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Abstract Our primary hypothesis is that it should be possible to 

enrich data fusion by semantic processing, with wide potential 
application. In order to achieve our aim we need to represent the 
semantic data and enable reasoning about it in a framework that 
can be aligned with data fusion. Ontologies are most suited to this 
task as they allow for appropriate representation of data 
structure; some approaches include probabilistic representation. 
These can be aligned with data fusion approaches, such as 
Bayesian, which can fuse by including estimates of uncertainty.  

We shall describe our initial approaches towards establishing 
our hypothesis. We shall survey the enabling technologies, 
showing how they can contribute to our goal. We shall describe 
our selection of application data which derives from an acoustic 
sensor (military) scenario. We shall show how feature subset 
selection can reduce information-redundancy and improve 
efficiency in these domains, prior to fusion to enhance 
performance further. We shall explore the semantic attributes 
and the representations that can be deployed for enrichment 
purposes, showing how ontologies can be used in this context. 

In these respects we are aiming to show how we can approach 
enrichment of data fusion by semantic technologies, how this can 
capitalise on the current stock of techniques, and illustrate the 
potential benefits associated with this new approach. 

 
Index Terms—Data fusion, semantics, acoustic data, military 

applications 
 

I. INTRODUCTION 

HE need for data enrichment is manifest in the plethora 
of approaches developed for data fusion. Essentially, 
data fusion approaches aim to fuse descriptions that 

capture different aspects of an artifact, so as to improve 
classification capability. Our motivation here concerns 
enriching the data, rather than the process; we seek to 
augment data for classification purposes, rather than to 
enhance decision making processes. Given that this approach 
is being developed within the Information Technology 
Alliance (ITA) our primary concern is military data. Here the 
military data are from acoustic sensors and this is used to 
classify vehicle type from data supplied by autonomous 
sensors. 
 These data are acoustic signals from multiple sensor 
sources. For fusion purposes, these signatures can be data and 
represented in different ways by transformation of the source 
this essentially derives different invariance attributes in the 

 
 

feature description.  However, to classify vehicles from such 
data still remains a difficult problem, such as lower SNR 
(Signal-to-noise ratio), and complex ambient interferences. 
The data can be enriched by semantic means, which concerns 
intelligence and human derived descriptions. In this way, the 
features can be better separated thereby improving 
classification capability. The approach we are using to effect 
this enrichment is by using ontologies, as they are suited to 
representation and reasoning within semantic data. There have 
been prior approaches to ontological enrichment of data fusion 
processes, but these have not been phrased in terms of 
enriching classification capability. 

The framework of our approach is shown in Figure 1. Here, 
we seek to classify the vehicle that generated the sound 
recorded by microphones. In a conventional pattern 
recognition framework, features are extracted from this sensor 
data and these features are filtered according to perceived 
information content, prior to use in classification. We seek to 
enrich this process by semantic data, which we shall represent 
using ontologies. These will contribute to the data fusion 
processes which lead to the combined and enriched decision. 

 

Fig. 1 Semantically-mediated data fusion 

In the next Section we describe the current stock of 
approaches to (conventional) data fusion, including the JDL 
data fusion model for completeness. We then describe, in 
Section III, how ontologies can be used to describe and reason 
within semantic data. Section IV concerns feature subset 
selection, which we use to explore the data space used within 
conventional data fusion. We describe our exemplar 
application data in Section V, together with the preliminary 
results we have obtained on it in Section VI. These show that 
data fusion and feature subset selection can be used to classify 
the data with success. Further, we have defined semantic 
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attributes that can be associated with the data to explore the 
possibilities of semantic enrichment. 

II.  DATA FUSION 

A. JDL Data Fusion Model 

The JDL data fusion model is the most widely adopted 
functional model for data fusion. It was developed in 1985 by 
the U.S. Joint Directors of Laboratories (JDL) Data Fusion 
Group [1] with several recent revisions proposed [2 ,3, 4]. The 
JDL distinction among fusion ‘levels’ provides an often useful 
distinction among data fusion processes that relate to the 
refinement of ‘object’, ‘situations’, ‘threats’ and ‘processes’ 
[1], which are heavily inter-related. The objectives of these 
‘Data Association (generation, evaluation and selection of 
association levels’ are to (a) provide a useful categorization 
representing logically different types of problems, which are 
generally solved by different techniques; and (b) maintain a 
degree of consistency with the mainstream of technical usage. 
The definitions are: 
• Level 0 - signal/feature assessment: semantic annotation 

and processing of high-dimensional data sets, e.g., multi-
spectral information sources, satellite imagery, video 
footage, vibration data, voice communications; derivation of 
semantically-relevant features for such sources; guidance of 
information acquisition processes with respect of epistemic 
constraints; facilitation of feature extraction process using 
background knowledge, expectations, and activation of 
mental models and schemas.  

