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Abstract. Haplotype inference from genotype data is a key step towalsster
understanding of the role played by genetic variations beiiited diseases. One
of the most promising approaches uses the pure parsimotgyion. This ap-
proach is called Haplotype Inference by Pure Parsimony Pylhd is NP-hard
as it aims at minimising the number of haplotypes requiredxlain a given
set of genotypes. The HIPP problem is often solved usingtins satisfaction
techniques, for which the upper bound on the number of reduiaplotypes is a
key issue. Another very well-known approach is Clark’s methwhich resolves
genotypes by greedily selecting an explaining pair of higples. In this work,
we combine the basic idea of Clark’s method with a more séiphied method
for the selection of explaining haplotypes, in order to @ifly introduce a bias
towards parsimonious explanations. This new algorithmbzansed either to ob-
tain an approximated solution to the HIPP problem or to obgai upper bound
on the size of the pure parsimony solution. This upper bowrdthen used to
efficiently encode the problem as a constraint satisfagiroblem. The experi-
mental evaluation, conducted using a large set of real aifitiatly generated
examples, shows that the new method is much more effecawveGlark’'s method
at obtaining parsimonious solutions, while keeping theaatlvges of simplicity
and speed of Clark’s method.

1 Introduction

Over the last few years, an emphasis in human genomics hasobedentifying ge-
netic variations among different people. A comprehensdaech for genetic influences
on disease involves examining all genetic differences argel number of affected in-
dividuals. This allows the systematic test of common genetriants for their role in
disease. These variants explain much of the genetic diyensour species, a conse-
quence of the historically small size and shared ancestityeofiuman population. One
significant effort in this direction is represented by theoMi@ap Project[23], a project
that aims at developing a haplotype map of the human genothespnesents the best
known effort to develop a public resource that will help fimglgenetic variants associ-
ated with specific human diseases.
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For a number of reasons, these studies have focused on thengaf the inher-
itance of Single Nucleotide Polymorphisms (SNPs), pointations found with only
two common values in the population. This process is made mifficult because of
technological limitations. Current methods can direcdgsence only short lengths of
DNA at a time. Since the sequences of the chromosomes iatiéridm the parents are
very similar over long stretches of DNA, it is not possible¢gonstruct accurately the
sequence of each chromosome. Therefore, at a genomic sitghfoh an individual
inherited two different values, it is currently difficult tdentify from which parent each
value was inherited. Instead, currently available seqgngnmethods can only deter-
mine that the individual is ambiguous at that site.

Most diseases are due to very complex processes, whereltles e many SNPs
affect, directly and indirectly, the risk. Due to a phenomefinown as linkage dise-
quilibrium, the values of SNPs in the same chromosome areleted with each other.
This leads to the conservation, through generations, gélaaplotype blocks. These
blocks have a fundamental role in the risk of any particuldiiidual for a given dis-
ease. If we could identify maternal and paternal inheriggmecisely, it would be pos-
sible to trace the structure of the human population morerately and improve our
ability to map disease genes. This process of going fromtypae (which may be am-
biguous at specific sites) to haplotypes (where we know frdriclvparent each SNP
is inherited) is called haplotype inference.

This paper introduces a greedy algorithm for the haplotgfezénce problem called
Delayed Haplotype Selection (DS) that extends and imprthesvell-known Clark’s
method[5]. We should note that recent work on Clark’s metbindiied a number of
variations and improvements, none similar to DS, and afgpering similarly to Clark’s
method. This new algorithm takes advantage of new ideasthat appeared recently,
such as those of pure parsimony[10]. A solution to the hgpktnference by pure
parsimony (HIPP) problem provides the smallest number pfdigpes required to ex-
plain a set of genotypes. This algorithm can then be usedardtfferent ways: (1) as a
standalone procedure for giving an approximate solutichéddIPP problem or (2) as
an upper bound to the HIPP solution to be subsequently usedigyparsimony algo-
rithms which use upper bounds on their formulation. Experital results, obtained on
a comprehensive set of examples, show that, for the vastrityagd the examples, the
new approach provides a very accurate approximation touhegarsimony solution.

