Mediating Semantic Web Service Access using the Semantic Firewall

Mariusz Jacyno, Terry Payne
University of Southampton, UK
{mjO4r,trp} @ecs.soton.ac.uk

E. Rowland Watkins, Steve J. Taylor,
Mike Surridge,
IT Innovation, Southampton, UK

{erw,sjt,ms} @it-innovation.soton.ac.uk

Abstract

As the technical infrastructure to support Grid environments matures, attention should focus on providing dy-
namic access to services, whilst ensuring such access is appropriately monitored and secured. Access policies
may be dynamic, whereby intra-organisational workflows define local knowledge that could be used to establish
appropriate credentials necessary to access the desired service. We describe a typical Grid-based scenario that
requires local semantic workflows that establish the appropriate security access, whilst global workflows define
how external services are accessed. We present the Semantic Firewall, and the use of Process-based Access
Control (PBAC) to mediate service access, and present OWL-S extensions that support additional PBAC access
policies. Finally, a prototype implementation that validates this approach is presented.

1 Introduction

The Grid Computing paradigm [10] aims to facilitate ac-
cess to a variety of different computing and data resources
distributed across geographical and organisational bound-
aries; thus enabling users to achieve (typically) complex
and computationally intensive tasks. To realise this vi-
sion, much of the research and development in recent years
has focussed on directing Grid environments towards es-
tablishing the fundamentals of the technical infrastructure
required [11, 22, 7], and addressing the pragmatic issues of
composing, integrating, and utilising services offered by a
plethora of independent providers [16, 24, 5].

However, while such a technical infrastructure is neces-
sary to provide an effective platform to support robust com-
munication, interoperation, and service utilisation, issues of
security and access policies need to be addressed before we
can achieve the goal of secure, dynamically composed and
provisioned service-execution. In particular, whilst low-
level security concerns (including encryption, authentica-
tion, etc) have been addressed, the problems of describing
authorised workflows (consisting of the execution of several
disparate services) and the policies that are associated with
service-access have to date been largely ignored.

Many machine-readable specifications have attempted
to address the problem of secure access for Service-
Oriented Computing (SOC), and specifically for Web Ser-

vices, including WS-Security!, Role-Based Access Con-
trol (RBAC), and more recently Process-Based Access
Control (PBAC) [20, 21]. Several draft proposals for
machine-readable policies have also been proposed, includ-
ing WS-Policy? and WS-SecurityPolicy®, which both pro-
vide declarative languages for defining policies for message
security. Coupled with other draft specifications such as
WS-Trust* and WS-Federation®, a foundation for next gen-
eration Service-Oriented Architecture (SOA) authentication
and access control is now emerging.

The enforcement of network security policies between
different organisations has long been challenging, and is
difficult enough when supporting well defined applications
and services, such as web servers, telnet, and ftp servers.
However, this becomes even more challenging in the pres-
ence of dynamically changing and unpredictable Grid com-
munication needs, as the diversity, availability and relia-
bility of services provided by an organisation (e.g. an e-
Science Laboratory) continually changes and evolves; and
thus places ever more demands on Network Administrators.
Although emerging WS-security standards can be used to
manage security and access control, they fail to specify the

Uhttp://www.oasis-open.org/committees/wss/
Zhttp://specs.xmlsoap.org/ws/2004/09/policy/
3http://specs.xmlsoap.org/ws/2005/07/securitypolicy/
“http://specs.xmlsoap.org/ws/2005/02/trust/
Shttp://schemas.xmlsoap.org/ws/2003/07/secext/

legitimate steps a client may have to take in order to gain
the necessary rights to execute an operation. For exam-
ple, within a business environment, the procurement of new
equipment through an equipment supplier may require the
existence of a business account, and present the necessary
tokens in order to make a purchase. Whilst the workflow for
interacting with the equipment supplier may be defined, ac-
cess to this service is predicated on the user possessing the
necessary security tokens, and thus an additional workflow
is needed to define how the user gains these tokens.

Our notion of Process-based Access Control (PBAC)
[20, 21] regulates access to web services by considering
resource state and user role. The resource state is repre-
sented by a finite state machine, which defines what op-
erations are possible depending on the state of a service.
This contrasts with the Web-Service Resource Framework
(WSRF) [6] definition of “state”®. User roles determine
what actions may be permitted based on the “role” a user
is playing, rather than just the identity of a user. For exam-
ple, administration services may only be accessible when
a user changes their role from “Scientist” to “Principal In-
vestigator”. By combining the user role and the current re-
source state, PBAC can provide a more flexible and expres-
sive framework for defining security policies.

