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Abstract In this paper the behavorial approach is applied to discrete linear repetitive pro-
cesses, which are class of 2D systems of both systems theoretic and applications interest. The
main results are on poles and zeros for these processes, which have exponential trajectory
interpretations.
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1. Introduction

Repetitive processes are a distinct class of 2D systems of both system theoretic and appli-
cations interest. The essential unique characteristic of such a process is a series of sweeps,
termed passes, through a set of dynamics defined over a fixed finite duration known as the
pass length. On each pass an output, termed the pass profile, is produced, which acts as a
forcing function on, and hence contributes to, the dynamics of the next pass profile. This, in
turn, leads to the unique control problem for these processes in that the output sequence of
pass profiles generated can contain oscillations that increase in amplitude in the pass-to-pass
direction.

To introduce a formal definition, let α < +∞ denote the pass length (assumed constant).
Then in a repetitive process the pass profile yk(p), 0 ≤ p ≤ α, generated on pass k acts
as a forcing function on, and hence contributes to, the dynamics of the next pass profile
yk+1(p), 0 ≤ p ≤ α, k ≥ 0.

Physical examples of repetitive processes include long-wall coal cutting and metal rolling
operations (see, for example, Benton, 2000 and the relevant references cited in this thesis).
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Also in recent years applications have arisen where adopting a repetitive process setting for
analysis has distinct advantages over alternatives. Examples of these so-called algorithmic
applications include classes of iterative learning control (ILC) schemes (Owens, Amann,
Rogers, & French, 2000) and iterative algorithms for solving non-linear dynamic optimal
control problems based on the maximum principle (Roberts, 2000). In the case of ILC for
the linear dynamics case, the stability theory for so-called differential and discrete linear
repetitive processes is the essential basis for a rigorous stability/convergence theory of one
powerful class of such algorithms. For the non-linear optimal control algorithm, the repeti-
tive process analysis has provided the essential basis for the development of highly reliable
iterative solution algorithms.

In seeking a rigorous foundation on which to develop a control theory for these processes,
it is natural to attempt to exploit structural links which exist between these processes and
other classes of (2D) two-dimensional linear systems. The case of 2D discrete linear systems
recursive in the positive quadrant (i, j) : i ≥ 0, j ≥ 0 (where i and j denote the directions of
information propagation) has been the subject of much research effort over the years using,
in the main, the well known (Fornasini Marchesini, 1978) and (Roesser, 1975) state space
models. It turns out, however, that large parts of established systems theory for 2D discrete
linear systems described by these models either cannot be applied at all or only after appro-
priate modification. Hence there is a need to develop a systems theory for these processes
for onward translation, where appropriate, into numerically reliable design algorithms.

This paper reports further development of two major aspects of such as systems theory.
These are poles and zeros, which, unlike many others reported in the literature for 2D-dimen-
sional linear systems, have a well defined interpretation in terms of exponential trajectories.
These results are for the sub-class of so-called discrete linear repetitive processes, which arise
in the modelling and control related analysis of a number of example application areas and
also have well defined structural links with standard one - dimensional (1D) discrete linear
systems. The pole and zero definitions and characterizations developed here are the natural
generalizations of those for 1D discrete linear systems case.

2. Background

2.1. Discrete linear repetitive processes

The state space model of the sub-class of discrete linear repetitive processes considered here
has the following form over 0 ≤ p ≤ α − 1, k ≥ 0,

xk+1(p + 1) = Axk+1(p)+ Buk+1(p)+ B0 yk(p),

yk+1(p) = Cxk+1(p)+ Duk+1(p)+ D0 yk(p). (1)

Here on pass k, xk(p) is the n × 1 state vector, yk(p) is the m × 1 pass profile vector, and
uk(p) is the l × 1 vector of control inputs. To complete the process description it is nec-
essary to specify the initial conditions, termed the boundary conditions here, i.e., the state
initial vector on each pass and the initial pass profile. Here no loss of generality arises from
assuming these to be zero.

