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Abstract Our primary hypothesis is that it should be possik# to
enrich data fusion by semantic processing, with wil potential
application. In order to achieve our aim we need toepresent the
semantic data and enable reasoning about it in adgmework that
can be aligned with data fusion. Ontologies are mbsuited to this
task as they allow for appropriate representation 6 data
structure; some approaches include probabilistic rpresentation.
These can be aligned with data fusion approachesuch as
Bayesian, which can fuse by including estimates ahcertainty.

We shall describe our initial approaches towards éablishing
our hypothesis. We shall survey the enabling techimgies,
showing how they can contribute to our goal. We shiladescribe
our selection of application data which derives frm an acoustic
sensor (military) scenario. We shall show how feate subset
selection can reduce information-redundancy and immve
efficiency in these domains, prior to fusion to erdnce
performance further. We shall explore the semanticattributes
and the representations that can be deployed for eishment
purposes, showing how ontologies can be used inghiontext.

In these respects we are aiming to show how we capproach
enrichment of data fusion by semantic technologiefiow this can
capitalise on the current stock of techniques, andlustrate the
potential benefits associated with this new appro&c

Index Terms—Data fusion, semantics, acoustic data, military

applications

I. INTRODUCTION
HE need for data enrichment is manifest in theholet

of approaches developed for data fusion. Essentiall
data fusion approaches aim to fuse descriptions tr

capture different aspects of an artifact, so asntprove

classification capability. Our motivation here cents

enriching the data, rather than the process; we& dee
augment data for classification purposes, rathem tho

enhance decision making processes. Given thaafipsoach

is being developed within the Information Technglog
Alliance (ITA) our primary concern is military datblere the

military data are from acoustic sensors and thisised to

classify vehicle type from data supplied by autonam

Sensors.

T. Raju Damarla

U.S. Army Research Laboratory, 2800 Powdermill Road
Adelphi, MD, USA

feature description. However, to classify vehidiesn such
data still remains a difficult problem, such as éwSNR
(Signal-to-noise ratio), and complex ambient irgeghces.
The data can be enriched by semantic means, whioteens
intelligence and human derived descriptions. Is thay, the
features can be better separated thereby improving
classification capability. The approach we are gism effect
this enrichment is by using ontologies, as they saréed to
representation and reasoning within semantic ddtere have
been prior approaches to ontological enrichmemladd fusion
processes, but these have not been phrased in tefms
enriching classification capability.

The framework of our approach is shown in Figurélére,
we seek to classify the vehicle that generated sbend
recorded by microphones. In a conventional pattern
recognition framework, features are extracted fthism sensor
data and these features are filtered accordingetcepved
information content, prior to use in classificatiélle seek to
enrich this process by semantic data, which wd sktesent
using ontologies. These will contribute to the détaion
processes which lead to the combined and enricaeididn.
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Fig. 1 Semantically-mediated data fusion

In the next Section we describe the current sto€k o
approaches to (conventional) data fusion, includimg JDL
data fusion model for completeness. We then desciitp
Section Ill, how ontologies can be used to desaaife reason
within semantic data. Section IV concerns featunbdsst

These data are acoustic signals from multiple mensSelection, which we use to explore the data spaed within

sources. For fusion purposes, these signhaturebecaata and
represented in different ways by transformatiorihef source
this essentially derives different invariance htites in the

conventional data fusion. We describe our exemplar
application data in Section V, together with thelipninary
results we have obtained on it in Section VI. Thesew that
data fusion and feature subset selection can liktosdassify
the data with success. Further, we have definedasten



attributes that can be associated with the daexpdore the
possibilities of semantic enrichment.

Il. DATA FUSION

A. JDL Data Fusion Model

different levels. These levels are not necessaribcessed in
order and any one can be processed on its own ghen
corresponding inputs. In addition, more than orsciu level

may need to be treated within one fusion node lhieae user
fusion needs albeit at higher complexity.

