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Abstract. We study sequential auctions for private value objects and unit-demand
bidders using second-price sealed-bid rules. We analyze this scenario from the
seller’s perspective and consider several approaches to increasing the total rev-
enue. We derive the equilibrium bidding strategies for each individual auction. We
then study the problem of selecting an optimal agenda, i.e., a revenue-maximizing
ordering of the auctions. We describe an efficient algorithm that finds an optimal
agenda in the important special case when the revenue of each auction is guaran-
teed to be strictly positive. We also show that the seller can increase his revenue
by canceling one or more auctions, even if the number of bidders exceeds the
number of objects for sale, and analyze the bidders’ behavior and the seller’s
profit for different cancellation rules.

1 Introduction
Market-based mechanisms such as auctions are now being widely studied as a means of
allocating resources in multiagent systems. There are several reasons for their popular-
ity: auctions are simple to implement and can also have desirable economic properties,
probably the most important of which are their ability to generate high revenues to the
seller and also allocate resources efficiently [1, 5, 6]. In many practical applications, the
number of objects for sale is large, and the seller has to choose a suitable auction format,
such as a combinatorial [7], simultaneous, or sequential [8, 4] auction. Each of these
formats has unique advantages, and selecting the best mechanism for a given setting can
be a challenging task. For example, while a combinatorial auction is a good choice when
it is imperative to allocate the objects efficiently, simultaneous or sequential auctions are
easier to implement, as one can use off-the-shelf systems for single-item auctions.

In this paper, we study sequential auctions, i.e., mechanisms in which objects are
sold consecutively one at a time. Even though at any given moment there is only one
item being auctioned, the bidders’ behaviour in any individual auction strongly depends
on the auctions that are yet to be conducted [8, 4]. In particular, even if the auctions are
run using second-price rules, the bidders are not likely to bid their true value for the
item if they expect to profit from subsequent auctions. Moreover, the bidding strategies
for an auction strongly depend on the agenda (i.e., the order in which the objects are
auctioned); if we change the agenda, then the bidding strategies and consequently the
equilibrium outcome changes [8].

The model considered in this paper is motivated by the following scenario. Suppose
that we are selling advertising space in a recurring event, such as several episodes of a
TV show or all football games in a given season. Assume for simplicity that each event
is associated with a single advertising slot, and all bidders are ex ante symmetric and



have unit demand, i.e., each of them only needs in one slot. I.e., if a bidder wins an
auction, he does not participate in the future auctions. Clearly, some games or episodes
of the show will be more attractive to the advertisers than others: a game between top
teams will have a larger audience than a game between less successful teams, some
episodes of the show may include appearances by celebrities, etc. In the beginning of the
season, the seller and the advertisers have some estimates of the value of advertising in
each slot, which, as argued above, can be different for different slots. One can associate
such an estimate with a probability distribution over possible values. In the symmetric
setting, it is natural to assume that these distributions are publicly known.

If the slots are to be auctioned off in the beginning of the season, the advertisers
will have to bid based on these imprecise value estimates. However, it is possible to
postpone selling each slot till the respective episode or game is about to be shown. At
this point the bidders are likely to have a better understanding of how much this slot is
worth to them, based on their current stock, existing orders, etc. Therefore, we can treat
their value for a slot just before the screening as their actual value for this slot, i.e., a
random variable drawn from the initial distribution associated with this slot.

In this situation, the seller may have (partial) control over the order of individual
auctions. Indeed, in many TV shows, the order in which some (or all) of the episodes
are shown is flexible. It is also possible to take into account revenue considerations when
scheduling football games. Therefore, it is natural to ask whether the seller can order the
individual auctions to optimize his revenue. An alternative approach to maximizing the
total revenue, which is also feasible in the above-described scenario, is canceling some
of the auctions. In this paper, we study both of these revenue maximization techniques.

The formal model that we use is described in Section 2. Note that we assume that the
bidders can commit to participating in the entire series of auctions, i.e., they take part
in all auctions until they win an object. We believe that in the above-described setting,
this asumption can be justified. Also, in most of the paper we restrict ourselves to the
case where all bidders are symmetric and the seller has full control over the ordering of
individual auctions. In the end of the paper, we briefly discuss relaxing some of these
assumptions.

We consider several approaches to increasing the total revenue. We assume that
each auction is run using second-price rules, and compute the participants’ equilibrium
bids. Using this result as a starting point, we study the problem of selecting the optimal
agenda, i.e., a revenue-maximizing ordering of the auctions. We describe an efficient
algorithm that finds the optimal agenda whenever the revenue of each auction is guar-
anteed to be strictly positive. While the latter condition does not always hold, it is likely
to be satisfied when the number of bidders is large; also, our approach may provide a
reasonable heuristic in the general case.