Several equivalent sets of conditions for stability of these processes (in the strongest
form), termed stability along the pass, are known but here we use the following. First define
the along the pass and pass-to-pass shift operators as σ1 and σ2 applied, e.g., to xk(p) and
yk(p) as σ1xk(p) := xk(p + 1) and σ2 yk(p) := yk+1(p), respectively. Consider also the 2D
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polynomial

C(σ1, σ2) := det

([
σ1 In − A −B0

−C σ2 Im − D0

])
. (2)

Then it has been shown elsewhere (Rogers and Owens, 1992) that stability along the pass
holds if, and only if,

C(σ1, σ2) �= 0 in Uoc(σ1, σ2) := {(σ1, σ2) : |σ1| ≥ 1, |σ2| ≥ 1}. (3)

The 2D characteristic polynomial here reduces to its well known 1D linear systems coun-
terpart if the previous pass terms are deleted from the repetitive process model (and the pass
profile sub-script is dropped together with the finite pass length assumption). This suggests
that the concept of a pole for the discrete linear repetitive processes considered here should
be defined in terms of

C(σ1, σ2) = 0. (4)

The task now is to make this formal where the best outcome would be a characterization of
stability/instability in terms of trajectories defined by the pole locations, i.e. a generalization
of the 1D linear systems case. In particular, we want to move away from a purely alge-
braic characterization to one which mimics the 1D linear systems case, e.g. poles generate
exponential trajectories which characterize stability.

2.2. Behavioral theory

We view the system as a triple (A, q,B), where A the signal space is a vector space over
the field k = C (or R) or more generally a K[σ ]-module of nD mappings, where here n = 2.
The signal space A is taken as the discrete space kN, q is the number of system variables
and the behavior B ⊆ Aq is the solution space of the finite set of 2D difference equations
describing the process dynamics. For the repetitive processes considered here

Bx,u,y =
⎧⎨
⎩

⎛
⎝ x

u
y

⎞
⎠ ∈ A•

∣∣∣∣∣∣
⎛
⎝ x

u
y

⎞
⎠ satisfy (1)

⎫⎬
⎭ .

Note that A• denotes the appropriate number of copies of the signal space A.
For the polynomial ring K[σ ], the ring action K[σ ] × A −→ A for discrete systems

is defined as the shift operator σi , i = 1, 2. Using this notation we can write any repetitive
process described by (1) in the form of a behavior, and similarly we can write any sub-process
(such as when the output pass profile vector is zero – see below) in terms of sub-behaviors.
For example, we can write (1) in a behavioral kernel representation, (see, e.g., Wood, Oberst,
Rogers & Owens, 2000),

Bx,u,y = KerA
(
σ1 In − A −σ2 B −B0

−C −σ2 D σ2 Im − D0

)
⊆ Aq , (5)

where we use the suffix notation K erA to denote the kernel of the ring action of the matrix. An
important sub-behavior is the one containing all outputs that are zero, i.e., the sub-behavior

Bx,u,0 :=
⎧⎨
⎩

⎛
⎝ x

u
y

⎞
⎠ ∈ Bx,u,y | y = 0

⎫⎬
⎭ , (6)

which we see is given by the kernel representation

Bx,u,0 ∼= KerA
(
σ1 In − A −σ2 B

−C −σ2 D

)
(7)



110 Multidim Syst Sign Process (2006) 17:107–118

and also the zero input sub-behavior

Bx,0,y ∼= KerA
(
σ1 In − A −B0

−C σ2 Im − D0

)
. (8)

The first of these sub-behaviors will be very important when considering invariant zeros
and the second when considering poles. For example, the invariant zeros in the 1D case are
given by the set of points in C where the Rosenbrock system matrix loses rank, (see e.g.,
MacFarlane & Karcanias, 1975). We will show in this paper that our definition of invariant
zeros for discrete linear repetitive processes are the varieties in C

2 such that a 2D polyno-
mial matrix loses rank and hence our analysis will have to consider the rank loss points
of such a matrix. We next outline some required preliminary results concerning behaviors
(for a detailed treatment of behaviors see the cited references in, e.g. (Wood 2000) and the
continually evolving literature).

Let M be a finitely generated R-module. The dual of M with respect to A, denoted D(M),
is defined by

D(M) := HomR(M,A). (9)

If ψ :M → N is a morphism of finitely generated R-modules, then the dual map
D(ψ) : D(N ) → D(M) is given by ∀ v ∈ D(N ), (D(ψ))(v) := v ◦ ψ. Then results
in Oberst (1990) tells us precisely what the module M is but here the crucial fact used
is that if B = KerAE then B⊥ = ImRE and then M is the finitely generated module
CokerRE = CokerR1,q/ImRE = R1,q/B⊥.