Although PBAC-protected services typically utilise the
same standards as normal Web Services to define their oper-
ations and orchestrations, etc., a client invoking such a ser-
vice will only be successful if the client satisfies the PBAC
security constraints. Thus, these constraints need to be de-
fined in a machine-processable manner. Although declar-
ative languages such as BPEL4WS’ provide a natural ba-
sis for defining resource state (as a finite state machine),
semantically-enabled workflow frameworks (such as OWL-
S [2] or WSMO [14]) provide a more natural basis to inte-
grate definitions of user role and the associated knowledge
that relates such roles within an organisation.

In this paper, we present the Semantic Firewall, that
utilises extensions to OWL-S [2] to describe PBAC poli-
cies and workflows, and demonstrate by means of a use
case how such PBAC policies are defined. The novelty of
this approach is that the goal achievement may involve more
than one actor. This is certainly true in real world service-
oriented architectires, and Business-to-Business (B2B) en-
vironments. The Semantic Firewall workflow not only facil-
itates the specification of the goal that should be achieved,
but also the type of actor the client should contact in order
to achieve it. The specification of different actors is use-
ful in cases where the client cannot satisfy all the security
constraints, and thus requires assistance (and consequently

SWSRF describes the state of the application the service represents,
rather than explicitly defining the access control in terms of states.

http://www-128.ibm.com/developerworks/library/specification/ws-
bpel/

-— e en - -
l Semantic Firewall

>

@ User wants to access data from the
Data Service. They obtain the Grid
Service description of the Service

However, the User cannot access
User the Data Service without obtaining
autorisation, and assuming Reader-role.

Service

@ Data Owner can receive requests from
users, and determine if they can have
Reader-role.

|
|
|
|
Data '
|
|
|
|

Data Owner updates dynamic security
Data policy to permit User to use Reader-role,
Owner and hence access the Data Service.

Figure 1. Data Service Use Case Scenario

interaction) with a third party.

The paper is structured as follows: Section 2 describes
the motivating Use Case study, based on accessing a third-
party Data Service. The extensions to OWL-S are presented
in Section 3, whereas Section 4 presents a prototype imple-
mentation of the Semantic Firewall, its design and imple-
mentation. Section 5 gives an overview of the challenges
faced and lessons learnt. We discuss related work in Sec-
tion 6 and conclude in Section 7.

2 Use Case

To motivate the rationale for the Semantic Firewall and
PBAC for defining semantically-annotated access policies,
we present a use-case based on secure data-storage and
data-access delegation. This type of task is typical within
inter-enterprise business Grids, such as those created by the
GRIAS3 [21] and GEMSS” [4] projects. These Grids are typ-
ically forced to use some dynamic policy elements to handle
changing business relationships, and in some cases, legal
constraints over the movement of data [12].

An independent service provider advertises a data ser-
vice that provides a limited set of operations for manipulat-
ing the data it manages. In this scenario, we assume that
there are two client-side actors; the User and Data Owner,
each of which have different access control roles, reader-
role and owner-role respectively. Users with the reader-
role can perform the read () operation and access data if
it exists. The owner role can also perform the read () op-
eration and grant other users read access to data within the
data store through the operation enableRead ().

The User and Data Owner belong to the same organisa-
tion; however this is different to the organisation maintain-
ing the Data Service. Such Data Services are regularly used
within Grid workflows to store data large volumes of data
generated between different services. By maintaining in-
dependent Data Services that can store or “stage” data that
is flowing between Grid Services, the need to continually

8GRIA is now an open source Grid middleware, currently at v4.3, ob-
tainable via http://www.gria.org
http://www.gemss.de

transfer potentially huge amounts of data back and forth be-
tween different Users and Grid Services is eliminated.

Data held by the Data Service is divided into data
stagers, represented using resource identifiers. When a user
executes an operation, they specify the data stager which
they wish to access, as part of the context which is included
in the SOAP message header. The PBAC module within
the Semantic Firewall extracts this context, along with the
user’s identity, and verifies whether or not they have access
rights to these data stagers.