We then study the complementary case when in some of the auctions there is at
most one bidder who submits a non-zero bid. The second-price auction rules allocates
the object to one of the highest bidders and charges him the second-highest bid. This
means that when all bids are zero, we will give the object to an arbitrary bidder (e.g.,
one chosen at random) for free. Similarly, if there is exactly one bidder with a non-
zero bid, he will get the item and pay nothing. Intuitively, in this situation we are better
off canceling the auction altogether: it brings in no revenue anyway, and by allocating
the object we eliminate one of the bidders who could otherwise submit a high bid in



a future auction. However, to formalize this intuition we have to take into account the
ripple effect of this decision, i.e., its influence on bidders’ behavior in other auctions.
We study the changes in the bidders’ strategies under the new rules. We also sketch
an efficient algorithm that chooses in advance which auctions to cancel based on the
respective value distributions rather than actual bids.

In Section 6, we consider a more general case of our problem, where bidders are not
necessarily symmetric, and the seller’s choice of agendas is restricted. We prove that in
this case the probelm becomes NP-complete.

2 The Auction Setting
There are m private value objects for sale. Each object is sold in a separate auction
using the second-price sealed-bid rules, and the auctions are held sequentially. Initially,
there are n risk-neutral bidders. For each object j, j = 1, . . . ,m, the bidders’ valua-
tions are drawn independently from a distribution with a cumulative density function
Vj : R+ → [0, 1]. Consequently, any bidder’s valuations for different objects are inde-
pendent random variables. However, each bidder only needs one object. Therefore, if
he wins an auction, he does not participate in subsequent auctions.

The number of objects m, the initial number of bidders n, and the functions Vj :
R+ → [0, 1] are common knowledge to all bidders. However, each bidder draws his
private value signal for auction j after the end of auction j − 1. This model was intro-
duced in [4] in the context of sequential auctions for two private value objects. Here,
we generalize the approach of [4] to m > 2 objects.

The sequential auctions are conducted as follows. The first object is sold in a second-
price sealed bid auction. There are n bidders for this auction. The winner is announced
at the end of the auction. He receives the object and leaves. All other bidders then draw
their values for the second object and take part in the second auction. The process re-
peats until all objects are sold (if n > m) or until there are no more bidders (if n ≤ m);
without loss of generality we can assume n ≥ m. Note that there are n− j + 1 bidders
for auction j.

Note that in our model the private values are not correlated across the m objects.
While in general this may not be the case, the special case of uncorrelated values cap-
tures the real-life scenarios in which the objects are sufficiently dissimilar, and also
provides an interesting technical challenge.

3 Equilibrium Bids
In this section, we find the equilibrium bids for our setting. Since there is more than one
auction, a bidder’s behavior in an auction depends not only on that auction but also on
the profit he expects to get from the future auctions. We first determine this profit and
then find the equilibrium bids.

For a series of m auctions with n bidders in the first one, let EP (j, m, n) denote
the winner’s expected profit for the jth auction, let ER(j, m, n) denote the expected
revenue of the jth auction, and let ES(j, m, n) = ER(j, m, n) + EP (j, m, n) be the
expected surplus from the jth auction, i.e., the total increase in social welfare that results
from allocating the jth object. In what follows, we express these quantities as certain
functions of the parameters of the problem and use them to derive an explicit expression
for each bidder’s bidding strategy.



Let E(fn
i ) and E(sn

i ) denote the expected first and second order statistics for n
draws from the distribution Vi, i.e., set Xn

i = {x1, . . . , xn | xj ∼ Vi} and let fn
i =

max Xn
i , sn

i = maxX \ {fn
i }.

For any 1 ≤ j ≤ y ≤ m, let β(y, j, m, n) denote a bidder’s ex-ante probability of
winning the yth auction in the series from the jth to the mth one before the jth auction
begins. When the number of bidders and objects is fixed, we sometimes write β(y, j)
instead of β(y, j, m, n).

For instance, β(1, 1,m, n) is the probability of winning the first auction in the series
of auctions from the first to the mth one. Since β(1, 1,m, n) is the ex-ante probability
(i.e., before the bidders draw their values for the first auction), each bidder has equal
chances of winning the first auction, i.e., β(1, 1,m, n) = 1/n. Similarly, β(2, 1,m, n)
is the probability that a bidder wins the second auction in the series of auctions from
the first to the mth one. We have β(2, 1,m, n) = (1− 1/n)(1/(n− 1)) = 1/n: to win
the second auction, a bidder has to lose the first one, which has probability 1−1/n, and
win the second one, which happens with probability 1/(n− 1).

In the same vein, we have

β(y, 1) =
1

n− y + 1

y−1∏
k=1

(1− 1
n− k + 1

) =
1
n

.

In general, for j ≤ y ≤ m, β(y, j) is given by

β(y, j) =
1

n− y + 1

y−1∏
k=j

(1− 1
n− k + 1

) =
1

n− j + 1
.

