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Controllable and Uncontrollable Poles and
Zeros of nD Systems*
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Abstract. We use the behavioural approach to define and characterize control-
lable and uncontrollable poles and zeros of multidimensional (nD) linear systems.
We show a strong relationship between controllable poles and zeros and prop-
erties of the transfer function matrix, and we give characterizations of uncon-
trollable poles and zeros, in particular demonstrating that these have an input
decoupling property.
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1. Introduction

The behavioural approach due to Willems [W1]-[W3] aims to reinterpret systems
theory by emphasizing and formalizing the role of the system trajectories. This
approach has had particular impact in the field of multidimensional (nD) systems,
which are systems defined by sets of partial differential or multidimensional dif-
ference equations. The use of behaviours has allowed previously obscure relation-
ships between nD systems concepts to emerge.

Any complete theory of systems should contain an analysis of pole/zero struc-
ture. In the case of a one-dimensional (1D) linear system, the pole/zero structure
provides fundamental information on system structure and control. For example,
the presence of a right half-plane zero will cause difficulties with feedback. In the
nD context also we expect the location of zeros to prove significant for control
purposes, and thus the development of the underlying theory of zeros becomes an
important fundamental task. Furthermore, it is known that the poles of an nD
system correspond to certain oscillating/exponential trajectories. Such trajectories
provide important general structural information. In a system defined by linear
PDEs with constant coefficients they in fact characterize the system as a whole
[(02].
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Poles of nD systems were introduced via the behavioural approach in [WORO].
In that paper definitions of controllable, uncontrollable, observable and unobserv-
able poles of such systems were provided, and these were characterized dynami-
cally and in terms of system representations. The definitions in [WORO] agree with
the classical definitions in the 1D case. They also have module-theoretic inter-
pretations, which agree for 1D systems with the definitions proposed by Bourlés
and Fliess [BF] and in the nD case with those suggested by Pommaret and Qua-
drat [PQ)].

In the current work we extend the study in [WORO)] to include a new theory
of zeros. The theory of system zeros is more complex than the theory of poles,
since the system inputs may still contain free variables (“‘completely unobservable
inputs”) when the outputs vanish. A zero is therefore defined as a frequency which
may arise when not only the outputs but also any combination of completely
unobservable inputs vanish.

The layout of the paper is as follows. In Section 3 we re-introduce the charac-
teristic variety, which is fundamental to any multidimensional poles/zeros work.
In this section we derive new properties of the characteristic points of a factor
B/AB' of behaviours, which will prove useful in what follows. Then in Section 4
of this paper we discuss controllable and uncontrollable poles. In particular, the
new Theorem 4.2 shows that an uncontrollable pole is precisely a frequency which
can appear in some observed function of the system (a linear combination of the
system variables and their derivatives), independently of the value of the input.
This is a natural generalization of the input decoupling property to any system
given by linear PDEs with constant coefficients.

In Section 5 we introduce the theory of zeros, in particular showing that a zero
is precisely a rank-loss point of the operator describing the zero output behaviour.
We also define controllable zeros and uncontrollable zeros. Controllable zeros are
the zeros of the transfer matrix, and uncontrollable zeros are a special class of
uncontrollable poles.

Our work takes a quite different approach to zeros to that in the classical
theory of distributed parameter systems (e.g. [CCD] and [CZ]). In particular, here
we study systems described in a completely general form by linear PDEs with
constant coefficients. The inputs and outputs to such systems are n-dimensional
signals, and their exponential characteristics are therefore described by points in
C”. In a physical setting we might say that both temporal and spatial exponential
behaviour is captured in our approach; however we make no such distinction of
independent variables in this work.

2. Background

In this section we cover the necessary background on 1D/nD behavioural theory.
Recall that the behaviour of a system is the set of all possible system trajectories
[W1], [W2]. Formally, we define a system to be a triple (<7, ¢, %), where .o/ is a
set, g€ Z* and # = .«/7 is a subset of trajectories, called the system behaviour.

In practice, we assume .o/ to be a vector space over a field k& which is either
R or C; 7 is therefore called the signal space. Throughout this paper, in the
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continuous case we take ./ to be either ¥ (R", k), the set of all k-valued smooth
functions on R”, or else 2'(R", k), the set of all k-valued distributions (continu-
ous k-linear maps from k-valued compactly supported smooth functions to k) on
IR”. In the discrete case, we always take .7 to be either AN" or kZ". These partic-
ular continuous and discrete signal spaces have certain algebraic properties [O1]
which are crucial for our purposes.

