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Abstract
Model-Driven Architecture (MDA) supports the transformation from reusable

models to executable software. Business representations, however, cannot be

fully and explicitly represented in such models for direct transformation into
running systems. Thus, once business needs change, the language abstractions

used by MDA (e.g. object constraint language/action semantics), being low

level, have to be edited directly. We therefore describe an agent-oriented MDA
(AMDA) that uses a set of business models under continuous maintenance by

business people, reflecting the current business needs and being associated

with adaptive agents that interpret the captured knowledge to behave
dynamically. Three contributions of the AMDA approach are identified: (1) to

Agent-oriented Software Engineering, a method of building adaptive Multi-

Agent Systems; (2) to MDA, a means of abstracting high-level business-

oriented models to align executable systems with their requirements
at runtime; (3) to distributed systems, the interoperability of disparate

components and services via the agent abstraction.
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Introduction and background
Business environments and business needs are often changing rapidly.
Progressive change and adaptation of the supporting software systems is
inevitable but the maintenance and evolution of traditional OO systems is
difficult because (1) Objects inherently have static structure and behaviour.
(2) Object-oriented requirements and design models in the form of UML
diagrams lack the capability to describe behavioural semantics (Fowler,
2004), for which reason implemented systems cannot be directly
transformed from models and so they rapidly lose their value, if
maintenance changes are done at the code level only.

The Object Management Group’s (OMG) Model-Driven Architecture
(MDA) (Fowler, 2004; Object Management Group; Kleppe et al., 2003;
Meservy & Fenstermacher, 2005; France et al., 2006) promotes the
production of models with sufficient detail that they can be used to
generate executable software (Mellor & Balcer, 2002). MDA proposes a
Platform Independent Model (PIM), a highly abstracted model, indepen-
dent of any implementation technology. This is translated to one or more
Platform Specific Models (PSM), which in turn are translated into code.

Executable UML (Mellor & Balcer, 2002) that relies on Action Semantics
(AS) (Object Management Group, 2002b) or Object Constraint Language
(OCL) (Object Management Group) for specification of actions makes such

Journal: EJIS Disk used Despatch Date: 10/8/2007

Article : ppl_ejis_3000688 Pages: 1–17 Op: dorthy Ed: prasad

Gml : Ver 6.0
Template: Ver 1.0.5

European Journal of Information Systems (2007) 00, 1–17

& 2007 Operational Research Society Ltd. All rights reserved 0960-085X/07 $30.00

www.palgrave-journals.com/ejis



UNCORRECTED P
ROOF

model transformation possible. However, these action
languages do not significantly raise the level of abstrac-
tion above that provided by programming languages
(France et al., 2006). The understanding of both a
semantic-oriented language and a programming lan-
guage is required, and the interpretation of the state-
ments in OCL/AS into specific language constructs is
manual, error-prone and effort intensive.

Moreover, these language statements represent con-
straints for design decisions rather than capturing
business rules at the requirements level. Business repre-
sentations, such as business rules, if not specified
explicitly as business level constraints but hard-coded in
systems would add to the maintenance burden (Xiao &
Greer, 2005). Capturing business requirements in model
abstractions and then transforming them into running
software systems is not possible by using object-oriented
MDA. Further, whenever code relevant to business needs
has to be changed, running systems must be interrupted,
regenerated and redeployed.

Agents have been credited as an advance in Software
Engineering abstractions (Wooldridge et al., 1999). In
general, agents are reactive and proactive and dynami-
cally perform actions to achieve their goals. Instead of
using static methods, which are to be invoked and have
the same effects all the time, agents are granted the
flexibility to choose how to react. Coupled with knowl-
edge models, agents have the potential to dynamically
adapt their behaviour at runtime when models are
changed (Xiao & Greer, 2006a).

However, in current practice, Interaction Protocols
(IPs) (Foundation for Intelligent Physical Agents; AUML
web site) that model agent conversations have to be
turned into program code by developers, manually
(Ehrler & Cranefield, 2004). Agents cannot behave
dynamically or be configured to do so when the
development is completed. One approach, Plug-in for
Agent UML Linking (PAUL) attempts to allow agents to
execute IPs by attaching application-specific code to the
appropriate points of the protocols (Ehrler & Cranefield,
2004). The problems here are that the use of separate
code fragments making management and maintenance
difficult, the lack of support for agents changing roles and
the use of Java statements tying the method to a specific
platform.

Mainstream agent-oriented methodologies such as i* or
Gaia concentrate on requirements or early design
modelling. In these, strategic actor dependencies or roles
are modelled, but cannot be transformed later to plat-
form-specific models or running code, the gap between
these methodologies and IP-based development on top of
existing platforms inhibiting their full-scale usage.