• Level 1 - Object assessment: improved certainty estimates 
with respect to fused data derived from multiple sources, 
facilitation of entity characterization in terms of implied 
features and feature values, support for identity inference. 

• Level 2 - Situation assessment: knowledge-filtered 
awareness, including support for contextual relevance 
reasoning, information triage, and representation of situation 
state. 

• Level 3 - Impact assessment: support for rules-based 
processing of situation-relevant data in relation to decision 
support processes, e.g., automated mission planning, threat 
assessment, battlefield planning, and deployment of 
defensive measures 

• Level 4 - Performance assessment: identification of 
knowledge gaps/epistemic inadequacies and the 
implementation of appropriate remedial actions; provision of 
explanatory support to enable system evaluation and 
validation of knowledge system operation. 

• Level 5 - User Refinement: adaptive determination of who 
queries information and who has access to information and 
adaptive data retrieval and display to support cognitive 
decision making and actions given social and political 
contexts. 
Note that the levels were differentiated first on the basis of 

types of estimation process, which typically relates to the type 
of entity for which state is estimated. In general, the benefit of 
this scheme of partitioning fusion functions into these levels is 
due to the significant differences in the types of input data, 
models, outputs, and interferences applicable to problems at 

different levels. These levels are not necessarily processed in 
order and any one can be processed on its own given the 
corresponding inputs. In addition, more than one fusion level 
may need to be treated within one fusion node to achieve user 
fusion needs albeit at higher complexity. 

B. Information flow across levels 

Processing at each of these Data Fusion levels involves 
batching the available data for fusion into a network of fusion 
nodes where paradigmatically each fusion node accomplishes 

• Data preparation (data mediation, common formatting, 
spatiotemporal alignment, and confidence normalization); 

• Data Association (generation, evaluation and selection of 
association hypotheses; i.e. of hypotheses; i.e. of hypotheses 
as to the applicability of specific data to particular aspects of 
the state estimation problems); 

• State Estimation and Prediction (estimating the presence, 
attributes, inter-relationships, utility and performance or 
effectiveness of entities of interest, as appropriate to the data 
fusion node). 

In all the fusion levels, the accuracy of the fused state 
estimates tend to increase as large batches of data are fused; 
however the cost and complexity of the fusion process also 
increases. Thus, a knee-of-the-curve of performance versus 
cost fusion node network is sought in the system design and 
operation. As noted above, the data fusion levels are not 
necessarily processed in order and any one can be processed 
on its own or in combination given the corresponding inputs 
and there is feedback across Levels. The notion of inter-Level 
‘informing’, controlling, and exploitation can in fact become 
quite complex in certain applications, and has similarities to 
the complexities of peer-to-peer internetworking processes at 
multiple levels of abstraction. In the course of one Level 
informing another, there should be some sense of added value, 
or utility, balancing the negative aspects of the additional 
processing complexity and time delay of enable such 
feedback. Moreover, the possibility of such feedback raises 
concerns for maintaining consistency in inference across 
levels. 

C. Data Fusion Algorithms 

In the typical military setting, there are various platforms 
with sensors of different types. From such information, the 
data fusion system needs to produce reasonable hypotheses of 
the actual truth. Various mathematical techniques have been 
developed to deal with this problem [5], which include: 

1) Bayesian (Probability) methods, in which the degrees of 
belief are represented by a prior, conditional, and a posteriori 
probability. Usually, decisions are made on a posteriori 
probabilities )|( in yP θ , where iy is a measurement or a feature 

vector coming from sourcei , and )|( ini yPx θ=  represents 

statistics of each source to be combined (data, outputs of 
classifiers). Fusion is usually performed by the Bayes rule, 
which under the condition of source independence is reduced 
to a product: 
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Techniques using Bayes rule include the Kalman filter, 
Multi-Hypothesis Estimation (MHE) filter, and the Joint 
Probabilistic Data Association (JPDA) filter. This fusion 
operator is conjunctive and assumes total reliability of the 
sources. If the sources are not totally reliable, several fusion 
rules within the framework of the probability theory have 
been proposed, such as weighted average methods and a 
method by incorporating contextual information. 