The set of variables {wi ∈ �} for some subset � of {1, . . . , q} is said to be a set of free
variables if the mapping ρ : Aq → A�, which projects a trajectory onto the components of
φ, is epic when restricted to B. The maximum cardinality of such a set� is an invariant of the
behavior and is denoted by m(B), and is given by m(B) = q − rank(E) where B = KerAE .

We define the annihilator of a behavior B as

ann B = {s ∈ R | sw̃ = 0 ∀ w̃ ∈ B }. (10)

From Wood et al. (2000) we have ann B = ann M. A behavior containing no free variables
is an autonomous behavior and is precisely one which has a non-zero annihilator. In the
discrete case, we define a controllable behavior (Wood, 2000) B with signal domain T = N

n

to be controllable if there exits a number ρ > 0 such that for any sets T1, T2 ⊆ T with
d(T1, T2) > ρ, for any b1, b2 ∈ T, and any two trajectories w(1), w(2) ∈ B, there exists
w ∈ B such that

w(t) =
{
w(1)(t − b1), if t ∈ T1 and t − b1 ∈ T,
w(2)(t − b2), if t ∈ T2 and t − b2 ∈ T,

(11)

where we can take b1 = 0 without loss of generality. Controllability in this setting expresses
the idea of being able to join with a system trajectory any two system trajectories defined on
regions, which are sufficiently far apart. Characterizations for this property are well known
in the literature and in the case of the discrete linear repetitive processes considered here
further progress is possible (Rogers et al., 2002).

For a given behavior, we define the controllable part as the unique maximal controllable
sub-behavior, and we denote this, the controllable part of B, by Bc. It is well known that for
B = D(M),

Bc = D(M/t M) and B/Bc = D(t M),

where t M is the torsion submodule of M.
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2.3. Characteristic and generalized characteristic varieties

Linear systems with constant coefficients are entirely characterized by the exponential tra-
jectories contained in their behavior. We now give the definition of such trajectories, again
for the case of n = 2, which is required here.

Definition 1 Let w(t) = w(t1, t2) ∈ Aq . Then w is said to be an exponential trajectory of
frequency (a1, a2) ∈ C

2 if it is of the form

w(t) = v0at1
1 at2

2 , (12)

where v0 ∈ Cq . Also w is said to be a polynomial exponential trajectory of pure frequency
(a1, a2) if it is of the form

w(t) = p(t)at1
1 at2

2 , (13)

where p(t) = p(t1, t2) ∈ C[t1, t2]q . A polynomial exponential trajectory is any trajectory,
which is a finite sum of polynomial trajectories of pure frequencies.

Let J ⊆ R, be an ideal, where k = R or C. Define the variety V (J ) as

V (J ) := {a ∈ C
2 | p(a) = 0 ∀ p ∈ J }. (14)

Note that V (J ) is defined as a subset of C
2 even when k = R.

Definition 2 (Wood et al., 2000) The characteristic variety of a behavior B = KerA R is the
set V(B) of all points (a1, a2) ∈ C

2 such that the following equivalent conditions hold:

1. (a1, a2) ∈ V(annB).
2. R(a1, a2) has less than full column rank.
3. B contains a non-zero exponential trajectory of frequency (a1, a2).

The points in V(B) are called the characteristic points of B.
Note that if B contains a non-zero polynomial exponential trajectory of pure frequency

(a1, a2) then by repeated differentiation it also contains a non-zero exponential trajectory of
the same frequency.

The next result provides a characterization of the characteristic variety of a factor behavior
B/B′.

Theorem 1 (Zaris, Wood & Rogers, 2001). Let B′ ⊆ B be behaviors and (a1, a2) ∈ C
2.

Then the following are equivalent;

1. (a1, a2) is a characteristic point of B/B′.
2. There exists a polynomial vector x such that xw̃′ = 0 for all w̃′ ∈ B′ but xw̃ equals a

non-zero exponential trajectory of frequency (a1, a2) for some w̃ ∈ B.
3. There exists a polynomial exponential trajectory of pure frequency (a1, a2) in B\B′.

