, we employ a method that
allows us to an analytically calculate COV directly from the adjacency matrix
of a linear, connected (i.e., no disconnected sub-graphs) network [9].1 Lastly, for
large networks, calculating mutual information measures over all subset sizes is
also computationally demanding. Here, unless otherwise stated, we calculate the
complexity as an average over subset sizes i ≤ 4. This was observed to give a
good approximation of full complexity for all models.

In addition to measuring behavioural complexity, we make use of two stan-
dard graph theoretic measures: clustering and characteristic path length. The
nodal clustering coefficient is defined as the number of connections between the
neighbours of a given node divided by the total number of possible connections
between them [4]. The graph clustering coefficient, γ, (simply referred to as the
clustering coefficient form henceforth) is calculated as the mean nodal cluster-
ing coefficient over a network’s nodes. A network’s characteristic path length, λ,
is the average length of the shortest paths connecting all pairs of nodes [4]. In
contrast to the clustering coefficient this is a global property of the graph.

All results reported here are averaged over no less than 30 networks per data
point, and standard deviations were consistently lower than 0.5%.

1 For the matlab code for this and many of the other calculations employed in this
paper, see Olaf Sporns’ website at http://www.indiana.edu/˜cortex/



Small-worlds Intuitively, the small-world effect, where systems combine strong
clustering with short characteristic path lengths, would seem commensurate with
high complexity. Clustering suggests functional segregation, while a sparse web
of longer-range connections could encourage functional integration at a global
level. Furthermore, the small-world property and high complexity have been
shown to be coincident in biological neural systems [7].

Initially, we replicate the original small-world experiment presented in [4].
Commencing with a one-dimensional ring comprising N = 256 nodes, each con-
nected to their k = 10 nearest neighbours, and representing these interactions
as a binary connection matrix, each connection (edge) has probability p of being
randomly rewired to another node while preserving the in degree at each node.
Note: unlike Watts we use directed graphs. For a range of rewiring probabilities,
we calculate the resulting values of γ, λ, and also calculate the complexity, C,
and integration, I, as outlined in section 2.

Fig. 1 presents these measurements scaled by the values associated with the
original ring lattice, see caption for further details. While a low probability of
rewiring generates a small-world effect in reducing characteristic path length
without damaging clustering, both complexity and integration fall monotonically
with p (as mentioned recently in [7]). Essentially, the spatial organisation of the
lattice is being eroded by rewiring. However, perhaps this result is specific to
a rewired lattice which only exhibits a single topological scale of organisation.
Note: while clustering coefficient seems to refer to an intuitive idea of distinct
clusters in fact this is not the case and even a lattice has a high clustering
coefficient. Instead consider Watts’ connected cave world [10], for example, which
exhibits two topological scales, that of the tightly intra-connected local clusters
(caves), and a global level of loose inter-cluster connections. To explore this
we examine four different structures: a one-dimensional ring is presented for
comparison with fig. 1; a toroidal structure represents extending such a ring into
a second spatial dimension; a “connected cave-world” [4] consists of a set of 32
fully-connected caves of 8 nodes each arranged on a ring with 8 connections
between each pair of caves, representing a simple clustered network; a fractal
structure similar to those employed in [7]. To build this fractal structure we start
with a fully-connected clique of 8 nodes, duplicate it, and connect nodes from one
cluster with nodes in the other according to some connection probability. The
resulting structure is again duplicated and connections between the new pair are
added. This process repeats until there are 256 nodes. Note: the probability of
inter-cluster connections is reduced exponentially over fractal levels (see [7]).

Fig. 2 shows how the small-world index (S) and scaled complexity, C/C(p =
1), vary with the log of the rewiring probability, log10(p), for these network
structures. Note: in contrast to fig. 1 above all measurements are scaled by the
values associated with fully randomised networks, i.e., p = 1. This highlights
the relative differences between the impact of the different network structures in
the absence of re-wiring. Again, the small-world effect is not enough to scaffold
complexity. Rather, as in fig. 1, complexity appears to be correlated with the
clustering coefficient, both falling monotonically with the increasingly probabil-
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Fig. 2. The left-hand panel shows how the small-world index, S = γ/γ(p=1)
λ/λ(p=1)

, varies

with the log of the probability of rewiring, log10(p), for four network structures. The
right-hand panel shows how the scaled complexity, C/C(p = 1), varies for the same
network structures. All networks comprise N = 256 nodes with identical connection
densities (N/K ≈ 0.03). (The different network structures necessitate that different
degree distributions must be compared.) Here C(p = 1) is the value of complexity
associated with a random graph (i.e., when the probability of rewiring is unity).

ity of rewiring. By contrast, the consonant variation in characteristic path length
appears to have little or no influence.