Throughout the paper we consider behaviours specified by sets of linear differ-
ential equations (or difference equations) with constant coeflicients. Thus the nota-
tion 4 < /7 implicitly assumes that the behaviour 4 is of this type. Accordingly,
let 2 denote the polynomial ring k[zi,...,z,], and let R(zy,...,z,) € 299 be a
g % ¢ polynomial matrix.! Then the differential behaviour defined by R is given by

0 0
Rl—,...,—|w=0 1
(32 Jw =0}, (1)

and R is said to be a kernel representation of this behaviour 4. Difference behav-
iours are the discrete equivalent and are defined analogously, using the backward
shift operator g;, defined by

(aw)(try... ty) =w(tr,...; i+ 1,... 1), (2)

instead of the partial derivative 0/0t;. In either case, we write 4 = ker,, R, the
meaning being implicitly given by the choice of signal space .«/. We also drop the
operator notation and write Rw = R(zy, ..., z,)w for a given polynomial matrix R
applied to a given trajectory w, where the meaning is given according to .</.

For example, the 2D differential behaviour over ./ = ¥ (R* R) with three
dependent variables described by the single PDE:

B =ker, R := {we o1

0w, 03w,
(t, ) — (1, 2) = 2—=~ (1, 2) + w3(t1,12) = 0,
@lez 611

awl

owy
oh

11, t
(th, 2)+0Z2

can be written as
A =kery R, R=((zi+2) (~z1z2) (1-2z)).

Given a behaviour % and sub-behaviour #’, treating them as k-vector spaces it
is possible to form the factor space /%’ = {w + %';w € #}. As shown in Theo-
rem 2.56(iii) of [O1], this factor itself admits the structure of a behaviour. This can
be seen by choosing a kernel representation R’ € 294 for #'. The restriction of
this operator R’ to % has kernel 4’, and so its image R’ is isomorphic to #/%’.
The image of any differential operator has a kernel representation (e.g. [O1, Cor-
ollary 2.38]), so #/4' is in this way a behaviour, and properties such as controll-
ability, autonomy, etc. of #/4' are well defined, i.e. independent of R’'.

We are particularly interested in the case where R’ is a single polynomial row
vector x. In this case R'# = x4 is a single component behaviour, which we can
think of as a behaviour describing the possible values of an “observable function™

! In the case .o/ = k%" only, it is necessary to take 7 = k|[zy, ... SZmy 2T, ,Z;I] instead.
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x measuring a quantity derived from the system variables. Note that /%' is not
to be confused with the set-theoretic difference %\%’. See [W4] for a further dis-
cussion of factor behaviours.

We next turn to autonomous behaviours. Recall that a subset of variables
{w;|ie ®} is said to be a set of free variables if the projection % — .o/®, which
projects onto the components indexed by @, is surjective [R, Definition I11.11]. In
other words, free variables can take on any combination of values in .o7. The
maximum size of a set of free variables is called the number of free variables of %,
and is denoted by m = m(#). Given # = ker,; R = &/, we have [O1, Theorem
2.69]

m(#) = q — rank R, (3)

where the rank is defined over the field k(zi, ..., z,).
When m(%) = 0, % is called autonomous. Equivalently, the annihilator of 4,

ann Z = {re Z|rw=0,Yw € B} 4)

is non-zero. Given a kernel representation R of 4, another equivalent condition is
that R has full column rank [FRZ], [WRO2]. An example of an autonomous
behaviour is given by any behaviour of the form

Bo.y = {(u, ) € #|u =0}, (5)

where u is a maximal set of free variables. Such a partitioning of variables is called
a (free) input/output structure on %, and we write 4 = %, ,. The sub-behaviour
(5) is called the zero-input behaviour. Equivalently, we can consider a partitioning
R = (—Q P) of any kernel representation R of %, where the columns of Q corre-
spond to the input variables u, and the columns of P to the output variables y;
since %y, ,, is autonomous, P has full column rank. Note that the number of inputs
is necessarily equal to m (%), and this number is in particular independent of the
input/output structure.

For a given free input/output structure, any behaviour 4 has a unique transfer
(function) matrix G € k(z,...,z,)"" characterized by the equation PG = Q; see
Theorem 2.69 of [O1] and also p. 75 of [R] and Section VIII of [W2] for the 2D/
1D cases.

Finally, we recall the definition of controllability for continuous nD behav-
iours [PS]. For brevity we refer for the discrete definition to [R], [RW], [WRO2],
and [WZ]. A differential behaviour % is controllable if, for any two open sets
T), T, = IR" with disjoint closures, and any pair of trajectories wl), w?® e 4,

Iwe R with  w[, = W(1)|T1 and  w|p, = w(2>|T27 (6)

where w'|; denotes the restriction of w’ to a set 7. Controllability has many in-
teresting characterizations due to many authors; see Theorem 3.8 of [WORO)] for
a partial list.

