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Symmetric Kernel Detector for Multiple-Antenna Aided
Beamforming Systems

S. Chen, A. Wolfgang, C.J. Harris and L. Hanzo

Abstract— We propose a powerful symmetric kernel classifier nonlinear detection solution has an inherent odd symmetry,
for nonlinear detection in challenging rank-deficient multiple-  pecause the signal states corresponding to the differgméalsi
antenna aided communication systems. By exploiting the in- ¢|asses are distributed symmetrically with respect to the

herent odd symmetry of the optimal Bayesian detector, the - - -
proposed symmetric kernel classifier is capable of approadhg optimal decision boundary [29]. A black-box kernel classifi

the optimal classification performance using noisy trainig data. ~ OF detector, however, has difficulty realising this symmetr
The classifier construction process is robust to the choicef the The novelty of this contribution is that we propose a
kernel width and is computationally efficient. The proposed symmetric kernel classifier for multiple-antenna aided €om
solution is capable of providing a signal-to-noise ratio gm in 1 nication systems, which renders realisation of the sym-
excess of 8 dB against the powerfull linear minimum bit error . . . : .
rate benchmarker, when supporting five users with the aid of metric BayS|ap detection solution easier. The orthogonal
three receive antennas. forward selection (OFS) procedure [13],[16],[27],[28]nca
readily be applied to construct a sparse representatichifor
. INTRODUCTION symmetric kernel classifier based on various criteria, such

Kernel-modelling techniques have found wide-rangings the Fisher ratio of class separability measure (FRCSM)
applications in regression and classification [1]-[16].eTh[13],[27] and the leave-one-out misclassification rate Q-O
standard kernel modelling method constitutes a black-baMR) [16]. The OFS procedures based on the FRCSM and the
approach that seeks a (usually sparse) model representali®O-MR are computationally very efficient, in comparion
extracted from the training data. Adopting black-box modto other existing kernel construction methods. We adopt
elling is appropriate, if n@ priori information exists regard- the FRCSM, since it is computationally even simpler to
ing the underlying data generating mechanism. However,implement than the LOO-MR. It is interesting to see that,
fundamental principle in practical data modelling is that ieven though we do not directly minimise the misclassificatio
there exists priori information concerning the system to berate, the sparse symmetric kernel classifier constructed by
modelled it should be incorporated in the modelling procesincrementally maximising the FRCSM is capable of ap-
Many real-life phenomena exhibit inherent symmetry, buproaching the minimum misclassification rate.
these properties are hard to infer from data with the aid of The advantage of the proposed symmetric kernel classifier
black-box-type kernel or radial basis function (RBF) medel is demonstrated in challenging detection scenarios, when
However, by imposing symmetry on the model's structurehe number of users supported is almost twice the number
exploiting the symmetry properties becomes easier and thi$ antenna elements, while conventional techniques cannot
often leads to substantial improvements in the achievabdgipport more users than the number of antenna elements
modelling performance. In regression-type applicatidhs, [30],[31]. Although we apply the proposed symmetric kernel
symmetric properties of the underlying system have beagassifier in the context of multiple-antenna aided beamfor
exploited by imposing symmetry in both RBF networks andng systems, it is equally applicable to other classifigatio
least squares support vector machines (SVMs) [17],[18]. problems with similar symmetric properties. To the best of