An Agent-oriented Model-Driven Architecture (AMDA)
is therefore put forward. AMDA uses a set of business
models under continuous maintenance of business
people to reflect the current business needs, models
being associated with adaptive agents that interpret
the captured knowledge to behave dynamically, always

fulfilling current requirements. Consequently, the main-
tenance of the models is the maintenance of the actual
software system. This provides a means of model-based
adaptation rather than code-based adaptation.

The next section will describe the starting point of the
AMDA approach: capturing requirements in a Computa-
tion Independent Model (CIM), making use of a case
study. In the following section, we illustrate the building
of a PIM, centred on its hierarchical knowledge models
and the agent model. The penultimate section discusses
the transformation of the PIM to a PSM as well as code for
a specific agent development platform. The contributions
of the AMDA to the existing body of knowledge are
reviewed in the concluding section.

Capturing requirements in a CIM
To demonstrate the efficacy of the AMDA approach, we
have investigated how the AMDA approach might be
applied to an actual system, a British railway manage-
ment system. The system monitors train running with
regard to incidents and also ensures the safety of the train
services by conveying issues to relevant parties for
resolution. Figure 1 presents an extract from the original
250þ page specification.

In the specification, a large number of standardised
functional requirements tables have been documented
for each domain. A specific requirement, IMI–Handle-
Fault, is given in Table 1.

Figure 2, based on Figure 1, demonstrates the CIM for
the handling of faults, the subsequent imposing of
restrictions and the rescheduling of train services that
would involve faulty assets.

Table 2 summarises the roles of major business domains
and actors through the interaction of which faults are
managed and rectification is made. Domain roles are
collective functions such as IMI–HandleFault given in
Table 1. This conceptualisation in the CIM directs the
later modelling in PIM of agents as representing actors/
domains and agents playing roles as defined by domain
functions.

When object-oriented systems are being implemented,
functional tasks shown in Figure 2 will be statically
assigned to objects with fixed message passing patterns
between objects. The new paradigm of AMDA raises the
level of abstraction. For example, when an agent
representing ‘Train Operator’ at the business level invokes
a service ‘Reschedule Train Service’ in an interaction with
another agent, that service will be able to be exchanged
with alternative ones supplied by in-house developers or
service providers for operation, externally, and config-
ured for various use rather than functionally fixed,
internally. This is enabled by the agent abstraction
without requiring business experts to understand the
underpinning objects or services implementation while
configuring their business models.

PPL_EJIS_3000688
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Creating a PIM
Related requirements are structured in domains and are
delegated to agents, who have knowledge concerned
with their corresponding domains, becoming actors that
are responsible for realising domain functions and

collaborating with each other by message passing for
cross-domain interactions. The domain requirements,
already captured in the CIM, must be organised in the
PIM, in which responsibilities are assignable to concep-
tual agents and later transformable to the PSM, which

PPL_EJIS_3000688

Figure 1 Extract from a railway management system specification.
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agents use to dynamically interpret (rather than being
hard-coded with) their behaviour while running upon
specific platforms. The PIM of AMDA consists of
hierarchical business knowledge models and associated
with them, a platform-independent agent model.

Using an AMDA creates a knowledge-driven semi-
autonomous agency. Agents use the knowledge models
to dynamically interact with each other externally, as
well as to compute and make decisions internally,
supporting components that are helpful for agent

behaviour also being instructed by the knowledge models
to agents for their runtime invocation. As illustrated in
Figure 3, two combined hierarchical structures are
proposed: (i) the hierarchy of business knowledge models
(Business Process Rules, Reaction & Policy Rules, Business
Concepts & Facts) and (ii) the hierarchy of computing
components (Agents, Classes/Services). In brief, business
knowledge is accumulated from models at various levels
to drive agents to behave in order to meet business needs.
The agents dynamically select appropriate business
objects or web services and use them to fulfil their
responsibilities. Collectively, these hierarchies are devel-
oped from previous work on the Adaptive Agent Model
(AAM) (Xiao & Greer, 2006b) and represent the PIM for
AMDA.

The knowledge captured in the business models has
two building blocks: (a) a Concept Model (CM) used for

PPL_EJIS_3000688

Table 1 Functional requirements table IMI–HandleFault

Domain IMI

Identifier HandleFault.

Description To maintain information about faults so that they can be fixed in a way that minimises the overall impact on the

business.

Cause A fault becomes known to the Production Function, either from people reporting information about a fault

(IMI–AcceptFaultReport), or directly from the infrastructure asset, via infrastructure monitoring equipment or from

failure to operate when commanded (IMI–NoticeFault).

Information Information about infrastructure assets and their contracts.