In order to define the zeros of a behavior, it is necessary to consider the rank loss points
of the representation matrix of B. By rank loss points we mean those values of (a1, a2) ∈ C

2

such that the representation matrix of the behavior loses rank. Consider then the matrix
R ∈ Rg,q of rank b ≤ q, and let Ib(R) ⊂ R denote the ideal generated by the order b minors
of R. The rank loss points of R are given by the elements of the variety of the ideal Ib(R),
that is by V (Ib(R)). Moreover, the rank loss points of any kernel representation of B are
precisely the generalized characteristic points of B.Moreover, if B is autonomous (i.e., M is
a torsion module) then V(B) = V (ann M).

As with the characteristic variety, we have an interpretation of the generalized characteristic
points in terms of exponential trajectories and rank loss points.
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Theorem 2 (Zaris et al., 2001). The following are equivalent for a behavior B = KerA R
and (a1, a2) ∈ C

2;
1. (a1, a2) ∈ V(B).
2. The rank of R(a1, a2) is less than the rank of R(z1, z2).

3. For any of up to m(B) variables ωi ,B contains a non-zero exponential trajectory of
frequency (a1, a2), which is zero in the specified components.

3. Poles and zeros

Consider first the case of poles where it is first appropriate to recall the 1D case. Then in this
case point a is a pole of the system (defined by the standard state space model with output
y(t), state vector x(t), control input u(t)) if, when zero input u(t) is fed to the system, there
exists a non-zero initial condition x(0) such that the resulting state trajectory has the form
x(t) = x(0)at . Note that as y(t) is determined linearly by x(t) (u(t) being zero), y(t) must
also be of the form y(0)at .

In the case of the discrete linear repetitive processes considered here, the solutions of
the defining equations can be considered as functions from N

2 to R, though for purposes of
interpretation they are cut off in one dimension at the pass length α.

The poles of the system are defined as the characteristic points of the zero-input behav-
ior Bx,0,y , that is the set of all trajectories, which can arise when the input vanishes. The
zero-input behavior is given (to within trivial isomorphism) by(
σ1 In − A −B0

−C σ2 Im − D0

)(
x
y

)
= 0. (15)

Applying Theorem/Definition 4.4 of Wood et al. (2000), we can define the poles as follows.

Definition 3 The poles of a linear repetitive process described by (1) are the component-wise
non-zero points in 2D complex space where the matrix on the left-hand-side of (15) fails to
have full rank; that is, they are given by the set

V(Bx,0,y)={(a1, a2) ∈ C
2 | C(a1, a2) = 0}, (16)

where C(σ1, σ2) is defined by (2). The set V is called the pole variety of the process.

Since in this case the pole variety is given by the vanishing of a single 2D non-unit poly-
nomial, it is guaranteed to be a 1D geometric set in 2D complex space, that is, a curve. In
particular, the pole variety cannot be zero-dimensional (i.e., finite). This corresponds to the
fact that proper principal ideals in the ring C[σ1, σ2] have codimension 1. Note also that the
pole variety is a complex variety, even though the entries of the matrices A, B0,C , and D0

are generally assumed to be real. This is essential in order to capture the full exponential-type
dynamics of the process.

Poles can be interpreted in terms of exponential trajectories (Wood et al., 2000), which in
the case of discrete repetitive processes have a clear physical interpretation. Assume therefore
that (a1, a2) ∈ C

2 is such that C(σ1, σ2) = 0, and write it in the form a1 = r1eıθ1 , a2 = r2eıθ2

(with r1 = 0 for a1 = 0 and r2 = 0 for a2 = 0). The existence of such a ‘zero’ guarantees
(Wood et al., 2000) (Theorem/Definition 4.4) the existence of an ‘exponential trajectory’ in
the process having the form

x ′
k(p) = x1

00r p
1 rk

2 cos (θ1 p + θ2k)+ x2
00r p

1 rk
2 sin (θ1 p + θ2k) (17)

y′
k(p) = y1

00r p
1 rk

2 cos (θ1 p + θ2k)+ y2
00r p

1 rk
2 sin (θ1 p + θ2k) (18)

u′
k(p) = 0, (19)
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where x1
00, x2

00 ∈ R
n , y1

00, y2
00 ∈ R

m , and at least one of these four is non-zero. This form
of exponential trajectory has been characterized algebraically by Oberst (1995). Conversely,
the existence of such a trajectory implies that C(r1eıθ1 , r2eıθ2) = 0, i.e. the ‘frequency’
(r1eıθ1 , r2eıθ ) is a pole of the repetitive process.