This paper is organised as follows. The next section inttedikey concepts, de-
scribes the problem from a computational point of view, andh{s to related work,
including Clark’s method and pure parsimony approachese&8an Clark’s method,
section 3 describes a new algorithm call@elayed Haplotype SelectioAfterwards
section 4 gives the experimental results obtained with #e algorithm, which are
compared with other methods and evaluated from the poiniesi wf a parsimonious
solution. Finally, section 5 presents the conclusions aridtp directions for future re-
search work, including the integration of the greedy alfponi in pure parsimonious
algorithms.
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2 Problem Formulation and Related Work

2.1 Haplotype Inference

A haplotyperepresents the genetic constitution of an individual closome. The un-
derlying data that forms a haplotype is generally viewedchasset of SNPs in a given
region of a chromosome. Normal cells of diploid organismstam two haplotypes,
one inherited from each parent. Thenotypaepresents the conflated data of the two
haplotypes. The value of a particular SNP is usually reprteseby X, Y or X/Y, de-
pending on whether the organism is homozygous with valueXdrzygous with value
Y or heterozygous. The particular base that the symbols Xyarapresent varies with
the SNP in question. For instance, the most common value antacplar location may
be the guanine (G) and the less common variation cytosinér{@)is case, X will mean
that both parents have guanine in this particular site, Y& parents have cytosine
at this particular site, and X/Y that the parents have diffiétbases at this particular
site. Since mutations are relatively rare, the assumpliandt a particular site only two
bases are possible does not represent a strong restriChimmnassumption is supported
by the so callednfinite sites mod§l4], that states that only one mutation has occurred
in each site, for the population of a given species.

Starting from a set of genotypes, the haplotype inferensle ¢ansists in finding
the set of haplotypes that gave rise to that set of genotyppesmputational terms, the
problem may be formulated as follows.

Definition 1. (Haplotype Inference) Given a s@tof n genotypes, each of length,
the haplotype inference problem consists in finding alg¢edf 2 - n haplotypes, not
necessarily different, such that for each genotype G there is at least one pair of
haplotypegh;, hy), with h; and by, € ‘H such that the paih;, hy) explainsg;. The
variablen denotes the number of individuals in the sample, mndenotes the number
of SNP sites. A specific genotype is denoted;bwith 1 < ¢ < n. Furthermore,g;;
denotes a specific sitein genotypey;, with 1 < j < m. The objective is to find the set
'H of haplotypes that is most likely to have originated the $genotypes irg.

Without loss of generality, we may assume that the two vabfesach SNP are
either 0 or 1. Value O represents the wild type and value lesgmts the mutant. A
haplotype is then a string over the alphabefl}. Genotypes may be represented by
extending the alphabet used for representing haplotypg® 102}. We say that a geno-
typeg; can be explained by haplotypkegsandh,, iff for each position wheré; has the
same value a8, (homozygous sites); is equal toh;, and, for each position where
h; andh;, have different values (heterozygous siteg)has value 2. In general, if a
genotypey; hasr heterozygous sites, there &' pairs that can explaig,.

Example 1.(Haplotype Inference) Consider genotype 02122 having 5s5NRwvhich
1 SNP is homozygous with value 0, 1 SNP is homozygous withevaluand the 3
remaining SNPs are heterozygous (thus having value 2). @ead®2122 may then
be explained by four different pairs of haplotypes: (00100111), (01100, 00111),
(00110, 01101) and (01110, 00101).
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We may distinguish between a number of approaches that aadlyissed for solv-
ing the haplotype inference problem: the statistical, tharistic and the combinato-
rial approaches. The statistical approaches[19, 22] useifspassumptions about the
underlying haplotype distribution to approximate differgenetic models, and may
obtain highly accurate results. The heuristic approaah@sde, among others, Clark’s
method[5]. Finally, most combinatorial approaches arebtas the pure parsimony cri-
terion[10]. The later has shown to be one of the most promialternative approaches
to statistical models[3, 17].

2.2 Clark’s Method

Clark’s method is a well-known algorithm that has been peguoldo solve the haplotype
inference problem[5]. Clark’s algorithm has been widelgdiand is still useful today.
This method considers both haplotypes and genotypes asrsethe method starts
by identifying genotype vectors with zero or one ambigudtess These vectors can
be resolved in only one way, and they define the initially hessth haplotypes. Then
the method attempts to resolve the remaining genotypesabtyngt with the resolved
haplotypes. The following step infers a new resolved veblBrfrom an ambiguous
vector A and an already resolved genotype vector R.

