Symmetric Kernel Detector for Multiple-Antenna Aided Beamforming Systems

S. Chen, A. Wolfgang, C.J. Harris and L. Hanzo

School of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ, UK
Outline

- Motivations/overview for incorporating \textit{a priori} knowledge, specifically \textit{symmetry}, in kernel modelling

- Practical example of symmetry: multiple-antenna aided \textit{beamforming} in wireless communication

- Proposed \textit{symmetric kernel classifier} for beamforming detection and \textit{orthogonal forward selection} algorithm based on Fisher ratio of class separability measure

- Simulation results and performance comparison
Motivations

- Standard kernel modelling constitutes black-box approach
 - Black-box modelling is appropriate, if no a priori information exists regarding underlying data generating mechanism

- Fundamental principle in data modelling however is to incorporate a priori information in modelling process
 - Many real-life phenomena exhibit inherent symmetry, which are hard to infer accurately from noisy data with black-box models
 - For regression, symmetric properties of underlying system have been exploited by imposing symmetry in RBF or kernel models
 - This leads to substantial improvements in achievable regression modelling performance
Motivations (continue)

- For **classification**, there appears lack of exploiting known properties of underlying system, such as symmetry.

- Standard **support vector machine** and other kernel models have been adopted for detection in communication systems.
 - Block-box kernel detector requires more kernels than number of necessary channel states.
 - With notable **performance degradation** compared with optimal Bayesian detection solution.

- We believe this gap can be bridged if inherent **odd symmetry** of underlying Bayesian solution is “copied” to kernel classifier.
 - This motivates our novel **symmetric kernel classifier**.
System supports S users of same carrier with single transmit antenna, and receiver is equipped with a L-element linear antenna array.

Traditionally, beamforming is defined as linear processing, and optimal design for linear beamforming is linear minimum bit error rate solution.

If we are willing to extend beamforming process to nonlinear, significant performance improvement and larger user capacity can be achieved.

At cost of increased complexity.
Signal Model

- Received **signal vector** $\mathbf{x}(k) = [x_1(k) \ x_2(k) \cdots x_L(k)]^T$ is expressed as

$$\mathbf{x}(k) = \mathbf{P} \mathbf{b}(k) + \mathbf{n}(k) = \bar{\mathbf{x}}(k) + \mathbf{n}(k)$$

- $\mathbf{n}(k) = [n_1(k) \ n_2(k) \cdots n_L(k)]^T$ is complex-valued channel white noise vector with $E[\mathbf{n}(k)\mathbf{n}^H(k)] = 2\sigma_n^2\mathbf{I}_L$, and **system channel matrix**

$$\mathbf{P} = [A_1\mathbf{s}_1 \ A_2\mathbf{s}_2 \cdots A_S\mathbf{s}_S]$$

s_i is complex-valued **steering vector** of user i, and A_i is i-th complex-valued non-dispersive channel tap

- BPSK users $b_i(k) \in \{-1, +1\}$, $1 \leq i \leq S$, and transmitted symbol vector

$$\mathbf{b}(k) = [b_1(k) \ b_2(k) \cdots b_S(k)]^T$$

User 1 is **desired** user
Optimal Bayesian Beamforming

- Denote $N_b = 2^S$ legitimate sequences of $b(k)$ as b_q, $1 \leq q \leq N_b$, and first element of b_q, related to desired user, as $b_{q,1}$

- Noiseless channel state $\bar{x}(k)$ takes values from set

 $$\bar{x}(k) \in \mathcal{X} = \{\bar{x}_q = P b_q, 1 \leq q \leq N_b\}$$

- Optimal decision is $\hat{b}_1(k) = \text{sgn}(y_{\text{Bay}}(k))$, with Bayesian detector

 $$y_{\text{Bay}}(k) = f_{\text{Bay}}(x(k)) = \sum_{q=1}^{N_b} \text{sgn}(b_{q,1}) \beta_q e^{-\frac{\|x(k) - \bar{x}_q\|^2}{2\sigma_n^2}}$$