B. Information flow across levels

The JDL data fusion model is the most widely addpte

functional model for data fusion. It was develojred 985 by
the U.S. Joint Directors of Laboratories (JDL) D&tasion
Group [1] with several recent revisions proposeB[2]. The
JDL distinction among fusion ‘levels’ provides aftem useful
distinction among data fusion processes that refate¢he
refinement of ‘object’, ‘situations’, ‘threats’ angrocesses’
[1], which are heavily inter-related. The objectivef these
‘Data Association (generation, evaluation and diecof
association levels’ are to (a) provide a usefukgatization
representing logically different types of problemsjich are
generally solved by different techniques; and (l@imain a
degree of consistency with the mainstream of textnisage.
The definitions are:

Level O - signal/feature assessment: semantic atioot
and processing of high-dimensional data sets, englti-
spectral information sources, satellite imagerydeui
footage, vibration data, voice communications; \d&ion of
semantically-relevant features for such sourcegjagee of
information acquisition processes with respect mstemic
constraints; facilitation of feature extraction pess using
background knowledge, expectations, and activatién
mental models and schemas.

Level 1 - Object assessment: improved certaintynasés
with respect to fused data derived from multipleirses,
facilitation of entity characterization in terms ohplied
features and feature values, support for identifgrence.

Level 2 - Situation assessment:
awareness, including support for contextual
reasoning, information triage, and representatiositoation
state.

processing of situation-relevant data in relationdécision
support processes, e.g., automated mission planttingat
assessment, battlefield planning, and deployment
defensive measures

Level 4 - Performance assessment: identification
knowledge  gaps/epistemic  inadequacies and
implementation of appropriate remedial actionsyfgion of

knowledge-filtere
releean

Processing at each of these Data Fusion levelsivieso
batching the available data for fusion into a neknaf fusion
nodes where paradigmatically each fusion node aplisines

Data preparation (data mediation, common formatting
spatiotemporal alignment, and confidence normatimit

Data Association (generation, evaluation and seleaf
association hypotheses; i.e. of hypotheses; i.aypbtheses
as to the applicability of specific data to par&uaspects of
the state estimation problems);

State Estimation and Prediction (estimating thesgmee,
attributes, inter-relationships, utility and perfance or
effectiveness of entities of interest, as appreopiia the data
fusion node).

In all the fusion levels, the accuracy of the fusstdte
estimates tend to increase as large batches ofadgattused;
however the cost and complexity of the fusion psscalso
increases. Thus, a knee-of-the-curve of performaresus
cost fusion node network is sought in the systesigmeand
operation. As noted above, the data fusion levets reot
necessarily processed in order and any one camdeessed
on its own or in combination given the correspogdimputs
and there is feedback across Levels. The notiantef-Level
‘informing’, controlling, and exploitation can iraét become
quite complex in certain applications, and has laiities to
the complexities of peer-to-peer internetworkinggasses at
ultiple levels of abstraction. In the course ofeobevel
forming another, there should be some senseddgdaualue,
or utility, balancing the negative aspects of thligonal
processing complexity and time delay of enable such
feedback. Moreover, the possibility of such feedbesises

Level 3 - Impact assessment: support for rulesbasgoncerns for maintaining consistency in inferenazoss

ofC. Data Fusion Algorithms

In the typical military setting, there are variopkatforms
afith sensors of different types. From such infoiomat the
thiata fusion system needs to produce reasonablehages of
the actual truth. Various mathematical techniquagehbeen

explanatory support to enable system evaluation awigveloped to deal with this problem [5], which inbé:

validation of knowledge system operation.

Level 5 - User Refinement: adaptive determinatibwioo
gueries information and who has access to infoonagind
adaptive data retrieval and display to support dogn
decision making and actions given social and paliti
contexts.

Note that the levels were differentiated first bie basis of
types of estimation process, which typically redatie the type
of entity for which state is estimated. In genetiaé, benefit of
this scheme of partitioning fusion functions intese levels is
due to the significant differences in the typesimgfut data,
models, outputs, and interferences applicable tblpms at