Figure 1 illustrates this Use Case, by presenting the User
(assuming a reader-role) and Data-Owner (assuming the
owner-role). The User can obtain Web Service descriptions
(WSDL, etc) which define how to access the Data Service.
However, unless the Semantic Firewall’s security policy is
modified to allow the User access to the data when it as-
sumes the reader-role, no access is permitted. The interac-
tions between the User, Data-Owner and Data Service are
illustrated in Figure 2. In order to permit the User to read
the data from the data service, the User must first obtain
read-access by contacting the Data-Owner and requesting
the access to the role reader-role. To achieve this, the Data-
Owner submits a enableRead () service request on be-
half of the user.

If a User is to successfully invoke the discovered data
service, then the User needs to know the process required
to acquire the reader-role at the Data Service. The work-
flow published by the Data Service simply defines the op-
erations and orchestration required to access its data (as-
suming that the User can satisfy its PBAC security pol-
icy). However, different organisations may adopt differ-
ent workflows for granting users access to secured data
service; likewise, these workflows may be security sen-
sitive, and hence are only available within an organisa-
tion. Thus, the User needs to be able to obtain this work-
flow to contact the Data-Owner, obtain the reader-role,
and thus satisfy their goal (i.e. performing the operation
read (dataStagerID)). Contacting the Data-Owner to
request the operation enableRead (dataStagerID,
User) would therefore become a subgoal. As we can see,
service discovery is only the beginning when we consider
security constraints on web services.

In the remainder of the paper we will discuss the design
and implementation of the Semantic Firewall, a mechanism
that can provide answers to how to access a secure web
service and possible ways to resolve access failures should
these requirements not be met.

3 Extending OWL-S to support PBAC Policy
model

To support the definition of PBAC policies that can be
used by the Semantic Firewall (SFW), the OWL-S [2] Se-

@) Data Data

User Owner Service
L read()
_________________)
:I: Failure: permission denied
request Read Access|()
Update
Out-of-band enableRead()
————— PBAC
> Policy
- —-—— == - - - -
T
read()
_________________)

—|— Data Successfully Read

T

Figure 2. Sequence Diagram of User attempt-
ing to invoke Data Service

mantic Web Service ontologies have been extended. As de-
scribed earlier, a mechanism was required that could sup-
port the semantic annotation of service workflows that rep-
resent a finite state machine. Thus, not only would OWL-
S support the interpretation of hither-to unseen service de-
scriptions, but it would also support the integration and in-
teroperability between publicly available workflows (defin-
ing access to the services themselves) and internal policy
workflows (that Users would need in order to establish the
appropriate credentials to access the services).

OWL-S [2] consists of a set of ontologies designed
for semantically describing, choreographing and invoking
services and workflows within open, distributed systems.
OWL-S provides four high level ontologies, which can be
employed, or subclassed, to facilitate the modelling of ser-
vice descriptions. The Service model represents the ser-
vice itself, and presents three different views on the service;
the Profile model, which describes what the service does
(in terms of a capability description); the Process model,
which describe how the service works (in term of a process
workflow), and a Grounding model, which maps the process
workflow to a WSDL description of the service.

The capability descriptions of the service and its pro-
cesses (or operations) are presented in terms of exchanged
data resources (i.e. inputs and outputs) corresponding to the
data flow between components, and the state-based notions
(i.e. preconditions and effects) which are used for the log-
ical control of the workflow. In addition, these state-based
notions can also be used to represent concepts within the
real world (i.e. not representable using data resources). A
control and dataflow model is represented as a hierarchical
workflow, using one of several workflow constructs (e.g. se-
quence, choice, split-join operators, etc).

The mapping of PBAC policy model into OWL-S repre-
sentation required us to focus on an effective way of defin-

User

PBAC Access

~ Precondition ~

:
:
Corrective 2

omeemes T L T Disjoint
(o]

Figure 3. Extending the OWL-S Process class
with PBAC preconditions, corrective goals,
and exceptions

ing operations users could execute on a service in order to
achieve their goals. Because these operations have associ-
ated security constraints, we found OWL-S processes to-
gether with their preconditions and effects relevant while
tackling the representation problem.

PBAC policies extend the OWL-S process model by
defining goals as OWL-S effects. In addition, to support
process abstraction and thus facilitate the dynamic expan-
sion of the current workflow, the OWL-S SimpleProcess
construct was used to define service templates within the
process model that could later be expanded using the ex-
pandsTo object-property. This abstraction is necessary to
avoid having to specify service instances at design time, but
instead discover providers and their services at run-time,
and thus achieving dynamic binding of services. OWL-S
preconditions were used to represent necessary conditions
for accessing a PBAC protected web service. In the event
a precondition cannot be satisfied, the OWL-S service de-
scription may define an alternative set of OWL-S processes
that can satisfy the original precondition. We call this alter-
native set a corrective goal.