The controllable part of a behaviour 4 is uniquely defined as the controllable
sub-behaviour #° of # satisfying # = #° + %* for some autonomous #* [FRZ],
[WRO2], [Z]. The controllable part can be shown to be the (unique) maximal
controllable sub-behaviour of 4. Also, it is the (unique) minimal sub-behaviour
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possessing the same transfer matrix as %, and in particular it has the same input/
output structures as # [O1, Theorem 7.21], [R, Lemma IV.14], [WRO2, Corol-
lary 6]. The controllable part can be algorithmically constructed by computing
syzygy modules [O1, Theorem 7.24], [PQ, Section 4.1], [WRO2, Corollary 6],
[Z, Lemma 4].

Since # and #° have the same input/output structure, they also have the same
number of free variables, from which it follows by additivity of m(-) [WORO,
Section 3.1] that the factor %#/%° is an autonomous behaviour. As we will see,
this behaviour describes input decoupling properties of 4.

3. Characteristic Points

The interpretation of poles and zeros is in terms of trajectories of a certain struc-
ture, which we now recall. Such trajectories can be defined for all signal spaces
which we consider in this paper (and the following theory holds in all cases), but
for brevity we provide the definitions here only for .o/ = C%", o/ = ¢*(R”", )
and .7 = 2'(R", C). The other cases are covered in [O2] and also summarized in
Theorems 4.1 and 4.2 of [WORO].

Definition 3.1. Let w(zy,...,1,) € o/9. Then w is said to be an exponential trajec-
tory of frequency (ai,...,a,) € C" if it is of the form
voay' - al, o =C¥,
W(tly ..o ty) = vo exp(arty + -+ + auty), o =€ (R", ) (7)

or o/ =9'(R",C),

where vy € C?. Also, w is said to be a polynomial exponential trajectory of pure
frequency (ay,...,a,) if it is of the form

w(tly ... ty)
plt, ..., t,,)a{‘ ceeal, of = (EZ”,
=19 pt1,...,tn) explaity + - - + anty), o =€°(R",C) (8)
or o =9'(R",C),
where p(ty,...,t,) € Clty, ..., 6]".

The sub-behaviour of a given behaviour 4 generated linearly by the polynomial
exponential trajectories of all pure frequencies determines % uniquely (see Section
4 of [WORO], referring to results in [O2]). The set of all frequencies of exponen-
tials or polynomial exponentials in a given behaviour is not in general a finite set,
as in the 1D case, but has the structure of an algebraic variety.

Given an ideal I = 2, we can define the variety V(1) of all points a € C" such
that p(a) = 0 for all p e I. Note that in the case .o/ = k%", & is different and it
is necessary to consider points in (C\0)" only, throughout the paper. Note also
that the variety is always defined in complex space even when the field & is real.
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This enables the theory to cover real sinusoidal trajectories [WORO, Section 4.1].
We now recall the definition and characterization of the characteristic variety
[WORO], which is from the theory of PDEs [B], [P]. The equivalences in the
following theorem hold for all .o in question.

Theorem 3.2. The characteristic variety of a behaviour % = ker.,; R is the set

v (B) of all points (ay,...,a,) € C" such that the following equivalent conditions
hold:

1. (a1,...,ay) € V(ann %).

2. R(ay,...,ay) has less than full column rank.

3. B contains a non-zero exponential trajectory of frequency (ay, ..., a,).

The points in V(%) are called the characteristic points of 4.

If there is a non-zero polynomial exponential trajectory of pure frequency
(a1,...,a,) in B, then by application of an appropriate scalar differential or shift
operator there is also a non-zero exponential trajectory of the same frequency in
2. Thus Theorem 3.2 also characterizes the frequencies of polynomial exponen-
tials in a given behaviour.

From condition 2 of Theorem 3.2 it is clear that a non-autonomous behaviour
is precisely a behaviour which contains a non-zero exponential trajectory of every
frequency. At the other extreme, only the zero behaviour has an empty character-
istic variety.

The ideal ann % which describes the characteristic variety can be constructed
by means of Grobner bases as described for example in [WRO1].

For any behaviour % with sub-behaviour %’ we find [WORO, Lemma 4.7]

V(B) =1 (B)0 1V (B)B'). 9)

The next result, which is new, deals with the characterization of the character-
istic variety of such a factor behaviour %4/%’:

Lemma 3.3. Let #' < % be behaviours and (ay, . .. ,a,) € C". Then the following
are equivalent:

1. (ay,...,a,) is a characteristic point of B/%'.

2. There exists a polynomial vector x such that xw' = 0 for all w' € B’ but xw
equals a non-zero exponential trajectory of frequency (ay,...,a,) for some
weB.

