
Evaluating Automatic Syllabification Algorithms for English

Yannick Marchand1,2, Connie R. Adsett1,2 and Robert I. Damper1,3

1Institute for Biodiagnostics (Atlantic), National Research Council Canada,
1796 Summer Street, Suite 3900,

Halifax, Nova Scotia, Canada B3H 3A7
2Faculty of Computer Science, Dalhousie University,

Halifax, Nova Scotia, Canada B3H 1W5
3School of Electronics and Computer Science

University of Southampton, Southampton SO17 1BJ, UK

{yannick.marchand, connie.adsett}@nrc-cnrc.gc.ca, rid@ecs.soton.ac.uk

Abstract
Automatic syllabification of words is challenging, not least be-
cause the syllable is difficult to define precisely. This task is im-
portant for word modelling in the composition process of con-
catenative synthesis as well as in automatic speech recognition.
There are two broad approaches to perform automatic syllabifi-
cation: rule-based and data-driven. The rule-based method ef-
fectively embodies some theoretical position regarding the syl-
lable, whereas the data-driven paradigm infers ‘new’ syllabifi-
cations from examples assumed to be correctly-syllabified al-
ready. This paper compares the performance of the two ba-
sic approaches. However, it is difficult to determine a correct
syllabification in all cases and so to establish the quality of
the ‘gold standard’ corpus used either to quantitatively evaluate
the output of an automatic algorithm or as the example-set on
which data-driven methods crucially depend. Thus, three lexi-
cal databases of pre-syllabified words were used. Two of these
lexicons hold the same 18,016 words with their corresponding
syllabifications coming from independent sources, whereas the
third corresponds to the 13,594 words that share the same syl-
labifications according to these two sources. As well as one
rule-based approach (Fisher’s implementation of Kahn’s syl-
labification theory), three data-driven techniques are evaluated:
a look-up procedure, an exemplar-based generalization tech-
nique, and syllabification by analogy (SbA). The results on the
three databases show consistent and robust patterns: the data-
driven techniques outperform the rule-based system in word and
juncture accuracies by a very significant margin and best results
are obtained with SbA.

1. Introduction
The syllable has been much discussed as a linguistic unit.
Whereas some linguists make it central to their theories (e.g.,
[1, 2]), others have ignored it or even argued against it as a use-
ful theoretical construct (e.g., [3]). Much of the controversy
centers around the difficulty of defining the syllable. Crystal
[4], for instance, states that the syllable is “[a] unit of pronun-
ciation typically larger than a single sound and smaller than a
word” but goes on to write: “Providing a precise definition of
the syllable is not an easy task” [p. 342]. There is general agree-
ment that a syllable consists of a nucleus that is almost always
a vowel, together with zero or more preceding consonants (the

onset) and zero or more following consonants (the coda). How-
ever, determining exactly which consonants of a multisyllabic
word belong to which syllable is problematic. Good general ac-
counts of the controversy are provided by [5] and [6], with the
former more specifically considering English—the language of
interest in this paper—and the latter focusing on French.

However it is defined, and whatever the rights or wrongs
of theorising about its linguistic status, syllable knowledge aids
word modeling in automatic speech recognition and/or the unit
selection and composition process of concatenative synthesis.
For instance, Müller, Möbius and Prescher [7] write “syllable
structure represents valuable information for pronunciation sys-
tems” [p. 225]. That is, the pronunciation of a phoneme can de-
pend upon where it is in a syllable and therefore there are good
practical reasons for seeking powerful algorithms to syllabify
words.

Traditional approaches to automatic syllabification have
been rule-based (or knowledge-based), implementing notions
such as the maximal onset principle [1, 8] and sonority hierar-
chy [9], including ideas about what constitute phonotactically
legal sequences in the coda, for instance. An alternative to the
rule-based methodology is the data-driven (or corpus-based)
approach, which attempts to infer ‘new’ syllabifications from
an evidence base of already-syllabified words (i.e., a dictionary
or lexicon1).