Note that β(y, j, m, n) does not depend on y. Intuitively, before the beginning of the
jth auction, all bidders are symmetric with respect to winning the yth auction, and there
are n− j + 1 bidders left at that point. Hence, each bidder’s probability of winning the
yth auction is 1/(n− j + 1).

Let α(j, m, n) denote a bidder’s ex-ante expected profit from winning any one auc-
tion in the series of auctions from the jth (for 1 ≤ j ≤ m) to the mth one. We have

α(j, m, n) =
m∑

y=j

β(y, j)EP (y, m, n) =
1

n− j + 1

m∑
y=j

EP (y, m, n). (1)

Note that by definition, α(m + 1,m, n) = 0 for any n > 0.

Theorem 1. If each auction in a series is conducted using the second price rules, then
the equilibrium bidding strategy for a bidder whose value in auction j is v is given by

Bj(v) = max{0, v − α(j + 1,m, n)} (2)

Proof. In order to find the equilibrium strategies, we begin with the last auction and
then reason backwards. Recall that a bidder comes to know his valuation v just before
auction j begins (i.e., after the previous j − 1 auctions are over).

Consider auction m. The number of bidders for this auction is n − m + 1. Since
this is the last auction, the bidding strategies for it are the same as those for a single



object auction [1], i.e., each bidder’s equilibrium strategy is to bid his true value v =
v − α(m + 1,m, n).

Now consider auction j (1 ≤ j < m). Consider bidder 1 whose value is v and set
x = v − α(j + 1,m, n). Let b∗ = maxj 6=1bj be the highest competing bid. Assume
for simplicity that the draw resolution rule is lexicographic, i.e., bidder 1 wins as long
as x ≥ b∗; the analysis for other draw resolution rules is similar.

If x < 0, it means that the bidder’s expected profit from the future auctions exceeds
his valuation for the object that is being auctioned, so he prefers not to win the object.
Therefore, bidder 1’s equilibrium strategy is to make the lowest possible bid, i.e., 0.

Otherwise, if x ≥ b∗, then by bidding z = x bidder 1 wins and his profit from
the current auction is v − b∗. As x = v − α(j + 1,m, n) ≥ b∗, we have v − b∗ ≥
α(j + 1,m, n), i.e., the bidder weakly prefers winning this auction to participating in
the future auctions. Now, if bidder 1 bids any other amount z > b∗, he still wins and his
profit does not change, whereas if he bids z < b∗, he loses the auction, so his expected
profit is α(j + 1,m, n) ≤ v − b∗.

If x < b∗, then by bidding z = x or, in fact, any z < b∗, bidder 1 loses the auction,
so his total profit from the entire series is α(j + 1,m, n). If he bids z ≥ b∗, he wins,
but his total profit is v − b∗ < α(j + 1,m, n), i.e., this outcome is less preferable than
losing the current auction. In all cases, bidding z 6= x may decrease the bidder’s profit,
but cannot increase it, i.e., bidding max{x, 0} is an equilibrium strategy.

To characterize the bidding strategies, it remains to show how to compute α(j, m, n).
For j = m we have

ES(m,m, n) = E(fn−m+1
m )

ER(m,m, n) = E(sn−m+1
m )

EP (m,m, n) = E(fn−m+1
m )− E(sn−m+1

m ).

For j < m, the value of α(j, m, n) can be computed inductively: in what follows, we
describe how to compute α(j, m, n) given α(y, m, n) for y = j + 1, . . . ,m.

Fix j < m and set f = fn−j+1
j , s = sn−j+1

j . We will consider three cases.

– All bidders bid 0.
This happens with probability P0 = (Vj(α(j + 1,m, n)))n−j+1. In this case, the
item gets allocated to a random bidder who pays nothing. Set

E0 = E(Vj |f < α(j + 1,m, n)).

We have

ES(j, m, n) = E0, ER(j, m, n) = 0, EP (j, m, n) = E0.

– Exactly one bidder makes a positive bid.
The probability of this event is P1 = (n − j + 1)(Vj(α(j + 1,m, n)))n−j(1 −
Vj(α(j+1,m, n))). In this case, the object is allocated to the bidder with a positive
bid and the winner pays nothing. Set

E1 = E(fn−j+1
j |s < α(j + 1,m, n) < f).



We have

ES(j, m, n) = E1, ER(j, m, n) = 0, EP (j, m, n) = E1.

– Two or more bidders make a positive bid.
The probability of this event is P>1 = 1− P0 − P1. Set

E>1,s = E(f |α(j + 1,m, n) < s)
E>1,r = E(s|α(j + 1,m, n) < s)− α(j + 1,m, n).

We have

ES(j, m, n) = E>1,s, ER(j, m, n) = E>1,r, EP (j, m, n) = E>1 = E>1,s−E>1,r.