Semantic Firewall goals can be recursive in nature. An
OWL-S process that satisfies a goal (by its effect), may
well have sub-goals represented by various other OWL-S
workflows. The dynamic composition of these goals form
a workflow, the execution of which would lead to the main
goal being achieved. However, all the constituent sub-goals
in the workflow would be achieved first, and may involve
different actors to those directly involved in the main goal.

While exploiting these available constructs, we identi-
fied parts of the OWL-S 1.1 ontology that required extend-
ing to support PBAC policies. These extensions relate to
the types of preconditions used in the SFW, which we iden-
tify as PBAC and non-PBAC specific. The main extension
refers to the PBACAccessPrecondition, which needs to in-
clude the following properties: testable, requiredRole, has-
CorrectiveGoal and targetResource. The testable property
denotes whether a precondition can be reasonably tested be-
fore execution time; requiredRole specifies the PBAC role
needed to successfully invoke the process; hasCorrective-

users representing actors

resources | that represent service instances, each
with their its own OWL-S description
local user | which represent the users world view

registries

Table 1. User Components

Parameter Instance value
testable true
requiredRole reader-role
correctiveGoal | hasReadAccess
targetResource | Dy

Table 2. PBAC Access Preconditions

Goal gives an alternative goal whose effect matches the pre-
condition; whereas the targetResource property refers to the
semantic web service instance protected by PBAC. Because
OWL-S only defines preconditions without additional pa-
rameters, we found it important to extend it to incorporate
the aforementioned fields.

Our ontology extension strategy of subclassing the
expr:SWRL-Condition means we do not change the orig-
inal semantics of the Service ontology. As can be seen,
we have effectively created our own ontology with a new
namespace: pbac. This means backwards compatibility
is maintained since an OWL reasoner would understand a
pbac:SWRL-Condition to also be an expr:SWRL-Condition.

4 Prototype

To evaluate the basic functionality of the Semantic Fire-
wall, and the validity of the PBAC extensions to OWL-S,
an initial prototype was built. Also, relevant insights were
gained about application of the policy enforcement in multi-
actor and service oriented environments.

By developing a prototype we were able to consider all
the necessary components involved in the process of pol-
icy enforcement. These identified components are listed in
Table 1.

Our architecture assumes that each user has its own local
policy registry, which represents a user’s world view. Fur-
thermore, each user has a list of policies tuples in the form
of: (user, role, resource) that defines what actions given user
can take on a given resource. An example policy may look
like: (Usery, reader-role, dataStagery), which says that
user with a unique identifier User; is allowed to read on a
resource dataStager,. As a user gains roles for different
resources, their local registry is updated accordingly.

While our SFW design utilises OWL-S effect and pre-
condition satisfaction for negotiating access to secure web
services, it is important to note that this only applies to se-
curity constraints, and not to the general workflow compo-
sition problem [15]. However, the introduction of dynamic

policy elements within an environment where different ac-
tors are capable of modifying existing policies according
to the operations published by data service workflows re-
quires an evaluation of the actual resource access negoti-
ation process. For this purpose, and to evaluate a proof-
of-concept study, we implemented a Java based simulation
model based on the scenario described in Section 2.
The model comprises of the following components:

e A Data Service with unique identifier (D1) and two
operations: readData and enableRead;

e An OWL-S description of D1 consisting of two pro-
cesses: readData and enableRead, which define
the operation and orchestration required to access the
data from D1 depending on the actor’s security role;

e Actors, which belong to a group of normal users (at-
tempting to gain access to data from resource D1) and
actors representing owners of particular resources (in
this case we have the D1 Data Service owner);

e A user registry, which allows users to discover other
actors (and their security roles) within the same com-
pany context and, if they have permission, update ex-
isting roles.

Given this architecture, we evaluate the access negotia-
tion process in three different scenarios, depending on the
following model setup:

1. Scenario 1: where user U1 has reader-role on D1;

2. Scenario 2: where user U1 does not have reader-role
but there exists another actor (U2) who has reader-role
on D1;

3. Scenario 3: where user Ul does not have reader-role
but there exists resource D1 owner who can assign
reader-role to user Ul.