This paper compares the performance of these two basic
approaches to automatic syllabification in the pronunciation do-
main. Our work attempts to be predictive, aimed at finding good
syllabifications for practical application in speech technology
and computational linguistics, rather than descriptive, aimed at
explaining experimental data and/or giving insight into any lin-
guistic theory of the syllable.

2. Electronic lexical databases
A key issue in assessing algorithms for automatic syllabifica-
tion is the quality of the ‘gold standard’ corpus used to define
the correct result. Further, in the data-driven paradigm, this cor-
pus forms the evidence base for inferring new syllabifications;

1In this paper, we will use the terms evidence base, lexical database,
dictionary, corpus, and lexicon interchangeably, except where we refer
to a ‘dictionary’ by name (e.g., Webster’s Pocket Dictionary).

hence, it is vital that its content is accurate. This, however, is
extremely difficult due to the absence of any means of deter-
mining canonically correct syllabifications. Our approach is to
use multiple dictionaries and to seek consensus among them, so
as to reduce the possibility that our results are affected by the
choice of a particular, idiosyncratic corpus.

In this work, we used two public-domain dictionaries—
Webster’s Pocket Dictionary and the Wordsmyth English
Dictionary-Thesaurus—as the sources from which we derive
three lexical databases, as described below.

2.1. Webster’s Pocket Dictionary

The primary lexical database in this work is Webster’s Pocket
Dictionary (20,009 words), as used by [10] to train their
NETtalk neural network. The database is publicly available
for non-commercial use from ftp://svr-ftp.eng.cam.
ac.uk/pub/comp.speech/dictionaries/ (last ac-
cessed 11 May 2007). For consistency with our previous work
on pronunciation using this dictionary, homonyms (413 en-
tries) were removed from the original NETtalk dataset leav-
ing 19,596 entries. Sejnowski and Rosenberg have manually
aligned the data, to impose a strict one-to-one correspondence
between letters and phonemes2. The phoneme inventory is of
size 51, including the null phoneme and ‘new’ phonemes (e.g.,
/K/ and /X/) invented to avoid the use of null letters when one
letter corresponds to two phonemes, as in <x>→ /ks/. The
null phoneme (represented by the ‘–’ symbol) was introduced to
give a strict one-to-one alignment between letters and phonemes
to satisfy the training requirements of NETtalk. In this paper, we
retain the use of the original phonetic symbols (see [10], Ap-
pendix A, pp. 161–162) rather than transliterating to the sym-
bols recommended by the International Phonetic Association.
We do so to maintain consistency with this publicly-available
lexicon.

In addition to the pronunciation, Sejnowski and Rosenberg
have also indicated stress and syllabification patterns for each
word. The form of the data is:

accumulate xk-YmYlet- 0<>1>0>2<<
adaptation @d@pteS-xn 2<2<>1>0<<

The second column is the pronunciation and the third column
encodes the syllable boundaries for the words and their corre-
sponding stress patterns:

< denotes syllable boundary (right)
> " syllable boundary (left)
1 " primary stress
2 " secondary stress
0 " tertiary stress

Stress is associated with vowel letters and arrows with conso-
nants. The arrows point towards the stress nuclei and change di-
rection at syllable boundaries. To this extent, “syllable bound-
ary (right/left)” is a misnomer because this information is not
adequate by itself to place syllable boundaries directly. We can,
however, infer four rules (or regular expressions) to identify syl-
lable boundaries. Denoting boundaries by ‘ | ’:

R1: [<>] ⇒ [< | >]
R2: [< digit] ⇒ [< | digit]
R3: [digit >] ⇒ [digit | >]
R4: [digit digit] ⇒ [digit | digit]

2See [11] for extensive discussion of this alignment process and an
algorithm for doing it automatically.

Word accumulate adaptation
Stress pattern 0<>1>0>2<< 2<2<>1>0<<
Syllabification ac | cu |mu | late ad | ap | ta | tion
Digit stress 00 | 11 | 00 | 2222 22 | 22 | 11 | 0000

Table 1: Examples of stress and syllabification patterns.

These have been confirmed as correct by Sejnowski (personal
communication). Table 1 gives the syllable patterns of the three
above examples.