By combining these three cases, we obtain

EP (j, m, n) = P0E0 + P1E1 + P>1E>1, (3)

i.e., given α(j + 1,m, n) we can compute EP (j, m, n). Hence, given α(y, m, n) for
y = j + 1, . . . ,m, we can compute α(j, m, n) using formula (1).

Assuming that bidders’ valuations are such that in each auction at least two bidders
submit a strictly positive bid, i.e., the revenue of each auction is non-zero, this formula
can be simplified considerably. Namely, in this case we have

ES(j, m, n) = E(f)
ER(j, m, n) = E(s)− α(j + 1,m, n)
EP (j, m, n) = E(f)− E(s) + α(j + 1,m, n),

where f = fn−j+1
j , s = sn−j+1

j . The advantage of this expression is that is does not
use conditional expectations. In fact, the only information about the jth distribution
that is required is the expectations of the first and second order statistics for n − j + 1
bidders. Moreover, for large values of bidders, it is quite likely that each auction has
non-zero revenue. Indeed, as the number of bidders increases, the profits from future
auctions have to be divided among a higher number of potential winners, reducing α.

4 Choosing the optimal agenda
In this section, we consider the problem of choosing the agenda so as to maximize the
seller’s profit. Our focus here is on those cases where, for each auction, the two highest
bids are greater than zero – i.e., all auctions have non-zero profit. Recall that we have
seen that for a large value of n this scenario is quite likely.

To see how agenda can affect the revenue, consider first a simple example.

Example 1. Suppose that there are 2 items A and B and 3 bidders. The bidders valu-
ation for A are drawn from U [8, 20] and the bidders valuations for B are drawn from
U [3, 39]. Suppose we sell these items in the order A,B. Our expected revenue from the
second auction is s2

B = 15 and we have α(2, 2, 3) = (f2
B − s2

B)/2 = 6. Therefore, our
expected revenue from the first auction is s3

A − 6 = 8, and the total revenue is 23. If,
on the other hand, we sell these items in the order B,A, our expected revenue from the
second auction is s2

A = 12 and we have α(2, 2, 3) = (f2
A − s2

A)/2 = 2. Therefore, our
expected revenue from the first auction is s3

B − 2 = 19 and the total revenue is 31.



One can see that selecting the wrong agenda can substantially decrease the revenues.
This motivates the following question: Given bidder’s value distributions for all items,
is it possible to select the optimal agenda in time polynomial in n and m? Clearly, if we
simply consider all possible agendas and compute the expected revenue for each one
using the formulas derived in the previous section, we will identify the optimal agenda,
but the running time of this procedure is exponential in m. In what follows, we show
how to solve this problem more efficiently.

We start by introducing additional notation. Assume that the objects are numbered
from 1 to m; the optimal agenda is then a permutation of 1, . . . ,m. Let δ1(i, n) =
E(sn

i )− E(sn−1
i ) and δ2(i, n) = E(fn

i )− E(sn
i ). Also, as in this section the number

of bidders and objects is fixed, we will write β(y, j), EP (k), and ER(k) instead of
β(y, j, m, n), EP (k, m, n), and ER(k, m, n), respectively.

Proposition 1. Consider two agendas A(1) and A(2) for the same set of m objects such
that A(2) can be obtained from A(1) by changing the order of the first and second auc-
tion. Let i and j be the objects sold at the first and second auction in A(1), respectively.
Let R(k), k = 1, 2, be the seller’s expected total revenue from A(k). Then R(1) > R(2)

as long as

[δ1(i, n)− δ1(j, n)]− β(2, 2)[δ2(i, n− 1)− δ2(j, n− 1)] > 0.

Proof. Let α = α(3,m, n) be a bidder’s expected ex ante profit from the last m − 2
auctions; obviously, this number is the same for A(1) and A(2). Also, let β = β(2, 2) =
1/(n− 1); note that β does not depend on the agenda.

Under A(1), the seller’s expected revenue from the second auction is R
(1)
2 = E(sn−1

j )−
α, and the winner’s expected profit from the second auction is E(fn−1

j )− E(sn−1
j ) +

α = δ2(j, n− 1) + α. Therefore, in the first auction a bidder whose value is v is going
to bid

v − (δ2(j, n− 1) + α)β −
m∑

y=3

β(y, 2)EP (y);

note that the last term in this expression is independent of the agenda. Finally, the
seller’s expected revenue from the first auction is

R
(1)
1 = E(sn

i )− (δ2(j, n− 1) + α)β −
m∑

y=3

β(y, 2)EP (y).

Similarly, under A(2), the seller’s expected revenue from the second auction is R
(2)
2 =

E(sn−1
i )− α, and the winner’s expected profit from the second auction is E(fn−1

i )−
E(sn−1

i ) + α = δ2(i, n − 1) + α. Therefore, in the first auction a bidder whose value
is v is going to bid

v − (δ2(i, n− 1) + α)β −
m∑

y=3

β(y, 2)EP (y).



