
Automatic Testing from Formal Specifications⋆

Manoranjan Satpathy1⋆⋆, Michael Butler2, Michael Leuschel3, and S. Ramesh4

1Department of Information Technologies, Abo Akademi University
Joukahaisenkatu 3-5, FIN-20520 Turku, Finland

2School of Electronic and Computer Science, University of Southampton
Highfield, Southampton, SO17 1BJ, UK

3Institute of Informatik, Heinrich-Heine Universitat Duesseldorf
Universitatsstr. 1, D-40225 Duesseldorf

4General Motors India Science Lab
International Tech Park, Whitefield Road, Bangalore – 560066

mannu.satpathy@abo.fi; mjb@ecs.soton.ac.uk
leuschel@cs.uni-duesseldorf.de; s.ramesh@gm.com

Abstract. In this article, we consider model oriented formal specifica-
tion languages. We generate test cases by performing symbolic execution
over a model, and from the test cases obtain a Java program. This Java
program acts as a test driver and when it is run in conjunction with the
implementation then testing is performed in an automatic manner. Our
approach makes the testing cycle fully automatic. The main contribution
of our work is that we perform automatic testing even when the models
are non-deterministic.

Key Words: Model Based Testing; B-Method; Non-determinism

1 Introduction

Software models are usually built to reduce the complexity of the development
process and to ensure software quality. A model is usually a specification of the
system which is developed from the requirements early in the development cycle
[5]. In this paper, we consider model oriented formal specification languages like
Z [22], VDM [12] , B [1] and ASM [9]. By model oriented we mean that system
behaviour is described using an explicit model of the system state along with
operations on the state.

A formal model can be subjected to symbolic execution to obtain a cover-
age graph in which nodes represent instantiated states and edges are labeled
with operation applications. One can then select a finite set of finite behaviours
from the coverage graph and test if the implementation is consistent with these
behaviours. This approach is often termed as model based testing [6]. Model

⋆ Work done within the EU research project Rodin, IST 511599.
⋆⋆ Currently at the General Motors India Science Lab (ISL), Bangalore; part of this

work was done when the author was visiting GM ISL during Summar’05.

A

Root

Fig. 1. Non-determinism Scenario

based testing though is an incomplete activity; the selected behaviours could be
enriched to capture interesting aspects of the system and hence the success of
their testing would give us confidence about the correctness of the system.

In this paper, we discuss automatic testing of an implementation or the
system under test (SUT) written in accordance with a formal model in B [1].
Our method first generates a set of test cases from the model, and then from
the test cases a test driver. The test driver is essentially a program in the target
language. If this driver is plugged into the implementation, then testing can
be performed automatically. It invokes all of the test cases generated from the
model and reports about their success or failure. Our method does not require the
implementation source to be available, and the entire testing cycle is automatic.
The main contribution of our work is that our approach can perform automatic
testing even if there is non-determinism in the model or in the implementation.

The basic idea behind the handling of non-determinism can be seen from
Figure 1. Assume the solid lines in the figure show the full state space of a model
in which branchings may be due to non-determinism. A correct implementation
of this model must follow one of the paths in the figure, and for testing, we must
know which path the SUT has taken. In our strategy, we maintain a generic
representation of the possible paths that a model can take. Whenever the SUT
makes a choice corresponding to a non-determinism in the model, we require
that it makes this choice visible, and then this choice must satisfy a set of
constraints which means that the implementation is not deviating from the model
behaviour. Furthermore, the test driver uses the implementation choices to align
the implementation trace with the appropriate trace of the model. Once this
correspondence is established, additional properties could be checked with ease.

The organization of the paper is as follows. In Section 2, we discuss related
work. Section 3 introduces the B notation with examples. In Section 4, we con-
sider our approach to handle deterministic models, and in Section 5, we consider
non-deterministic models. Section 6 discusses the implementation issues along

with the current status of our implementation. In Section 7, we make an analysis
of our method, and finally, Section 8 concludes the paper.

2 Related Work

A testing criterion is a set of requirements on test data which reflects a notion of
adequacy on the testing of a system [19]. A test adequacy criterion determines
whether sufficient testing has already been done, and in addition, it provides
measurements to obtain the degree of adequacy obtained after testing stops
[25]. A test oracle is a mechanism to determine correctness of test executions. A
test driver is a tool which activates a system, provides test inputs and report test
results [18]. Representation mapping is a mapping which maps the abstract name
space of the model with the concrete name space of the SUT [7]. In this context,
there are two kinds of mappings: control and data [19]. Control mappings are
between control points in the implementation and locations in the specification;
these are the points where the specification and the implementation states are to
be matched. Data mappings are transformations between data structures in the
implementation and those in the specification. A test sequence is called preset if
the input sequence is fixed prior to the start of testing; it is called adaptive if at
each step the choice of the next input symbol depends on the previous outputs
[23]. The adaptive test cases are in the form of decision trees; the tester supplies
an input and depending on the output, a branch is selected.