2.2. Wordsmyth English Dictionary-Thesaurus

Disagreements may exist about the way a word should be seg-
mented into syllables. A second (independent) lexical source
was therefore used, namely the Wordsmyth English Dictionary-
Thesaurus, so that our results would not be overly specialized
to one particular dictionary. This source is also available via
the World Wide Web from www.wordsmyth.net (last ac-
cessed 11 May 2007). This on-line lexical database originated
in the early 1980’s when Robert Parks, a Fulbright Fellowship
researcher in Japan, began to develop an English dictionary for
students to use on their computers. In 1991 and 1992, the dic-
tionary was licensed to IBM to integrate into their products, and
IBM in turn supported the development of the associated the-
saurus. In 1996, the University of Chicago’s ARTFL (American
and French Research on the Treasury of the French Language)
Project assisted in presenting the first World Wide Web edition.
The dictionary is composed of about 50,000 headwords cov-
ering all areas of knowledge without technical vocabulary. It
provides the syllables, pronunciation, part of speech, inflected
forms, and definition for each word.

2.3. The three lexical databases

Homonyms were removed from the original Webster’s Pocket
Dictionary leaving 19,596 entries. Of these words, 18,016 were
also found in the Wordsmyth English Dictionary-Thesaurus.
These two independant dictionaries, each consisting of 18,016
syllabified entries, are referred to as S&R and Wordsmyth, re-
spectively. A third database of syllabified words (hereafter
Overlap) was derived consisting of the 13,594 words present
in both public-domain dictionaries with identical syllabification
patterns in these two independent lexical sources.

3. Syllabification algorithms
In this section, we briefly describe the four automatic syllabifi-
cation techniques for which performance was compared.

3.1. Fisher’s implementation of Kahn’s procedure

In his PhD dissertation, Kahn proposed a theory of syllabifica-
tion based on a different type of constraint [8]. Kahn postu-
lated that syllabification in English is derived from three cat-
egories of consonant clusters: possible syllable-initial, possi-
ble syllable-final and ‘universally-bad’ syllable-initial (in his
terminology). These consonant clusters are derived from the
beginnings and endings of existing English words. For ex-
ample, the two-phoneme sound /br/ is a possible syllable-
initial consonant cluster because it forms the beginning of the
word pronunciation /bred/ (<bread>) and it is therefore pos-
sible to syllabify the pronunciation /@nbreId/ (<unbraid>) as

/@n | breId/. By contrast, /rk/ is considered a universally-bad
syllable-initial consonant cluster because no English word be-
gins with this sound combination. Therefore the pronunciation
/mark@t/ (<market>) would be syllabified as /mar | k@t/ and not
/ma | rk@t/.

A C implementation of Kahn’s theory was developed
in 1996 by William Fisher and can be downloaded
from the file: ftp://jaguar.ncsl.nist.gov/pub/
tsylb2-1.1.tar.Z (last accessed 11 May 2007). Because
we were interested in the standard syllabification, we selected
the two most appropriate of the five speech rates available in
the program, the “slow, over-precise” (hereafter Basic) and the
“ordinary conversational speech” (hereafter OCS) rates. The
program also allowed the unsyllabified input to be provided
with stress information (primary, secondary and no stress) on
some specific phonemes3 and without stress information. We
processed the word list both ways, using the stress informa-
tion provided in S&R (i.e., the digit stress—see Table 2.1). The
phoneme set used in his program was translated to the phoneme
set of S&R and all instances of the null phoneme were also re-
moved because this special ‘phoneme’ was not part of Fisher’s
set.

3.2. Syllabification by analogy

Syllabification by analogy closely follows the principles of pro-
nunciation by analogy (PbA) set out in detail in our earlier pub-
lications [12, 13, 14, 15]. In PbA, when an unknown word is
presented as input to the system, so-called full pattern match-
ing between the input letter string and dictionary entries is per-
formed, starting with the initial letter of the input string aligned
with the end letter of the dictionary entry. If common letters
are found in matching positions in the two strings, their cor-
responding phonemes (according to the prior alignment) and
information about their positions in the input string are used
to build a pronunciation lattice, as detailed below. One of the
two strings is then shifted relative to the other by one letter and
the matching process continues, until the end letter of the input
string aligns with the initial letter of the dictionary entry.