Hence, the seller’s expected revenue from the first auction is

R
(2)
1 = E(sn

j )− (δ2(i, n− 1) + α)β −
m∑

y=3

β(y, 2)EP (y).

Under both agendas, the seller’s expected profit from the last m− 2 auctions is the
same. Hence, we have R(1) −R(2) = R

(1)
1 −R

(2)
1 + R

(1)
2 −R

(2)
2 . It is easy to see that

R
(1)
2 −R

(2)
2 = E(sn−1

j )− E(sn−1
i ). Furthermore, we have

R
(1)
1 −R

(2)
1 = E(sn

i )− βδ2(j, n− 1)− E(sn
j ) + βδ2(i, n− 1).

Hence, we conclude that R(1) > R(2) if and only if

δ1(i, n)− δ1(j, n) + β(δ2(i, n− 1)− δ2(j, n− 1)) > 0.

Proposition 1 describes the change in the revenue that corresponds to switching
the order of the first two auctions on the agenda. If we change the relative order of the
(k−1)st and kth auction, we can still use Proposition 1 to compare the revenue from the
last m−k+2 auctions under the two agendas. However, to compare the total revenues,
we need additional techniques, as the choice of the agenda will influence the bidders’
behavior in the first k− 2 auctions. Fortunately, it turns out that as long as changing the
order of the (k − 1)st and kth auction increases the revenue from the last m − k + 2
auctions, it increases the total revenue as well.

Proposition 2. Consider two agendas A(1) and A(2) for the same set of m objects
such that A(2) can be obtained from A(1) by changing the order of the (k − 1)st and
kth auction. Let i and j be the objects sold at the (k − 1)st and kth auction in A(1),
respectively. Let R(i), i = 1, 2, be the seller’s expected total revenue from A(i), and let
R

(i)
k−1,k, i = 1, 2, be the seller’s expected revenue from the (k− 1)st and kth auction in

A(i). Then R(1) > R(2) whenever R
(1)
k−1,k > R

(2)
k−1,k.

Proof. For i = 1, 2, we have R(i) =
∑m

j=1 ER(i)(j), where ER(i)(j) is the ex-
pected seller’s revenue in the jth auction under agenda A(i). Clearly, for j > k we
have ER(1)(j) = ER(2)(j), and we assume

ER(1)(k − 1) + ER(1)(k) > ER(2)(k − 1) + ER(2)(k).

We will now prove that for any 0 < j < k − 1, if

m∑
t=j+1

ER(1)(t) >

m∑
t=j+1

ER(2)(t),

then
m∑

t=j

ER(1)(t) >

m∑
t=j

ER(2)(t).

Applying this result inductively to j = k − 2, k − 3, . . . , 1 completes the proof.



Fix some j < k − 1. Let α(1)(j) and α(2)(j) be a bidder’s expected ex ante profit
from the auctions j, . . . , m under A(1) and A(2), respectively. For i = 1, 2, we have

α(i)(j) =
1

n− j + 1

m∑
y=j

EP (1)(y).

Under both agendas, the expected total surplus from the last n− j auctions is the same,
namely,

∑m
t=j+1 E(fn−t+1

t ). Hence, we have

m∑
t=j+1

[ER(1)(t) + EP (1)(t)] =
m∑

t=j+1

[ER(2)(t) + EP (2)(t)].

Therefore,
m∑

t=j+1

ER(1)(t) >

m∑
t=j+1

ER(2)(t)

implies
m∑

t=j+1

EP (1)(t) <

m∑
t=j+1

EP (2)(t),

and consequently α(1)(j + 1) < α(2)(j + 1). As ER(i)(j, m, n) = E(sn−j+1
j ) −

α(i)(j + 1), it follows that in this case ER(1)(j) > ER(2)(j). Hence,

m∑
t=j

ER(1)(t) >

m∑
t=j

ER(2)(t),

as required.

We summarize our results in the following theorem.

Theorem 2. For each object j = 1, . . . ,m, define rj = δ1(j, n)−δ2(j, n−1)/(n−1).
Then an optimal agenda can be obtained by ordering the auctions in order of non-
increasing rj .

Clearly, this means that one can find an optimal agenda in polynomial time. Moreover,
the only information about the distributions that is required is their first and second
order statistics.

To illustrate Theorem 2, consider the case when the value distributions for two con-
secutive auctions i and j are U [a, a + x] and U [b, b + y], respectively, and x > y.
We have δ1(i, n) = xn−1

n+1 − xn−2
n = 2x

n(n+1) , δ1(j, n) = y n−1
n+1 − y n−2

n = 2y
n(n+1) ,

δ2(i, n) = x
n+1 , δ2(j, n) = y

n+1 . Consequently, δ1(i, n) − δ1(j, n) > 0 if and only
if x > y, and also δ2(i, n) − δ2(j, n) > 0 if and only if x > y. We conclude that if
all values are drawn from uniform distributions the auctions should be run in the order
of non-increasing distribution support size (or, equivalently, non-increasing variance),
whereas the expected value of each object has no effect on the optimal ordering. This
explains why in Example 1 the ordering B,A produced a higher revenue than A,B.