Used Information about train journeys to assess the impact of the fault.

Outputs Fault information to contractors.

Required Effect The fault is recorded.

Unless the fault has already been cleared, the appropriate contractor is identified and agreement is reached about a

priority for fixing the fault.

If the fault is associated with an existing incident then that is recorded; otherwise, if it has some impact then a new

incident is established with the fault as its cause.

If necessary, track restrictions are put in place. If so, there is an impact on the train service handled by TRI–Respond-

Tolncident.

Anyone affected by the fault is notified (CCI–Notifylncident).

Contractor Fix Fault

IMI

Accept
Fault
Report 

Notice
Fault

Handle
Fault

IME

Update Fault Information

Impose Sudden Restrictions Update Restrictions 

TRI Respond to Incident 

Train Operator Reschedule Train Service  

<<pre-condition>> a fault occurs 
<<post-condition>> request Contractor to 
fix the fault, IME to place track restrictions, 
if certain conditions are satisfied  

[else] 

[else] 

[fault no 
immediate 
impact] 

[fault 
cleared] 

Figure 2 The CIM for the case study.

Table 2 Roles of actors and domains

Actor/Domain Role

IMI Detect and handle asset faults.

IME Place track restrictions.

TRI Handle the impact of incidents on train

journeys by the amendment of those

affected.

Contractor Fix asset faults.

Train Operator Reschedule train services.

Towards agent-oriented model-driven architecture Liang Xiao and Des Greer4
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vocabulary definition and referred to by all agents and (b)
a Fact Model (FM) conforming to the CM, constructed at
runtime according to a given agent’s current knowledge.
Two-rule models are in turn used to model agent
behaviour. Policy Rules (PR) are global rules that all agents
should obey and describe policies that must be enforced.
Reaction Rules (RR) are local rules that agents should use
individually and describe reactions that must be per-
formed to other agents when triggered by external
events, or messages passed in by some agents. Business
Process Rules (BPR) realise business processes aimed at
corresponding goals, through the interplay of multiple
agents. A collection of PRs and RRs will be applied at
various execution points in the bigger picture of a BPR,
pulling together multiple local reaction processes and
global policies. In the computing components hierarchy,
objects and services support agent behaviour. The inter-
action of the two hierarchies realises business require-
ments. Principle elements in this scheme are as follows:

Agent: Agents are conceptual units that organise
requirements in models and software units, driven by
the models to realise assigned responsibilities.

Business rule: Rules are externalised functional require-
ments that capture agent behaviour and are configurable
at runtime. A collection of rules compose and define
agent interaction models.

Class component and web service: These are traditional
passive components. They respond to active agents when
invoked, as defined by rules. Our example will mainly use
class components.

Message: A message is a string, XML portion, or object
container passing between agents. For example, it can be
defined in rules that an object will be encoded at the
sending side, and that it will be decoded and recovered at
the receiving side.

CM and FM
Business concepts and their properties can be identified
in the case study using a grammatical analysis. As
an example, ‘fault’ has properties such as ‘location’,
‘immediate impact’ and ‘priority’, that is, fault {type
[Enumeration], location [String], immediate_impact
[Boolean], priority [Integer], description [String], cleared
[Boolean]}.

Together, all business concepts, their constraints and
concept–property relationships form the CM. Concrete
facts are established at runtime with concept properties
populated with values such as, a fault reported as taking
place in ‘London’ and being of a classified type of ‘rail
broken’, and so on, that is, fault {type (rail broken),
location (London), y}

PPL_EJIS_3000688

Figure 3 The PIM overview demonstrating the hierarchical knowledge models and the agency.

Towards agent-oriented model-driven architecture Liang Xiao and Des Greer 5

European Journal of Information Systems



UNCORRECTED P
ROOF

Facts like this accumulate and are stored in the FM.
One dedicated agent, the Fact Manager Agent (FMA)
manages all facts and interacts with a Policy Rule
Manager Agent (PRMA, detailed later in ‘Policy rule’
section) to add new deduced facts after the application of
PR. For example, one policy may say that a fault
occurring at London will have an immediate impact.
The FM will get updated correspondingly, that is, fault
{type (rail broken), location (London), immediate_impact
(True), y}

The concept of ‘fault’ and its related properties can be
represented in AMDA as XML, shown in Figure 4. A
corresponding business class ‘Fault’ has later been imple-
mented for agents to operate upon. Their instantiated
business objects can be encoded in agent messages for their
communication to announce new facts that will be made
known by the FMA. By combining the power of PR
application using existing facts and the computation of
business class methods using existing property values,
additional knowledge will be revealed. This supports agents
to do decision making and guide their behaviour. New facts
are accumulated and invalid ones demolished dynamically
at runtime as a result of continuous message passing.
Business models, as agent knowledge, are always up-to-date.