The pronunciation lattice is a directed graph that defines
possible pronunciations for the input string, built from the
matching substring information. A lattice node represents a
matched letter, Li, at some position, i, in the input. The node
is labelled with its position i and the phoneme corresponding
to Li in the matched substring, Pim say, for the mth matched
substring. An arc is labelled with the phonemes intermedi-
ate between Pim and Pjm (j > i) in the phoneme part of the
matched substring and the frequency count, increasing by one
each time the substring with these phonemes is matched dur-
ing the search through the lexicon. Arcs are directed from i
to j. If the arcs correspond to bigrams, the arcs are labelled
only with the frequency. (The string of phonemes intermediate
between Pim and Pjm is empty.) Phonemes Pim and Pjm la-
bel the nodes at each end of the arc, i.e., i and j respectively.
Additionally, there is a Start node at position 0 and an End node
at position equal to the length of the input string plus one.

Finally, the decision function identifies the ‘best’ candidate
pronunciation of the input according to some criterion. Possi-
ble pronunciations correspond to the string assembled by con-
catenating the phoneme labels on the nodes or arcs in the or-
der that they are traversed in moving through the lattice from

3. . . designated as syllabic by Fisher. These are: ‘ux’, ‘ih’, ‘ix’, ‘ey’,
‘eh’, ‘ae’, ‘aa’, ‘aax’, ‘s’, ‘ao’, ‘ow’, ‘uh’, ‘uw’, ‘ay’, ‘oy’, ‘aw’, ‘er’,
‘axr’, ‘ax’, ’ah’, ‘el’, ‘em’, and ‘en’ using his phoneme notation.

Start to End. If there is just one candidate corresponding to a
unique shortest path, this is selected as the output. If there are
tied shortest paths, five different scoring strategies are applied
and the winning candidate selected on the basis of their rank
[13, 14].

The major modification in converting PbA to SbA is to rep-
resent all junctures between phonemes explicitly. This repre-
sentation must be different in the case of:

1. input words, where the syllabification is unknown;
2. lexical entries, where it is known;
3. the SbA output, where it is inferred.

For example, the input pronunciation /@bi/4 (<abbey>) is ex-
panded to /@ ∗ b ∗ i/. Here the ‘ ∗ ’ symbol merely indicates
the possibility of a syllable boundary. On the other hand, a
dictionary entry such as /@bncrmL/ <abnormal> is expanded
to /@ ∗ b | n ∗ c ∗ r |m ∗L/. In this case, the ‘ ∗ ’ symbols indi-
cate the known absence of a syllable boundary. During pattern
matching, ‘ ∗ ’ in the input is allowed to match either with ‘ ∗ ’
or with ‘ | ’ in the dictionary entries. A ‘ ∗ – ∗ ’ match is entered
into the syllabification lattice as a ‘ ∗ ’ whereas a ‘ ∗ – | ’ match
is entered into the syllabification lattice as a ‘ | ’. The syllabi-
fication lattice has exactly the same form as the pronunciation
lattice, except that ‘ ∗ ’ is explicitly represented as an input sym-
bol (labelling nodes), ‘ ∗ ’ and ‘ | ’ are explicitly represented as
possible output symbols (labelling arcs), and there is no pro-
nunciation information labelling the nodes and arcs. From here,
the process proceeds exactly as for PbA, eventually produc-
ing as output a syllabified version of /@bi/ <abbey> such as
/@ ∗ b | i/, from which the ‘ ∗ ’ symbols are removed to yield
the final output /@b | i/. The modifications to perform SbA in
the pronunciation domain should now be obvious.