5 Selling a subset of items
We have seen that changing the agenda may considerably increase the revenue in a se-
quential auction. However, in some cases this approach is not feasible, since the objects
have to be sold in a fixed order (e.g., they become available one by one and expire
shortly after becoming available). In this case, we can try to increase the revenue by
selling a subset of all available items. This approach is based on the idea that reducing
supply may motivate the bidders to bid more aggressively. In this section, we assume
that the agenda is fixed and consider two ways of deciding which auctions to cancel.

5.1 Dynamic cancellations

As the bidders shade their bids since they expect to profit from the future auctions, it
may happen that in some auction in the series there is at most one strictly positive bid.
In this case, the seller may be tempted to cancel the auction: he receives no revenue
in the current auction anyway, and moreover, by doing so he increases the number of
bidders in subsequent auctions (and hence the expected revenue from these auctions).
In some cases, doing so may even increase the social welfare: when all bidders bid 0,
the object is assigned to a random bidder who may have very little value for it, and there
is a chance that if he is not eliminated now, in the future he will have a very high value
for another object. However, one has to take into account that changing the auction
rules will affect the bidders’ behavior. In particular, if canceling auction j increases the
bidders’ expected profit from the last m − j + 1 auctions, the bidders will shade their
bids more heavily in the first j−1 auctions, and the net impact on the auction revenue is
unclear. We illustrate the changes in the bidders’ strategies with the following example.

Example 2. Consider a sequential auction with 2 items and 3 bidders, where the bid-
ders’ values for each object are distributed as U [0, 1]. It is easy to see that if the second
auction has 2 participants, each bidder’s ex ante expected profit from this auction is 1/6,
whereas if it has 3 participants, the ex ante expected profit is 1/12. Hence, under the
original rules, in the first auction a bidder with value v will bid max{v−α1, 0}, where
α1 = 1/6 is his expected profit from the second auction.

If the seller is allowed to cancel the first auction as long as he gets no profit from
it, the bidder will bid max{v − α2, 0}, where α2 is his expected profit from the second
auction under the new rules. We have

α2 =
Pc

12
+

1− Pc

6
, (4)

where Pc is the probability that the first auction is canceled. The quantity Pc can be
expressed as a function of α2: a bidder bids 0 if his value is at most α2, so we have

Pc = α3
2 + 3(1− α2)α2

2. (5)

Combining (4) and (5), we obtain 2α3
2−3α2

2−12α2 +2 = 0. Solving this numerically
and taking into account that Pc = 2 − 12α2 ∈ [0, 1], we obtain α2 ≈ 0.161 < 1/6.
Hence, in this case, by allowing the seller to cancel the first auction, we increase his
expected revenue both in the second auction (since there is some chance that it will
have three bidders instead of two) and in the first auction (since the bidders expect less
profit from the second auction, so they shade less).



The method for computing the bidding strategies described in Example 2 can be
generalized to more than two items and general distributions. However, the bidders’
computational problem becomes quite complex. Moreover, it is not clear if the inequal-
ity α1 > α2 holds in general. Therefore, it is not necessarily the case that the new
format increases the seller’s total revenue. Therefore, in practice, the seller may want
to pre-compute the expected revenue from both formats and pick the better one rather
than assume that canceling non-profitable auctions is always beneficial.

5.2 Static cancellations

A related, but easier-to-analyze approach is to cancel some auctions in advance based on
their value distributions. For example, if the number of items m is equal to the number
of bidders n, then the last auction will only have one participant who will therefore get
the item for free. Hence, it is clear that in this case the auctioneer should sell at most
n−1 items. Moreover, even when n > m, it may be profitable for the auctioneer to sell
less than m items.

Example 3. Consider a sequential auction with 3 bidders and 2 objects, where the val-
ues for auction i are drawn from a distribution Fi. Assume for now that in the first auc-
tion all bids are positive (the specific distributions we construct later satisfy this prop-
erty). If both auctions are executed, the seller’s expected revenue is E(s2

2) + E(s3
1) −

[E(f2
2 ) − E(s2

2)]/2. If the seller only sells one object, his expected revenue is E(s3
1).

Hence, it is more profitable to sell one object if 3E(s2
2) < E(f2

2 ).
Consider the probability distribution on [0, 1] whose cumulative density function is

given by Va(x) = xa. It is easy to check that

E(f2) =
∫ 1

0

(2ax2a)dx =
2a

2a + 1

E(s2) =
∫ 1

0

(−2ax2a + 2axa)dx =
2a2

(a + 1)(2a + 1)
.