Policy rule
Business policies naturally change over time, and thus
externalisation of them as executable rules is desirable.
PRs are typically embedded in specification descriptions.
One sentence (underlined) in the case study reads: ‘if the
fault is located at capital cities, it has impact and needs to
be fixed immediately’. This is represented in Figure 5.
Relationships among business concepts are thus asso-
ciated and constrained in values or logical relationships
in a form that reflects the business needs or strategies.
Such rules must be made explicit, as well as the
representation of them in models. Otherwise, the
embedment of them in code exacerbates the mainte-
nance burden.

Suppose a ‘fault’ fact is initially established in the FM
with its ‘immediate_impact’ unknown but ‘location’
known as ‘London’. Being aware of the example of Rule1,
the PRMA would apply this PR and then update the FM
with the property ‘immediate_impact’ for the ‘fault’ set to
‘true’ through interaction with the FMA at runtime. This
process can be iterative so that the application of one PR
may trigger others, leading to additional facts being
established, and eventually the formation of a chain of
PRs. Rule2 (Figure 6) uses the term ‘immediate impact’ as

PPL_EJIS_3000688

Figure 4 Business concept ‘fault’ representation for the case study.

Figure 5 PR representation for the case study.

Figure 6 Rule 1 triggers Rule 2 to function.
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its condition and the same term is defined in Rule1 as its
consequent action. The execution of the Rule1 triggers
the execution of the Rule2.

Reaction rule
RRs define agreements that are bound between agents for
their interactions, constraining what and how agents
should perform in a reactive and proactive manner in
business processes. Driven by events, agents use RRs to
make business decisions. The left-hand side of Figure 7
represents the schematic decision-making tree. Each RR’s
decision-making element can be decomposed into multi-
ple {condition, action} couplets, actions performed
following conditions evaluated as satisfactory on the
selected tree branch while decision making, supported by
FMA and PRMA supplying facts. The right-hand side of
Figure 7 is the decision-making tree that IMI–HandleFault
uses to handle faults when they are reported. A branch
will be selected as condition2-condition2.2 to request
the fixing of fault and place track restrictions if
corresponding conditions are met. If additional condi-
tions need to be considered, the selected tree branch
may be extended with: {condition2.2.1, action2.2.1},
{condition2.2.1.1, action2.2.1.1}, and so on.

This representation models in a platform-independent
manner the part of the requirements that are captured in
the dashed box area of the CIM shown in Figure 2. The
PIM models with regard to agent decision making during
interaction lose no generality from their ancestors and at
the same time capture sufficient semantics to guide agent
behaviour and support later model transformation to PSM.

Based on the tree structure, the scheme of a RR is
defined as RR: {event, processing, {condition, action}n,
belief}. When an event message is received by an agent
(Step 1), business objects are decoded from it and facts are
then known to the recipient (Step 2). To respond, the
agent makes a decision and performs actions that are
associated with the satisfied conditions (Step 3). The
result of the actions could be producing event messages
to other agents (Step 4). The agent’s beliefs are updated
with the new information (Step 5). Figure 8 shows in
natural language the procedure agent IMI uses to process
its RR IMI–HandleFault.

A RR acts like a contract between agents. For example,
IMI–HandleFault, as a fault handling RR in this fault
management domain, will respond if and only if an event
message with a pre-agreed information structure repre-
senting an asset ‘fault’ is received. In addition, it promises
pre-agreed information structures will be sent to the

PPL_EJIS_3000688

Fault has no immediate 
impact (condition2.1) 

Fault not 
cleared
(condition2)

Request
Contractor 
to fix fault 
(action2) 

Fault cleared (condition1)

Fault has 
immediate 
impact 
(condition2.2) 

Request IME to 
impose sudden 
restrictions 
(action2.2) 

Con2.2.1.1 

Con2.2

Con1 Con2 

Con2.1 Con2.3 

Con2.3.1 
Con2.2.1 

Con2.2.2 

Figure 7 Schematic decision-making tree of a RR and the tree structure of IMI–HandleFault.

Figure 8 Brief steps of RR IMI–HandleFault processing by agent IMI.
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pre-agreed partners, as defined by the RR. A sample
XML specification for this particular RR is shown in
Figure 9. A guideline for transforming functional
requirement tables (as in Table 1) to RR structures and
then XML specifications is provided in Xiao & Greer
(2006b). Each agent reacts to the receipt of a message by

executing a rule using a process presented in Xiao &
Greer (2006b).