In our previous syllabification work using analogy [15],
we obtained best results by combining only 3 of the 5 scoring
strategies when choosing between tied shortest paths. These
were the product of arc frequencies, the frequency of the same
pronunciation, and the ‘weak link’ (see [13] and [14] for full
specification). Accordingly, in this work, these same three scor-
ing strategies are used exclusively, and combined by rank fu-
sion, for SbA.

3.3. Look-up procedure

This method was originally proposed by [16] as a means of
letter-to-phoneme conversion (i.e., automatic pronunciation),
where it was shown to be superior to NETtalk, the well-known
neural network [10]. It was then adapted for the syllabification
process and presented in the comparison of syllabification algo-
rithms for Dutch spellings by [17]. The first step is to construct
a table encoding the knowledge implicit in the training set by
converting each syllabified entry into a series of N -grams. Each
N -gram has a left and right context and a central, ‘focus’ char-
acter. The length of the N -gram (i.e., N) is equal to the sum
of the sizes of the left and right contexts plus one (the focus
character).

For example, if the syllabified word /KId | ni/ (<kid | ney>)
is part of the training corpus, then with a left context of 1 char-
acter and a right context of 2 characters, the N -grams (or 4-
grams in this case) for this word would be: <– KId>, <KIdn>,
<Idni>, <dni –>, and <ni – –>. That is, to allow every char-
acter to be a focus character, there is an N -gram for each char-
acter in a word. When the focus character has no left context

4Examples from this point on use the phoneme set from Webster’s
Pocket Dictionary.

(as in <– KId>) or right context (as in <ni – –>), the character
positions in the context are filled with null characters. Each N -
gram is stored in the table along with the corresponding juncture
class, i.e., the syllabification information.

Once the construction of the look-up table is complete,
words for which the syllabification is unknown can be syllab-
ified based on the information in the table. Input words are
broken down into a set of N -grams in the same manner de-
scribed above for table construction. The table is then searched
for the closest matches to each N -gram. When found, closest
matches are examined to determine whether the majority has, or
does not have, a syllable boundary following the focus charac-
ter. If the majority has a syllable boundary, a syllable boundary
is placed at the appropriate position in the word; otherwise, a
non-syllable boundary is placed at that position.

The process of determining which N -grams in the pre-
compiled look-up table fit best a given N -gram is described
in Algorithm 1. Here, NgramT is a given N -gram stored in
the table and NgramS is an N -gram to be syllabified. It fol-
lows that NgramT[i] is the ith position in the N -gram (for
example, NgramT[1] = m when NgramT is <midn>). The
closest-fit N -grams are those with the highest MatchValue.

Algorithm 1 : Computation of best-fit N -gram in the look-up
procedure.

FindMatchValue(weights, NgramT, NgramS)
MatchValue := 0
for i := 1 to length(weights) do

if (NgramT[i] = NgramS[i]) then
MatchValue := MatchValue +
weights[i]

end if
end for

We ran the look-up procedure using all 15 different sets of
weights presented in the original description of the method [16].

3.4. Exemplar-Based Generalization

The version tested here (also known as IB1-IG) is due to [18]. It
operates in a manner similar to the look-up procedure with the
only difference being the weights used to determine the closest-
fit N -grams. In this method, the weights are calculated with a
function that determines the relative importance of each posi-
tion in the N -gram (i.e., phoneme positions). The process of
determining the weights is based on the concept of information
entropy by using information from the table of stored N -grams.
Each position in an N -gram is considered to contribute a real-
valued amount of information to the process of determining the
placement of a syllable boundary. This value can be determined
via the series of steps presented below.

First, the entropy of the entire table of N -grams extracted
from the training corpus is calculated. Essentially, Daelemans,
van den Bosch and Weijters define database (or look-up ta-
ble) information entropy as “the number of bits of informa-
tion needed to know the decision [whether a syllable boundary
should be placed after the focus character or not] of a database
given a pattern [or N -gram].” This is calculated as:

E(D) = −
2X

i=1

Pi log2 Pi (1)

where E(D) is the information entropy of database D, P1 is
the probability of an N -gram being associated with a syllable-

boundary decision, and P2 is the probability of an N -gram be-
ing associated with a non-syllable-boundary decision. As there
are only two possibilities—to place or not to place a syllable
boundary after the focus character—equation (1) can also be
written as:

E(D) = −α log2 α + β log2 β

where α =
NS

NT
and β =

N¬S

NT

(2)

where NS is the number of stored N -grams that have a syllable
boundary following the focus character, N¬S is the number of
stored N -grams that do not have a syllable boundary following
the focus character, and NT is the number of stored N -grams
(i.e., NS + N¬S).