We have E(f2)/E(s2) = (a + 1)/a, so for a < 1/2 we have 3E(s2
2) < E(f2

2 ).
Fix a = 1/3, and shift this probability distribution by 1 i.e., consider the distribution
on [1, 2] with probability density function W1/3(x) = V1/3(x − 1). If the probability
distribution for the first object is W1/3(x) and the probability distribution for the second
object is V1/3(x), then in the first auction all bids are positive as required, and canceling
the second auction increases the total revenue. Note also that in this setting canceling
the second auction is more profitable than canceling the first one.

Intuitively, under this distribution, the bidders expect to profit considerably in the sec-
ond auction, and therefore shade heavily in the first auction, while our own profit from
the second auction is relatively small. Therefore, one cannot assume that it is always
profitable to sell at least n− 1 items, where n is the number of bidders.

Consequently, the seller needs to identify the optimal subset of items to sell. Com-
puting the expected revenue for all possible subsets is not feasible, as there are exponen-
tially many of them. While we do not have an exact solution for this problem, in what
follows, we sketch an efficient algorithm that finds an approximately optimal subset



(i.e., one with almost optimal total revenue). Our algorithm is based on dynamic pro-
gramming. Set C = m maxi=1,...,m E(fn

i ). Clearly, C is an upper bound on all partic-
ipants’ profit from the entire series. Fix a parameter ε = 1/N , which corresponds to the
approximation error. For i = 1, . . . , n, j = 1, . . . ,m, k = 0, . . . , NC, we fill in the ar-
ray TR(K, i, j). Intuitively, the values of TR(K, i, j) are approximations to the seller’s
maximal expected revenue from the last n − i + 1 auctions, assuming that there are j
bidders before the start of the ith auction, and Kε ≤

∑m
y=i EP (y, m, n) < (K + 1)ε.

The values of TR(K, i, j) can be computed inductively starting with TR(K, n, j). In
the end, we pick the entry TR(K, 1, j) that correponds to the maximal feasible revenue.
For reasonable probability distributions, we can bound the error caused by rounding the
winners’ profit to the nearest multiple of ε. We omit the details due to lack of space.

6 Asymmetric bidders and restricted orderings
In many real-life scenarios, some of the assumptions made in this paper may fail to hold.
In particular, in the advertisement scheduling problem described in the introduction, the
bidders are not necessarily symmetric, i.e., different bidders’s valuations for the same
slot can differ even ex ante. Also, the auctioneer may not have full control over the
ordering of the auctions. For example, in a typical TV show, some episodes have to be
screened in a certain order. Unfortunately, in this more general setting, the problem of
selecting the optimal agenda becomes NP-complete, even if we assume that we know
each bidder’s value for each item, and all bidders are myopic, i.e., they bid truthfully in
each auction.

An instance of the problem OPTIMAL AGENDA WITH EXPIRATION DATES is
given by n biddders, m items, mn integers v(i, j), i = 1, . . . , n, j = 1, . . . ,m, m
integers e(1), . . . , e(m), where e(i) ∈ {1, . . . ,m} for i = 1, . . . ,m, and a rational
number R. We interpret these numbers as follows: the ith bidder’s valuation for the jth
item is v(i, j) if the jth item is sold at one of the first e(j) auctions and 0 otherwise. It
is a “yes”-instance if there exists an agenda that results in a total revenue of at least R
and a “no”-instance otherwise.

Theorem 3. OPTIMAL AGENDA WITH EXPIRATION DATES is NP-complete.

The proof of this theorem can be found in the appendix. This hardness result ex-
plains why in most of the paper we chose to focus on the simplified case.

7 Conclusions and open problems
We have studied two methods for increasing the revenue of a sequential auction: choos-
ing an optimal agenda, and, for a fixed agenda, identifying an optimal subset of objects
to sell. It would be interesting to see if one can achieve further improvements in total
revenue by combining these methods, i.e., choosing the subset of objects and then se-
lecting the optimal ordering in which to sell these objects. Another tool for increasing
revenue that should be studied in this context is reserve prices. Also, it would be useful
to identify a large class of distributions for which canceling zero revenue auctions is
guaranteed to increase the total revenue. An interesting special case of our problem is
when all objects have the same value distribution. In this case, the seller simply has to
decide how many objects to sell. Currently, we do not know if in this case it is always
profitable to sell exactly min{m,n−1} items, or there are value distributions for which
the seller may want to sell fewer items.
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A Hardness result for asymmetric case

Theorem 3. OPTIMAL AGENDA WITH EXPIRATION DATES is NP-complete.

Proof. It is easy to check that this problem is in NP: given a candidate agenda, one can
efficiently compute the respective total revenue.