We consider nonlinear detection in multiple-antenna asur knowledge, this is the first time that the symmetry is
sisted beamforming systems. Detection in communicatiakplicitly exploited in kernel classifier construction.
receivers in general can be viewed as a classification prob-
lem, and both RBF as well as other kernel models have Il. BEAMFORMING RECEIVER
been applied to solve this nonlinear detection problem-[19] Consider a coherent communication system that supports
[28]. A kernel classifier or detector attempts to realise 0f users, where each user transmits using the same carrier
approximate the underlying optimal Bayesian solution- Prérequency ofw = 27 f. For such a system, user separation
vious studies [19]-[28] have shown that a block-box kernetan be achieved in the angular domain [30],[31] if the
detector typically requires more kernels than the number oéceiver is equipped with a linear antenna array consisting
the channel states to approximate the Baysian detector, asfd . > 1 uniformly spaced elements. Assume that the
moreover there often exists a performance gap between itieannel is non-dispersive which does not induce intersymbo
kernel detector and the Baysian solution. This performandeterference. Then the symbol-rate complex-valued reckiv
degradation can be explained as follows. The Bayesiaignal samples can be expressed as
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for 1 <1 < L, wheret;(6;) is the relative time delay at into two subsets conditioned on the valueofk) as follows
array element for sourcei, with #; being the direction @) A fo '

(angle) of arrival for source, n;(k) is the complex-valued X ={x; € X,1<i< Ng: bi(k)==£1}, (5
Gaussian white noise Witl[|n;(k)*] = 207, A; is the \ypore the size of the sef&®) and X is N, — Ny/2 =
complex-valued non-dispersive channel coefficient of USgfs—1 pengte the conditional probabilities of receivirgk)

i, and b;(k) is the_k-th symbol of_ user, which assumes i bi(k) = +1 aspe (x(k)) = p(x(k)[br(k) = £1). Ac-
values from the binary phase shift keying (BPSK) Symbogording to Bayes decision theory [35], the optimal detectio

set, i.e.b;(k) € {£1}. Source 1 is assumgd to pe thestrategy should be
desired user and the rest of the sources are interfering.user _

The desired user's signal-to-noise ratio (SNR) is given by by (k) { +1, i py(x(k)) = p-(x(k)), )
SNR= |A;|?02 /202, wheres? = 1 is the BPSK symbol =1, if py(x(k)) < p-(x(k)).
energy, and the desired signal-to-interferematio (SIR) is gy jntroducing the real-valued Bayesian decision variable

defined by SIR = |A1|?/|4;]?, for 2 < i < S. The

received signal vectox (k) = [z1(k) x2(k) - -2 (k)]T can YBay (k) = fBay (x(K)) 2 l]u.(x(k)) — lp_(x(k)), (7
be expressed as 2 2
- the optimal Bayesian detection rule (6) is equivalent to
x(k) = Pb(k) + n(k) = x(k) + n(k), (2)  by(k) = sgn(ygay(k)). The decision variable (7) of the

wheren(k) = [n1 (k) na(k)---ns(k)]T, the system matrix optimal Bayesian detector is readily expressed as [21],[28

is given by P = [A;s; Asse--- Agsg| and the steering Ny _lx(e)—xq 112

vector for source is s; = [e/@t1(8:) eiwt2(6:) ... piwtr(0)]T YBay (k) = > _SQMbg1)Bse  *7F (8)
while the transmitted BPSK symbol vector is(k) = a=1

[b1 (k) Da(k) - - bs(K)]". where3, denotes the a priori probability of,. Since in our

Classically, a linear beamforming receiver is adopted tgase, all thex, are equiprobable, we havg, = 3 > 0.
detect the desired user signal [32],[33]. The output of the |t can readily be shown that the two subsét§t) and

linear beamformer is defined by X(=) are symmetric (With respect to each other [29]. That is,
for any signal stat&!") € X+ there exists a signal state
in(k) = whx(k 3 _ N _ _
yuin(k) = wx(k) ®) %7 € x(5) so thatx!™) = —x{"). Given this symmetry,
and the associated decision is given by the optimal Bayesian detector (8) can be rewritten as
. D) e ax(H)
bl (k) = Sgr(g%[yLln(k)]) (k) _ %ﬁ 67 Hx“)202q+ H2 _ 67 H (k);;2q+ H2 (9)
_ [ 1 Rlgn(k)] >0, @ o En !
_15 %[yLm(k)] < 07
wherez',” € X(+). The Bayesian detector has odd symme-

wherew = [w; ws - --wr]” denotes the linear beamformer’stry aS fay (—x(k)) = — fray (x(k)).