In the case where (a1, a2) ∈ R
2, it is straightforward to construct such trajectories from

the ‘zeroes’. Take a1 and a2 to be real numbers satisfying C(a1, a2) = 0. There must then
exist a non-zero vector (x00, y00) ∈ R

n+m satisfying(
a1 In − A −B0

−C a2 Im − D0

)(
x00

y00

)
= 0. (20)

Now extend (x00, y00) to a process trajectory by

x ′
k(p) = x00a p

1 ak
2 , (21)

y′
k(p) = y00a p

1 ak
2 , (22)

u′
k(p) = 0. (23)

A quick computation yields

x ′
k(p + 1) = a1x00a p

1 ak
2 (24)

= Ax00a p
1 ak

2 + B0 y00a p
1 ak

2 (25)

= Ax ′
k(p)+ Bu′

k+1(p)+ B0 y′
k(p), (26)

y′
k+1(p) = a2 y00a p

1 ak
2 (27)

= D0 y00a p
1 ak

2 + Cx00a p
1 ak

2 (28)

= D0 y′
k(p)+ Cx ′

k(p). (29)

proving that (21)–(23) indeed describes a solution of the process.
Returning to the general case (17)–(19), we see that if |a2| = r ≥ 1 then we have a non-zero

exponential (or sinusoidal) state-output trajectory in the system, which tends towards infinity
as the pass number increases (but may remain stable along any given pass). Conversely, if
|a2| = r < 1 for all poles (a1, a2), then no trajectory tends to infinity for a given value of p
as the pass number increases, but there may be trajectories tending to infinity along the pass.
Thus we again run up against the distinction between asymptotic stability and stability along
the pass. In order to avoid having trajectories of the form (17)–(19), which are unstable either
along the pass or in the k-direction, we also need to avoid poles (a1, a2) with |a1| ≥ 1. In
other words, we need that the characteristic variety (16) of the zero-input behavior lies inside

P1 = {(a1, a2) ∈ C
2 | |a1| ≤ 1, |a| ≤ 1}. (30)

The necessary and sufficient condition of (3) states that stability along the pass is equiv-
alent to all poles being inside P1 (recall the 1D case!). Equivalently, with zero input there
should be no exponential/sinusoidal state-output trajectories, which tend to infinity either in
the pass-to-pass direction or along the pass. (Valcher has obtained similar results for the more
general setting of stability of 2D behaviors over the lattice I

2; Valcher, 2000).
Note finally that poles of the discrete linear repetitive processes considered here can be

decomposed into controllable and uncontrollable, observable and unobservable poles (again
recall the 1D case!), as described in Wood et al. (2000). The only one of these sets which can
be easily described is the set of unobservable poles, which give the (2D) frequencies, which
can occur in the state when both input and output vanish. These are given by the rank-loss
points of the matrix(

z1 In − A
−C

)
(31)
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and so indeed describe the defect of observability.
In the case of zeros for the discrete linear repetitive processes considered here, first recall

the 1D case and, in particular, the system defined over some field K, by the polynomial matrix
description

A(z)x = B(z)u
y = C(z)x + D(z)u,

(32)

where z denotes the shift operator, A, B,C, D are polynomial matrices over K[z] and x, u, y
are state variables, input and output variables, respectively. Then the invariant zeros of a 1D
discrete linear system are the rank loss points of its Rosenbrock system matrix

P(z) =
[

A(z) −B(z)
C(z) D(z)

]

and it is easy to see that this corresponds to the behavior Bx,u,0 and therefore the invariant
zeros are given by the generalized characteristic points of the behavior Bx,u,0, i.e.,

{invariant zeros} = V(Bx,u,0),

where we term V(Bx,u,0), the invariant zero variety.
We can easily generalize this to nD systems and, in particular, for the behavior Bx,u,y

of (7) we can define the invariant zero points to be the elements of the variety V(Bx,u,0). As
expected we can extend this concept very easily to define controllable and uncontrollable
invariant zeros etc., to develop a zero structure – the structure Bx,u,y itself provides a map
for this. The following pair of exact commutative diagrams demonstrate the structure of the
behavior Bx,u,y,