Suppose A is an ambiguous genotype vector wittmbiguous sites and R is a re-
solved vector that is a haplotype in one of ftie ! potential resolutions of vector A.
Then the method infers that A is the conflation of the resolector R and another
unique vector NR. All of the ambiguous positions in A are seNR to the opposite
value of the position in R. Once inferred, this vector is atittethe set of known re-
solved vectors, and vector A is removed from the set of utvedovectors.

The key point to note is that there are many ways to apply thewué&on rule, since
for an ambiguous vector A there may be many choices for véRt@ wrong choice
may lead to different solutions, or even leave orphan vectorthe future, i.e., vectors
that cannot be resolved with any already resolved vector R.

The Maximum Resolution (MR) problem[9] aims at finding thdusion of the
Clark’s algorithm with the fewest orphans, i.e. with the amaxxm number of genotypes
resolved. Despite being an accurate criterion for usin@ihaek’'s method, this problem
is NP-hard as shown by Gusfield[9], who also proposed anénfégear programming
approach to the MR problem.

2.3 Pure Parsimony

Chromosomes in the child genome are formed by combinatidheotorresponding
chromosomes from the parents. Long stretches of DNA areeddippm each parent,
spliced together at recombination points. Since recontioinas relatively infrequent,
large segments of DNA are passed intact from parent to chiics leads to the well
known fact that the actual number of haplotypes in a giverufan is much smaller
than the number of observed different genotypes.

Definition 2. (Haplotype Inference by Pure Parsimony) The haplotyperémige by
pure parsimony (HIPP) approach, proposed by Hubbel but atdgcribed by Gus-
field[9], aims at finding a solution for the haplotype infecerproblem that minimises
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the total number of distinct haplotypes used. The problefinding such a parsimo-
nious solution is APX-hard (and, therefore, NP-hard)[16].

Example 2.(Haplotype Inference by Pure Parsimony) Consider the viollg exam-
ple, taken from a recent survey on the topic[11], where the@fgenotypes is: 02120,
22110, and 20120. There are solutions that use five différapibtypes, but the solu-
tion (00100, 01110), (01110, 10110), (00100, 10110) uséstbree different haplo-

types.

It is known that the most accurate solutions based on Clariéthod are those
that infer a small number of distinct haplotypes[10, 20thalugh Clark’s method has
sometimes been described as using the pure parsimonyan[ted, 1, 22], this criterion
is not explicitly used and an arbitrary choice of the resmviaplotype does not lead to
a pure parsimony solution. The present paper proposes adtat, while still based
on Clark’s method, explicitly uses the pure parsimony dote, leading to more precise
results.

Several approaches, have been proposed to solve the HIBRmprd he first algo-
rithms are based on integer linear programming[10, 2, 2hgreas the most recent and
competitive encode the HIPP problem as a constraint setiisfeproblem (either using
propositional satisfiability[17, 18] or pseudo-Booleatimyzation[4]).

One should note that the implementation of exact algoritftunthe HIPP problem
often requires computing either lower or upper bounds orvttiee of the HIPP so-
lution[24, 18]. Clearly, Clark’s method can be used for pdivg upper bounds on the
solution of the HIPP problem. Besides Clark’s method, wlisatfficient but in general
not accurate, existing approaches for computing upper dotm the HIPP problem
require worst-case exponential space, due to the enuimedtcandidate pairs of hap-
lotypes[12, 24]. Albeit impractical for large examplesgaf these approaches is used
in Hapar[24], a fairly competitive HIPP solver when the nwenbf possible haplotype
pairs is manageable.

The lack of approaches both accurate and efficient for comgpuipper bounds,
prevented their utilization in recent HIPP solvers, fortamee, in SHIPs[18]. Algo-
rithm 1 summarizes the top-level operation of SHIPs. Thi§-Based algorithm iter-
atively models whether there exists a $£0f distinct haplotypes, withr = |H| such
that each genotype € G is explained by a pair of haplotypes #i. The algorithm
considers increasing sizes faf, from a lower boundb to an upper boundb. Trivial
lower and upper bounds are, respectivélgnd?2 - n. For each value of considered,
a CNF formulay” is created, and a SAT solver is invoked (identified by the fiamc
call SAT(¢")). The algorithm terminates for a size &f for which there exist = |H|
haplotypes such that every genotypgjiis explained by a pair of haplotypest, i.e.
when the constraint problem is satisfiable. (Observe thattemative would be to use
binary search.)