The work by Dick and Faivre [4] is a major contribution to the use of formal
methods in software testing. A VDM [12] specification has state variables and
an invariant (Inv) to restrict the variables. An operation, say OP, is specified by
a pre-condition (OPpre) and a post-condition (OPpost). The expression OPpre∧
OPpost∧ Inv is converted into its Disjunctive Normal Form (DNF); each disjunct,
unless a contradiction itself, represents an input sub-domain of OP. Next, as
many operation instances are created as the number of valid disjuncts in the
DNF. An attempt is then made to create a FSA (Finite State Automaton) in
which each node represents a possible machine state and an edge represents an
application of an operation instance. A set of test cases is then generated by
traversing the FSA, each test case being a sequence of operation instances. The
authors discuss only the mechanism of the partitioning algorithm.

BZ-Testing Tool (BZ-TT) [2, 3, 14] generates functional test cases from B
as well as Z specifications. BZ-TT assumes all sets in the B machine are finite
enumerated sets. Each B operation is transformed to its normal form [1]. An
operation is then partitioned into a set of operation instances; each partition
usually corresponds to exactly one control path within the operation. The con-
junction of all predicates in a control flow path and the postcondition is termed
an effect predicate (EP). The free state variables in each EP are assigned to their
maximum and minimum values – say, in terms of size – to obtain a set of bound-

ary goals. Boundary input values are obtained by giving maximum and minimum
values to the input variables in the EP. A Constraint Logic Programming (CLP)
Solver tries to find a path through symbolic execution from the initial state to

a boundary state, a state satisfying a given boundary goal. And then relevant
operation instances are applied at the boundary state by giving them boundary
input values. The results of the query operations become the oracle information.
BZ-TT assumes that the B operations are deterministic. The authors point out
that automatic verdict assignment is difficult because of non-determinism, and
representation mappings [14, 15].

Satpathy et al. [21] discuss the prototype of a tool called ProTest which per-
forms testing of an implementation in relation to its B model. The tool performs
partition analysis using a technique similar to that of Dick and Faivre. A finite
coverage graph is created from a symbolic execution of the B model by a model
checking tool called ProB [16]. Some paths starting from the initial state are
taken as test cases. The ProTest tool can run Java programs. So the B model
and its Java implementation are run simultaneously by the tool, and in relation
to a test case, similar states are matched to assign a verdict.

Finite state machines have been used to model systems like sequential cir-
cuits, communication protocols and some types of programs such as lexical anal-
ysis and pattern matching [13]. Though the implementation of such systems is
usually deterministic, some of the state parameters may be unspecified during
the specification stage. In such cases, non-deterministic finite state machines
(NDFSMs) are used for modeling. Sometimes the code for the implementation
(SUT) is not available and the problem then is to find if the SUT conforms to
its finite state model; i.e. we need to show whether every i/o sequence that is
possible in the SUT is also present in the specification. Solutions to this confor-
mance testing problem when the specification is a NDFSM have been addressed
by many authors including Hierons [10, 11], Zhang and Cheung [24] and Nach-
manson et al [17]. However, the models which we discuss in this paper are in
general infinite state machines.

3 The B-Method and Examples

The B-method is a theory and methodology for formal development of com-
puter systems [1]. The basic unit of specification in B is called a B machine.
Larger specifications can be obtained by composing B machines in a hierarchical
manner. An individual B machine consists of a set of variables, an invariant to
restrict the variables, and a set of operations to modify the state. An operation
has a precondition, and an operation invocation is defined only if the precondi-
tion holds. The initialization action and an operation body are written as atomic
actions coded in a language called the generalized substitution language [1]. The
language allows specification of deterministic and non-deterministic assignments
and operations. An operation invocation transforms a machine state to a new
state. The behaviour of a B machine can be described in terms of a sequence of
operation invocations in which the first operation call originates from the initial
state of the machine.

We consider two B machines. The B machine TAgency1.mch is deterministic
(Table 1). It has two users (u1 and u2) and two rooms (r1 and r2). The model

Machine TAgency1
SETS USER = {u1, u2}; SESSION= {s1}; ROOM= {r1, r2}
VARIABLES

sess, booking
INVARIANT

sess ∈ SESSION +→USER /* +→ means partial function */
∧ booking ∈ROOM +→USER

INITIALISATION
sess := ∅ || booking := ∅

OPERATIONS
login(u) = PRE u ∈ USER ∧ sess = ∅ THEN sess(s1) := u

END;
alloc(s)= PRE s ∈SESSION ∧sess 6= ∅ ∧ dom(booking) 6= {r1, r2} THEN

IF r1 ∈ dom(booking) THEN
booking(r2) := sess(s)

ELSE booking(r1) := sess(s) END
END;

logout(s) = PRE s ∈SESSION∧sess 6= ∅ THEN sess := ∅ END
END

Table 1. A Deterministic B machine

can only handle a single session s1. sess and booking are the two variables,
and the INVARIANT tells that both are partial functions. Both variables are
initialized to empty. There are three operations in all. The login() operation
assigns the single session to a user. Then alloc(ss) allocates a room in relation to
the session ss, but preference is given to r1. The logout() operation terminates
the session.