The RR model is convenient for evolving software
architecture through rule configuration. Compositional
parts of rules separate computation (oprocessing4)
from coordination (oevent4and oaction4). Like other

PPL_EJIS_3000688

Figure 9 RR IMI–HandleFault specification for the case study.
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interface languages such as the OMG’s Interface Defini-
tion Language (IDL) (Object Management Group, 2002a),
RRs define the component communication interfaces via
universal message travel over the network, regardless of
their platform, operating system, programming language,
and so on. The models set contracts for agent interaction,
enabling the interoperation of agent systems across the
network through a technology-independent interaction
model. At the same time, the agent functions are
abstracted away, the use of specific objects or services
being continuously configured to provide the required
functions but the interaction interfaces maintained.

BPR model
The execution of collections of RRs, sequentially and
conditionally following event message flow, forms busi-
ness processes termed BPR. IMI–HandleFault, as discussed
in the previous section, is a constituent of a BPR called
‘Manage New Fault’, which has the intention of handling
new faults. This BPR is shown in Figure 10, with only the
default conditions considered and assumed to be true for
simplification.

The agent IMI initialises the BPR (called IAs) using
either of its two RRs: ‘IMI–AcceptFaultReport’ or ‘IMI–
NoticeFault’, in the interest of solving newly detected
faults. The agents that finalise the BPR (called FAs) are
Contractor and Train Operator, the completion of whose
functions fulfils the goal of managing new faults, with
faults fixed and train service rescheduled. Figure 11
illustrates this BPR.

PIM knowledge models and semantic web
The CM and FM of PIM can be equally represented in
RDF/RDFS with compatible semantic meanings and
comparable expressiveness. The ‘case terminology’ sec-
tion of the case study description can be structured in the
RDF/RDFS-layered semantic net shown in Figure 12.

The following RDF description in Figure 13 expresses
that a ‘Fault’ concept has a property of ‘location’, and so
on, equivalent to the CM of PIM.

Figure 14 shows a concrete fault with ‘London’ as the
value of its property ‘location’, equivalent to the FM of
the PIM.

It is easy to document all concepts and facts in the PIM
in established ontological languages, and AMDA does not
place any constraint in that respect. However, they do
not provide any further support other than expressing
concepts, properties, their relationships and instances of
these as facts. What is more important is abstracting
higher level of knowledge on top of ontology that can be
made use of to support computation, interaction and
global business process. For example, although through
the navigation of the graph we can infer a contract in
association with an asset to which a fault is related,
a responsible Contractor must be notified via some

PPL_EJIS_3000688

Figure 10 BPR ‘Manage New Fault’ for the case study.

Figure 11 XML representation of the BPR ‘Manage New Fault’.
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mechanism to come to fix the actual instance of the
ontologically documented fault, and this is out of
the scope of the CM and language expression. Further,
the specific fault expression as shown in Figure 14 should
be able to be updated automatically with the values of its
two other properties, if the location is given as ‘London’,
to reflect the policy that a fault occurs in the capital city
has immediate impact and high priority. These require-
ments naturally point to the modelling of PR, RR, and

BPR, as well the Agent Model in our PIM. Fortunately,
research linking Agents and Semantic Web is growing in
quantity (Bruns et al., 2005) and likely to be of use to
AMDA in the future.

Agent model
Many specific agent platforms should be able to utilise
the PIM knowledge models. An Agent Model is used as a
vehicle that drives knowledge models interpretation by

PPL_EJIS_3000688

Figure 12 RDFS and RDF CM for the case terminology.

Figure 13 RDF schema of ‘Fault’ and its properties.

Figure 14 RDF description of an instance of ‘Fault’.

Towards agent-oriented model-driven architecture Liang Xiao and Des Greer10
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defining agent capabilities that need to be supported by a
chosen platform. This not only maps knowledge models
into agent behaviour in practice but also places mini-
mum constraints on the agent implementation phase,
thus allowing platform-independent modelling, as well
as interoperation.

Three categories of class methods have been suggested
for method design: query, mutation and helper (Riehle &
Perry, 2002). In the context of agent-oriented systems,
classification of agent roles/acts for runtime interpreta-
tion and execution of business models using runtime
data as required by AMDA’s PIM is shown in Table 3. A
simple lexicon of agent acts, three falling into each one of
the three categories, is used to specify agent behaviour. In
spite of the straightforward mapping from these acts to
OO-based programming statements (get, set, equal, if,
and so on), the combination and composition of these
fundamental acts make up of all required interactions
among agents and business models, and manipulation of
runtime data. Agents are the subjects that uses these acts
to operate upon the business models and data, being the
object. The separation of agents and business models
means that changes in the externalised models are
interpreted immediately using the semantics of these
acts, rather than fixed code.