- State set can be divided into two subsets conditioned on value of $b_1(k)$

 $$\mathcal{X}^{(\pm)} = \{\bar{x}_i^{(\pm)} \in \mathcal{X}, 1 \leq i \leq N_{sb} : b_1(k) = \pm 1\}$$

 where $N_{sb} = N_b/2 = 2^{S-1}$, and noise power is $2\sigma_n^2$
Symmetry of Bayesian Solution

- Optimal Bayesian beamforming solution has structure of radial basis function or kernel model with Gaussian kernel function.
- Two state subsets are symmetric, as
 \[\mathcal{X}^{(+)} = -\mathcal{X}^{(-)} \]
- Thus Bayesian detector has odd symmetry, as \(f_{\text{Bay}}(-x(k)) = -f_{\text{Bay}}(x(k)) \), and it takes form
 \[y_{\text{Bay}}(k) = \sum_{q=1}^{N_{sb}} \beta_q \left(e^{-\frac{\|x(k) - \bar{x}_q^{(+)}\|^2}{2\sigma^2_n}} - e^{-\frac{\|x(k) + \bar{x}_q^{(+)}\|^2}{2\sigma^2_n}} \right) \]
 since all states are equiprobable, all coefficients \(\beta_q \) are equal.
- **Standard** kernel model does not guarantee to have this symmetry, particularly when kernel model is trained using noisy data.
Symmetric Kernel Classifier

- Consider generic kernel model

\[y_{\text{Sker}}(k) = f_{\text{Sker}}(x(k)) = \sum_{i=1}^{M} \theta_i \phi_i(x(k)) \]

- where \(M \) is number of kernels, with novel symmetric kernel defined by

\[\phi_i(x) = \varphi(x; c_i, \rho^2) - \varphi(x; -c_i, \rho^2) \]

- \(\theta_i \) are real-valued kernel weights, \(c_i \) are complex-valued centre vectors, \(\rho^2 \) is positive kernel variance, and

- \(\varphi(\cdot) \) is usual kernel function ⇒ in standard kernel model, a kernel would simply be \(\phi_i(x) = \varphi(x; c_i, \rho^2) \)

- Like Bayesian detector, symmetric kernel model has odd symmetry

\[f_{\text{Sker}}(-x(k)) = -f_{\text{Sker}}(x(k)) \]
Training Model

- Given training data set \(D_K = \{x(k), d(k) = b_1(k)\}_{k=1}^{K} \), consider every \(x(i) \) as candidate kernel centre, i.e. \(M = K \), \(c_i = x(i) \) for \(1 \leq i \leq K \).

- By defining modelling residual \(\varepsilon(i) = d(i) - y_{\text{Sker}}(i) \), kernel model over \(D_K \) can be written as

\[
d = \Phi \theta + \varepsilon
\]

where \(d = [d(1) \ d(2) \ldots d(K)]^T \), \(\varepsilon = [\varepsilon(1) \ \varepsilon(2) \ldots \varepsilon(K)]^T \), \(\theta = [\theta_1 \ \theta_2 \ldots \theta_M]^T \), and

\[
\Phi = [\phi_1 \ \phi_2 \ldots \phi_M] \in \mathbb{R}^{K \times M}
\]

is regression matrix with \(\phi_i = [\phi_i(x(1)) \ \phi_i(x(2)) \ldots \phi_i(x(K))]^T \)

- The task becomes selecting small subset of \(M_{\text{spa}} \) significant kernels, where \(M_{\text{spa}} \ll M \).
Orthogonal Decomposition

- Let an **orthogonal decomposition** of Φ be $\Phi = \Omega A$, where

$$
A = \begin{bmatrix}
1 & \alpha_{1,2} & \cdots & \alpha_{1,M} \\
0 & 1 & \ddots & \\
& \ddots & \ddots & \alpha_{M-1,M} \\
0 & \cdots & 0 & 1
\end{bmatrix}, \quad
\Omega = \begin{bmatrix}
\omega_{1,1} & \omega_{1,2} & \cdots & \omega_{1,M} \\
\omega_{2,1} & \omega_{2,2} & \cdots & \omega_{2,M} \\
& \ddots & \ddots & \\
\omega_{K,1} & \omega_{K,2} & \cdots & \omega_{K,M}
\end{bmatrix}
$$