In each of these scenarios it is assumed that the User
(U1) attempts to perform the read operation on the se-
lected data stager (D1), thus satisfying the goal readData.
The parameters representing PBAC Access Preconditions
for the readData process are listed in Table 2. We state
that the precondition PBACAccessPrecondition is testable,
has a property requireRole value reader-role and applies to
the data stager D1. We have also specified that the property
correctiveGoal has the value hasReadAccess in the event
that the client discovers they cannot satisfy the PBACAc-
cessPrecondition. Such a corrective goal enables the user
to identify the process (i.e. the enableRead process in
this particular case) that satisfies the hasReadAccess cor-
rective goal. The matching between the corrective goal and
enableRead process is performed by the value of the
corrective goal hasReadAccess which is assumed to be the

value of a postcondition of executing enableRead pro-
cess for D1 resource.

Based on the Semantic Firewall algorithm (presented in
Algorithm 1), the following outlines the steps encountered:

1. Given the user workflow that satisfies the goal (line
1) readData, the SFW inspects its processes to de-
termine whether or not they satisfy the preconditions.
Here, we are assuming that user (U;) has found the
process operating on resource D; that satisfies the
readData goal.

2. If the precondition of the process is of type PBACAc-
cessPrecondition and is testable (line 3), SFW will re-
quire the user’s resource id, together with user poli-
cies defining what operations it is allowed to perform
on which resources. Based on this, the SFW verifies
whether the user (Uy) satisfies the role requirement of
the given resource stated within the precondition. If
user satisfies this, it is allowed to execute the process
readDat a; otherwise an exception is thrown (line 5).

3. If an exception is thrown, U; will attempt to discover
other users (relying on U;’s user registry) that are al-
lowed to execute this process (line 8). Verification of
whether a discovered user satisfies the precondition
is performed by comparing the selected users policy
against that required by the process precondition. If a
user is found (U>), the workflow (or process) is handed
to this user, who is requested to execute it and pass the
execution results to U; (line 10). It is up to U, to de-
termine whether they will grant the request from U;.

4. If at this point no exception has been thrown for the
read process, the SFW must validate whether the effect
of the process matches the initial goal. If does, then the
goal has been achieved and the SFW can complete.

5. However, if an exception was thrown, indicating that
other user failed to execute the workflow, U; extracts a
workflow (line 24) from the precondition and attempts
to discover (from its service registry) a process that can
satisfy this goal. Because the correctiveGoal is an ef-
fect of the process, the search is performed by check-
ing all the effects of the processes describing known
resources until the newly satisfied effect is found. At
this stage, the precondition of this process is verified,
to determine whether or not the targetResource prop-
erty refers to the resources which user is operating on.
For example, the correctiveGoal of the readData
process may be enableRead, but in order to verify
whether enalbbleRead would enable read on resource
D, the targetResource property has to refer to D;.

Each of the three evaluation scenarios described above
were tested and found to work as expected. Figure 4 illus-

806

:—I scenario2.html J

scenario2.html

e Main actor: userl achieving goal: read resource name: D1

o searching for process achieving user goal: read for data stager: D1

found goal matching process: readOperation for resource: DI
attempting to achieve following goal: read for user: userl and resource: D1
verifying if user:user! is authorised to execute process with precondition of type: PBACAccessControlPrecondition on resource: D1
= verifying if user:userl has policy to execute process with required role: readRole on resource: D1
= user policy: User name: user] role: rolel resource: D1
= user policy: User name: user] role: role2 resource: D1
= user policy: User name: user] role: role3 resource: D1
user: user] was not authorised to execute process: readOperation, searching for other user with permissions
searching for role: readRole resource name: D1 in the profile of user: user2
= user policy: User name: user2 role: role4 resource: D1
= user policy: User name: user2 role: owner resource: D1
searching for role: readRole resource name: D1 in the profile of user: user3
= user policy: User name: user3 role: role5 resource: D2
= user policy: User name: user3 role: role6 resource: D2

= user policy: User name: user3 role: readRole resource: D1

found matching user: user3

= user polic

= process: readOperation executed successfully
® Main actor: userl goal : read completed by user: userl

attempting to achieve following goal: read for user: user3 and resource: D1
verifying if user:user3 is authorised to execute process with precondition of type: PBACAccessControlPrecondition on resource: D1
= verifying if user:user3 has policy to execute process with required role: readRole on resource: D1
= user policy: User name: user3 role: role5 resource: D2
y: User name: user3 role: role6 resource: D2
= user policy: User name: user3 role: readRole resource: D1
user: user3 meets the preconditions - executing the process: readOperation for resource: D1
= executing service: DI process: readOperation by user: user3

<

AN

Figure 4. Output Generated when evaluating Scenario 2

trates the output generated by Scenario 2. Although this
example demonstrates a simple case, it illustrates the syn-
ergy of considering an infrastructure of resources (actors,
registries, etc) spanning multiple organisations (thus neces-
sitating the use of semantic web service descriptions) that
need to cooperate to enable access negotiation.