Appendix-A shows a skeleton of TAgency2.mch; it is a more complex version
of TAgency1 and it involves non-determinism. The system can handle a num-
ber of parallel sessions given by the deferred set SESSION. A user can log into
the system through the call login() to get an available session which is non-
deterministically selected. He can then request to book or unbook a room (oper-
ations book() and unbook()), and makes (or receives) payment through a card
(enterCard()). Next, the user can get a response from response book() (or
response unbook()). Room allocation data is stored in the function booking.
A user can book multiple rooms. The machine has five non-deterministic opera-
tions: login(), enterCard(), retryCard(), response book() and response unbook().
For the second and the third operations, when the card is entered or retried, a
non-deterministic choice out of {valid, wrong} is made. For the response book(),
any room out of the set of available rooms may be allocated. And in case of re-
sponse unbook(), any room out of the allocated rooms to the current user is
cancelled.

4 The Method I: Deterministic Models

We assume flat B machines without any hierarchy and Java is the language of
implementation. We now outline our method in the following steps.

Creation of Probe Operations: For each operation in the machine, a set
of probe operations are manually created from the domain knowledge and the
operation meaning. The probes will be used in matching similar specification
and implementation states. For the operation alloc(s), some possible queries
to become its probe operations are:

– Which user made the allocation request? (probe operation alloc P1())

– How many rooms got allocated so far? (probe operation alloc P2())

These two probe operations can be encoded in B as follows:

uu ← alloc P1(s) = PRE s ∈ SESSION THEN uu := sess(s) END

count ← alloc P2 = BEGIN count := card(booking) END

Signature Generation: The SUT in Java must have a similar signature as the
specification; i.e., the SUT will have the same operation names as those in the
specification but their parameters would be similar in the following sense:

– If a model parameter type is either numeric or boolean it becomes int and
boolean in the implementation respectively.

– For any other model parameter of type PP , we treat it as an object of a
class PP in the implementation.

For instance, the login() will have the signature ’void login(USER uu)’. We
also create signatures of the probe operations; for instance, alloc P1() will be
of ’USER alloc P1(SESSION s)’. The SUT also implements SESSION, USER
and ROOM as Java classes. It is expected that the developer while writing the
SUT preserves the signatures of the B operations and their probes.

Generation of Operation Instances: We perform a DNF based analysis over
the operation preconditions in order to obtain operation instances. However, op-
eration preconditions in B are relatively simpler; therefore, in order to obtain
interesting partitions, we add tautologies through conjunction to the precondi-
tion as per the following rules.

– If an operation has an IF like ’IF C THEN S1 ELSE S2’, then add the tautology
(C ∨ ¬C) to the precondition through conjunction. For ’IF C THEN (IF C1 THEN

S1 ELSE S2) ELSE S2’, we add (C ∧ (C1 ∨ ¬C1)) ∨ ¬C

– If the operation has a SELECT with branch conditions C1, . . . , Ck then add to the
precondition: C1 ∨ C2 ∨ . . . Ck ∨ (¬(C1 ∨ C2 ∨ . . . Ck))

– If set S occurs in the operation, then add to the precondition: S = ∅ ∨ S 6= ∅
(similar tautologies can also be added for other data constructs.)

Obtain the DNF of the modified precondition. The non-contradictory disjuncts
are used for creating operation instances. Some instances of alloc() are shown
below. From now onwards, by operations we will mean operation instances.

alloc1(s): s ∈ SESSION ∧ sess 6= ∅ ∧ booking = ∅
alloc2(s): s ∈ SESSION ∧ sess 6= ∅ ∧ booking 6= ∅ ∧ dom(booking) 6= {r1, r2}

∧ booking(r1) = sess(s)
alloc3(s): s ∈ SESSION ∧ sess 6= ∅ ∧ booking 6= ∅ ∧ dom(booking) 6= {r1, r2}

∧ booking(r1) 6= sess(s)

It is easy to see that for each control paths in an operation, we have an operation
instance. This means that if are able to generate test cases for each of the
operation instances, then the branches within the original operations are also
covered.