Spatial Length Scales The impact of spatial embedding is not limited to
its effect on clustering coefficients and characteristic path lengths. Rather, (at
minimum) it is capable of bringing about structural organisation over a partic-
ular length scale. Here, we explore ensembles of spatially constrained networks
constructed over nodes distributed uniformly in hypercubes of varied dimen-
sionality, varying the length scale of the interaction between the nodes. Note:
in order to preserve the magnitude of spatial relationships between pairs of
nodes over different numbers of dimensions all distances are scaled by 1/

√
d. In-

stead of the binary connection matrixes used above, here we employ continuous-
valued entries to represent weighted connections between pairs of nodes given by
ωij = exp(−|rj − ri|/σ). Where, |rj − ri| is the distance between nodes i and j.
Connection weights between pairs of nodes fall exponentially with distance at a
rate which is defined by the interaction length, σ. Fig. 3 shows how complexity,
C, varies with the log of the interaction strength, log10 (σ).

The graph theoretic measures that we have used to characterise network
structure up to this point can only be applied directly to binary (unweighted)
networks. In order to calculate these measures here, we discretise each weighted
network by reinterpreting each entry in the weight matrix as the probability that
a pair of nodes will be connected. Consequently, each continuous matrix can be
mapped to an ensemble of binary networks from which a random sample can
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Fig. 3. Plots of complexity C versus the log of the interaction length, log10(σ) ,for
1, 2, 3, and 128 dimensions are presented in the top left, top right, bottom left and
bottom right panels, respectively.All networks comprise N = 128 nodes. The solid
curves represent the mean complexity, C, of spatially embedded system with continuous
weights. The dotted and dashed lines indicates the complexity of networks derived from
two null models (see text). The grey vertical lines mark the peaks of complexity for
discretised networks with the same interaction length, which agree well with the peak in
complexity for the associated continuous system (the solid line). The scaled number of
network components is also presented (circles), falling from N (a totally disconnected
system) to unity (a super cluster).

be drawn and their properties calculated. For each network, we enumerate the
number of disconnected components. As this value approaches unity, the graph
is becoming completely connected, indicating the onset of a single component or
super-cluster [10].

For comparison, all plots in fig. 3 also present values of complexity for two
null models. First, the dotted line represents the complexity of networks where
each node has the same distribution of afferent connection strengths, but the
identity of neighbours is randomly assigned. To achieve this, the entries of each
row in the weight matrix are shuffled, preserving the sum of afferent weights.
The dashed line represents the complexity of networks for which connections are
shuffled in a way that preserves reciprocity, i.e., where a shuffle swaps elements
ωij and ωi′j , it must also swap elements ωji and ωji′ . Note: in this case the sum
of the magnitude of the afferent weights may not be preserved.
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Fig. 4. Complexity, C, varies with cluster width for networks with spatial structure
within and/or between each of 12 regularly arranged clusters of nodes distributed in
two-dimensional space according to a normal distribution with variance, σspace. The
complexity of equivalent non-spatial random networks is shown for comparison.

The first point to note is that for low-dimensional spaces, complexity rises
and falls with interaction length.2 As the dimensionality of the space increases,
peak complexity falls. The reciprocal nature of spatial interactions clearly ac-
counts for this effect to some extent (and to a larger degree than the mere
distribution of afferent weights). However, particularly in low dimensions, the
impact of spatial constraints exceeds that of mere reciprocity, suggesting that
higher-order structures are significant. As the dimensionality of the space in-
creases, and the strength of spatial constraints weaken, peak complexity falls,
until the contribution of space, and even reciprocity disappears.

Interestingly, the peak in network complexity is correlated with the onset
of the super cluster in the discretised versions of the networks presented in
fig. 3. Although the graph theoretic measure does not directly translate into the
continuous domain, this result suggests that complexity is associated with the
achievement of a single strongly coupled component in a continuous network.
Furthermore the interaction length required for onset of the strong component
(and thus high complexity) falls with the dimensional order.