weight vgctor and[e] thg real part. Traditionally, the weight "t ihe system matrixP is known, the signal state subset
vectorw is set to the minimum mean square error (L-MMSE)y(+) ¢anbe computed and the Bayesian detection solution
solution [32],[33]. The L-MMSE solution is based on thejs gpecified. For the multiple-antenna aided beamformer,
following consideration. An antenna array @f elements o yever, the receiver only has access to the training data
can placeL — 1 nulls. Thus the system can support uptoDK = {x(k), b, (k)}_,, whereK is the number of training

S = L users. If the number of userS is larger than gympols and{b,(k)} are the desired user's data. But the
the number of array elements, the system is referred t0 \ocejver does not have access to the interfering users’ data
as rank-deficient. The state-of-the-art design for thealine {(b:(k)}, i # 1. Thus, estimating the system matrX is
beamformer (3) in fact is the the (linear) minimum bity chajlenging task. In our previous work [27],[28], stantiar
error rate (L-MBER) solution [34], which directly minimise e rne|-hased classifiers or detectors were constructedttjir

the error probability or bit error rate (BER) of the “nearusing the noisy training data stk to approximate the opti-
beamformer (3). The L-MBER beamforming outperforms,| gayesian solution. It is clear that the inherent symynetr
the L-MMSE one significantly, particularly for rank-defiole o the Bayesian detector in (9) is hard to learn by a black-
systems. The L-MBER design is optimal for thmear poy kernel classifier. We propose a novel symmetric kernel

beamforming. The true optimal solution for the multiplec|assifier which renders realisation of the symmetric Baysi
antenna aided beamforming detector, howevenaslinear yatection solution easier.

27],[28].

[ L]e[t u]s denote theV, = 2° legitimate combinations of I1l. THE SYMMETRIC KERNEL CLASSIFIER

b(k) asbg, 1 < ¢ < Ny, and denote the first element of  The problem is to train a two-class kernel classifier
b,, corresponding to the desired user,bgs. The noiseless . (x): ¢~ — {1,—1} based on a training data sBt;x =
channel outpuk(k) only takes values from the signal state{x(k), d(k)}I_,, whered(k) € {1,—1} denotes the class
setx 2 {x, = Pb,, 1 < g < N,}, which can be divided type for each complex-valued data sampig) € CL. We



adopt the kernel classifier of the fordik) = sgn(yke:(k))  orthogonal decomposition @ be ® = QA, where we have
with

M 1 a1 -+ aim
A
yKer(k) = fKer(x(k)) = 9i¢i(x(k))a (10) :
; A— 0 1 : (15)
N . . . QN —1,M
whered(k) is the estimated class label fafk), ¢;(e) de- 0 --- 0 1
notes the classifier's kernels, are the classifier's coefficients
and M is the number of kernels. We propose to adopt th@"
following symmetric kernel Q = |w wy-wa
AN w w e Ww1. M
$i(x) = p(x;¢4,p°) — (x5 —¢4, p?), (11) w; w;z o w;ij
wherec; is the kernel centrep? the kernel variance, and - : : : : (16)
©(e) the classic kernel function. In this study we adopt the W1 Wka - WEM

Gaussian kernel function of
Ixes)? with orthogonal columns that satisty!w, = 0, if i # [.
o(x;cq, p%) = e =P (12) The model (13) can alternatively be expressed as