3. There exists a polynomial exponential trajectory of pure frequency (ay, ..., a,)
in B\A'.

Proof. The equivalence of conditions 1 and 2 is a direct generalization of Cor-
ollary 8 of [W4]|. Now suppose that condition 2 holds, so that for some x with
xw =0 for all we #’, there exists a non-zero exponential r € x# of frequency
(a1,...,a,). Write I for the ideal of all polynomials vanishing at (ay,...,a,), and
consider the signal space .o/ of all elements of .o/ annihilated by some power of
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I. We have that .¢7) is an injective module [O2, Theorem 1.14], and therefore the
exact sequence

B xB—0
restricts to an exact sequence

B A S xB A — 0.

Now the trajectory r is in x# N ./}, and must therefore be the image under x of
some element w!) of % N /). Furthermore, w!) # 0 as r # 0, and w(!) is annihi-
lated by some power of /. It is shown in [O2] (see also Theorem 4.2 of [WORO])
that such trajectories are precisely the polynomial exponential trajectories of pure
frequency (ai,...,a,). However, w(!l) cannot be in %’ because x%#' = 0, so %\ %’
contains a polynomial exponential trajectory of pure frequency (ay, ..., ay).
Finally, if such a w e #\%' exists, then there is some system equation x of 4’
such that xw # 0. By the nature of the shift or derivative operators, xw must also

be a (non-zero) polynomial exponential trajectory of pure frequency (ai,...,a,),
so (ay,...,a,) must be a characteristic point of x#. Condition 2 now follows on
applying Theorem 3.2. |

We can construct the ideal ann(%/%') by first constructing a representation of
the factor #/4’, as described in [W4], and then computing the annihilator.

Example 3.4. Consider 4= ./ =%”(R,C) and %' = kery(z;), the sub-
behaviour of all constant trajectories. Now %/%' is naturally isomorphic to
z14, which is the behaviour of all ¥~ trajectories with €* integrals. This
includes some (all) non-zero constant functions, so /%’ has zero as a character-
istic point. Taking x = z; confirms condition 2 in Lemma 3.3; x vanishes on 4’
but x4 contains non-zero constant functions. Condition 3 of Lemma 3.3 is also
easily confirmed; #\#’' contains polynomial functions, and these are the poly-
nomial exponential trajectories of pure frequency zero. However %4\%’ does not
contain any exponential trajectories of frequency zero, so condition 3 of Lemma
3.3 cannot be strengthened in this way.

Lemma 3.3 can be applied to various classes of poles and zeros; in the next
section we use it to demonstrate that uncontrollable poles are a generalization
of input decoupling zeros.

4. Controllable and Uncontrollable Poles

Poles are frequencies which can occur in the output when the input is zero, and
are therefore given by the characteristic variety of the zero-input behaviour.

Definition 4.1 [WORO].

1. The pole variety and pole points of a behaviour 4 with a given free input/
output structure are the characteristic variety and characteristic points of
B, y.
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2. The controllable pole variety and controllable pole points are the character-
istic variety and characteristic points of (%), , = %o,y N %°.

3. The uncontrollable pole variety and uncontrollable pole points are the charac-
teristic variety and characteristic points of %#/%°.

It follows from Theorem 3.2 that, for a system with free input/output structure
given by the equation Qu = Py, the pole points are the points where P has less
than full column rank. We also recall from Corollary 5.4 and Theorem 5.8 of
[WORO)] that the union of the controllable pole variety and the uncontrollable
pole variety is the pole variety, and also that the controllable pole points are pre-
cisely the poles of the transfer matrix.

Uncontrollable pole points are also interesting; to begin with, a behaviour is
controllable precisely when it has no uncontrollable pole points. Furthermore,
for a behaviour given by a 1D state space model, the uncontrollable pole points
are precisely the input decoupling zeros [WORO, Lemma 6.5]. The following
new result shows that this interpretation can be generalized to an arbitrary nD
behaviour.

Theorem 4.2. The following are equivalent for any behaviour % and point
(ay...,a,) e C™

1. (ai,...,ay) is an uncontrollable pole point.

2. There exists a polynomial exponential trajectory of pure frequency (ai, ..., ay)
in B\%°.

3. (a1,...,a,) is a characteristic point of some behaviour of the form x%, where
also xB # o .

4. There exists a polynomial vector x and a non-zero exponential trajectory
re o/ of frequency (ai,...,a,) such that, for any input u, there exists an

output y with

<z>e$ and x(D:r. (10)

Proof. Equivalence of conditions 1 and 2 is immediate from Lemma 3.3. We
now prove equivalence of conditions 1 and 3. For this purpose we need to recall
the module %~ of system equations defined by

Bt ={ve 2" |vw=0forall we ./},

and the corresponding factor M = 29/%* (e.g. [O] and [W4]). Suppose now
that (ay,...,a,) € V" (x%A), where x# # .o/. Then x + %" is in the torsion sub-
module #(M) of M [W4, Lemma 3], and also the module element x + %" and the
behaviour x# have the same annihilator [W4, Lemma 4]. Hence

(ar,...,a,) € V(ann(x + #*)) < V(ann t(M)). (11)