0 0 0⏐⏐� ⏐⏐� ⏐⏐�
0 −−→ Bc

x,u,0 −−→ Bc
x,u,y −−→ Bc

y −−→ 0⏐⏐�
⏐⏐�

⏐⏐�
0 −−→ Bx,u,0 −−→ Bx,u,y −−→ By −−→ 0,⏐⏐� ⏐⏐� ⏐⏐�
0 −−→ Bx,u,0

Bc
x,u,0

−−→ Bx,u,y
Bc

x,u,y
−−→ By

Bc
y

−−→ 0⏐⏐�
⏐⏐�

⏐⏐�
0 0 0

(33)

0 0 0⏐⏐�
⏐⏐�

⏐⏐�
0 −−→ Bc

x,0,0 −−→ Bc
x,u,0 −−→ Bc

u,0 −−→ 0⏐⏐�
⏐⏐�

⏐⏐�
0 −−→ Bx,0,0 −−→ Bx,u,0 −−→ Bu,0 −−→ 0,⏐⏐�

⏐⏐�
⏐⏐�

0 −−→ Bx,0,0
Bc

x,0,0
−−→ Bx,u,0

Bc
x,u,0

−−→ Bu,0
Bc

u,0
−−→ 0⏐⏐�

⏐⏐�
⏐⏐�

0 0 0

(34)
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where

By :=
⎧⎨
⎩y ∈ Am

∣∣∣∣∣∣ ∃
(

x
u

)
∈ An+l ;

⎛
⎝ x

u
y

⎞
⎠ ∈ Bx,u,y

⎫⎬
⎭ ,

Bx,0,0 :=
⎧⎨
⎩

⎛
⎝ x

u
y

⎞
⎠ ∈ Bx,u,y | u = y = 0

⎫⎬
⎭ ,

Bu,0 :=
⎧⎨
⎩

(
u
0

)
∈ Am+p

∣∣∣∣∣∣ ∃ x ∈ Al;
⎛
⎝ x

u
0

⎞
⎠ ∈ Bx,u,y

⎫⎬
⎭ .

We make the following definitions:

Definition 4 For the behavior Bx,u,y we have the following:

(i) The invariant [invariant controllable] zero variety is defined to be V(Bx,u,0) [V(Bc
x,u,0)]

and the invariant [invariant controllable] zero points as the elements of V(Bx,u,0)

[V(Bc
x,u,0)].

(ii) The invariant uncontrollable zero variety is defined to be V(Bx,u,0/Bc
x,u,0) and the

invariant uncontrollable zero points as the elements of V(Bx,u,0/Bc
x,u,0).

(iii) The observable [observable controllable] zero variety is defined to be V(Bu,0)

[V(Bc
u,0)] and the observable [observable controllable] zero points as the elements

of V(Bu,0) [V(Bc
u,0)].

(iv) The observable uncontrollable zero variety is defined to be V(Bu,0/Bc
u,0) and the

observable uncontrollable zero points as the elements of V(Bu,0/Bc
u,0).

From Wood et al. (2000) the uncontrollable pole points are defined to be the elements of
the variety V(Bx,u,y/Bc

x,u,y).

Now we have the following result – for a proof (see Zaris, 2000).

Theorem 3 For the behavior Bx,u,y we have

(i) The invariant zero points are precisely the union of the invariant controllable and
invariant uncontrollable zero points. That is

V(Bx,u,0) = V(Bc
x,u,0) ∪ V(Bx,u,0/Bc

x,u,0).

(ii) The observable zero points are precisely the union of the observable controllable and
observable uncontrollable zero points. That is

V(Bu,0) = V(Bc
u,0) ∪ V(Bu,0/Bc

u,0).

(iii) The invariant uncontrollable zero points are precisely the union of the unobservable
uncontrollable and observable uncontrollable zero points. That is,

V(Bx,u,0/Bc
x,u,0) = V(Bx,0,0/Bc

x,0,0) ∪ V(Bu,0/Bc
u,0).

(iv) The invariant uncontrollable zero points are contained in the uncontrollable pole
points. In general we have

V(Bx,u,0/Bc
x,u,0) = V(Bx,u,y/Bc

x,u,0) ∪ V(By/Bc
y).
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(v) The invariant [controllable invariant] zero points are contained in the union of the
unobservable [controllable unobservable] and observable [controllable observable]
zeros, i.e.

V(Bx,u,0) ⊂ V(Bx,0,0) ∪ V(Bu,0),

V(Bc
x,u,0) ⊂ V(Bc

x,0,0) ∪ V(Bc
u,0).