2) Evidential methods encompass several models such as the 
Dempster-Shafer theory [5] and transferable belief theory [6]. 
In the framework of the Dempster-Shafer theory information 
obtained from sourcei is represented by the Basic Probability 
Assignment (BPA). A functionm is called a BPA if: 

∑
Θ⊆

==
A

Amm ,1)(,0)(ο         (2) 

where )(Am  represents the confidence we grant to the 

realization of A  and only ofA . We can easily see that the 
evidential theory is reduced to the probability theory if the 
imprecision is suppressed: i.e. the basic probability 
assignment is defined only for the singletons of Θ . 

Fusion of independent and equally reliable basic probability 
assignments is performed by the Dempster rule of 
combination (normalized (1) or non-normalized (2)): 
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        (3) 

where the normalization coefficientC is used in the case of the 
exhaustive frame of discernment and measures conflict 
between sources. Examples of other rules are trade-off rule, 
discount rule, etc. 

3) Rough sets whose theory [14] deals with imprecision. The 
basic concept of the rough sets theory is to replace uncertain 
or imprecise information by two imprecise but certain 
information: the lower and upper approximations. 

The combination of imprecise information is realized by 
applying the set theory to the approximations. The beauty of 
the rough sets theory is that there is no need to quantify the 
information’s uncertainty. This is an advantage because 
usually it is very difficult to quantify the degree of confidence 
granted to information, and it is a disadvantage because there 
is no difference between two pieces of information to which 
we would have granted different degrees of confidence. 

4) Possibility and fuzzy methods. In the framework of 
possibility theory, information obtained from sensor i  is 
represented by possibility distribution π . The notion of 
possibility distribution is equivalent to the notion of the basic 
probability assignment in belief theory with a different 
constraint: 

.1)(max:]1,0[: =→Θ
Θ∈

θππ
θ

     (4) 

Most of the combination rules are based on t-norms and t-
co-norms, the fuzzy translation of the intersection and union. 
Possibility approach also offers several fusion rules such as 
trade-off rules, and discount rules. 

As such, there is a selection of extant approaches to data 
fusion. We need means to represent the semantic data, and to 
enable reasoning in this space. Ontologies appear most suited 
to this task, with the further advantage that they can also be 
used to represent trust and uncertainty. 

This section reviews the basic data fusion framework and 
the main-stream algorithms. In the next research, we will 
explore how to apply them to acoustic data fusion, and 
examine if ontology or semantic representation can play a role 
in them. 

III.  ONTOLOGIES 

Ontologies are regarded as the basic building units and 
integral parts for the semantic representation, as they provide 
a reusable piece of knowledge about a specific domain. The 
use of ontologies for the explication of implicit and hidden 
knowledge is a possible approach to overcome the problem of 
semantic heterogeneity. 

Generally speaking, the semantic heterogeneity deals with 
three types of concepts [7]: the semantically equivalent 
concepts, the semantically unrelated concepts and the 
semantically related concepts. In the first case, a model uses 
different terms to refer the same concept; in the second case, 
the same term may be used by different systems to denote 
completely different concepts; and in the last case, different 
classifications may be performed. 

As the ontology development process becomes more 
ubiquitous and collaborative, the difficulties in making 
ontologies inter-operable become a serious problem. In order 
to achieve effective semantic inter-operability in a 
heterogeneous information system, the meaning of the 
information that is interchanged has to be understood across 
the systems. The domains covered by ontologies have to be 
few, thus avoiding conflicts between useage of the context. 

Semantic conflicts occur whenever two contexts do not use 
the same interpretation of the information. Goh identifies three 
main causes for semantic heterogeneity [8]: 
• Confounding conflicts occur when information items seem to 

have the same meaning, but differ in reality, e.g. due to 
different temporal context. 

• Scaling conflicts occur when different reference systems are 
used to measure a value. 

• Naming conflicts occur when naming schemes of information 
differ significantly. 