Creation of a Coverage graph: Our testing criterion is to test each operation
at least once; therefore, we try to generate a finite coverage graph so that each
operation instance appears at least once. However, we may not be able to cover all
operations because: (a) an operation may be infeasible, (b) a certain initialisation
may prevent an operation from appearing or (c) an operation may not appear
within the finite dimension of the graph. We now outline our construction process
in the following steps. Figure 2 shows a coverage graph for TAgency1.mch. The
probe calls and their results are shown within the dotted regions.

– Step 1: Create an initial node (the root) in which the variables of the B
machine get the assignments of the INITIALISATION clause.

– Step 2: Take any node in the graph called source where all the state vari-
ables are already available as ground terms. If the precondition of a non-
probe operation holds at source, apply this operation to obtain the target
state. Create a new node for target state only if an identical state does not
already exist. Label the edge (source,target) with the operation call.

– Step 3: For each probe operation pop() of OP(), make a call to it at the
target state to obtain the result res. Attach to the edge just created the pair
(pop(), res). If enough coverage has not been done then jump to Step 2.

Note that our method can be tuned to many other testing criteria; the graph
creation process needs to be changed accordingly.

Generation of Test Sequences: We traverse the coverage graph to generate
starting from the initial state a set of paths (or operation sequences) so that
each operation is covered. We do not present such an algorithm here; one such
algorithm has been given in [21]. It is important that while obtaining a test
sequence, we do not go around a loop. And further, the problem being NP-
complete [8], we only get a sub-optimal solution. In Figure 2, the path shown by
the dashed lines is a test sequence.

booking = {}

booking = {}

sess = {(s1,u1)}

sess = {(s1,u1)}

booking = {(r1,u1)}

sess = {(s1,u1)}

booking = {(r1,u1),(r2,u1)}

booking = {}

sess = {(s1,u2)}

INITIAL STATE

(alloc_P1(s1), u1)

(alloc_P1(s1), u1)

(login_P1(),u1)
(login_P1(),u2)

booking = {(r1,u2)}

sess = {(s1,u2)}

(alloc_P1(s1), u2)

login(u1) login(u2)

sess = {}

alloc2(s1)

alloc1(s1)

alloc1(s1)

(alloc_P2(), 1)

(alloc_P2(), 2)

(alloc_P2(), 1)

Fig. 2. A coverage graph for TAgency1.mch; dotted path shows one test case

Generation of a test driver: The test driver generator takes a set of test
cases and generate a code fragment in Java. This code when executed in a
testing context will infer whether the SUT has passed the test cases. At present
we consider code for a single test case; multiple test cases can be executed by
assuming an initialize() operation to take control back to the initial state. When
a new test case is executed after re-initialization, the operation parameters are
freshly created; therefore, they are not in conflict with the parameters of the
previous runs. By testing context, we mean the following:

– If MM.mch is the B machine, then the SUT defines a class with name MM and
creates an object of the same class, say mmo. It is expected that class MM
has all operations of the machine as methods with similar signatures.

– In any test case, if an operation has a parameter pp as an element of set PP,
then SUT must have the object pp of class PP.

Refer to Figure 3(a). (N, N ′) is an edge in the test sequence with ′res ←
OP (..)′ as the operation call. This edge has also k probe calls along with their
results. The corresponding code in Java has been shown in Figure 3(b). C[N]
stand for the code generated at node N . First a call to mmo.OP(...) is made.
Then we obtain the results of the probe operations from the SUT which are
compared with the results of the same operations stored in the test case; this
comparison is performed by Java assertions. In (b), res 1,..., res k are the
temporary variables to receive the probe results.

Table 2 shows the code fragment in relation to the test case shown in Figure
2. The testing context provides object TA1 of class TAgency1, objects u1 and u2

of class USER, objects r1 and r2 of class ROOM, and object s1 of class SESSION.

 .

N1

N C [N] :

 .

C [N1]

assert(res_k == r_k);

assert(res_1 == r_1);

res = mmo.OP(p1,..,pk);

res_1 = mmo.OP_P1(..);

res_k = mmo.OP_Pk(..);

res <−− OP(p1,..,pk)

(OP_P1(..), r_1)
.
.
.

(OP_Pk(..), r_k) Probe calls and
their results

(a) (b)

Fig. 3. Code generation from a test case

With these, the code in Table 2 if runs without any assertion violation it would
mean that the SUT has passed the test case. Note that the generation of the
code in Table 2 can easily be automated. It is to be further noted that the testing
context must be provided by the implementor because it involves some design
decisions like defining the constructors of various classes.

USER login t1, alloc t1; int alloc t2;

TA1.login(u1); login t1= TA1.login P1();

assert(login t1==u1);

TA1.alloc(s1); alloc t1= TA1.alloc P1(s1);

assert(alloc t1==u1);

alloc t2 = TA1.alloc P2(s1);

assert(alloc t2== 1);

TA1.alloc(s1); alloc t1= TA1.alloc P1(s1);

assert(alloc t1==u1);

alloc t2 = TA1.alloc P2(s1);

assert(alloc t2== 2);

Table 2. Code for the test case in Figure 2

5 The Method II: Non-deterministic Models

The first three steps – generation of probe operations, signature file and the
operation instances – of the method outlined in the last section, remain identi-
cal for non-deterministic B models. In addition, the process of attaching probe
operation calls and their results to an edge in the coverage graph also remains
the same. We will discuss the remaining steps here.