The combinational use of these acts by agents is
flexible, decided when rules are dynamically retrieved
as statements about the use of these acts performed on
objects or concepts. Business knowledge is little by little
known to agents on the fly, and they interact with each
other to fulfil the current business needs. No specific
requirements being set upon agent function, beyond
these primitives, AMDA’s PIM is technology independent.

The PIM blueprint
The PIM blueprint shows business models combine to
drive the behaviour of generic agents. In the rule
hierarchy BPR–RR–PR, a BPR is formed by the execution
of sequenced subordinate RR units, carried out by agents
as primitive activities. In the course of each RR execution,
PR chains are further applied in support of RRs for
decision making. In this process, the model knowledge

can be associated with agents developed from any
platforms for execution, and the mapping of generic
agent acts to specific platform constructs will only be
considered in the next stage of AMDA.

The AMDA PIM is illustrated in Figure 15 for the case
study. The upper BPR layer captures agents and their
interplay towards the goal of fault management at a very
high level. This resembles a UML collaboration or
interaction diagram used in specifying a PIM for an OO
system (analogously capturing objects and their relation-
ships). The behaviour of agents, both agent interaction
and internal computation and decision making, however,
is not directly modelled such as method declaration in
class diagrams in a PIM for OO systems but rather
captured in the middle RR layer. These details guide
individual agent behaviour. Two sources of knowledge
are useful to support RR execution. Lower level class or
service facilities can be invoked. Also a PR chain can be
formed. Both can be involved for the RR computation
and decision-making process. The bottom-level Business
CM and FM are used for establishing new facts when
informative events are announced and received by RR,
and they support PR to deduce new facts, which will be
useful to RR. Overall, the PIM model elements are all
annotated using XML. Visualised PIM models can be
reconfigured via tools support (Xiao & Greer, 2005). The
XML annotations associated with the corresponding
model elements contain all the model knowledge that
agents can use to deploy up-to-date requirements
knowledge on the fly, the precise XML-based specifica-
tions supplying semantic descriptions that traditional
UML diagrams lack (Fowler, 2004) but present in the
AMDA PIM. This is the distinct feature of AMDA, models
being interpretable rather than requiring the generation
of fixed behaviour code. The dynamic interpretation of
agent behaviour from PIM will be illustrated in the next
section via a PSM and code bridging.

Agent acts described in the abstract agent model can be
associated with business models and runtime data for
interpretation and processing, the scheme being split up
in a set of procedures shown in Table 4, referring to this
same blueprint PIM diagram.

PPL_EJIS_3000688

Table 3 Agent role in PIM

Role name Role function

Query Get Query the incoming message queue and get new messages.

Comparison Query two entities for equality.

Select Query a set of entities and pick out the one of special value.

Mutation Initialisation Mutate entities and set initial values.

Set Mutate the outgoing message queue with new messages.

Finalisation Mutate entities and set original values to finish up.

Helper Conversion Help the encoding or decoding of messages.

Assertion Help the check of conditions.

Factory Help the production of messages.

Towards agent-oriented model-driven architecture Liang Xiao and Des Greer 11
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Consider the constituents of AMDA systems as initial
Requirements (R), Models (M) being built and final
Systems (S), then the following scheme expresses the
propagation of changes in AMDA for some cases. None of
those requires explicit (manual) changes to the final
systems (Figure 16).

Transforming to PSM and code
Figure 17 illustrates the technology-dependent target
models transformed from PIM, specifically for the Java

Agent DEvelopment Framework (JADE) (JADE platform).
Platform-specific details not present in the PIM are now
included, with agent classes, business object classes as
well as other supplementary classes required by the
platform. As shown in the figure, each agent class is
associated with several role classes that capture the roles
the agent will play. Each role class is further associated
with one or more behaviour classes that implement the
action() method, the actual operations to be performed
by JADE agents when the behaviour is in execution. This

PPL_EJIS_3000688

Figure 15 A portion of the PIM for the case study (centred on RR ‘HandleFault’ of the BPR).

Q1
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involves event message processing, decision making and
action performing. Instances of ACLMessage classes will
be decoded or encoded in communicating event and
action messages. Business classes will facilitate the
internal decision making via invocation by the behaviour
class. RR structure can thus be mapped to an agent
behaviour class in which a decision-making tree is
represented for internal computation, and event and
action message classes represented in the standard ACL
formalism for agent interaction.

The PSM can be further transformed at the implemen-
tation level to code executable upon the JADE platform,
agent acts described generically in Table 3 and specifically

for the case study in Table 4 being turned into platform-
specific constructs. For example, the Get act can be
expressed as ‘ACLMessage msg¼myAgent.receive()’, the
Set act as ‘myAgent.send(msg)’, the Comparison act as an
‘equals’ statement and the Assertion act that evaluates
the decision-making tree structure including {condition,
action} couplets as ‘switch’ and ‘case’ or ‘if’ (and ‘then’)
statements.