Tp prove NP-hardness, we reduce 3-SAT to OPTIMAL AGENDA WITH EXPIRA-
TION DATES. Recall that an instance of 3-SAT is given by N variables x1, . . . , xN

and M clauses c1, . . . , cM , where each clause consists of at most three literals. It is a
“yes”-instance if there is a way to set the variables to 1 (“true”) or 0 (“false”) so that all
clauses are satisfied.

Given an instance of 3-SAT, we construct an instance of OPTIMAL AGENDA WITH
EXPIRATION DATES as follows. There are two groups of items that correspond to vari-
ables and clauses, respectively. Namely, for each variable xi, there are two items Xi

and X̄i, and for each clause cj , there is an item Cj . The expiration date for all items of
the form Xi, X̄i, i = 1, . . . , N , is N , the expiration date for all other items is 2N +M .
Similarly, the bidders can also be subdivided into two groups. namely, for each variable
xi there are two bidders bi and b̄i (we will refer to them as the literal bidders), and for
each clause cj there is a bidder aj (the clause bidders).

We will now describe the valuations of all bidders. To simplify notation, all valu-
ations that are not described explicitly are equal to 0. For Xi, i = 1, . . . , N , we have
v(bi, Xi) = 2M +1, v(b̄i, Xi) = 2M . For X̄i, i = 1, . . . , N , we have v(bi, Xi) = 2M ,
v(b̄i, Xi) = 2M+1. For any Cj we have v(aj , Cj) = 2. Moreover, if cj = li1∨li2∨li3 ,
where lij

∈ {xij
, x̄ij

}, we set v(b, Cj) = 1 if and only if b = bi, i ∈ {i1, i2, i3} and
li = xi or b = b̄i, i ∈ {i1, i2, i3} and li = x̄i. Set R = 2MN + M .

Intuitively, under the optimal agenda we have to use the first N slots to sell N ob-
jects from the set {Xi, X̄i | i = 1, . . . , N}. Moreover, it is clear that after selling Xi, we
can make no profit from selling X̄i, as there is only one bidder interested in this object,
and vice versa. Therefore, we will not schedule both of these auctions during the first
N slots. Hence, after the first N auctions we eliminate exactly one of the bidders bi, b̄i

for each i = 1, . . . , N , which is equivalent to choosing the truth values for x1, . . . , xN .



Moreover, the auction for Cj is profitable if and only if at least one of the three bidders
that correspond to literals in cj is still present, i.e., under the truth assignment induced
by the first N auctions the clause cj is satisfied.

Formally, suppose that the given instance of 3-SAT is satisfiable and let ρ, ρ(xi) =
0, 1, be the corresponding truth assignment. Cosnider the following agenda: for i =
1, . . . , N , if ρ(xi) = 0, use the ith slot to sell Xi, and if ρ(xi) = 1, use the ith slot
to sell X̄i; use the next M slots to sell C1, . . . , CM (in arbitrary order); use the last N
slots to sell the remaining items. Clearly, the total revenue from the first N auctions is
2NM . Now, consider the auction for Cj . The clause cj evaluates to 1 under the truth
assignment ρ, so the must exist a literal lk that appears in cj such that ρ(xk) = 1 if
lk = xk and ρ(xk) = 0 if lk = x̄k. Suppose for simplicity that lk = xk; the argument
for the case lk = x̄k is similar. The bidder bk participates in the auction for Cj : indeed,
in auctions 1, . . . , k − 1, k + 1, . . . , N, . . . , N + j − 1 his bid was 0, so he did not win
any of them, and since ρ(xk) = 1, the kth auction was for X̄k, so it was won by b̄k.
Hence, the auction for Cj has at least two participants, namely, aj and bk, so its revenue
is at least 1.

Conversely, suppose that there is an agenda that results in a revenue of at least
2MN +M . It is easy to see that this means that the first N slots are used to sell exactly
one element of each pair (Xi, X̄i), i = 1, . . . , N . Indeed, any other agenda results in a
revenue of at most 2M(N − 1) + 1 from the first N auctions, and the only items that
can be profitably sold during the last M + N auctions are C1, . . . , CM , each of which
contributes at most 1 to the total revenue. Therefore, the total revenue for any other
agenda is at most 2MN − 2M + 1 + M < 2MN + M . Moreover, the total revenue
from the last N + M auctions is at least M . As selling any item of the form Xi, X̄i,
i = 1, . . . , N during these auctions results in zero revenue, it follows that the revenue
from the sale of each C1, . . . , CM is 1.

It follows that we can define a valid truth assignment ρ by setting ρ(xi) = 1 if X̄i

is sold in one of the first N auctions, and ρ(xi) = 0 if Xi is sold in one of the first N
auctions. Now consider a clause cj = li1∨li2∨li3 . The revenue from the corresponding
item Cj is 1, so at least one of the bidders that correspond to a literal in cj was present
during the auction for Cj . Therefore, the value of this literal under the truth assignment
ρ is 1 and the clause cj is satisfied.