OP(..)= . . . br ← OP(..)= . . .
SELECT C1 THEN S1 SELECT C1 THEN S1 || br := 1
.
WHEN Ck THEN Sk END WHEN Ck THEN Sk || br := k END

Table 3. Making internal choices observable: SELECT statement

There are two primary categories of non-determinism in B [1]: unbounded
choice through the ANY statement and bounded choice through the SELECT
statement, both having the following syntax respectively.

ANY x1, . . . , xk WHERE SELECT C1 THEN S1

P (x1, . . . , xk) . . .
THEN S END WHEN Ck THEN Sk END

The ANY statement makes k non-deterministic choices satisfying the predi-
cate P (x1, . . . , xk) which are used to perform the substitution S. For a non-
deterministic SELECT, the branching conditions C1, . . . Ck do overlap; and then
one valid branch is selected in a non-deterministic way. In addition to SELECT
and ANY, B supports non-deterministic assignments in initializations with the
syntax x :∈ S meaning that x is given any element of S. However, this statement
can always be converted to: ANY y WHERE y ∈ S THEN x := y END.

5.1 Pre-processing of the B model

We make the internal choice – within an ANY statement or the branch selection
in SELECT – visible by making the associated B operations more observable.
This we do by introducing additional result parameters. Refer to the enterCard()
in Appendix-A. We have added a result parameter to observe the internal choice
made by the ANY statement. Similarly, we have also added a result parameter
to login() to make its non-deterministic choice visible. We also make the branch
choice that a non-deterministic SELECT makes observable by introducing an
additional result parameter (refer to Table 3). We term the constraint under
which a choice is made as choice predicate. For ANY, it is the constraint within
the WHERE clause. For SELECT, we define it to be br ∈ {1, .., k}, where br is
the output variable introduced to capture which branch the SUT would select
(refer to Table 3), and k is the number of branches.

5.2 Coverage graph for a non-deterministic model

Our convention is that whenever we make a call to a non-deterministic operation
then we select a fresh variable in place of the choice and restrict it by the choice
predicate. We will refer to this fresh variable as a choice variable. A choice
variable once created can be used as a parameter in subsequent invocations as
long as it satisfies the typing rules.

Vect

AC

AssP

Vect’

AC’

AssP’

< P, y <−− OP(X) >
Probe calls
 and
their results

Fig. 4. Application of a non-deterministic operation

A node in the coverage graph is a tuple < V ect, AC, AssP >, where V ect
is the state vector to store the bindings of expressions to state variables; these
expressions may contain choice variables as sub-terms. AC is the set of accu-
mulated constraints which essentially restricts the choice variables occurring in
the expressions in V ect. AssP is an assertion which results from an application
of a non-deterministic operation. For a node N , we refer to its fields by the dot
notation such as N.V ect, N.AC etc.

Figure 4 shows an edge in the coverage graph, where < V ect, AC, AssP >
constitute the source node. Let application of call OP(X) at the source would
give us the target node < V ect′, AC′, AssP ′ >. The edge between the source
and the target is labeled with < P, y ← OP (X) >. The derivation process is as
follows:

– P is a predicate to check that OP(X) is applicable at < V ect, AC, AssP >. If
pre(OP (X)) is the precondition of OP(X) then P is an expression over the
choice variables occurring in V ect and is equivalent to AC ∧ pre(OP (X)) or
its boolean simplification. We call it the Precondition Satisfaction Predicate
(or PSP) which being false would mean that OP(X) is not applicable.

– If OP() is a non-deterministic operation, y stands for the choice variable
selected in place of the internal non-deterministic choice. If cc is the internal
choice in OP(), and cpred is the choice predicate, then AssP ′ is the reduced
form of the constraint cpred[y/cc]; i.e., the substitution of y in place of the
free occurrences of cc in cpred.

– V ect′ is the reduced form of V ect[body(OP (X))] where body(OP (X)) is the
substitution in relation to OP (X).

– AC′ is the accumulated constraint of the target node and is equivalent to the
reduced form of (AC ∧ P ∧ AssP ′). Note that AC′ always includes AssP ′.
We maintain AssP ′ separately to be referred to by the test case generator.