5 Discussion

Our decision to use a semantic representation for the
SFW presented a challenge given that there are only a few
well recognised Semantic Web Service frameworks. The
main advantage of OWL-S is that it does not have a com-
plete execution environment like that found in WSMO [14].
This means that the SFW is not constrained by the execution
environment and we are able to use the OWL-S in a more
flexible manner. For example, our use of OWL-S precon-
ditions and effects goes well beyond the original intensions
of OWL-S as they were intended for conditional execution
rather than access control. The idea that the SFW should
guide the client to achieve a goal means that the failure of a
precondition should be handled, which led us to the idea of
corrective goals.

We found the introduction of corrective goals, and there-
fore flow control within a precondition to be beyond the
current OWL-S 1.1 specification. Coupled with the fact that
different actors could achieve goals, we found it necessary
to extend part of OWL-S to suite our needs. OWL-S is not
the only component that could solve this problem; although
it describes the goals, processes and workflow, no execution
environment is provided. Our execution environment is the
SFW algorithm, where the OWL-S description is used in
conjunction with local user registries and different actors.

It is important to note that care has been taken to ensure
this mechanism does not reveal any private details about a

PBAC protected web service. For example, the access con-
trol state of the service is never transmitted to the client;
neither does the client know which Certificate Authorities
the web service will accept. The Semantic Firewall only de-
scribes to the client what goals exist that will give them ac-
cess; such access, however, may be transient and not guar-
anteed over successive invocations.

6 Related work

Recent work [8], has addressed the issue of annotating
service descriptions with information relating to their se-
curity requirements and capabilities. This information can
then be used during the matchmaking process [17], to en-
sure that clients and service providers meet each others’
security requirements, in addition to usual core service re-
quirements. Such a matchmaking capability is a useful
means of introducing security considerations and the abil-
ity to reason about them at the semantic level. However,
the work of Denker et al. [8] focuses on describing con-
ventional security requirements. It does not deal with how
more complex information relating to security policies that
interacting parties should follow are made known to poten-
tial clients, so that they can better guide the discovery pro-
cess. Such work needs to be taken forward to address not
just the description of conventional security requirements
but also the description the related security capabilities and
requirements in complex scenarios with several interacting
parties and possible delegations of security capabilities or
rights between services.

Work on policies, based on Semantic Web languages,
provides several of the required expressive constructs for
defining authorisations and obligations and their delega-
tion [18]. Such work also takes into account some of the
issues relating to conflicting policies between different do-

Algorithm 1 Semantic Firewall
1: discover the workflow (W) that meets U;’s current
goal readData ()
2: {User can either state the goal or select the process that
achieves the goal}

3: if preconditions of W; are met by U; then

4. if try execute W, then

5: thow exception failed-precondition in Wy

6: end if

7: else

8: discover user Us with access permissions for ser-
vices in Wy

9: if U; exists then

10: if try send W to U, for execution then

11: thow exception failed-precondition in W3

12: end if

13: endif

14: thow exception failed-precondition in W;

15: end if

16:

17: {If no exception has been thrown, then W1 was directly
(or indirectly) executed}

18: if effect satisfies main-goal then

19: return
20: end if
21:

22: while catch exception do

23: find unsatisfied precondition in W

24: if exists process/workflow that satisfies corrective-
Goal W5 which qualifies U; then

25: {Execute process that will provide service access
to Uy }

26: if enact W5 then

27: thow exception failed-precondition in W5

28: end if

29: {Now service access has been granted, execute
Wy}

30: if enact W5 then

31: thow exception failed-precondition in W}

32: end if

33: endif

34: end while

mains, and provides means for resolving them [23]. How-
ever, although this work takes into account the existence of
different policy domains, the resolution of conflicts is cen-
trally managed and relies on basic resolution rules rather
than supporting negotiation over how the conflicts can be
resolved. In a centrally managed scenario this does not
present a problem since the interacting parties do not need
to signal their agreement with how the conflicts in policy
have been resolved. However, in a scenario where each

party belongs to a different organisation any resolution of
conflicts should meet the approval of each interacting party.
Furthermore, the deployment models suggested for policy
enforcement [18, 9] may not be suitable for complex, open
and dynamic environments where the interaction parties
need to reason about and dynamically modify policies.