In fact we can now show that the transmission zeros are not only contained in the invariant
zeros but in the controllable invariant zeros – a subset of the invariant zeros. We need the
following result from Zaris (2000).

Lemma 1 For any 1D differential/difference behavior B = D(M), and any submodule
L ⊂ M, we have for B′ = D(L), that V(B′) ⊂ V(B).

As we have already noted the invariant zeros in the classical framework correspond to the
invariant zeros in the behavioral framework. Similarly the transmission zeros correspond to
the observable controllable zeros. Therefore applying Lemma 1 to the exact commutative
diagram (24), we have the following results for the 1D case:

(i) The observable zero variety is contained in the invariant zero variety. That is

V(Bu,0) ⊂ V(Bx,u,0).

(ii) The observable controllable zero variety is contained in the invariant controllable zero
variety. That is

V(Bc
u,0) ⊂ V(Bc

x,u,0).

From (ii), we therefore see in the 1D case that the transmission zeros (observable control-
lable zeros) are certainly contained in the invariant zeros (since the invariant zeros are the
union of the invariant controllable and invariant uncontrollable zeros). More precisely, we
see that they are in fact contained in the invariant controllable zeros.

We have the following physical characterization of invariant zeros in terms of exponential
and polynomial exponential trajectories.

Theorem 4 (Zaris, 2000) Let Bc
x,u,0 ⊂ Bx,u,0 where always m′ = m(Bc

x,u,0) = m(Bx,u,0).

Then we have the following;

(i) The point ζ ∈ C
n is an invariant [resp. controllable] zero point of B if, and only if, for any

choice of up to m′ free (input) variables, there exists a non-zero exponential trajectory of
frequency ζ contained in Bx,u,0 [resp. Bc

x,u,0] with given choice of variables set to zero.
(ii) The point ζ ∈ C

n is an invariant uncontrollable zero point of B if and only if there exists
a non-zero polynomial exponential trajectory of frequency ζ contained in Bx,u,0 but not
in Bc

x,u,0.

We now consider the case when the behavior Bx,u,y is a 2D behavior associated with
discrete linear repetitive processes of the form considered here. We shall refer to the unob-
servable pole points as output decoupling zeros, and the unobservable uncontrollable pole
points as the input–output decoupling zeros, and the observable controllable zero points as
the transmission zeros. We have;

Theorem 5 Let Bx,u,y be an 2D behavior as described above for the discrete linear repetitive
processes considered here. Then we have the following.
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(i) The uncontrollable observable zeros and input output decoupling zeros are contained
in the invariant zeros. That is

{i.o.d.z} ∪ {unc. obs. zeros} ⊂ {invariant zeros}.
(ii) If Bx,u,y is such that the outputs y are free, then the input decoupling zeros are contained

in the invariant zeros. That is

{input dec. zeros} ⊂ {invariant zeros}.
(iii) If Bx,u,0 is autonomous then the transmission zeros and output decoupling zeros are

contained in the invariant zeros. That is

{output dec. zeros} ⊂ {invariant zeros}
{transmission zeros} ⊂ {invariant zeros}

At this stage return to the kernel representation of (5). Then given this representation, we
can find kernel representation of the controllable part by first supposing that

Bc
x,u,y = KerA

(
Rc

x Rc
u Rc

y
) ⊆ Aq .

Then we have

Bx,0,0 = KerA
(

A
C

)
,

Bc
x,0,0 = KerA

(
Rc

x

)
.

Similarly, by eliminating the latent variables x we get

Bu,y = KerA
(

Rm
u Rm

y
)
,

Bc
u,y = KerA

(
Rmc

u Rmc
y

)
,

Bc
0,y = KerA(Rmc

y ),

Bc
u,0 = KerA(Rmc

u ).

Now, the output decoupling zeros are the rank loss points of
(

A
C

)
, the transmission zeros

are the rank loss points of Rmc
u and the invariant zeros are the rank loss points of

(
A −B
C D

)
.

For the case of input decoupling zeros and input-output decoupling zeros, first find a ker-
nel representation of the corresponding behaviors. Then the rank loss points of the kernel
representations give the corresponding zeros.

4. Conclusions

The behavorial approach to systems theory has been used in the context of developing a pole-
zero theory for discrete linear repetitive processes. The emphasis has been on developing defi-
nitions which have characterizations in terms of the trajectories produced by a given process
with the eventual aim of using these to aid in the specification and design of control laws.
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