However, #/%° is the dual of #(M) under the correspondence given by Oberst
[O1, Theorem 7.21], and therefore ann (M) = ann #/%° [W4, Lemma 4]. So
(11) tells us that (ay,...,a,) is an uncontrollable pole point.
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Conversely, suppose that a= (ai,...,a,) € V(ann 4/%°) = V(ann(M)).
Thus ann #(M) < I(a), the ideal of all polynomials in & vanishing at a. Let
P be a minimal prime divisor of ann /(M) contained in /(a). Then P is an
associated prime of #(M), and so annihilates an element x + #* of (M) = M.
Now ann(x + %) = I(a), so a € V(ann(x + %#*)). However, V(ann(x + #*)) =
V(ann x4), so a is a characteristic point of xZ. Since x + %" is a torsion element
of M, x# # o/ [W4, Lemma 3]. This establishes equivalence of conditions 1 and 3.

We now show equivalence of conditions 3 and 4. So suppose that a € 7" (x%)
and x# # A. Then x + %" is a torsion element of M, and so vanishes on %° [W4,
Corollary 2]. Hence #° < ker,,(x) N 4.

Now let (u,, y,) € % be such that r = x(u,, y,), and choose an arbitrary input u.
Since 4° has the same transfer matrix as 4, it in particular shares the same free
input/output structures. Hence there must exist a y* with (u — u,, y*) € 4°, and
so in particular x(u — u,, y*) = 0. Now

)= () () e
Yty y Yr

and applying the operator x to this trajectory we get r as required.

Conversely, suppose that condition 4 holds, so that x and » have the required
properties. Define 4’ = # n ker,,/(x), and let (0, y*) € 4 be such that x(0, y*) = r;
it exists by the supposition. Now let u# be an arbitrary input. Then there exists y
with (u, y) € % and x(u, y) = r, and so

() ) (2)-

and also (u, y — y*) is in # by the same decomposition. Thus (u, y — y*) € 4’
Since this holds for any u, %’ has the same number of free variables as 4. How-
ever, by Theorem 7 of [W4] %° is the unique minimal sub-behaviour of # with
the same number of free variables as %, which proves that #° = %’. Therefore
x vanishes on #°, so x + %" € t(M) [W4, Corollary 2], and so x% # .«/. We
already have that a € 7" (x4%), so this completes the proof. |

Note condition 2, which states the existence of a polynomial exponential tra-
jectory (of the given pure frequency) not in #°. It can be shown, at least in the
continuous case, that only trajectories w(!) in ¢ are concatenable with w® =0
in the sense of (6) (for arbitrary open sets 77 and 7, with disjoint closures);
see the proof of Theorem 3.9 in [PS] for this argument. So uncontrollable poles
are frequencies which correspond to polynomial exponentials that cannot be
controlled to zero.

From condition 3 of the theorem, if the behaviour x# of some observable
function x includes a non-zero exponential trajectory with frequency not an
uncontrollable pole point, then this behaviour must be equal to .o7.

The last condition of Theorem 4.2 is perhaps the most interesting, particularly
since the observed trajectory r can be fixed independently of the system input.
In the continuous case, we can paraphrase this condition as follows: there is some
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k-linear combination of the inputs, outputs and their derivatives which can take
on an exponential value (of the given frequency), and which furthermore can take
this value independently of the values of the inputs. In particular, for a state-space
model, the given k-linear combination can be expressed entirely as a combination
of the inputs, their derivatives, and the states. This is a clear generalization of
input decoupling.

Example 4.3. Take the behaviour # over the signal space .7 = ¢*(RR* R)
defined by

#=A{w=(u,y)|Qu= Py},

where
2 2
—Z123 Z122 Zy + 23 Zy Zz I3
Q = —Z] 0 z3 s P= 0 1 1
-2 Z1 — Z3 Zn 1 z; 1

The controllable part turns out to be

B ={w=(u,y)| Q°u= P},

0 Z1 Vi) 1 0 0
o°=|-=z7 0 =z3|, PE=10 1 1]/,
—Zy —ZI3 0 0 Z1 1

and we have a matrix L with Q = LQ°, P = LP° given by

Zy Z3 0
L=(0 1 0
I 0 1

Since (—Q° P°) has full row rank, it is not hard to show that L is a kernel repre-
sentation of (—Q° P°)% =~ #/%°. Hence by Theorem 3.2 the uncontrollable pole
points are the places where the determinant of L vanishes. Hence

uncontrollable pole points = {(o,0,y) |2,y € C}.

Now consider the polynomial vector and non-zero trajectory
-1 t t 1

x=(0 —z; —2[1 0 0), r= (2= 1) explan +713), i
exp(at) + yt3), a=1.