1) Bayesian (Probability) methods, in which the degrees of
belief are represented by a prior, conditional, argbsteriori
probability. Usually, decisions are made on a pasie
probabilitiesP(4, | v;) , wherey; is a measurement or a feature

vector coming from sourde and x =P(6,|y;) represents

statistics of each source to be combined (datgputsitof
classifiers). Fusion is usually performed by they&arule,
which under the condition of source independencedsiced
to a product:
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Techniques using Bayes rule include the Kalmarerfilt
Multi-Hypothesis Estimation (MHE) filter, and theoidt
Probabilistic Data Association (JPDA) filter. Thisision
operator is conjunctive and assumes total relighif the
sources. If the sources are not totally reliabéesal fusion
rules within the framework of the probability thgohave

As such, there is a selection of extant approathetata
fusion. We need means to represent the semanti¢ alad to
enable reasoning in this space. Ontologies appeat suited
to this task, with the further advantage that thay also be
used to represent trust and uncertainty.

This section reviews the basic data fusion framé&waord
the main-stream algorithms. In the next research, will
explore how to apply them to acoustic data fusiand
examine if ontology or semantic representationpday a role
in them.

been proposed, such as weighted average methodsa and

method by incorporating contextual information.

2) Evidential methods encompass several models such as the

Dempster-Shafer theory [5] and transferable befiebry [6].
In the framework of the Dempster-Shafer theory rimfation

obtained from sourdds represented by the Basic Probabilityu

Assignment (BPA). A functiomis called a BPA if:
mo)=0, Y mA)=1

AOO

(2)

where m(A)

Ontologies are regarded as the basic building uenitd
integral parts for the semantic representatiorthag provide
a reusable piece of knowledge about a specific donide
se of ontologies for the explication of implicihch hidden
knowledge is a possible approach to overcome tbilgm of
semantic heterogeneity.

Generally speaking, the semantic heterogeneitysdeith

ONTOLOGIES

represents the confidence we grant to ththree types of concepts [7]: the semantically eajeint

realization of A and only ofA. We can easily see that theconcepts, the semantically unrelated concepts amel t

evidential theory is reduced to the probabilitydheif the
imprecision is suppressed:
assignment is defined only for the singletonsof

Fusion of independent and equally reliable basibability

assignments is performed by the Dempster rule
combination (normalized (1) or non-normalized (2)):
m(A)=C™* Z |‘| m(A), 3

NA=A i

semantically related concepts. In the first casmodel uses

i.e. the basic prokgbilidifferent terms to refer the same concept; in #heord case,

the same term may be used by different systemsetmtd
completely different concepts; and in the last calerent

&tassifications may be performed.
As the ontology development process becomes more

ubiquitous and collaborative, the difficulties inaking
ontologies inter-operable become a serious problerorder
to achieve effective semantic inter-operability ia

where the normalization coefficie@tis used in the case of the heterogeneous information system, the meaning @& th
exhaustive frame of discernment and measures conflinformation that is interchanged has to be undedstacross

between sources. Examples of other rules are tHdeHe,
discount rule, etc.

the systems. The domains covered by ontologies @
few, thus avoiding conflicts between useage ofcthaext.

3) Rough sets whose theory [14] deals with imprecision. The Semantic conflicts occur whenever two contexts dbuse

basic concept of the rough sets theory is to replatcertain

the same interpretation of the information. Gomtdies three

or imprecise information by two imprecise but ce&rta main causes for semantic heterogeneity [8]:

information: the lower and upper approximations.

The combination of imprecise information is realizby
applying the set theory to the approximations. beauty of
the rough sets theory is that there is no needutmtify the
information’s uncertainty. This is an advantage duse
usually it is very difficult to quantify the degreé confidence
granted to information, and it is a disadvantageabee there
is no difference between two pieces of informatiorwhich
we would have granted different degrees of confiden

4) Possibility and fuzzy methods. In the framework of
possibility theory, information obtained from sensb is
represented by possibility distributiom. The notion of
possibility distribution is equivalent to the natiof the basic
probability assignment in belief theory with a difént
constraint:

(4)

Most of the combination rules are based on t-ncant t-
co-norms, the fuzzy translation of the intersectmm union.
Possibility approach also offers several fusioresusuch as
trade-off rules, and discount rules.

m e -[01]: rgm%xn(e) =1

 Confounding conflicts occur when information iteseem to
have the same meaning, but differ in reality, elge to
different temporal context.

« Scaling conflicts occur when different referersgstems are
used to measure a value.