JADE agents executing their behaviour using such
specific language constructs can be illustrated by the
pseudo code of the sample HandleFault behaviour in a
single simplified method transformed from the PSM as
shown in Figure 18.

PPL_EJIS_3000688

Table 4 PIM driving agent behaviour

Steps Generic role playing Operations in case study

1 Agent plays its GET role and gets an incoming message from its

incoming message queue.

A fault is reported to IMI.

2 Agent plays its COMPARISION role and validates the encoded

object structure using the Concept Model (CM).

The ‘fault’ structure encoded in the message matches with

the one defined in CM.

3 If the object structure is equally defined with one in the CM, then

Agent plays its SELECT role and finds the Reaction Rule (RR) from

the RR Model that is defined to deal with this event.

The RR ‘IMI–HandleFault’ is selected in this context as its

oevent4 section is specified to handle reported faults.

4 Agent plays its INITIALISATION role and populates the object

structure in the Fact Model (FM) with values seen in the message.

A fact about a ‘fault’ is established in FM with its location of

‘London’ as well as other information.

5 Also Agent plays its CONVERSION role, decodes the message

and constructs a new business object available to the Class

Manager Agent.

A business object ‘fault’ is constructed using the same schema

as defined in CM.

6 Agent plays its ASSERTION role and checks if conditions specified

in the RR are satisfied using the Fact Manager Agent (FMA).

Facts in FM are looked for in relation with the conditions of

the RR.

7 In this process, the interactions of FMA with Policy Rule Manager

Agent (PRMA) and Class Manager Agent produce facts to

evaluate conditions.

FMA interacts with PRMA/CMA to seek additional knowledge

either by applying relevant PR or invoking related class

methods. The fault is known as having impact as a result of its

location, indicated by a PR.

8 Agent plays its FACTORY role and produces a message as the

result of the action coupling with the satisfied condition as

defined in the RR. Prior to that, Agent plays its CONVERSION role

and a business object available to the Class Manager Agent is

encoded into the message.

The business objects of ‘fault’ and ‘asset’ established

previously are retrieved and encoded in messages. The

messages are prepared to be sent to responsible agents to fix

faults and impose restrictions as defined in oaction4 of the RR.

9 Agent plays its SET role and puts the message to its outgoing

message queue.

Two potential messages are ready for sending.

10 Agent plays its FINALISATION role. Temporary facts are

demolished, and FM knowledge is restored its original state.

Facts about the particular fault are cleared after their use.

AMDA {R, M, S}: {R [functional requirements], M [Agent Model, (BC, PR, RR, 

BPR) in UML&XML], S [agent instances & model repository]} 

Propagation of changes: 

Computation change: {R(c), M(RR’s internal processing using objects), S(agent-

object links implicitly reinterpreted)} 

Interaction change: {R(i), M(RR’s event receiving and action sending), S(agent-agent 

links implicitly reinterpreted)} 

Policy change: {R(p), M(PR), M(RR’s internal processing using PRs)} 

Figure 16 AMDA scheme for propagation of changes.
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‘Rule’ is a JavaBeans that retrieves rules from the AMDA
model repository and do XML-based rules parsing and
Java objects assembling for agents operation. When agent
IMI and IME interact using HandleFault and ImposeSud-
denRestrictions, respectively, a schema is shared between
the action message of former rule and the event message
of latter rule, in this instance an assert structure, that
both agents agree for information exchange. During the
processing of rules, even the internal object representa-
tions cannot be directly understood by sender and
receiver, they will be converted to XML structures as
FIPA Agent Communication Language (ACL) (Founda-
tion for Intelligent Physical Agents) message contents for
information interchange, according to the common
schema and vice versa. This enables objects written in
different languages for mutual communication and
understanding. Data binding techniques such as Java &
XML data binding (McLaughlin, 2002) are applicable to
convert between Java or other programmed object
instances and XML instances. XML data structures from
incoming messages can be populated into objects via an
unmarshalling process according to the agreed XML
schema and conversely, XML instances are produced

from objects for outgoing messages via a marshalling
process. For example, a Java object can be marshalled by
an agent to XML, transmitted over the network and
unmarshalled as a Cþ þ object understood by another
agent for its internal use.