From equation (2), the information gain of each position
in an N -gram can now be determined. This requires two ad-
ditional equations. The first computes the average information
entropy at position f in an N -gram, E(Df), by taking the “in-
formation entropy of the database [or table] restricted to each
possible value [or character] for the [position in the N -gram].”
This is given by:

E(Df) =
X

c∈V

E(Df=c)
card(Df=c)

card(D)

where Df=c is the set of those N -grams in the table that have
character c at position f , V is the set of characters that occur
at position f in a N -gram, and card() is the cardinality of a set
(i.e., card(D) is the total number of N -grams in database D).

The second equation necessary for calculating the informa-
tion gain G(f) at a given position f in an N -gram is:

G(f) = E(D)− E(Df)

To run this method, we first followed Daelemans, van den
Bosch and Weijters and used the same values of N as in their
work, namely 3, 5 and 7 with the focus letter in the middle of
the N -gram. In addition to these values, we extended the study
to use N -grams of size 9 and 11 (with left and right contexts
of 4 and 5 respectively).

4. Results
For the rule-based method, there is no difficulty in evaluating
syllabification performance on each of the three datasets in their
entirety. For data-driven methods, we use the well-established
leave-one-out procedure, whereby each word is removed from
the corpus in turn, and its syllabification inferred from the re-
maining words.

Tables 2, 3 and 4 show the results for the various automatic
syllabification methods on the S&R, Wordsmyth and Overlap
databases. For table look-up, the three sets of weights which
provided the best results (for each dictionary) are presented in
the tables5. Results were obtained for N -grams from N = 5
up to N = 11 for the exemplar-based approach. As expected,
results were poor for N = 3 as insufficient context is captured
around the focus phoneme, and by N = 11 the algorithm in-
dicates that performance was falling off. For the Fisher/Kahn
system, there was no difference between the results when stress
was provided and when it was not for the Basic (slow) rate of

5Version 8:[1,4,16,4,2]; Version 10:[1,4,16,64,16,5,1]; Version
11:[1,4,16,64,256,64,17,4] and Version 13:[4,16,64,256,64,17,4,1].

Accuracy
Algorithm Word Juncture | *
Fisher/Kahn

Basic 54.23 78.93 62.63 85.34
OCS 54.14 77.47 59.84 84.41
OCS with stress 68.97 86.41 75.65 90.64

SbA 88.53 96.02 92.29 97.50
Look-up Table

1st, version 10 80.20 94.95 90.51 96.70
2nd, version 8 79.75 94.90 90.49 96.63
3rd, version 13 79.40 94.78 89.90 96.70

Exemplar-based
N = 5 76.47 94.17 87.54 96.79
N = 7 79.37 94.80 88.92 97.11
N = 9 79.36 94.78 89.04 97.04
N = 11 79.10 94.71 88.91 96.99

Table 2: Syllabification results (percentage correct) on the S&R
database for word and juncture accuracy.

Accuracy
Algorithm Word Juncture | *
Fisher/Kahn

Basic 58.02 81.34 67.04 86.91
OCS 52.58 75.93 57.16 83.24
OCS with stress 63.37 83.40 70.49 88.43

SbA 85.88 94.87 90.32 96.64
Look-up Table

1st, version 10 75.71 93.41 87.93 95.54
2nd, version 8 75.37 93.36 87.96 95.47
3rd, version 11 74.86 93.26 87.44 95.53

Exemplar-based
N = 5 72.92 92.81 85.04 95.84
N = 7 74.92 93.17 85.76 96.05
N = 9 82.90 95.54 89.23 97.71
N = 11 74.87 93.12 85.86 95.96

Table 3: Syllabification results (percentage correct) on the
Wordsmyth database for word and juncture accuracy.

speech. However, this was not the case for the ordinary con-
versational speech condition, where the inclusion of stress im-
proves the results.