» Naming conflicts occur when naming schemes afrimftion
differ significantly.

In nearly all ontology-based integration approach@®logies

used for the explicit description of the informaticource

semantics. A question that arises from the usextflagies for

different purposes in the context of informatiotegration is

about the nature of the used ontologies.

The task of integrating heterogeneous informatioarses
put ontologies in context. They cannot be perceiad
standalone models of the world. They should ratieeseen as
the glue that puts together information of varickiads.
Consequently, the relation of ontology to its eomiment
plays an essential role in information integratiBy.the term
mappings is understood the connection of an onyalogther
parts if the application system. The two most ingatr uses of
mappings required for information integration arapmings



between ontologies and the information they desciind
mapping between different ontologies used in aesysiThere
are further aspects to the use of ontologies, dictu the
representations of trust and uncertainty, but wall shot
explore these here.

We have yet to find any techniques developed terstdnd
the feature content of the semantic data, knowrfeature
subset classification for more conventional meabulata. As
we can apply feature subset selection to the datdet
classified, we ought also to be able to understaademantic
space better by applying similar techniques th&sesuch, we
shall move to techniques which can be used to exphe data
space in the next Section.

IV. FEATURE SUBSETSELECTION

Feature selection is a processing to choose a tsulbse
features or some combination of the input featuhe$ best
represent the original data under a certain coiteriData
fusion can benefit from feature selection by didoay some
of the redundant information and reducing dimeralion In
semantically-mediated data fusion, feature selectio other
feature extraction techniques can serve as impotafs for
semantic annotation or obtaining ontology attrisutia this
section, we will first review existing approaches feature
selection, and then propose a new method for acdestture
extraction.

A. Traditional Approaches

Feature selection is one instance of the classiptimal
subset selection problem, which is known to
computationally hard. Finding the best subset afufiees by
testing all possible combinations is practicallirastable even
when the number of input features is modest. Caressty,
numerous optimisation methods, such as hill cligpgenetic
algorithm, and greedy approaches, have been prdpise
speeding up the search of an optimal or suboptiwlation.

Roughly speaking, the feature selection methods n
follow two major models: (1). Features are seledted pre-
processing stage, independently of the classifinati
algorithm; and (2) The feature subsets are searcheing a
performance indicators connected with an classifina
algorithm. Here the classification algorithm is diséor
ranking possible feature combinations.

Other dimensionality reduction techniques includagpal

component analysis (PCA), which is also known as th
Karhunen-Loeve Transform (KLT). The PCA transform

matrix consists of eigenvectors corresponding ® ldrgest
eigenvalues of the covariance matrix of data. THAGA
projects the original features along the first grod directions
with  maximal variance. Similarly, Fisher Discrimirta
Analysis (FDA) also projects the features into avdo
dimensional space but by analysing a more sopétstic
matrix. Independent component analysis (ICA) has &leen
proposed to find a linear mixture of the data,lie same or
lower dimension of the data, where each of theegt@ns
will be as independent as possible from the othaeptions.

B. Information-based methods
Compared to the traditional methods, informatiosdoh

methods directly measure the information contenteath
individual feature. If the measured information twon is
related to the level of discriminatory capabilithe feature
selection can be carried out by choosing thosaufeatwith
the higher information content. Common informatioetrics
include entropy and mutual information.
According to Shannon’s information theory, entropy

measures information content in terms of uncerjaibét A

be a random variable taking values in the setwith

probability distributionp(A) . The entropy is defined by
H(A)=-> p(A)log p(A).

Alla

One may directly use the entropy as a criterionféature
selection, in which the entropy is calculated ttineste the
information contained in each individual featuned @ahese are
then ranked in order. Feature selection can beopeed by
choosing those with the top-ranking entropy values.

However, by examining the definition of entropycén be
seen that entropy is calculated with respect to dimgle
variable A, without reference to any objective. Thus, the
amount of information measured by the entropy lackmint
of reference or benchmark. To improve the entropsed
methods, it is logical to extend the informationasgre to two
variables: one for the measured feature itselftanbther for
the class label that is directly related to thessification
objective. Mutual information (MI) provides a framerk to
measure the similarity between two random varialaled was
introduced for feature selection [9].