We claim that r can occur as r = x(u, y) for any u. For example, consider the
input

t162t3

u= 0

t—t
—e'l™h
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Extending it to the trajectory

125

0

t—t
—e'l™h2

(u,y) = ,oa#E
eli—i + (“ _ l)eMHr}’l‘z

_ 2 _ eyt

efxt] +yt3

[1€2t3

0

_elhi—n
or , a=1,
6117,2 +eotl1+”/t3

—62[3 _ tleatl +yt3

1 elf1+“/t3

we find that (u, y) € # and x(u, y) = r, verifying condition 4 of the theorem.
An example of a polynomial exponential trajectory of pure frequency (e, 0, y) in
B\B° is given by

0 0
0 0
u 0 0
= —— |, «#1, or — |, «=1
¥y (ot _ l)e“ll+y’3 ettt
ettt _[180(?1+}’13
e+ H ettt

For o = 1 it is not hard to see that there is no exponential trajectory of frequency
(2,0,7) in \%°, although this is an uncontrollable pole point.

5. Controllable and Uncontrollable Zeros

Roughly speaking, zeros are frequencies which occur in the input when the output
vanishes (see, e.g. [DS]). However, in contrast to %, ,, the behaviour

Buo:={(u,y)eB|y=0} (12)

may not be autonomous, in which case defining the zero variety to be the charac-
teristic variety of %, o would be inappropriate, as it would lead to the conclusion
that for such a behaviour all frequencies are zeros. Instead, zeros can be defined
as rank-loss points of the corresponding representation matrices, and can be
characterized by the property that not only are the outputs zero, but also a certain
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number of the inputs, the rest being exponential of the given frequency. The
definitions and results in this section are new.

Consider the free variables of 4, . A set of such free variables could be called
completely unobservable inputs, since we can deduce absolutely no information
about their values by looking at the outputs. Let m’(%) denote the number of free
variables of 4, ¢, i.e. the number of completely unobservable inputs. Note that
this is dependent on the given free input/output structure on 4. For a given kernel
representation Qu = Py of %, we clearly have that m’(%) = m(%) — rank Q.
Also, for any subset I" of {1,...,m(%4)}, let %,r) o denote the behaviour obtained
by setting the outputs and those inputs u; with i € I' to 0. When I" specifies a com-
plete set of completely unobservable inputs of %,,0, %,(r),0 i autonomous.

We now provide a definition of zeros in the behavioural approach.

Definition 5.1. Let # be a behaviour with a given free input/output structure.
The zero variety of %, denoted 2 (%4, ), is defined by

Z(Buy) = N VY (Bur),0)- (13)
r<{l,..m},|T|=m'(%)

The controllable zero variety is the zero variety of %€, and the uncontrollable zero
variety is the characteristic variety of %,,0/(%#°), , where (#°), o = Bu,0 N H°.
(Controllable[uncontrollable) zero points are defined as the points of the corre-
sponding varieties.

Note that although (13) is an intersection over all sets of inputs of size m’(%), it
is only those I" corresponding to complete sets of completely unobservable inputs
which actually contribute (for other I', the variety will be all of C"). In the case
where %, is autonomous, m’(%) = 0 and the zero variety is simply the charac-
teristic variety of 4, ¢. In this special case the zeros theory will mirror the poles
theory.

Proposition 5.2. The following are equivalent for a behaviour # = ker.,(—Q P)
and (ay,...,a,) e C":

l. (ai,...,a,) is a zero point of .

2. The rank of Q(ay, ..., ay) is less than the rank of Q(z1,...,zy,).

3. For any set of up to m'(#) inputs u;, $B, o contains a non-zero exponential
trajectory of frequency (ai, ..., a,) which is zero in the specified components.

Proof. Write m = m(%), m’ = m’(%) throughout, and let p’ = m — m’ denote
the rank of Q. Now the rank loss points of Q are the points where the ideal
I,,(Q) generated by all p'th order minors of Q vanishes. For any selection
{s-oosdpy €{1,...,m} of p’ columns of Q, let I i) denote the ideal of

.....
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and therefore

V(i (Q) = M VL.j)-

{trenpr y S {1y m} '

However, V(I(_,»h_”’jp,)) is precisely the characteristic variety of %,r), where
[={l,...,m\{jj,...,Jj,}. This gives us the equivalence of conditions 1 and
2. Equivalence of conditions 1 and 3 is immediate by application of Theorem 3.2
to (13). [ |

So a zero is a frequency which can occur in the input when not only the output
but up to m’(#) inputs are set to zero. Note that, in the special case where %, o
is autonomous, Proposition 5.2 reduces to a direct application of Theorem 3.2.
We also see that zeros are a type of rank-loss point; such points are considered
from a formal algebraic point of view on pp. 155-158 of [O1]. This characteriza-
tion of zeros also enables us to compute an ideal representing the zero variety (i.e.
an ideal I with V(1) = Z(%4,,,)); we just compute the minors of Q of order m'.
Controllable zero points can be computed by first computing the controllable part
and then computing the zeros; uncontrollable zero points can be computed as the
characteristic variety of a factor behaviour.