Results are remarkably consistent across dictionaries. The
rule-based method (Fisher/Kahn) is much worse than the data-
driven methods. We do not think such a rule-based method is
valuable in computational linguistics and/or speech technology.
In regards to the data-driven methods, it is difficult to choose
between the best table look-up and exemplar-based results al-
though the former does better on two of the three dictionaries.
The most striking result, however, is the obvious superiority
of SbA.

These tables also show junctures-correct performance over-
all, as well as the percentages of correct syllable (|) and
non-syllable (*) identifications. For all methods, non-syllable
boundary identification is less error prone than syllable bound-
ary detection. It seems that all methods are conservative in
their placement of syllable boundaries, which are rarer than
non-syllable boundaries, resulting in a preponderance of false
negative errors over false positives.

Accuracy
Algorithm Word Juncture | *
Fisher/Kahn

Basic 63.40 83.54 67.80 88.97
OCS 60.90 79.68 60.07 86.44
OCS with stress 74.42 88.14 76.56 92.13

SbA 91.08 96.82 92.90 98.17
Look-up Table

1st, version 10 83.66 95.74 90.58 97.52
2nd, version 8 83.60 95.76 90.66 97.52
3rd, version 11 82.71 95.55 89.99 97.47

Exemplar-based
N = 5 81.26 95.20 88.51 97.50
N = 7 83.12 95.56 89.28 97.73
N = 9 82.90 95.54 89.23 97.71
N = 11 82.87 95.52 89.23 97.69

Table 4: Syllabification results (percentage correct) on the
Overlap database for word and juncture accuracy.

5. Conclusions

Automatic syllabification is an important but difficult problem
that has implications on pronunciation generation for text-to-
speech synthesis and pronunciation modeling in speech recog-
nition. There are essentially two possible approaches to auto-
matic syllabification: rule-based and data-driven.

In this work, we have compared one rule set based on ex-
pert knowledge and three data-driven methods based on auto-
matic inference from a corpus of already-syllabified words. In
the latter case, the issue of a gold standard arises. We attempt
to address this by using two independent dictionaries of syllab-
ified words. We also use the ‘overlap’ or conjunction of entries
in the different dictionaries as a separate corpus which ought to
be closer to a gold standard than either of the individual contrib-
utors, since it does not include words on which they disagree. In
this work, we have used two independent dictionaries (S&R and
Wordsmyth) and their overlap. The four methods studied are the
rule set from Fisher/Kahn, a table look-up method developed
by Weijters, the exemplar-based method of Daelemans, van den
Bosch and Weijters and syllabification by analogy (SbA) from
Marchand and Damper. In each case, performance is evaluated
across the whole of each available corpus.

Syllabification performance is found to be very consistent
across dictionaries in terms of the relative merits of the four
techniques. The knowledge-based rule set performs poorly
compared to the data-driven methods. Among the data-driven
methods, SbA is easily the best. With regards to the dictionar-
ies, best performance is obtained on the Overlap dictionary—
probably because the overlap process removes idiosyncratic en-
tries from S&R and Wordsmyth.

We believe there are sound reasons to expect the pattern of
results seen here and the same trends showed on the problem of
automatic pronunciation [19]. In our opinion, expert rule-based
approaches suffer many drawbacks, including lack of confor-
mance with real data, the limited ability of human experts to
distinguish real from apparent regularities in very large datasets
(like the effectively unbounded whole of natural language), and
a tendency to over-rate dramatically the strength of weak, ten-
tative linguistic theories.

6. Acknowledgements
This work was supported in part by funding from the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC). In addition, the second author was funded by the
National Research Council (NRC) Graduate Student Scholar-
ship Supplement Program (GSSSP), and an Izaak Walton Kil-
lam Predoctoral Scholarship.