This paper develops an efficient and accurate approach fdotiype inference,
inspired by pure parsimony, and which can be used to comjmgliée apper bounds

1 n general, up t@ - n distinct haplotypes may be required to explailgenotypes. However,
in this particular case, there is no solution with six distihaplotypes.
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Algorithm 1 Top-level SHIPs algorithm

SHIPS(G, 1b)

1 r<1b

2 while (true)

3 do Generatep” giveng andr
4 if SAT(p") = true

5 then return r

6 elser —r+1

to the HIPP problem. Hence, the proposed approach can bgratee in any HIPP
approach, including Hapar[24] and SHIPs[18].

3 Delayed Haplotype Selection

A key drawback of haplotype inference algorithms based ank®& method is that these
algorithms are often too greedy, at each step seeking taiexghchnon-explained
genotype with the most recently chosen haplotype. As atraguén a newly selected
haplotypeh,, which can explain a genotypg, a new haplotypé, is generated that
only serves to explaip,. If the objective is to minimize the number of haplotypegrth
the selection ofi, may often be inadequate.

This section develops an alternative algorithm which askle the main drawback
of Clark’s method. The main motivation is to avoid the exeasgreediness of Clark’s
method in selecting new haplotypes, and therefatelayedgreedy algorithm for hap-
lotypeselection(DS) is used instead.

In contrast to Clark’s method, where identified haplotypesiacluded in the set
of chosen haplotypes, the DS algorithm maintains two seltmplotypes. The first set,
theselectedaplotypes, represents haplotypes which have been chmberiricluded in
the target solution. A second set, tendidatenaplotypes, represents haplotypes which
can explain one or more genotypes not yet explained by a pa@lected haplotypes.

The initial set of selected haplotypes corresponds to gildtgpes which are re-
quired to explain the genotypes with no more than one hefgmss sites, i.e. geno-
types which are explained with either one or exactly two bgyples. Clearly, all these
haplotypes must be included in the final solution.

At each step, the DS algorithm chooses the candidate hggbtywhich can ex-
plain the largest number of genotypes. The chosen hapldtysethen used for iden-
tifying additional candidate haplotypes. Moreovkt,is added to the set of selected
haplotypes, and all genotypes which can be explained byraopaelected haplotypes
are removed from the set of unexplained genotypes. Theidigoterminates when all
genotypes have been explained.

Each time the set of candidate haplotypes becomes emptyharalare still more
genotypes to explain, a new candidate haplotype is gemkrake new haplotype is
selected greedily as the haplotype which can explain tligemumber of genotypes
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Algorithm 2 Delayed Haplotype Selection

DELAYEDHAPLOTYPESELECTION(G)

1 > Hs isthe set oBelectechaplotypesiHc is the set otandidatehaplotypes
2 Hg <« CALCINITIAL HAPLOTYPESG)

3 G < REMOVEEXPLAINEDGENOTYPESG, Hs)

4 foreachh € Hs

5 do

6 foreachg € G

7 do if CANEXPLAIN(h, g)

8 then h. < CALCEXPLAINPAIR(A, g)
9 He — He U{he}

10 Associaté. with g

11 while (G # 0)

12 do if (He = 0)

13 then

14 he < PICKCANDHAPLOTYPEG)

15 He — {he}

16 h < h. € Hc associated with largest number of genotypes
17 He — He — {h}

18 Hs «— Hs U {h}

19 G «— REMOVEEXPLAINEDGENOTYPESG, Hs)
20 foreachg € G

21 do if CANEXPLAIN(h, g)

22 then h. < CALCEXPLAINPAIR(A, g)
23 He «— He U{he}

24 Associatéi. with g

25 'Hg + REMOVENONUSEDHAPLOTYPESHs)
26 return Hs

not yet explained. Clearly, other alternatives could besaered, but the experimental
differences, obtained on a large set of examples, were goifisiant.

Observe that the proposed organization allows selectiptphges which will not
be used in the final solution. As a result, the last step of theriéhm is to remove
from the set of selected haplotypes all haplotypes whicmatesed for explaining any
genotypes.