Example 5.3. Consider again the behaviour given in Example 4.3:

B={w=(u,y)| Qu= Py},

where
—Z123 Z122 222 + z% Zy Zz I3
Q = —Z] 0 z3 5 P= 0 1 1
—Z) Z] — Z3 zy 1 Z1 1

In this case, Q has rank 2, i.e. the number of completely unobservable inputs is 1
(any one of u;,u; and w3 will do). The ideal of second-order minors of Q is given
by

L(Q) = (21222, —leg, 212223, —leg + 21223 — leg, zg’ — 212223 + 2223,

2 2 3 2 2
—zyz3+ 2123 — Z3, —Z] + Z123,2122 — 2223, —Z1Z3 —1—23).

We observe that for all these polynomials to vanish, we need z; = 0, and in this
case we also deduce z; = z3. Thus the set of zero points is

g(ﬁu,y) = {(O(, 07 OC) | xe (D}
Note that for any «, the inputs

0 ea11+a13
1) _ oty ot 2) _
Ll< ) — et 3 , u( ) — 0
0 eot11+c<l3

(together with corresponding zero outputs) are in %, o, so any single input vari-
able can be set to zero, while the input trajectory as a whole remains non-zero of
frequency (o, 0, o). This confirms condition 3 of Proposition 5.2.
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The next result shows that every zero point is either controllable, uncontrollable
or both. It also relates the uncontrollable zero points to the uncontrollable pole
points of both 4 and the output behaviour

,@y:{yem|3uwith <Z)e%’} (14)
The set (%), is defined analogously with respect to #°.
Theorem 5.4. The union of the controllable zero variety and the uncontrollable

zero variety is the zero variety. The union of the uncontrollable zero variety of %
and the uncontrollable pole variety of #, is the uncontrollable pole variety of #. A

point (ai,...,ay) is an uncontrollable zero point if and only if there exists a poly-
nomial exponential trajectory of pure frequency (ai, ..., a,) which is in 8, o but not
in %°.

Proof. To show the first claim, pick any kernel representation 4 = ker,(—Q P).
Then the controllable part %€ is given as the image of any minimal right annihi-
lator C of (—Q P) [WRO2, Corollary 6], and therefore as the kernel of any mini-
mal left annihilator R’ of C. Thus the relations on the columns of (—Q P) are
the same as the relations on the columns of R’, so in particular any maximal set
of linearly independent columns of Q corresponds to a maximal set of linearly
independent columns of the first m(%) columns of R’. In other words, %, o and
(%#°), , have the same free input/output structures. Hence for any (u,u»,0) €
B0, where the variables u; correspond to a set of inputs of 4, o, there exists a u
with (u1,u,0) € (%), , and we have

Buo = (B°),.0 + Bur),0

for any subset I" of {1, ..., m} specifying a set of inputs of 4, . Applying a stan-
dard isomorphism theorem, we now obtain

Byr),0 _ Bur),0 ~ (B°),,0 + Bur),0 __Buo (15)
('@C)u(r)ﬁ g”(r)ao N (gc)u,o B (%C)u,o (‘%C)u,o
and it now follows from (9) that for any such I" we have
V(Bur),0) =7 (B)ur),0) O 7 (Buo/(B),,0)- (16)

Intersecting over all I' which correspond to sets of inputs of %, o gives us the first
desired result.

To show the second claim, observe that %,0/(#°), , can be considered as a
sub-behaviour of %4/4%°¢ according to the isomorphism

—%MA,O «@u,o ~ %’C-l-«@u,o - 4

B,y B OBug B B

The corresponding factor is #/(% + %,,0), which maps to %,/(#%°), under

@: <Z) + (B + Buo) = ¥+ (%5°),.
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It is easy to show that ¢ is well defined, surjective and injective, therefore an iso-
morphism. Now the characteristic variety of %, /(#°), , is the uncontrollable
zero variety, and that of %#/%° is the uncontrollable polevvariety. The behaviour
(%°), is equal to the controllable part of ¢ (see Theorem 6.4 of [WORO], which
shows that elimination of variables commutes with taking the controllable part),
and so 77(%4,/(%°),) is the uncontrollable pole variety of %,. The second claim
now follows from (9).

The final claim is immediate from Lemma 3.3. |

The last statement of Theorem 5.4 tells us that an uncontrollable zero point is
a frequency which can appear in the input when the output is zero, and which
furthermore corresponds to a trajectory outside 4°¢. As in the case of uncontrol-
lable pole points, in the continuous case this implies that it cannot be controlled
to zero.

