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Abstract— A novel kriging-assisted algorithm is proposed for
computationally expensive multi-objective optimization problems,
such as those which arise in electromagnetic design. The algo-
rithm combines the multiple objectives into a single objective,
which it then optimizes using a one-stage method from single-
objective optimization. Its efficiency is demonstrated by compar-
ison to a random search on a difficult test function.

I. INTRODUCTION

One popular method of reducing the high computational
cost of evaluating objective functions in electromagnetic opti-
mal design problems is the use of surrogate models, such as
kriging [1].

Surrogate-model assisted single-objective optimization al-
gorithms may be categorized into ‘two-stage’ and ‘one-stage’
varieties [2]. At each iteration of a two-stage algorithm,
a surrogate model is constructed from the sampled points
(the first stage), and then this model is used to determine
where to sample next (the second stage), e.g. [3]. On the
other hand, one-stage algorithms choose where to sample
next by making hypotheses about the location of the global
minimum, and determining the credibility of surrogate models
which would pass through each hypothesized optimum and the
sampled points, e.g. [4]. The point chosen to be sampled is
the hypothesized point which has the most credible surrogate
model passing through it. Results on test functions show one-
stage methods to be extremely efficient.

One popular technique for solving multi-objective optimiza-
tion problems (MOOPs) is to combine the multiple objectives
into a single objective [5] and then optimize this, e. g. [6]. This
paper proposes a novel multi-objective algorithm, which uses
a one-stage kriging algorithm to optimize a MOOP, which is
scalarized using an augmented Tchbeycheff function [5]. It is
believed this is the first time one-stage methodology has been
used for multi-objective optimization.

II. ONE-STAGE KRIGING METHODOLOGY

A brief overview of the one-stage kriging methodology is
first given. Suppose that objective function f is a function of an
n-dimensional design vector, and suppose N design vectors,
x(1),x(2), . . . ,x(N) have been evaluated. Given the objective
function values of these N design vectors, a hypothesis is
made about the value of the objective function at the global
minimum of f . Specifically, the global minimum is hypoth-
esized to have an objective function value f∗. Then defining

the Gaussian correlation function R (which expresses how two
design vectors x(i) and x(j) are correlated) as

R(x(i),x(j)) =
n∏

k=1

e−θk|xi
k−xj

k|
pk (1)

(where θk determines how rapid the correlation is lost in the
kth design variable, and pk determines the ‘smoothness’ of
the function in the kth design variable), the N × 1 correlation
vector r as

r(x) = [R(x,x(1)), R(x,x(2)), . . . , R(x,x(N))]T, (2)

the N ×N correlation matrix R as the matrix whose i− jth

entry is R(x(i),x(j)), the N × 1 vector y as the vector filled
with the objective function values of the sampled points,

y = [f(x(1)), f(x(2)), . . . , f(x(N))]T (3)

and 1 as the N×1 vector filled with ones, then for any design
vector x∗, the likelihood of the N examples conditional upon
the surface passing through (x∗, f∗) is [2]:

1
(2π)N/2(σ2)N/2|C|1/2

exp
(
−(y −m)TC−1(y −m)

2σ2

)
(4)

where

m = 1β + r(x∗)(f∗ − β) (5)
C = R− r(x∗)rT (x∗) (6)

are the conditional mean and conditional correlation matrix
respectively. The next design vector to be evaluated is the
one which maximizes the conditional likelihood in Eq. (4)
(which itself is maximized over θ = [θ1, θ2, . . . , θn], p =
[p1, p2, . . . , pn], β and σ2 for each x∗). This design vector is
the one which, if it had objective function value f∗, would
yield the most credible kriging model interpolating it and
the N design vectors already observed. Note that setting the
derivatives of Eq. (4) with respect to σ2 and β equal to zero
and rearranging, it is found that:

σ2 =
(y −m)T C−1(y −m)

N
(7)