In nearly all ontology-based integration approaches ontologies 
used for the explicit description of the information source 
semantics. A question that arises from the use of ontologies for 
different purposes in the context of information integration is 
about the nature of the used ontologies.  

The task of integrating heterogeneous information sources 
put ontologies in context. They cannot be perceived as 
standalone models of the world. They should rather be seen as 
the glue that puts together information of various kinds. 
Consequently, the relation of ontology to its environment 
plays an essential role in information integration. By the term 
mappings is understood the connection of an ontology to other 
parts if the application system. The two most important uses of 
mappings required for information integration are mappings 
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between ontologies and the information they describe and 
mapping between different ontologies used in a system. There 
are further aspects to the use of ontologies, including the 
representations of trust and uncertainty, but we shall not 
explore these here. 

We have yet to find any techniques developed to understand 
the feature content of the semantic data, known as feature 
subset classification for more conventional measured data. As 
we can apply feature subset selection to the data to be 
classified, we ought also to be able to understand the semantic 
space better by applying similar techniques there. As such, we 
shall move to techniques which can be used to explore the data 
space in the next Section. 

IV.  FEATURE SUBSET SELECTION 

Feature selection is a processing to choose a subset of 
features or some combination of the input features that best 
represent the original data under a certain criterion. Data 
fusion can benefit from feature selection by discarding some 
of the redundant information and reducing dimensionality. In 
semantically-mediated data fusion, feature selection or other 
feature extraction techniques can serve as important tools for 
semantic annotation or obtaining ontology attributes. In this 
section, we will first review existing approaches to feature 
selection, and then propose a new method for acoustic feature 
extraction. 

A. Traditional Approaches 

Feature selection is one instance of the classical optimal 
subset selection problem, which is known to be 
computationally hard. Finding the best subset of features by 
testing all possible combinations is practically intractable even 
when the number of input features is modest. Consequently, 
numerous optimisation methods, such as hill climbing, genetic 
algorithm, and greedy approaches, have been proposed for 
speeding up the search of an optimal or suboptimal solution. 

Roughly speaking, the feature selection methods may 
follow two major models: (1). Features are selected in a pre-
processing stage, independently of the classification 
algorithm; and (2) The feature subsets are searched by using a 
performance indicators connected with an classification 
algorithm. Here the classification algorithm is used for 
ranking possible feature combinations.  

Other dimensionality reduction techniques include principal 
component analysis (PCA), which is also known as the 
Karhunen-Loeve Transform (KLT). The PCA transform 
matrix consists of eigenvectors corresponding to the largest 
eigenvalues of the covariance matrix of data. Thus, PCA 
projects the original features along the first group of directions 
with maximal variance. Similarly, Fisher Discriminant 
Analysis (FDA) also projects the features into a lower 
dimensional space but by analysing a more sophisticated 
matrix. Independent component analysis (ICA) has also been 
proposed to find a linear mixture of the data, in the same or 
lower dimension of the data, where each of the projections 
will be as independent as possible from the other projections. 

B. Information-based methods 

Compared to the traditional methods, information-based 

methods directly measure the information content of each 
individual feature. If the measured information content is 
related to the level of discriminatory capability, the feature 
selection can be carried out by choosing those features with 
the higher information content. Common information metrics 
include entropy and mutual information. 

According to Shannon’s information theory, entropy 
measures information content in terms of uncertainty. Let A  
be a random variable taking values in the set a  with 
probability distribution )(Ap . The entropy is defined by 

∑
∈

−=
aA

ApApAH ).(log)()(      (5) 

One may directly use the entropy as a criterion for feature 
selection, in which the entropy is calculated to estimate the 
information contained in each individual feature, and these are 
then ranked in order. Feature selection can be performed by 
choosing those with the top-ranking entropy values. 

However, by examining the definition of entropy, it can be 
seen that entropy is calculated with respect to the single 
variable A, without reference to any objective. Thus, the 
amount of information measured by the entropy lacks a point 
of reference or benchmark. To improve the entropy-based 
methods, it is logical to extend the information measure to two 
variables: one for the measured feature itself and the other for 
the class label that is directly related to the classification 
objective. Mutual information (MI) provides a framework to 
measure the similarity between two random variables, and was 
introduced for feature selection [9]. 