Kagal et al. [13], attempt to address some of the short-
comings identified above. They follows a more decen-
tralised and adaptive model. The dynamic modification of
policies is supported using speech acts and the suggested
deployment models for this work examine different scenar-
ios, such as FIPA-compliant agent platforms '°, web pages
and web services. However, they do not take into consid-
eration dynamic adaption of policies within the context of
particular interaction scenarios to deal, for example, with
notification as discussed in the example.

7 Conclusions

This paper gave an overview on the work done on the Se-
mantic Firewall Project, which has produced a mechanism
that describes a set of goals that a client must achieve to
access a PBAC protected web service. The Semantic Fire-
wall has taken a goal-based approach to describing access
control policies as a set of workflows in an extended OWL-
S service description. OWL-S preconditions were used to
check necessary conditions for using the web service, while
OWL-S effects were used as anchors to goals.

Part of our work led to several extensions of the OWL-
S ontology to support conditional flow control in OWL-S
preconditions. Our approach also considered the possibility
of multiple actors in a complex workflow scenario, where
a user may request another to invoke web services on their
behalf based on security constraints.

The research is ongoing, and future work will address
extending the OWL-S extensions further, to support other
notions of service. Akkermans et al. [1] introduced such
notions as service bundling and the sharability and consum-
ability of resources within the OBELIX project. Current
semantic web service descriptions fail to make the distinc-
tion, for example, between resources that can be copied and
shared by many users, and that which is indivisible (e.g. a
security credential that can only be used by one user at the
time). Likewise, there is no support for establishing rela-
tionships between service elements that support each other,
but are not necessarily part of a service workflow (such as
representing a billing service that supports another, primary
service). Future investigation will consider how such fac-
tors augment the definition of Grid services and further sup-
port policy definitions. We will also focus on formalising
the notion of multiple actors within the extensions of OWL-
S, to better support reasoning over several candidate correc-
tiveGoals that may be found within a Virtual Organisation.

Ohttp://www.fipa.org/

In addition, a better understanding and analysis is required
to understand the relationship of the Semantic Firewall with
OWL-WS [3, 19].

8 Acknowledgment

This research is funded by the Engineering and Physi-
cal Sciences Research Council (EPSRC) Semantic Firewall
project (ref. GR/S45744/01).

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

H. Akkermans, Z. Baida, J. Gordijn, N. Pena, A. Altuna,
and I. Laresgoiti. Value Webs: Using Ontologies to Bundle
Real-World Services. IEEE Intelligent Systems, 19(4):57-
66, 2004.

A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. McDer-
mott, D. Martin, S. Mcllraith, S. Narayanan, M. Paolucci,
T. Payne, and K. Sycara. DAML-S: Web Service Descrip-
tion for the Semantic Web. In First International Semantic
Web Conference (ISWC) Proceedings, pages 348-363, 2002.
S. Beco, B. Cantalupo, L. Giammarino, N. Matskanis, and
M. Surridge. OWL-WS: A Workflow Ontology for Dynamic
Grid. In Proceedings of the First International Conference
on e-Science and Grid Computing (e-Science), pages 148—
155, 2005.

G. Berti, S. Benkner, J. W. Fenner, J. Fingberg, G. Lons-
dale, S. E. Middleton, and M. Surridge. Medical simulation
services via the grid. In S. Ngrager, J.-C. Healy, and Y. Pain-
daveine, editors, Proceedings of 1st European HealthGRID
Conference, pages 248-259, Lyon, France, Jan. 16—17 2003.
EU DG Information Society.

J. Blythe, E. Deelman, and Y. Gil. Automatically composed
workflows for grid environments. IEEE Intelligent Systems,
19(4):16-23, 2004.

K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham,
T. Magquire, D. Snelling, and S. Tuecke. From open grid ser-
vices infrastructure to ws-resource framework: Refactoring
& evolution. Global Grid Forum Draft Recommendation,
May 2004.