The overall delayed haplotype selection algorithm is shawAlgorithm 2 and
summarizes the ideas outlined above. Line 2 computes tloé BaplotypesH s associ-
ated with genotype§ with one or zero heterozygous sites, since these haplotypst
be included in the final solution. Line 3 removes frehall genotypes that can be ex-
plained by a pair of haplotypesiis. The same holds true for line 19. Lines 6 to 10 and
20 to 24 correspond to the candidate haplotype generatiaseplgiven newly selected
haplotypes. The DS algorithm runs in polynomial time in thiener of genotypes and
sites, a straightforward analysis yielding a run time ca@xijpy in O(n? m).
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Table 1.Classes of problem instances evaluated

Class #InstanceminSNPsmaxSNPsminGENsmaxGENS

uniform 245 10 100 30 1Q0
nonuniform 135 10 100 30 100
hapmap 24 30 75 7 68
biological 450 13 103 5 50
Total 854 10 103 5 100

In practice, the delayed haplotype selection algorithmxiecated multiple times,
as in other recent implementations of Clark’s method[2@]eé&ch step, ties in picking
the next candidate haplotype (see line 16) are randomlydor.okhe run producing the
smallest number of haplotypes is selected.

Results in the next section suggest that delayed haplosipet®n is a very effec-
tive approach. Nonetheless, it is straightforward to cotdelthat there are instances for
which delayed haplotype selection will yield the same sotutis Clark’s method. In
fact, it is possible for DS to yield solutions with more haplzes than Clark’s method.
The results in the next section show that this happens vesyyrdandeed, for most ex-
amples considered (out of a comprehensive set of examp&is) &tremely unlikely to
compute a larger number of haplotypes than Clark’s methudi paost often computes
solutions with a significantly smaller number of haplotypes

4 Experimental Results

This section compares the delayed haplotype selection l@8jithm described in the
previous section with a recent implementation of Clark’shmd (CM)[8]. In addition,
the section also compares the HIPP solutions, computedamititent tool[18], with
the results of DS and CM. As motivated earlier, the objestvithe DS algorithm are
twofold: first to replace Clark’s method as an approximatibthe HIPP solution, and
second to provide tight upper bounds to HIPP algorithms.

Recent HIPP algorithms are iterative[18], at each steprsgpky Boolean Satisfiabil-
ity problem instance. The objective of using tight uppermaiis to reduce the number
of iterations of these algorithms. As a result, the main $ocfithis section is to ana-
lyze the absolute difference, in the number of haplotypewyben the computed upper
bound and the HIPP solution.

4.1 Experimental setup

The instances used for evaluating the two algorithms hage bbtained from a number
of sources[18], and can be organized into four classes sirohable 1. For each class,
Table 1 gives the number of instances, and the minimum andnmu@x number of
SNPs and genotypes, respectivelfrhe uniform and nonuniform classes of instances

2 Table 1 shows data for the original non-simplified instaneksvever, all instances were sim-
plified using well-known techniques[3] before running ariyttee haplotype inference algo-
rithms.
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are the ones used by other authors[3], but extended witttiadali, more complex,
problem instances. The hapmap class of instances is alsobyséhe same other au-
thors[3]. Finally, the instances for the biological class generated from data publicly
available[13,21, 7, 6, 15]. To the best of our knowledges ihithe most comprehensive
set of examples used for evaluating haplotype inferenagieok.

All results shown were obtained on a 1.9 GHz AMD Athlon XP witBB of RAM
running RedHat Linux. The run times of both algorithms (CMI &) were always a
few seconds at most, and no significant differences in ruagiwere observed between
CM and DS. As a result, no run time information is includecobel

4.2 Experimental evaluation

The experimental evaluation of the delayed haplotype sete¢DS) algorithm is or-
ganized in two parts. The first part compares DS with a pubhehilable recent im-
plementation of Clark’s method (CM)[8], whereas the secpad compares DS with
an exact solution to the Haplotype Inference by Pure ParsinidIPP) problem[18].
In all cases, for both CM and DS, we select the best solutidrobdO runs. Other
implementations of Clark’s method could have been consit[@0]. However, no sig-
nificant differences were observed among these impleniensaivhen the objective is
to minimize the number of computed haplotypes.