- **Orthogonal matrix** $\Omega = [\omega_1 \omega_2 \cdots \omega_M]$ has orthogonal columns satisfying $\omega_i^T \omega_l = 0$, if $i \neq l$

- Kernel model can alternatively be expressed as

$$
d = \Omega \gamma + \varepsilon
$$

$$
\gamma = [\gamma_1 \gamma_2 \cdots \gamma_M]^T = A \theta \text{ is weight vector in orthogonal space } \Omega
$$
Fisher Ratio Class Separability

- Define two class sets $X_\pm = \{x(k) : d(k) = \pm 1\}$, having points K_\pm

- **Means** and **variances** of training samples $x(k) \in X_\pm$ in **direction** of basis ω_l are

 $$m_{+,l} = \frac{1}{K_+} \sum_{k=1}^{K} \delta(d(k) - 1) \omega_{k,l}, \quad \sigma_{+,l}^2 = \frac{1}{K_+} \sum_{k=1}^{K} \delta(d(k) - 1) (\omega_{k,l} - m_{+,l})^2$$

 $$m_{-,l} = \frac{1}{K_-} \sum_{k=1}^{K} \delta(d(k) + 1) \omega_{k,l}, \quad \sigma_{-,l}^2 = \frac{1}{K_-} \sum_{k=1}^{K} \delta(d(k) + 1) (\omega_{k,l} - m_{-,l})^2$$

 where $\delta(x) = 1$ if $x = 0$ and $\delta(x) = 0$ if $x \neq 0$

- **Fisher ratio** is defined as **ratio** of **interclass difference** and **intraclass spread** encountered in direction of ω_l

 $$F_l = \frac{(m_{+,l} - m_{-,l})^2}{\sigma_{+,l}^2 + \sigma_{-,l}^2}$$
Construction Algorithm

- **Orthogonal forward selection** with **Fisher ratio class separability**
 - At l-th stage, a **candidate** kernel is chosen as l-th kernel in selected model, if it produces largest F_l among remaining candidates.
 - Procedure is terminated with a sparse M_{spa}-term model, when
 \[
 \frac{F_{M_{spa}}}{\sum_{l=1}^{M_{spa}} F_l} < \xi
 \]
 where **threshold** ξ determines **sparsity** level of model selected.
 - Appropriate value for ξ depends on application concerned, and can be determined empirically.
- **LS solution** for sparse model **weight** vector $\theta_{M_{spa}} = [\theta_1 \ \theta_2 \cdots \theta_{M_{spa}}]^T$ is available via $\gamma_{M_{spa}} = A_{M_{spa}} \theta_{M_{spa}}$, given $\gamma_l = \omega_l^T d / \omega_l^T \omega_l$, $1 \leq l \leq M_{spa}$.
Simulation Set Up

- Three-element antenna array with half wavelength spacing supports five BPSK equal-power users
- Simulated channel conditions are $A_i = 1 + j0, 1 \leq i \leq 5$
- $K = 600$ training samples are used to construct symmetric kernel classifier
- FRCSM-based OFS is used and kernel variance $\rho^2 = 3\sigma_n^2$
- As $\mathcal{X}^{(+)}$ has 16 states, we terminate kernel classifier construction at $M_{\text{spa}} = 16$
Performance Comparison

(a) Bit error rate performance comparison, where standard SVM classifier has 40 to 60 support vectors, and (b) Influence of kernel variance, where SNR = 5 dB
Algorithm Investigation

(a) Influence of classifier’s size, where $K = 600$, ρ^2 is variable depending on M_{spa} and SNR= 5 dB, and (b) Influence of training data length, where $M_{spa} = 16$, $\rho^2 = 3\sigma_n^2$ and SNR= 5 dB

(a) (b)
Conclusions

- A novel symmetric kernel classifier has been proposed for nonlinear beamforming
 - Explicitly exploit underlying symmetry property of optimal Bayesian solution
 - Orthogonal forward selection based on Fisher ratio of class separability to determine sparse kernel classifier
 - Substantially outperform previous solutions

- Proposed sparse symmetric kernel classifier is generically applicable to any problem exhibiting similar symmetry
THANK YOU.

The support of the United Kingdom Royal Academy of Engineering is gratefully acknowledged.