MI is a basic concept in information theory to measure the 
statistical dependence between two random variables. Given 
two random variables A  andB , with marginal probability 
distributions )(Ap and )(Bp , and joint probability 

distribution ),( BAp , MI is defined as: 

∑
∈∈ ⋅

=
bBaA BPAP

BAp
BApBAI

,

.
)()(

),(
log),(),(    (6) 

From (5), it is not difficult to find that MI is related to 
entropy by the following equations: 

)|()(
)|()(

),()()(),(

ABHBH
BAHAH

BAHBHAHBAI

−=
−=

−+=
     (7) 

where )(AH  and )(BH  are the entropy of A  and B , 

),( BAH  their joint entropy, and )|( BAH  and )|( ABH  the 

conditional entropies of A  given B  and of B  given A . 
If we model each individual feature and the corresponding 

class label as random variables, MI can be used to estimate the 
dependency between the feature component and its class 

 
Fig. 2  Illustration of mutual information 
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category. This can be used to investigate how much 
information a feature component contains about the class 
label, and use it for feature selection (see Fig. 2). In this way, 
we have approaches which can fuse data, and a new approach 
to explore the feature space to determine potency for 
classification capability. 

V. ACOUSTIC DATA  

A. Data Description 

We are testing our approaches based on an acoustic data set 
provided by the U.S. Army Research Laboratory (ARL). This 
data is most suited to our approach since it is an active and 
challenging problem, and one which is suited to semantic 
analysis. Essentially, the data reflects an interest in automatic 
sentinels that can automatically determine the presence of 
offensive vehicles. ARL has conducted several experiments in 
tracking a convoy of multiple targets using several spatially 
distributed sensor arrays. 

The data from each sensor array is collected at a sampling 
rate of 1024 samples per second. The raw data from each 
microphone in a sensor array is recorded for classification. 
After FFT (Fast Fourier Transform), each second of acoustic 
signal is transformed into 351 dimensional spectral data. Fig. 3 
[16] shows an example of the location of six sensor arrays and 
a run test around a prearranged track.  

 
Fig. 3.  Sensor array configuration and a running track 

B. Semantic Representation 

When considering how data is semantically represented, four 
fundamental questions to ask are: (1) How is the 
representation related to conceptual structures? (2) How is the 
meaning of each data represented? (3) How are the meanings 
of different data related to one another? With few exceptions, 
existing theories of semantic have made explicit claims 
concerning the representation of each meaning and the 
relations among different word meanings, while the relation 
between conceptual and semantic structures is often left 
implicit, and the issue of whether different principles are 
needed for representation of different content domains is often 
neglected.  

In this paper we use a method called Focused ontology 
integration to represent the semantics within the data. This 
method consisting of following steps: 
1. Identify a limited number (3-5) of (existing) ontologies 

close related to the problem 
2. Find the places in the ontologies where they overlap; 

3. Relate concepts that are semantically close via equivalence 
and subsumption relations (aligning); 

4. Check the consistency, coherency and non-redundancy of 
the result. 

Then we use this as the base to create more ontologies.  

VI.  ANALYSIS OF ACOUSTIC DATA  

A. Semantic Analysis 

The semantic enrichment of the data is done by identifying 
semantic concept and relations appearing in the data and from 
the data fusion. Of course this has a large coverage of different 
ontological domain, based on the discussion in section 3, we 
decided to focus on four type of ontologies 

− a sensor ontology – semantic description of the sensors;  
− a sequence ontology – semantic description of event here 

sensor was tested; 
− a data ontology – semantic description of data received by 

the sensor; and  
− a supporting ontology– semantic description of concepts 

that would effect all three mentioned ontology. 
These allow us to have a much improved description than 

many of the previous research where semantic representation 
and data fusion were used individually. 

Results from data fusion are used to represent the entities 
and properties contribute to the relationships between them. 
For example, some important relationships include “has a type 
of feature”, “is a kind of amplitude”, “has a function as”, etc. 

Sensor ontologies support concepts such as “If A receives C 
from B”. In addition to the general properties used in any 
ontology, certain actions apply especially to sensors. The 
action, “detect,” is quite basic to sensors. Other verbs are 
“identify” and “classify”. Semantic relationships between 
actions play an important and often key role in sensor-related 
concepts.  