The results for the first part are shown in Figure 1. The scplt# shows the differ-
ence of CM and of DS with respect to the exact HIPP solutiotfferexamples consid-
ered. The results are conclusive. DS is often quite closkeadiiPP solution, whereas
the difference of CM with respect to the HIPP solution caniggeifcant. While the dis-
tance of DS to the HIPP solution never exceeds 16 haplotyipeslistance of CM can
exceed 50 haplotypes. Moreover, for a large number of exasntile distance of DS to
the HIPP solution is 0, and for the vast majority of the exasmphe distance does not
exceed 5 haplotypes. In contrast, the distance of CM to tiRPHblution often exceeds
10 haplotypes.

The second plot in Figure 1 provides the distribution of tliffecknce between
the number of haplotypes computed with DS and with CM. A baoeisited with a
valuek represents the number of examples for which CM exceeds DShayplotypes.
With one exception, DS always computes a number of haplstypelarger than the
number of haplotypes computed with CM. For the single exoapDS exceeds CM in
1 haplotype (hence -1 is shown in the plot). Observe that$ét 8f the examples, DS
outperforms CM. Moreover, observe that for a reasonablexeniof examples (40.1%,
or 347 out of 854) the number of haplotypes computed with Ckeerls DS in more
than 5 haplotypes. Finally, for a few examples (3 out of 8&N| can exceed DS hy
more than 40 haplotypes, the largest value being 46 hagpstyp

It should also be noted that, if the objective is to use eifb8ror CM as an up-
per bound for an exact HIPP algorithm, then a larger numbeppfputed haplotypes
represents a less tight, and therefore less effective,ruppend. Hence, DS is clearly
preferable as an upper bound solution.

The results for the second part, comparing DS to the HIPPtisaluare shown
in Figure 2. As can be observed for the majority of exampl&s7%, or 672 out of
854), DS computes the HIPP solution. This is particulamgyngicant when DS is used
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Fig. 1. Comparison of Clark’s Method (CM) with Delayed Haplotypdegtion (DS)

as an upper bound for recent HIPP algorithms[18]. For exaswwhere DS computes
the HIPP solution, exact HIPP algorithms are only requioegrbve the solution to be
optimum. For a negligible number of examples (0.9%, or 8 686d) the difference of
DS to the HIPP solution exceeds 5 haplotypes. Hence, forabewajority of examples
considered, DS provides a tight upper bound to the HIPPisalut

The results allow drawing the following conclusions. Fi86 is a very effective
alternative to CM when the objective is to minimize the totamber of computed hap-
lotypes. Second, DS is extremely effective as an upper bfmurreckact HIPP algorithms.
For most examples (99.1%, or 846 out of 854) the number ofdtgpés identified by
DS is within 5 haplotypes of the target HIPP solution.

5 Conclusions and Future Work

This paper proposes a novel approach for haplotype seteatibich attempts to ad-
dress one of the main drawbacks of Clark’s method[5]: iteeesive greediness. This
is achieved by delaying haplotype selection, one of thedyreteps of Clark’s method.
This approach allows to establish a tight upper bound thabesused when modelling
this problem as a constraint satisfaction problem. The roairiext for the work is the
development of efficient and accurate upper bounding praesdor exact algorithms
for the Haplotype Inference by Pure Parsimony (HIPP) probldevertheless, the pro-
posed approach can also serve as a standalone haplotymmodealgorithm. Experi-
mental results, obtained on a comprehensive set of exangkeslear and conclusive.
In practice, the nevdelayed haplotype selectididS) algorithm provides quite tight
upper bounds, of far superior quality than a recent impleatam of Clark’s method.
For the vast majority of the examples considered, the e$oitDS are comparable
to those for HIPP, and for a large percentage of the exampEBg,omputes the actual
HIPP solution.
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Fig. 2. Comparison of Delayed Haplotype Selection (DS) with HIPRtian

As mentioned earlier, recent approaches for the HIPP pmolikerate through in-
creasingly higher lower bounds[18]. This implies that $iolus to the haplotype in-
ference problem are only obtained when the actual solutiothé HIPP problem is
identified. Thus, these recent approaches to the HIPP pnpb8 cannotbe used for
computing approximate HIPP solutions. The work descrilnetthis paper provides an
efficient and remarkably tight approach for computing ufgmemds. This allows recent
HIPP based algorithms[18] to compute the exact solutionidraiing through decreas-
ing upper bounds. Hence, at each step a solution to the lgpplotference problem is
identified, and, therefore, these methods can be used fooxdpating the exact HIPP
solution. The integration of the DS algorithm in recent solus to the HIPP problem
is the next natural step of this work.
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