Other kernel functions can also be used here. It is worth d=Qy+e, (17)

emphasising that, although we derive the symmetric kernghere~ = [v1 72---vu]T = A is the weight vector in
formulation directly through the observation of the underthe orthogonal space defined by
lying symmetric Bayesian detection solution, the proposed A sparsel/,,,-term classifier can be selected by incremen-
symmetric kernel detector can also be derived analyticalig|ly maximising the FRCSM using the OFS procedure, as
by imposing the odd symmetry constraint on the standagg jn [13],[27],[28]. Define the two class se¥; = {x(k) :
kernel formulation, just as in the regression case [18]. d(k) = +1}, and let the number of points K. be K,
Because the symmetric kernel formulation (10) has th@spectively, withk. 4+ K_ = K. The means and variances
same form to the standard kernel formulation, most aoff the training samples belonging to claX¥s and classX_

the existing sparse kernel techniques can be applied. Qurthe direction of the basis; are given by

previous experience with standard sparse kernel modelling K

suggests that the OFS procedure based on the FRCSM 1 .

[27],[28] compares favourably with many other existing Mt = K, — O(d(k) = Deoni (18)
sparse kernel methods, such as the SVM techniques, in terms K

of efficiency of the construction process and the sparsity of o2, = 1 S(d(k) — 1) (wes — mys)®, (19)
the constructed model. For practical purpose, it is clitica " Ky 1 ' ’

to derive a kernel detector as sparse as possible, beca%

the detection complexity scales with the size of the kerne K

classifier. We apply the OFS procedure based on the FRCSM 1

to construct a sparse symmetric kernel classifier using the e Zé(d(k) + Dk, (20)
training data setDg. Note that the objective of training a k;l

classifier is to achieve maximum classification discrimiueat o2, = 1 S(d(k) + 1) (wis — m_ 1)2 1)
power, and Fisher ratio is a measure of discriminative power o K_ P " Y

or class separability [35].

Consider every training data poini(i) as a candidate
kernel centre. Hence we haw¢ = K in the kernel model of
(10) andc; = x(4) for 1 < ¢ < K, and the kernel variance
is set top?. Let us now define(i) = d(i) — yker(i) as the
modelling residual sequence. Then the model (10) defined

respectively, wheréj(z) = 1 if = 0 and é(z) = 0

if x # 0. The Fisher ratio is defined as the ratio of the
interclass difference and the intraclass spread encadhter
the direction ofw;, which is given by [35]

(Mg — m—,l)2

over the training data sédx can be written in matrix form Fi = U-Qr ,+o?, (22)
as ’ ’
d— 30 (13) Based on this FRCSM, significant kernel terms can be

- Te selected with the aid of an OFS procedure. At thth
where we haved = [d(1) d(2)---d(K)]Y, e« = Stage, a candidate term is chosen asitttekernel term in
[e(1) e(2)---e(K)]T, 0 =01 05---0)]T, and the selected model, if it produces the largéstamong the

M — [+ 1 candidate termss;. The procedure is terminated
® =[P, ¢y -y € RFM (14)  with a sparsel/y,,-term model, when we have

is the regression matrix with the column vectafs = My <¢, (23)

[6:(x(1)) 6i(x(2))-- si(x(KNIT, 1 < i < M. Let an Mo i



where the threshold determines the sparsity level of the
model selected. The appropriate value fordepends on
the application concerned, and it must be determined em-
pirically. The least squares solution for the correspogdin
sparse model weight vectdty, ., = (01 02---0a,.]7 is
readily available, given the least squares solutiofy gf ==

[v1 vz 7MSPH]T. The detailed construction algorithm based

on the Gram-Schmidt orthogonalisation [9] is summarised ‘AT%
below. 2
OFS based on the FRCSM Fig. 1. Geometric structure of the three-element lineaayatraving\/2

1) At the lth step wherd > 1, for 1 < ¢ < M, q # spacing, where\ is the wavelength and the angle of arrival of a user.
q,-,q # q-1, compute