β =
1TC−1y + f∗rT C−1r− yC−1r− f∗1TC−1r

1TC−11− 21TC−1r + rT C−1r
. (8)

and so Eq. (4) only needs to be maximized over θ and p.
The following Section proposes a simple way of extending
the one-stage method for use in multi-objective optimization.
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III. SCALARIZING ONE-STAGE ALGORITHM FOR
MULTI-OBJECTIVE OPTIMIZATION

After normalizing the nobj objectives of the MOOP using
either known or estimated limits of the objective function
space, so that each objective function lies within the range
[0,1], they are combined using the augmented Tchebycheff
function [5]:

fλ(x) =
nobj
max
j=1

(λjfj(x)) + ρ

nobj∑
j=1

λjfj(x) (9)

where ρ is a small positive value set (arbitrarily) to 0.05, and
λ = [λ1, λ2, . . . , λnobj ] is a normalized weight vector.

A Latin Hypercube experimental design [7] of size 5n is
initially carried out. This is used to initialize nw(≥ nobj + 1)
independent optimization searches, where each search:

• uses a different weighting vector λ, so as to converge
towards a different region of the Pareto-optimal front,

• is (arbitrarily) imax = 5n iterations in length, and
• uses the one-stage kriging method described in Section II

with a target f∗ = κ(i)fmin at iteration i, where fmin is
the current minimum value of fλ and κ(i) = 0.95(0.5 +

i
2imax

) is a scaling factor used to make the search less
exploratory (more exploitative) as the iterations proceed.

In the initial nobj + 1 searches, nobj extreme weighting
vectors (1 − ε, ε

nobj−1 , ε
nobj−1 , ..., ε

nobj−1 ), ( ε
nobj−1 , 1 −

ε, ε
nobj−1 , ..., ε

nobj−1 ), ..., ( ε
nobj−1 , ε

nobj−1 , ε
nobj−1 , ..., 1 − ε)

(where |ε| � 1) which each heavily favor only one objective,
are used, as well as the weighting vector which places equal
emphasis on each objective, ( 1

nobj
, 1

nobj
, ..., 1

nobj
). After these

first nobj + 1 searches, a further nw − nobj − 1 searches
are then performed, with the weight vector set each time
so that the value of its components is the average of the
corresponding components of the two weight vectors which
yielded points which bound the emptiest region of objective
function space. Note that this procedure means the algorithm
has a fixed number of iterations, niter = 5(nw + 1)n.

It should be emphasized that each optimization search is
completely independent of the others: the results from one
search are not used in another. This has several benefits:

1) The algorithm may be easily parallelized.
2) The conditional correlation matrix C which is to be

inverted to calculate the credibility never exceeds a size
of 10n × 10n. This is extremely important in keeping
the computational cost of the one-stage approach as low
as possible.

3) For any given weight vector, the iterations tend to
concentrate more and more around one particular region
of design variable space. By ignoring the iterations
of other searches (using different weight vectors), the
degree to which C becomes ill-conditioned is severely
reduced.

IV. RESULTS

The algorithm was tested on a range of test functions; due
to lack of space, results are given for one only, VLMOP2 [8]:

Minimize f1(x) = 1− exp
(
−

n∑
i=1

(xi −
1√
n

)2
)

and f2(x) = 1− exp
(
−

n∑
i=1

(xi +
1√
n

)2
)

with xi ∈ [−4, 4]

where n = 2. nw = 5 different weighting vectors were
used in the scalarizing one-stage algorithm, giving niter = 60
iterations in total. These iterations are shown in Fig. 1 (a)
below (each iteration being identified by the weight vector
used). For comparison, a random search of 500 iterations was
also performed, and these iterations are shown in Fig. 1 (b).
As can be seen, the scalarizing one-stage algorithm is much
more efficient at locating solutions close to the Pareto-optimal
front. Similar results were observed in other test functions.
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(a) 60 iterations of scalarizing one-
stage algorithm.
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(b) 500 iterations of random search
algorithm.

Fig. 1. Results on VLMOP2 test function.

V. CONCLUSION

A novel algorithm has been proposed which uses, for
the first time, a one-stage methodology for multi-objective
optimization. It performed efficiently on a difficult test prob-
lem; its performance in multi-objective electromagnetic design
optimization will be discussed in the full paper.
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