Apart from the underpinning programmed objects
being enabled of interoperable use by AMDA across
object-oriented programming platforms, agents devel-
oped across agent-oriented programming platforms can
also use the universal AMDA models for communication
and collaboration, in an adaptive manner. When the
dynamic rule selection and execution process formalised
in the PIM is transformed into various PSMs or code as
ordinary agent behaviour classes suitable for JADE or
other agent platforms for their interoperation using
common message exchange, the implemented classes
could have constrained flexible agent behaviour as they
do traditionally. However, the original dynamic charac-
teristics built into the PIM are maintained, agents always
executing the rule appropriately configured for the
current context at runtime. Specifically, since methods
such as getEvent() and getDecisionTree() provided by our
‘Rule’ module will be invoked once per running of the

PPL_EJIS_3000688

Figure 17 A portion of the PSM for the case study (centred on the ‘HandleFault’ of the IMI).
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behaviour, and the rules are externally maintained and
retrieved at runtime for dynamic decision making, the
continuous updating of the model via tools guarantees
the running agents always execute the required rules and
hence requirements captured.

Conclusions
This work represents an original attempt to couple the
agent-oriented paradigm and MDA, the methodology
proposed by this paper can make the development of
complex systems better aligned with changing business
needs easier and less costly. The major contributions of
AMDA are three-fold.

Firstly, AMDA contributes to the Agent-oriented
Software Engineering community a method of building
adaptive MAS with overall development process support.
Behavioural semantics are associated with model con-
structs and maintained before and after agents translate
from these their behaviour to deploy up-to-date require-
ments. Therefore, AMDA covers the complete MAS

development process, filling the gap between major
agent-oriented methodologies like i* or Gaia and agent-
oriented development platforms such as JADE. Further,
systems built by the method do not enforce a constraint
that agent behaviour must conform to statically specified
IPs and so are adaptive.

Secondly, AMDA contributes to MDA research as a
means of abstracting high-level business-oriented models
understandable by business people so that they can bring
real time change effects without caring about the
implementation of low-level computing technologies.
The abstracted business knowledge models are real
business assets that business stakeholders value and can
keep the formalised requirements validated at the model
level. These agent-executable rule-based business models,
once associated with corresponding agents, can later
guide to the use of specific agent and object language
constructs for runtime execution. This is in contrast with
UML (or Agent UML, see AUML web site) and AS/OCL,
where the notation system has to be interpreted by

PPL_EJIS_3000688

Figure 18 The pseudo code for the case study (IMI agent’s behaviour ‘HandleFault’).
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human beings manually during development, and the
constraint language being unable to capture high-level
business semantics. An important lesson learned from
MDA experience is that models should be used to abstract
selected elements of the implemented complex systems
rather than replicate the abstractions in the program-
ming languages (Schmidt, 2006). AMDA raises the level of
abstraction from MDA’s low-level object and object-
constraint concepts to business-oriented constructs,
capturing high-level interaction, decision making, policy
application, and so on.

Associated with this shift in level of abstraction, the
characterised approach further directs a means to tackle
the growing issue of software complexity (Fiadeiro, 2007).
Traditionally, the inherent technical complexity of
systems is overcome by its decomposition into smaller
chunks in size and then statically assembling the whole
from the parts. A tougher type of complexity is now being
recognised concerning the dynamic nature that allows
their entities to individually perform dynamically or
collectively interact adaptively under various social
contexts to maintain existing properties or satisfy emer-
ging ones. An analogy is that a computer can be used to
run an application. Although its components of CPU or
memory can be upgraded physically and reconfigured
internally by technicians, the computer’s social role of
running applications is maintained without change of its
social position to its user, even though the user could feel
the application now runs quicker. The separation of
functionality from social role and interaction is necessary
to reduce social complexity. AMDA’s separated levels of

abstraction provides such a paradigm: agents abstract at
the business/social-level role playing; business models
capture interactions of business/social roles; and the
internal functions of agents provided by components or
services are separated below the business/social level.

Finally, AMDA contributes to distributed computing.
We have not constrained our models in this respect, low-
level computing facilities being developed locally for a
single closed system. Instead, the layered computing
hierarchy used in AMDA implies the paradigm can be
used to model the interaction of disparate components
and services in a distributed environment via agents
dynamically making use of them in an integrated MDA,
and so to cope with the challenges brought by the
pervasive business settings and the associated so-called
Global Requirements Engineering (Damian, 2007). This is
a nontrivial feature of AMDA since software is no longer a
monolithic system running on a single computer
(Fiadeiro, 2007) but rather evolves in line with business
acquisition and collaboration, making use of heteroge-
neous services. Components and services may be ready to
use but in a context their original developers have not
planned, their integration from various sources in an
open environment such as Internet being an emergent
need. AMDA agents, being technology-independent, are
well suited to the coordination and interoperation of
separately developed components and services in our
adaptive models. Their individual use or interaction
among them is not coded in advance so that emerging
business needs can be met via selection and connection
of the relevant ones at runtime.
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