For the initial node, AC is initialized to the constraints made out of the set
declarations and the constraints. Figure 5 shows a part of the coverage graph for
the B machine TAgency2. The node marked ’1’ is the initial node. Its AC field is
initialized to AC0 as given in the figure. The V ect field here corresponds to the
INITIALIZATION clause of the machine. AssP is given the trivial value of true.
In node 2, ZS1 represents the non-deterministically selected session identifier.
Now consider the call of responseBook1(ZS1) at node 3. Observe how the choice
variable ZS1 has been used as a parameter. Now consider the application of the
following operation instance at node 3:

rstatus ← responseBook1(sid) =
PRE sid ∈ SESSION ∧ sid ∈ dom(session)∧

s req(sid) = book ∧ s state(sid) = s4∧
s card(sid) = valid ∧ dom(booking) ⊂ (ROOM − nullR)

THEN
ANY rr WHERE rr∈ (ROOM − null R)− dom(booking)
THEN booking(rr) := sess(sid) || rstatus := rr END || . . .

END

The predicate AC3 ∧ pre(responseBook1(ZS1)) reduces to ZC1 = valid to
become the PSP of the current call. If ZR1 is the choice variable due to ANY, then
(rr ∈ (ROOM −nullR)−dom(booking)) [ZR1/rr] reduces to ZR1 ∈ (ROOM−
nullR) to becomes the AssP of the target node. Substitution of the operation
body over the Vector of the source node, gives us the new Vector. Finally, AC3
augmented with the PSP and the AssP becomes the AC of the target node.

5.3 Test cases from non-deterministic models

As in the case of deterministic models, the coverage graph could be traversed to
generate a set of linear test cases. We will term those as basic test cases; they
will be combined to form adaptive test cases. If we treat a basic test case as a
test case proper, then consider the case when SUT control encounters an edge
with a non-trivial PSP and it does not hold. For example, in Figure 5, if edge
(ZC1 = valid, ZC1 ← responseBook(ZS1)) occurs in a basic test case, then
ZC1 = valid could be false, and then there is no point in following this edge any
further. In the worst case scenario, we may not be able to test any of the basic
test cases into completion. Adaptive test cases are introduced precisely for this
purpose. An adaptive test case in the coverage graph is a subgraph in the form
of a tree with the following properties:

– Its root is same as the root of the coverage graph.
– The paths from the root to the leaves are mutually exclusive in that at any

non-leaf node, the PSPs of its outgoing edges are mutually contradictory. In
this way we would be able to test all the paths of the test case by a single
threaded test driver.

From this definition, it should be clear that given a set of basic test cases as paths
in the coverage graph, we can carve out a set of adaptive test cases. One such

booking = {}; sstate={}

(ZC1=valid, ZR1 <−−responseBook_1(ZS1))

 ZR1 : ROOM − {null_R}

1

sess={(ZS1,u1)};scard={(ZS1,ZC1)}
sreq={((ZS1,book)};sstate={(ZS1,s5)}

booking={(ZR1, u1)}

AC5=AC3&ZC1=valid&ZR1:ROOM−{null_R}

2

4

(true, ZC3 <−−enterCard_1(ZS1))

(true, again_1(ZS1))

 true

AC6 = AC5

booking={(ZR1, u1)}

sreq={((ZS1,null)};sstate={(ZS1,s1)}

sess={(ZS1,u1)};scard={(ZS1,null)}

(true, bookRoom_1(ZS1))

 true

AC7 = AC6

booking={(ZR1, u1)}
sreq={((ZS1,book)};sstate={(ZS1,s2)}

sess={(ZS1,u1)};scard={(ZS1,null)}sess = {}; scard = {}
sreq = {};

AC0

 true

(true, ZS1 <−− login_1(u1))**

sess={(ZS1,u1)};scard={(ZS1,null)}
sreq={((ZS1,null)};sstate={(ZS1,s1)}

booking={}

AC1 = AC0 & ZS1 : SESS

ZS1 : SESS

(true, bookRoom_1(ZS1))

sess={(ZS1,u1)};scard={(ZS1,null)}
sreq={((ZS1,book)};sstate={(ZS1,s2)}

booking={}

AC2 = AC1

true

(ZC1=wrong, ZC2 <−−retryCard_1(ZS1))

sess={(ZS1,u1)};scard={(ZS1,ZC2)}
sreq={((ZS1,book)};sstate={(ZS1,s2)}
booking={}

AC4=AC3&ZC1=wrong&ZC2:{valid,wrong}

 ZC2 :{valid, wrong}

(true, ZC1 <−−enterCard_1(ZS1))

sess={(ZS1,u1)};scard={(ZS1,ZC1)}

sreq={((ZS1,book)};sstate={(ZS1,s4)}

booking={}

AC3 = AC2 & ZC1 :{valid, wrong}

 ZC1 :{valid, wrong}

3

sess={(ZS1,u1)};scard={(ZS1,ZC3)}
sreq={((ZS1,book)};sstate={(ZS1,s4)}

booking={(ZR1, u1)}

AC8 = AC7 & ZC3 :{valid, wrong}

 ZC3 :{valid, wrong}

 REQ = {book,unbook,null_Q} &AC0 =(USER={u1,u2} &
 SSTATES={s1,s2,s3,s4,s5} &

 CARD={valid,wrong,null_C} & ROOM = {r1,r2, null_R})