()
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Fig. 2 Illustration of mutual information

MI is a basic concept in information theory to meaasthe
statistical dependence between two random variaesen
two random variablesA andB, with marginal probability

distributionsp(A) andp(B) , and joint probability
distributionp(A, B), Ml is defined as:
A B
(AB)= Y pAB)logPAD)_
AlaBb P(A) [P(B)

From (5), it is not difficult to find that Ml is tated to
entropy by the following equations:

I(AB)=H(A) +H(B) -H(AB)
=H(A) -H(A|B)
=H(B)-H(B|A)

where H(A) and H(B) are the entropy ofA and B,
H (A B) their joint entropy, antl (A|B) and H(B|A) the
conditional entropies oA given B and of B given A .

If we model each individual feature and the coroegiing
class label as random variables, Ml can be usedtimate the
dependency between the feature component and asss cl

()



category. This can be used to investigate how muc¢h Relate concepts that are semantically closegigvalence

information a feature component contains about dless
label, and use it for feature selection (see Figlr2this way,
we have approaches which can fuse data, and a p@wagh
to explore the feature space to determine potermy
classification capability.

V. ACOUSTICDATA

A. Data Description

We are testing our approaches based on an acdasticet
provided by the U.S. Army Research Laboratory (ARLHis
data is most suited to our approach since it im&ive and
challenging problem, and one which is suited to i
analysis. Essentially, the data reflects an intdéreautomatic
sentinels that can automatically determine the gmes of
offensive vehicles. ARL has conducted several erparts in
tracking a convoy of multiple targets using sevesatially
distributed sensor arrays.

The data from each sensor array is collected aingkng
rate of 1024 samples per second. The raw data &ach
microphone in a sensor array is recorded for diaatibn.
After FFT (Fast Fourier Transform), each secon@adustic
signal is transformed into 351 dimensional spedcath. Fig. 3
[16] shows an example of the location of six sersoays and
a run test around a prearranged track.

Fig. 3. Sensor arrégl éaﬁi‘iguration and a running track
B. Semantic Representation

When considering how data is semantically represkrfour
fundamental questions to ask are: (1) How
representation related to conceptual structuresPi¢@ is the
meaning of each data represented? (3) How are damings
of different data related to one another? With &weptions,
existing theories of semantic have made explicdints
concerning the representation of each meaning dred
relations among different word meanings, while thktion
between conceptual and semantic structures is dién
implicit, and the issue of whether different priplels are
needed for representation of different content dosis often
neglected.

and subsumption relations (aligning);

4. Check the consistency, coherency and non-redagdz
the result.

fThen we use this as the base to create more oigslog

VI. ANALYSIS OFACOUSTICDATA

A. Semantic Analysis

The semantic enrichment of the data is done bytifgiery
semantic concept and relations appearing in the alad from
the data fusion. Of course this has a large coeesadifferent
ontological domain, based on the discussion ini@e@, we
decided to focus on four type of ontologies

— asensor ontology — semantic description of theamsn
— asequence ontology — semantic description of evermt
sensor was tested,;
— adata ontology — semantic description of dataivedeby
the sensor; and
— asupporting ontology— semantic description of epte
that would effect all three mentioned ontology.
These allow us to have a much improved descriptiam
many of the previous research where semantic reprason
and data fusion were used individually.

Results from data fusion are used to representiities
and properties contribute to the relationships betwthem.
For example, some important relationships includgs“a type
of feature”, “is a kind of amplitude”, “has a furan as”, etc.

Sensor ontologies support concepts such as “Ifcaives C
from B”. In addition to the general properties usadany
ontology, certain actions apply especially to sensdhe
action, “detect,” is quite basic to sensors. Otherbs are
“identify” and “classify”. Semantic relationshipsetween
actions play an important and often key role inssemelated
concepts.

Sequence ontology contains spatial and temporal
information. For example, A may happen before RoXld be
detected. In this case X enables B because B cavumir
without the existence X. It also implies that X megcur

is thBEFORE A.

The data ontologies are the most complete desmnifi the
data fusion result. It totally depends on the atgors selected
and how wide the semantic description will cover.