Example 5.5. We return to the earlier example:

B={w=(u,y)| Qu= Py},

where
—Z123 Z122 Z% + Z% I Z3 I3
O=1| —z 0 z3 , P=10 1 1
—I) Z]1 — Z3 Z 1 Z1 1

with controllable part

B ={w=(u, )| Q°u = Py},

0 Z1 ) 1 0 0
o°=| -z 0 =z|, PP=|0 1 1
—Z) —Z3 0 0 1 1

We can construct a kernel representation of %, o/ (@")u’0 ~ 04, o as follows:

zy z3 0
0 1 0
“%B,0 =k
0 .0 €Iy 1 0 1

This matrix fails to have full column rank at precisely the points
PV (Buo/(#°),,0) = {(2,0,0) | o € C}.

These are the uncontrollable zero points of %; in this case the uncontrollable
zero points coincide with the zero points. Note also from Example 4.3 that
every uncontrollable zero point is an uncontrollable pole point, as we expect from
Theorem 5.4.
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Next, for any given o € C look at the two trajectories identified in Example 5.3
as being input trajectories of 4 which may result in output zero:

0 eocrl +ot3
uD) = [ exntoss , u® = 0
0 eatl +ots

We can see that («?),0) is in #°, but (1), 0) is not. Thus %, 0\ (%), , contains a
non-zero exponential trajectory of frequency («,0, ), as predicted by Theorem
5.4.

Finally, the controllable zero points are the points where Q€ has rank less than
its usual rank, i.e. 2. Since z7,z7 and z3 are all order 2 minors of Q°, the set of
rank-loss points is just {(0,0,0)}. This point happens to be both a controllable

and an uncontrollable zero point.

Controllable zero points correspond to trajectories in (%), ,, i.e. to inputs
which can be controlled to zero while keeping the output at zero. The final result
shows that the controllable zero points are also the zeros of the transfer matrix in
a suitable sense.

Lemma 5.6. Let # be a behaviour with transfer matrix G, and take (ay,...,a,) €
C". Then G(ay, ... ,ay) is well defined and has rank less than that of G(z1, . ..,z,) if
and only if (a1, ..., ay) is a controllable zero point but not a controllable pole point.

Proof. As remarked following Definition 4.1, the controllable pole points are
precisely the points (ay,...,a,) where G(ay,...,a,) is not well defined. Therefore
let (a,...,a,) be a point which is not a controllable pole point. It suffices to
prove that (ai,...,a,) is a controllable zero point if and only if G loses rank at
(ai,...,a,). Let (—Q° P°) be a kernel representation of #°; then we know that P¢
has full column rank at (a,...,a,). Also, P°G = Q° by definition of the transfer

matrix. Therefore rank G = rank Q¢andrank G(ay,...,a,) = rank Q%(ay,...,a,).
Thus G loses rank at the same points as Q°, which by Proposition 5.2 are pre-
cisely the controllable zero points. |

The controllable zero points are clearly related to the classical transmission
zeros; the difference is essentially that there are no states involved in the current
analysis. Future work incorporating the states should provide a closer analogy to
the transmission zeros.

Example 5.7. Continuing with the same example, the transfer matrix of the
behaviour 4 is computed as

0 z1 Z

Z — 21 Z3 Z3
G:PilQ: 11—z l—z1 1—2
212 ) —Z3 —Z1Z3

1—21 1—21 1—21
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This transfer matrix has rank 2; the column vector (z3,—zy,z;) is in the right-
hand kernel. The determinant of the bottom-right 2 x 2 submatrix of G is
z% (1 —z1), so zz must vanish for the matrix to lose rank. Substituting z3 = 0
we soon deduce that the set of points where G is well defined but loses rank is
{(0,0,0)}, which is the set of controllable zero points constructed in Example 5.5,
as predicted by the lemma.

6. Summary

We have provided characterizations of the characteristic points of a factor behav-
iour. We have applied this to the closer examination of the uncontrollable pole
points of behaviours given by linear partial differential equations with constant
coefficients, and shown that they have an input decoupling property. We have
also extended the pole structure theory by including controllable and uncontrol-
lable zero points in a manner which does not depend upon the relative numbers of
inputs and outputs. We showed that the controllable zero points are the zeros
of the transfer matrix, and the uncontrollable zero points are a special case of
uncontrollable pole points. Further work will involve the description of observ-
able and unobservable zeros.

All the definitions we have given of different types of poles and zeros are equiv-
alent to module-theoretic properties, and these properties are similar (and in some
cases equivalent) in the 1D case to the definitions of poles and zeros given by
Bourlés and Fliess in [BF]. Many of our results can equivalently be obtained in
this dual framework by applying techniques from commutative algebra.

Acknowledgement. We thank three anonymous reviewers for their helpful com-
ments, and one in particular for strengthening the second claim of Theorem 5.4.
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