Sequence ontology contains spatial and temporal 
information. For example, A may happen before B. X could be 
detected. In this case X enables B because B cannot occur 
without the existence X. It also implies that X must occur 
BEFORE A.  

The data ontologies are the most complete description of the 
data fusion result. It totally depends on the algorithms selected 
and how wide the semantic description will cover. 

The supporting ontology contains information and relations 
that is not clearly expressed in the last three ontologies. We 
focus mainly on the environmental and vehicle related classes 
and properties, such as weather, weight and size.  

B. Feature level fusion for acoustic data 

In this section, we will describe a traditional feature level 
fusion for acoustic data. This is the first step towards our final 
goal, and can provide a benchmark for the semantically-
mediated data fusion. In the next step, semantic representation 
will be included in this fusion framework for ontology 
reasoning.  

In details, we propose a feature-level fusion method by 
combining two set of acoustic features, where, harmonic 
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features are used to characterize the fundamental frequency, 
and a group of key frequency components, selected by MI, are 
used to reflect other useful acoustic factors. Fusing these two 
set of features may provide a more complete description about 
the vehicles’ acoustic signatures, and improve the 
classification accuracy accordingly. To keep the same 
dimensionality of feature space, the fusion is devised by 
replacing the higher order harmonics components with the 
same number of key frequency components. 

The harmonics are effective acoustic features. However, the 
acoustic model for vehicles may be more complicated, 
particularly in the area of non-harmonic features. Thus, an 
acoustic signature S regarding a working vehicle can be 
modelled as a combination of harmonic and other non-
harmonic components: 

)()(
00 fKfHS +=        (8) 

In (8), the first term MihfH
i i ,,2,1,)( 0 L==∑  denotes a 

set of harmonic features. The second term 

00
,,,2,1),()( ffNjfkfK jj j ≠==∑ L  is a group of 

features from the non-harmonic part. In this paper, we use 
Njf j ,,2,1, L=  to indicate the key frequency components 

that are not related with the fundamental frequency0f , but are 

considered also containing useful classification information. 
Based on the vehicle-signatures’ model in (8), the fusion 

can be implemented by combining information from both 
harmonics and other key frequency components. In details, we 
adopted a feature level fusion, where features from two 
sources are concatenated together to form a new feature 
vector, such as: 

)}(,),(),(,,,,{ 2121 LK fkfkfkhhhF LL=   (9) 

Here we have MLK =+ , and M  is the dimensionality of 
the pre-specified harmonics feature space. Other fusion 
schemes, like those introduced in Section II, are also 
applicable and will be discussed in the future. 

The fused feature vectors now have the same 
dimensionality as the harmonic features’, but with the L  
higher order harmonics replaced by the same number of key 
frequency components. 

Experiments are carried out based on a multi-category 
vehicles data set from ARL, USA [10, 16-18]. In the 
experiments, half of data samples from each class were 
randomly chosen to estimate the statistical parameters, such as 
harmonic features’ means vector, covariance matrix, and also 
mutual information. The remaining 50% samples forms the 
testing set on which performance was assessed.  

Next, feature selection is carried out based on the methods 
introduced in Section IV. Following the results in [16], the 
harmonic number is chosen as 21. The dimensionality of the 
feature vectors extracted by mutual information is flexible, and 
the detailed number can be decided by the computing 
resources.  

Currently-popular support vector machines (SVMs) [19], 
[20] were chosen as the classifiers in these experiments 
because they are less sensitive to the higher dimensional data. 
Although SVMs are used here, other classification algorithms, 

such as the Multivariate Gaussian classifier [16], are also 
applicable. 

As SVMs are inherently binary (two-class) classifiers, 10 
one-against-one classifiers were used with subsequent 
majority voting to give a multi-class result. The kernel 
function used is an inhomogeneous polynomial. The penalty 
parameter C is tested between 10-3 and 105 and polynomial 
order is tested between 1 and 10 by a two fold validation 
procedure using only training data. A polynomial of order 3 
and C = 20 were finally found as the best values for this SVM. 

To avoid bias on random samplings, the testing was 
repeated 10 times to allow an estimate of the error inherent in 
this sampling process. The classification results based on 
different feature sets are shown in Table I. The first two rows 
of Table I list the classification accuracy before fusion, where 
the 21 dimensional harmonic features and key frequency 
features are applied individually. It is seen that the feature set 
represented by the key frequency components is relatively 
weak. 