The supporting ontology contains information anidtiens
that is not clearly expressed in the last thre@logtes. We
focus mainly on the environmental and vehicle eslatlasses
and properties, such as weather, weight and size.

B. Featurelevel fusion for acoustic data
In this section, we will describe a traditional tfea level

In this paper we use a method called Focused aptolofusion for acoustic data. This is the first stepdads our final

integration to represent the semantics within théadThis

method consisting of following steps:

1. Identify a limited number (3-5) of (existing)totogies
close related to the problem

2. Find the places in the ontologies where theylape

goal, and can provide a benchmark for the semdlgtica
mediated data fusion. In the next step, semanpiesentation
will be included in this fusion framework for ontgly
reasoning.

In details, we propose a feature-level fusion methuy
combining two set of acoustic features, where, loaim



features are used to characterize the fundamemtqlidncy, such as the Multivariate Gaussian classifier [1&k also
and a group of key frequency components, selegtddipare applicable.
used to reflect other useful acoustic factors. fgshese two As SVMs are inherently binary (two-class) classifjel0
set of features may provide a more complete ddgmmipbout one-against-one classifiers were used with subsgque
the vehicles’ acoustic signatures, and improve th@ajority voting to give a multi-class result. Theerkel
classification accuracy accordingly. To keep themesa function used is an inhomogeneous polynomial. Taeafty
dimensionality of feature space, the fusion is sedi by parameterC is tested between fand 16 and polynomial
replacing the higher order harmonics componenth wie order is tested between 1 and 10 by a two folddasitn
same number of key frequency components. procedure using only training data. A polynomialasfler 3
The harmonics are effective acoustic features. Newehe andC = 20 were finally found as the best values fos VM.
acoustic model for vehicles may be more complicated To avoid bias on random samplings, the testing was
particularly in the area of non-harmonic featur&bus, an repeated 10 times to allow an estimate of the éntgrent in
acoustic signatureS regarding a working vehicle can bethis sampling process. The classification resulised on
modelled as a combination of harmonic and other- nouifferent feature sets are shown in Table I. Thet iwo rows
harmonic components: of Table I list the classification accuracy beféusion, where
S=H(fy)+K(f5) (8) the 21 dimensional harmonic features and key freque
) . features are applied individually. It is seen tiet feature set
In (8), the first termH(fO):Zih, i=12--,M denotes a represented br))/pthe key frequ){ency components igivelia
set of harmonic features. The second termweak.

K(fa)zz_k(fj), j=12- N, f; #f, is a group of TABLE |
] COMPARISONOF CLASSIFICATIONRESULTSBASEDON
features from the non-harmonic part. In this papeg, use DIFFERENTFEATURESETS
f;,j=12---,N to indicate the key frequency component: Feature set Mean Standard
. accuracy (%) deviation
that are not related with the fundamental frequefgcybut are Rarmonics@1dim) =12 15
considered also containing useful classificatidorimation. Key Fregs(21dim) 74.3 1.05
Based on the vehicle-signatures’ model in (8), finsion Harmonics(11dim)+ Key Fregs(10dim) ~ 78.5 0.92
can be implemented by combining information fromthbo Hamonics(ildim)+ Key Freqs(21dim) — 81.1 0.57
harmonics and other key frequency components. taildewe
adopted a feature level fusion, where features frtwo The next two rows show the accuracy results aftsiof. In
sources are concatenated together to form a newréea the third row, to keep the dimensionality as 21, Hi§her
vector, such as: order harmonics are removed. The vacated spacéeis t

F ={h,hy, -, he . k(f),k(f5), -, k(f)} (9) replaced with the 10 features based on the keyuémacy
Here we hav& +L =M , and M is the dimensionality of COMponents. It can be seen that after this fusitre
the pre-specified harmonics feature space. Otheioriu classification accuracy is improved from 74.4% &5%6. In
schemes, like those introduced in Section I, atso a the fourth row, if we add more key frequency congrus
applicable and will be discussed in the future. (e.g., 21 dimensional key frequency componentsheo11-
The fused feature vectors now have the sanfémensional harmonic features, the classificaticcugacy can
dimensionality as the harmonic features’, but witie L be further increased to 81.1%, but at the cost ighdr
higher order harmonics replaced by the same numbkey dimensionality (i.e., 32 dimensional feature space)