Wl _ criteria such as the information based criteria and optimal
az(.“l) = { w{wj’ l<i<li, experimental design criteria of [14] may also be used.
1, 1=1, The kernel variance? is not provided by the construction
@ b, I=1, algorithm, but it may be estimated based on cross validation
w? = { b — 2431 N S Our experience suggests that the symmetric kernel classifie
1 =17 T ’ is not sensitive to the value pf used, and there exists a large
@ 1 K @ range ofp? values which enables the sparse symmetric kernel
mel T R 6(d(k) — Dwy g classifier to approach the optimal Bayesian performance.
k=1 This will be further illustrated in our simulation study. iEh
(U(q))Q _ 1 K S(d(k) — 1) (w(q) B m(q))2 robustness t(_) the value ,QF inherently is a consequence
+.l K, k.l +1!) > of the Bayesian detector’s robustness to the noise variance
k;l o2 used. It has been shown [36] that the performance of
@ _ 1 S(d(k) + 1)w(q) the Bayesian detectors usif@o?2 and502 to substitute the
=t K_ &~ ki noise variance? is indistinguishable from that of the exact
® Bayesian solution.
(U(q))2 _ 1 Z S(d(k) + 1) (w(q) _ m(q))2
= K_ &~ kot -t IV. SIMULATION STUDY
(m(q) . m(q))2 The example consisted of a three-element antenna array
Fz(q) _ “2 —t . supporting five BPSK users. Fig. 1 shows the antenna array
(a(“)) T (U(q)) geometric structure and Table | lists the angular locatmins
i i the five users with respect to the antenna array. The sintllate
2) Find channel conditions werel; = 1 4+ 50, 1 < i < 5. The

desired user and all the four interfering users had equal
a = argmax{F" 1 < q < Mg # a0 # @) signal power, and therefore SIR= 0 dB for i = 2,3, 4.
and selectF;, = Fz(ql)’ g = az(qlﬂ for1<i<land Fig. 2 portrays the BER performance of both the theoretical
’ L-MBER beamformer and the Bayesian detector for the
W :wl(qz) — { qbzqii l=1 desired user 1. For each SNR valug, = 600 training
Dy — Doimy Qigwi, 1> 1 samplesDx = {x(k),b1(k)}, were used to construct

3) The procedure is monitored and terminated at the inddR€ Symmetric kernel classifier employing the FRCSM-based
valuel = M.y, when for example the condition (23) OFS algorithm as outlined in the previous section. The KHerne

. B . . H _ 2 .
is satisfied. Otherwise, sét= [ + 1, and go to step 1. Variance was chosen to b€ = 307. As the size of the

A simple and yet effective mechanism can be built into theBayeS|an detector wal, = 16, we terminated the kernel

. . . . Classifier construction at/,,, = 16. The BER performance
selection procedure to automatically avoid any numerital i . . .

S . (@ . of the 16-term symmetric kernel detector is also depicted
conditioning. If a candidates;,” has too low energy, i.e.

T in Fig. 2. It can be seen from Fig. 2 that the symmetric
wl(Q) wl(q) is near zero, it will not be considered. Thekernel detector is capable of closely approaching the opti-

least squares solution for the weightis simply mal Bayesian performance when the number of symmetric
T
v = le d (24) TABLE |
w; Wi

LOCATIONS OF USERS IN TERMS OF ANGLE OF ARRIVALAOA) FOR THE
Instead of using the condition (23) to terminate the OFSTHREE-ELEMENT ANTENNA ARRAY SYSTEM SUPPORTING FIVE USERS
procedure, which requires us to specify the threshold vglue o T 1 > 3 7 3
the so-called cross validation procedure can be used tdeleci AOA o« | 0° 10° —17° 15° 20°
when to stop the selection procedure. Automatic terminatio
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20 performance of the symmetric kernel classifier. We used SNRdB, a

10 15 kernel model sizéM/sp. = 16 and a kernel variancg? = 302.