The next two rows show the accuracy results after fusion. In 
the third row, to keep the dimensionality as 21, 10 higher 
order harmonics are removed. The vacated space is then 
replaced with the 10 features based on the key frequency 
components. It can be seen that after this fusion, the 
classification accuracy is improved from 74.4% to 78.5%. In 
the fourth row, if we add more key frequency components 
(e.g., 21 dimensional key frequency components) to the 11-
dimensional harmonic features, the classification accuracy can 
be further increased to 81.1%, but at the cost of higher 
dimensionality (i.e., 32 dimensional feature space).  

The accuracy values shown in Table I are overall numbers, 
which can be seen as weighted results based on all five 
individual classification accuracies. In this multi-category 
vehicle data set, the number of testing set for each vehicle is 
different due to their different running speeds. A bias may 
occur if a method has preference to the classes which have 
more numbers than others. In this case, the overall accuracy 

TABLE I 
COMPARISON OF CLASSIFICATION RESULTS BASED ON 

DIFFERENT FEATURE SETS 

Feature set 
Mean 

accuracy (%) 
Standard 
deviation 

Harmonics(21dim) 74.4 1.45 
Key Freqs(21dim) 74.3 1.05 

Harmonics(11dim)+ Key Freqs(10dim) 78.5 0.92 
Harmonics(11dim)+ Key Freqs(21dim) 81.1 0.57 

 

TABLE II 
COMPARISON OF CLASSIFICATION RESULTS (MEAN (%) + STD) 
FOR EACH INDIVIDUAL  TYPE OF VEHICLES; FUSION METHOD 1: 

HARMONIC(11DIM)+ KEY FREQS(10DIM); FUSION METHOD 2: 
HARMONIC(11DIM)+ KEY FREQS(21DIM) 

Vehicle 
types 

HARMONICS 
(21DIM) 

KEY FREQS 

(21DIM) 
FUSION 1 
(21DIM) 

Fusion 2 
(32dim) 

V1 84.2±1.70 70.6±4.80 86.2±1.28 87.1±1.01 
V2 78.7±1.06 83.4±0.87 82.8±0.80 85.7±0.88 
V3 83.2±1.36 81.1±1.27 83.8±0.88 84.9±0.53 
V4 50.7±5.69 54.2±3.70 59.4±3.08 65.2±1.69 
V5 65.4±1.92 66.9±2.06 73.5±2.33 76.4±1.50 
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shown in Table I can not fully confirm the improvement of 
performance. Therefore, we further list the classification 
accuracy for each individual vehicle, labelled by V1 to V5 in 
Table II 

The same 10 times random samplings are carried out, and 
the (mean classification accuracy) ± (standard deviations) for 
each of the five vehicles are listed. From Table II, it is seen 
that for the case of the same dimensionality (21 features), the 
fusion method is consistently better than other un-fused 
methods, in all five classes. This confirmed the improvement 
of classification accuracy by using the proposed feature-level 
fusion. 

It is also realized that the change of the vehicles’ velocity 
may affect the selected result by mutual information. In this 
sense, the features represented by the key frequency 
components are not as stable as the harmonics. Although this 
sensitivity may be mitigated by a more sufficient sampling, in 
this fusion scheme the harmonics are the major features and 
the key frequency components are only used as the 
supplementary ones. The performance may be improved if the 
added features captured new information, but is unlikely to 
degrade too much even if the capture of new information did 
not occur. 

VII.  CONCLUSIONS AND FUTURE WORK 

The case for enrichment of data fusion processes is quite 
compelling, especially in military scenarios, and we look 
forward to achieving this. Our target is to enrich classification 
capability by augmenting data fusion processes using semantic 
data. Our example application concerns the identification of 
vehicles from autonomously-sensed acoustic data. We have 
demonstrated that the component technologies needed to 
enable our overall aims are already sufficiently well 
developed for this task. In this, data fusion can improve 
classification capability from the acoustic data. Further, the 
new approach to feature set selection by information content 
can improve potency in the descriptions used. We have 
described how we will deploy the semantic enrichment by 
using ontologies together with some of the semantic attributes 
we intend to explore. In this way we will enrich the results 
derived by data fusion and by feature subset selection and we 
look forward to improving the classification capability still 
further, by this new approach. 
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