frequency components. TABLE Il

- - . COMPARISONOF CLASSIFICATIONRESULTS(MEAN (%) + STD)
Experiments are carried out based on a multi-C&%€g0 noe ot iNDIVIDUAL TYPEOFVEHICLES; FUSIONMETHOD 1:
vehicles data set from ARL, USA [10, 16-18]. In the = paRMONIC(11DIM)+KEY FREQS(10DIM)FUSIONMETHOD 2:

experiments, half of data samples from each classew HARMONIC(11DIM)+ KEY FREQS(21DIM)
randomly chosen to estimate the statistical pamrsiesuch as vehicle Harmonics  KEY FREQS FUSION 1 Fusion 2
harmonic features’ means vector, covariance madnixl, also types (21DIM) (21DIm) (21DIm) (32dim)
mutual information. The remaining 50% samples fortims V1 84.2+1.70 70.6:4.80 86.2:1.28 87.11.01
testing set on which performance was assessed. V2 78.7£1.06 83.4-0.87 82.8-0.80 85.7:0.88
Next, feature selection is carried out based omththods V3 832£1.36 81.1£1.27 83.8:0.88 84.900.53
introduced in Section IV. Following the results [it6], the Va4  50.7£5.69  54.23.70  59.4:3.08  65.21.69

. : ; : . V5 1. &2, B2, A1
harmonic number is chosen as 21. The dimensionalitye 65.4+1.92 66.9-2.06 735233 76.4:1.50

feature vectors extracted by mutual informatiofiegible, and _

the detailed number can be decided by the computingThe accuracy values shown in Table | are overatilrers,

resources. which can be seen as weighted results based offivall
Currently-popular support vector machines (SVMs9][1 individual classification accuracies. In this mugdétegory

[20] were chosen as the classifiers in these emeris Vehicle data set, the number of testing set foh eaticle is

because they are less sensitive to the higher diomeal data. different due to their different running speeds.bias may

Although SVMs are used here, other classificatigorthms, ©Cccur if @ method has preference to the classeshwimave
more numbers than others. In this case, the ovacalliracy




shown in Table | can not fully confirm the improvemt of
performance. Therefore, we further list the classifon
accuracy for each individual vehicle, labelled by % V5 in
Table Il

The same 10 times random samplings are carriedaodt,
the (mean classification accuracy) + (standard ateris) for
each of the five vehicles are listed. From Tableitlis seen
that for the case of the same dimensionality (2tuies), the
fusion method is consistently better than otherfused
methods, in all five classes. This confirmed th@riovement
of classification accuracy by using the proposeduie-level
fusion.

It is also realized that the change of the vehicletocity
may affect the selected result by mutual informmatilm this

(4]

(3]
"
(8l
19
[10]

~

sense, the features represented by the key fre;quel%ll

components are not as stable as the harmonicsougththis
sensitivity may be mitigated by a more sufficieatmpling, in
this fusion scheme the harmonics are the majourfeatand

[12]

the key frequency components are only used as tﬂ%]

supplementary ones. The performance may be impribkd
added features captured new information, but iskelyl to
degrade too much even if the capture of new inftionadid
not occur.

VIl. CONCLUSIONS ANDFUTURE WORK

The case for enrichment of data fusion processeguite
compelling, especially in military scenarios, ane wook
forward to achieving this. Our target is to enratassification
capability by augmenting data fusion processesgusémantic
data. Our example application concerns the ideatifin of
vehicles from autonomously-sensed acoustic data.héle
demonstrated that the component technologies ne¢ded
enable our overall aims are already sufficiently llwe
developed for this task. In this, data fusion campriove
classification capability from the acoustic dataurtker, the
new approach to feature set selection by informationtent

can improve potency in the descriptions used. Wee hal2°

described how we will deploy the semantic enrichimien
using ontologies together with some of the semaaititbutes
we intend to explore. In this way we will enrichethesults
derived by data fusion and by feature subset sefeeind we
look forward to improving the classification capdpi still
further, by this new approach.
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