Fig. 5. Part of the coverage graph for TAgency2.mch

algorithm is given in [20]. Refer to Figure 5. In this tree all paths from the root
to leaves can be seen as basic test cases. Only the node marked 3 has outgoing
edges with non-trivial PSPs. The PSPs of the two outgoing edges of this node
are ZC1 = valid and ZC1 = wrong, and hence mutually contradictory; so, the
whole tree in the figure produces the single adaptive test case.

5.4 Test Driver Generation

Since the elements of an enumerated set is available in the model, the test driver
can have control over its range. If there is a need to check the range of ROOM, it
can be done explicitly. But the range of a deferred set like SESSION, cannot be
checked. When the operation login() is called from SUT the system depending
on availability may or may not be able to allocate a session for the user to

term Reduced Terms condition

NULL null null object reference

dom(R) {s1, . . . , sk} R = {(s1, t1), . . . , (sk, tk)}
ran(R) {t1, . . . , tk} R = {(s1, t1), . . . , (sk, tk)}
R−1 {(t1, s1) . . . , (tk, sk)} R = {(s1, t1), . . . , (sk, tk)}
F (si) ti F = {(s1, t1), . . . , (sk, tk)}; F is a function

Table 4. Schema Rules for reducing some B terms

work with. When it allocates a session there is no need to check the model
predicate ZS1 ∈ SESSION because it would be trivially satisfied by the type
checking rule of Java. But if a null object reference is returned then from the
view point of testing there is no need to check the subsequent operation calls. In
summary, when an element of a deferred set is obtained it must be checked for
non-nullness. To signify that in the coverage graph of Figure 5, we have marked
the edge joining nodes 1 and 2 with ’**’.

B predicates to Java Assertions While generating a coverage graph, we ob-
tain predicates which involves choice variables. Let us call these graph predicates.
They are different from model predicates, the predicates occurring in a B model.
We require a Set Constraint Solver (SCS) to translate any graph predicate into
Java assertions. The development of such a SCS in general is a challenging task.
In this paper we consider a simple SCS and so we put restrictions on model
predicates which in turn restrict the graph predicates. If x is an internal choice
— like cc in enterCard() or rr in response book() — the syntactic constraint on
model predicates is that, it can be of the form: x ∈ S ∧ P , where S is either a
deferred set or an enumerated set or a basic set (Bool or Int), and P includes
finite number of (state) variables and constants. For instance, in login(), the
model predicate sid ∈ SESSION ∧ sid /∈ dom(sess) is of this form.

SCS performs two main tasks: (a) to evaluate a graph predicate — involv-
ing choice variables, sets, relation, function etc. — to obtain PSPs; this can be
done by extending Constraint Logic Programming (CLP) to sets, relations and
functions; and (b) to reduce the PSPs and the AssPs into Java assertions.

Table 4 shows the reduction rules for some terms in graph predicates. Table
5 shows the rules to reduce some graph predicates to Java assertions by a trans-
lation function γ. Note that each si or ti stands for a term occurring in graph
predicates. We assume that the reduction of terms can be performed by syn-
tactic checking only. For instance, the reduction of {(ZS1, u1), (ZS2, u2)}(ZS2)
can be done by syntax checking, whereas that of {(ZS1, u1), (ZS2, u2)}(ZS8)
given that ZS8 ∈ {ZS1, ZS2} can not be performed by syntactic checking alone.
Though the latter terms can be reduced to Java by defining more and more rules,
we do not consider them here.

Test Driver Generation Algorithm The test driver generation algorithm
for adaptive test cases is trivial. An adaptive test case is in the form of a tree.

predicates to Java condition

γ[TRUE] true boolean constant in Java

γ[FALSE] false boolean constant in Java

γ[(s1, t1) = (s2, t2)] (s1 == t1)&& (s2 == t2)

γ[X ∈ S] (X == s1) || . . . || (X == sk) S = {s1, . . . , sk}
γ[X ∈ S] !(X == null) S is a deferred set

γ[X ∈ T1 ∪ T2] γ[(X ∈ T1)] || γ[(X ∈ T2)]

γ[X ∈ T1 ∩ T2] γ[X ∈ T1] && γ[X ∈ T2]

γ[A ⊆ B] γ[s1 ∈ B] && . . . &&γ[sk ∈ B] A = {s1, . . . , sk}
γ[∀x ∈ S.P (x)] γ[P (s1)]&& . . . && γ[P (sk)] S = {s1, . . . , sk}
γ[∃x ∈ S.P (x)] γ[P (s1)] || . . . || γ[P (sk)] S = {s1, . . . , sk}