7. References
[1] E. Pulgram, Syllable, Word, Nexus, Cursus. The Hague,

The Netherlands: Mouton, 1970.
[2] E. Selkirk, “The syllable,” in The Structure of Phonologi-

cal Representations, H. van der Hulst and N. Smith, Eds.
Dordrecht, The Netherlands: Foris, 1982, vol. 2, pp. 337–
383.

[3] K. J. Kohler, “Is the syllable a phonological universal?”
Journal of Linguistics, vol. 2, no. ??, pp. 207–208, 1966.

[4] D. Crystal, A First Dictionary of Linguistics and Phonet-
ics. London: André Deutsch, 1980.

[5] R. Treiman and A. Zukowski, “Toward an understanding
of English syllabification,” Journal of Memory and Lan-
guage, vol. 29, no. 1, pp. 66–85, 1990.

[6] J. Goslin and U. H. Frauenfelder, “A comparison of theo-
retical and human syllabification,” Language and Speech,
vol. 44, no. 4, pp. 409–436, 2000.

[7] K. Müller, B. Möbius, and D. Prescher, “Inducing prob-
abilistic syllable classes using multivariate clustering,” in
Proceedings of 38th Annual Meeting of the Association for
Computational Linguistics, Hong Kong, China, 2000, pp.
225–232.

[8] D. Kahn, Syllable-Based Generalizations in English
Phonology. Bloomington, IN: Indiana University Lin-
guistics Club, 1976.

[9] G. N. Clements, “The role of the sonority cycle in core
syllabification,” 1988, working Papers of the Cornell Pho-
netics Laboratory, WPCPL No. 2, Research in Laboratory
Phonology, Cornell University, Ithaca, NY.

[10] T. J. Sejnowski and C. R. Rosenberg, “Parallel networks
that learn to pronounce English text,” Complex Systems,
vol. 1, no. 1, pp. 145–168, 1987.

[11] R. I. Damper, Y. Marchand, J.-D. S. Marsters, and A. I.
Bazin, “Aligning text and phonemes for speech technol-
ogy applications using an EM-like algorithm,” Interna-
tional Journal of Speech Technology, vol. 8, no. 2, pp.
149–162, 2005.

[12] R. I. Damper and J. F. G. Eastmond, “Pronunciation by
analogy: Impact of implementational choices on perfor-
mance,” Language and Speech, vol. 40, no. 1, pp. 1–23,
1997.

[13] Y. Marchand and R. I. Damper, “A multistrategy approach
to improving pronunciation by analogy,” Computational
Linguistics, vol. 26, no. 2, pp. 195–219, 2000.

[14] R. I. Damper and Y. Marchand, “Information fusion ap-
proaches to the automatic pronunciation of print by anal-
ogy,” Information Fusion, vol. 71, no. 2, pp. 207–220,
2006.

[15] Y. Marchand and R. I. Damper, “Can syllabification im-
prove pronunciation by analogy?” Natural Language En-
gineering, vol. 13, no. 1, pp. 1–24, 2007.

[16] A. Weijters, “A simple look-up procedure superior to
NETtalk?” in Proceedings of International Conference
on Artificial Neural Networks (ICANN-91), vol. 2, Espoo,
Finland, 1991, pp. 1645–1648.

[17] W. Daelemans and A. van den Bosch, “Generalisation per-
formance of backpropagation learning on a syllabification
task,” in TWLT3: Connectionism and Natural Language
Processing, M. F. J. Drossaers and A. Nijholt, Eds. En-
schede, The Netherlands: Twente University, 1992, pp.
27–37.

[18] W. Daelemans, A. van den Bosch, and T. Weijters,
“IGTree: Using trees for compression and classification in
lazy learning algorithms,” Artificial Intelligence Review,
vol. 11, no. 1–5, pp. 407–423, 1997.

[19] R. I. Damper, Y. Marchand, M. J. Adamson, and
K. Gustafson, “Evaluating the pronunciation component
of text-to-speech systems for English: A performance
comparison of different approaches,” Computer Speech
and Language, vol. 13, no. 2, pp. 155–176, 1999.