Spatial Structure Thus far, we have only considered uniform spatial dis-
tributions of points. However, spatio-temporal processes naturally bring about
structured distributions. Here we consider how the introduction of community

structure, in the form of randomly distributed clusters of equal size, impacts on
network complexity. In contrast to clustering coefficient community structure
provide a more intuitive notion of clustering [11].

Here N = 126 nodes are divided into 9 groups of 14 points. The group
foci are regularly arranged as a 3 × 3 grid in the unit square. The points of

2 Since the covariance matrix of a 1-d lattice is of Gaussian Toeplitz form, this agrees
with previous results demonstrating that scaling in such matrices is associated with
a rise and fall in complexity [5].



each group are then normally distributed around each focus with a variance
σspace (note: this is distinct from the interaction length, σ). For increasing σspace,
distinct, tight clusters (communities) initially spread, then merge, and eventually
overlap to form a virtually uniform distribution of nodes. The connection weight
between each pair of nodes is determined as per the previous model with a fixed
interaction length σ = 10−3.

We wish to distinguish the contribution to complexity made by within-cluster
spatial correlation structure from that contributed by between-cluster organi-
sation. We achieve this by selectively extinguishing the spatial correlations at
each scale, either shuffling the afferent weights of each node’s intra-cluster con-
nections, or each node’s inter-cluster connections, or both. All three shuffling
processes preserve the degree density within each cluster and between each pair
of clusters. Lastly, by shuffling every row of the weight matrix, we generate
fully randomised networks for which only the distribution of weight strengths is
preserved.

Fig. 4 shows that as the cluster width increases and clusters merge, com-
plexity falls, suggesting that non-uniform spatial distributions impact on net-
work complexity. Here network complexity can be partitioned into contributions
due to inter-cluster spatial constraints, intra-cluster spatial constraints, and the
residual community structure arising from the fact that, to the extent that clus-
ters are spatially distinct from one another, there will tend to be stronger weights
on within-cluster connections than between-cluster connections. The latter con-
tribution dominates until cluster widths approach the width of the space, result-
ing in an approximately uniform distribution. By contrast, the contribution of
within-cluster spatial organisation is minimal until nodes approximate a uniform
distribution. Inter-cluster spatial constraints make a consistent but relatively
small contribution to complexity across the range of cluster widths.3

4 Discussion & Conclusion

First, by systematically exploring the relationship between the small-world effect
on a networks topology and the consequent behavioural complexity that the
network exhibits, we have shown that although these two properties may co-
occur in natural systems [7], it is not the case that small-world structures alone
straightforwardly imply complex network behaviour (see figs. 1 and 2).

However, as intimated in recent work [7], results here demonstrate that spa-
tial constraints on connectivity contribute directly to complexity. Even in the
absence of the community structure or fractal organisation that is known to
generate complex network behaviour [7], networks merely comprising uniform
random distributions of locally connected nodes enjoy increased complexity as a
result of the strong spatial constraints imposed by low dimensionality (see fig. 3).

The nature of the contribution to complexity made by spatial embedding
is not straightforward. Neither the shape of the distribution of afferent weights

3 These results are redolent of the differences in complexity between ordered and non-
ordered fractal mappings presented in [7].



(dotted lines, fig. 3) nor their reciprocity (dashed lines, fig. 3) are sufficient to
account its impact on complexity. Rather, the property stems from space impos-
ing correlations at several topological scales. This is evidenced by the gradual
erosion of the influence of space as dimensionality is increased (see fig. 3).

Fig. 3 suggests that high network complexity is correlated with the onset
of strongly coupled super cluster. The coupling strength required for its onset
is much smaller in networks embedded within low-dimensional spaces suggest-
ing that strong spatial constraints may make high complexity easier to achieve
despite sparse or weak connections.

Finally, we have shown that the structure of the underlying spatial distri-
bution of nodes can impact on network complexity. For example, results sug-
gest that clusters of nodes randomly distributed in space bring about network
topologies that exhibit high complexity stemming from both inter-cluster and
intra-cluster correlations, but mostly by the residual community structure that
distinct clusters impose (perhaps justifying the current focus on hierarchical and
fractal organisation with respect to neural systems [6, 5]).

In summary, as suggested by the evolvability of some spatially embedded
network architectures [12], the inherent constraints imposed by projecting sys-
tems into low dimensional spaces may be enabling for evolution in that they
predispose systems to exhibit complex behaviour for free.
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