SNR (dB)

fFi@J- g- The de};sired-user’s b|i<t error Ifate fperform;mg in dbstext of  yoked for constructing the symmetric kernel detector were
our detectors. The symmetric kernel classifier, con tom 600 noisy . . . .

training samples using the FRCSM-based OFS, Mag. = 16 symmetry studied. First, the !nﬂuence of the moqel Sl_jéspa on .
kernels and a kernel variange = 302. The standard SVM classifier, the kernel classifier's performance was investigated. iGive
constructed from the same 600 noisy training samples, fasidmber of SNR= 5 dB and a training data Iength df = 600, Fig. 3
support vectors in the range of 40 to 60 and a kernel variamdke range shows the performance of the symmetric kernel classifier as a

of o2 to 652
function of the model sizé/y,,. The kernel varianceg” was

kernels is no larger than that of the Baysian detector, arﬂ.‘in?’edQ ?c%oerlnNg t(: tt:e_rr;lodel S'z\&h’ﬁ’ ?nc_i yvasdlrlt rTngeth
hence outperforms the black-box kernel methods of [27],[280 oy 10 0oy, NEXUINE Influence ot the training data leng

When ignoring the symmetry, a standard kernel detectdt Vas investigated. Given SNR5 dB, a kemel variance

9 o9 ) i .
would typically require more kernels than the number o?:cf t; 30, ?nd a kernefltrr?odel S'Zet CMT(P“‘ — llg’ tFIgt' 4
Bayesian kernelsV, and yet there would be a larger per—p ots the performance ot the Symmetric kernel detector as a

formance gap between the kernel detector and the Bayesg;{ Ct'?n OT the tralntlrr:g dat? lengt. Tfh:ahlnfluencetqf Te |
one. To demonstrate this point, the standard SVM detect rne’ variance on the periormance of the symmetric kerne

was trained using the same 600-sample training data set. tssllfler ;/;/]asf;ls_o é%\SESt'gatelf i G“fen %N;B qz%{a trTnllgg
size of the SVM detector constructed ranged from 40 to 6 Ata fength ot = and a kermel modet Sizitlyp, = 10,

support vectors, and the value of the kernel variape ig. 5 illustrates the performance of the symmetric kernel
determined using cross validation, was in the rangepf detector as a function of the kernel variance. The result of

to 602. The BER of the constructed SVM detector is alsd:ig' 5 confirms that there exists a large range of valueg¥or
showﬁ in Fig. 2 which allow the spare symmetric kernel detector to approach

The properties of the proposed FRCSM-based OFS irt1he optimal Bayesian performance.
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Fig.3. The |nf|gence of the cla_s_smers size on the bit erae lpe_n‘_ormance of the symmetric kernel classifier. We used SN dB, a training data
of the symmetric kernel classifier. We used SNF dB, a training data length K = 600 and a kernel model siz8/,,, — 16
length K = 600 and the kernel variancg? was varied depending on the spa ’

model size.



V. CONCLUSIONS [15]

A novel symmetric kernel classifier has been proposed
for nonlinear detection which is capable of substantiall){ls]
outperforming previous solutions in the extremely chaijlen
ing scenario of supporting almost twice as many users, as
the number of antenna elements in multiple-antenna aid
communication systems. The orthogonal forward selection
procedure based on the Fisher ratio of class separability
measure provides a fast and efficient means of constructiﬂg]
a sparse symmetric kernel detector from the noisy training
data, which is capable of approaching the optimal Bayesian
detection performance. The proposed solution provides (B
signal-to-noise ratio gain in excess of 8 dB against the
powerful linear minimum bit error rate benchmark, when

L . ; . 20]
supporting five users with the aid of three receive antenndé’
Compared with the standard sparse kernel methods, which
do not exploit the symmetry of the underlying solution, our
proposed method is computationally simpler, results in el
much smaller detector size, and performs better. Although
we have presented this sparse symmetric kernel classifier in
the context of nonlinear detection in wireless communigati
systems, it is generically applicable to any classification
problem exhibiting a similar symmetry. (23]
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