K. Czajkowski, D. F. Ferguson, F. I, J. Frey, S. Graham,
I. Sedukhin, D. Snelling, S. Tuecke, and W. Vambenepe. The
WS-Resource Framework. Technical report, The Globus Al-
liance, 2004.

G. Denker, L. Kagal, T. Finin, M. Paolucci, and K. Sycara.
Security for DAML Services: Annotation and Matchmak-
ing. In D. Fensel, K. Sycara, and J. Mylopoulos, editors,
Proceedings of the 2nd International Semantic Web Con-
ference, volume 2870 of LNCS, pages 335-350. Springer,
2003.

N. Dulay, N. Damianou, E. Lupu, and M. Sloman. A policy
language for the management of distributed agents. In M. J.
Wooldridge, G. Weiss, and P. Ciancarini, editors, Agent-
Oriented Software Engineering II, volume 2222, pages 84—
100. Springer-Verlag, 2001.

I. Foster and C. Kesselman. The Grid 2: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 2003.

(11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid Ser-
vices for Distributed System Integration. IEEE Computer,

35(6):37—46, June 2002.
J. Herveg, F. Crazzolara, S. Middleton, D. Marvin, and

Y. Poullet. GEMSS: Privacy and security for a Medical Grid.
In Proceedings of HealthGRID 2004, Clermont-Ferrand,

France, 2004.
L. Kagal, T. Finin, and A. Joshi. A Policy Based Approach

to Security for the Semantic Web. In D. Fensel, K. Sycara,
and J. Mylopoulos, editors, 2nd Int. Semantic Web Con-
ference, volume 2870 of LNCS, pages 402-418. Springer,
2003.

R. Lara, D. Roman, A. Polleres, and D. Fensel. A concep-
tual comparison of wsmo and owl-s. In Web Services — Pro-
ceedings of the 2004 European Conference on Web Services,

pages 254-269, 2004.
S. Mcllraith, T. C. Son, and H. Zeng. Semantic web service.

IEEE Intelligent Systems, 16(2):46-53, 2001.
T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,

M. Greenwood, T. Carver, K. Glover, M. Pocock, A. Wipat,
and P. Li. Taverna: a tool for the composition and enactment
of bioinformatics workflows. Bioinformatics, 20(17):3045-

3054, 2004.
M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara.

Semantic Matchmaking of Web Services Capabilities. In
I. Horrocks and J. A. Hendler, editors, International Seman-
tic Web Conference, volume 2342 of LNCS, pages 333-347.
Springer, 2002.

N. Suri, M. Carvalho, J. Bradshaw, M. R. Breedy, T. B.
Cowin, P. T. Groth, R. Saavedra, and A. Uszok. Enforce-
ment of Communications Policies in Software Agent Sys-
tems through Mobile Code. In 4th IEEE International
Workshop on Policies for Distributed Systems and Networks,
pages 247-250. IEEE Computer Society, 2003.

M. Surridge and J. Ferris. P5.2.2 Service Binding and Ac-

cess Model Registration. Technical report, ECS, IT Innova-

tion Centre, 2006.
M. Surridge, S. Taylor, D. D. Roure, and E. Zaluska. Expe-

riences with GRIA - Industrial Applications on a Web Ser-
vices Grid. In Proceedings of the First International Con-
ference on e-Science and Grid Computing (e-Science), pages

98-105, 2005.

S. Taylor, M. Surridge, and D. Marvin. Grid Resources for
Industrial Applications. In 2004 IEEE Int. Conf. on Web
Services (ICWS’2004), 2004.

S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kesselman, T. Maguire, T. Sandholm, D. Snelling, and
P. Vanderbilt. Open grid services infrastructure. Technical
report, Global Grid Forum, 2003.

A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. J. Hayes, M. R.
Breedy, L. Bunch, M. Johnson, S. Kulkarni, and J. Lott.
KAOoS Policy and Domain Services: Toward a Description-
Logic Approach to Policy Representation, Deconfliction,
and Enforcement. In 4th IEEE Int. Workshop on Policies
for Distributed Systems and Networks, pages 93-98. IEEE

Computer Society, 2003.
C. Wroe, C. Goble, M. Greenwood, P. Lord, S. Miles, J. Pa-

pay, T. Payne, and L. Moreau. Automating experiments us-
ing semantic data on a bioinformatics grid. IEEE Intelligent
Systems, 19(1):48-55, 2004.