Table 5. Schema rules for transforming some B predicates

A junction nodes gets transformed to an if-elseif-else statement, and the
PSPs of the branches become the if (or elseif) conditions. In addition, there
has to be an else clause because the set of the PSPs may not be exhaustive. If
during testing, SUT control enters this else branch, this would mean that we
cannot carry out testing any further; appropriate message can be given to the
tester in this case. A detailed discussion on this situation has been given in [20].
Leaving aside the PSPs, in relation to a branch in the test case, we encounter a
sequence of operation applications which may have assertions (AssPs) and they
become Java assertions in the code. We show this by generating code for the
single adaptive test case of Figure 5; the code has been shown below. Observe
how the branching in the code corresponds to the branching in the adaptive
test case. We do not show the testing context here since it remains the same as
earlier.

SESSION ZS1; ROOM ZR1; CARD ZC1,ZC2;

USER temp u; int temp c;

ZS1 = TA2.login(u1); assert(ZS1 ! = null);
TA2.bookRoom(ZS1); ZC1 = TA2.enterCard(ZS1);

assert(ZC1 == valid || ZC1 == wrong);
if (ZC1 == wrong) { // PSP of 1st branch holds

ZC2=TA2.retryCard(ZS1);

assert(ZC5 == valid || ZC5 == wrong);
} else if (ZC1 == valid) { // PSP of next branch holds

ZR1=TA2.responseRoom(ZS1);

assert(ZR1 == u1 || ZR1 == u2 || ZR1 == u3);
temp u = TA2.whichUser(ZS1); assert(temp u == u1);
temp c = TA2.numOfRoomsBooked(); assert(temp c == 1);

} else {
Sys.out.println("SUT control deviated; testing stops");

}

6 Implementation

ProB is a model checking and animation tool for B machines [16]. ProB includes
a fully automatic animator written in SicStus Prolog. An extension of ProB will
be our implementation platform. As of now, we have implemented testing of a
SUT written in accordance with a deterministic B model. We have made the
following steps automatic so far.

– Given a B operation with its precondition enriched with tautologies (refer
to Section 4) we generate a set of operation instances.

– Given a B model, we generate a Java signature template for all B operations.
– After restricting the sets to be finite, the current tool automatically creates

a coverage graph (now no deferred sets).
– We traverse the coverage graph to generate a set of preset test cases; this is

because we consider deterministic models only.
– Given a set of test cases, we generate a test driver which when augmented

with the testing context performs automatic testing of a Java implementa-
tion.

Now the development of a SCS to handle a subset of B predicates is under
progress. This will enable us in handling non-deterministic models.

7 Discussion

– Making the whole testing cycle automatic in presence of non-determinism
is an important contribution of our work. It is often the case that non-
determinism in B is gradually refined out in the B refinement process, but
our strategy does not assume the implementation to be deterministic. Were
the implementation non-deterministic, our method would work without any
change. Existing testing tools like BZ-TT [2] avoid the issues related to non-
determinism.

– The tester (or the specifier) has to write a set of probe operations for each B
operation. In this paper, we have kept this step outside of the scope of our
testing cycle. However, we believe writing a set of probe operation from the
domain knowledge and the intention of the operation is too ad-hoc an ap-
proach. Probe operations should be made finer by generating them from the
model in a systematic manner. One possibility is to define abstract functions
mapping the concrete states of the Java program to the abstraction level in
the B machine. This issue requires further research.

– Our method can create a coverage graph in presence of deferred sets.
– The problem of obtaining a PSP out of a set of B constraints requires to

solve a set of set constraints; this being a variant of the satisfiability problem
is NP-complete [8]. Good specification practices recommend to write smaller
and simpler operations. In this case, we expect the problem size would remain
small and then a CLP solver should be able to do the job. This issue needs
further investigation.

– For the development of a SCS, we took a simple subset of the B predicates.
However, this is a useful subset since we have examined a number of examples
and seen that this subset is sufficient. The examples include B models for
a larger version of the travel agency example, the router component of a
Network-on-Chip system and a component of a TV teletext system. The
problem of implementing a robust SCS will require further research.

8 Conclusion

We have discussed how a test driver in the form of a Java program can be
mechanically generated from a B model, possibly non-deterministic, to perform
automatic testing. The constraints arising out of non-deterministic choices and
oracle information matching become Java assertions in the test driver which if
runs without any assertion violation would mean that the implementation has
passed the test cases. Our approach can generate the test driver much before the
implementation; however, it assumed that the implementation should adhere to
the Java signature template obtained from the model. We have made compar-
isons of our research with existing work, the important contributions being the
handling of non-determinism.

Acknowledgement: We would like to thank Linas Laibinis for going through
an earlier version of this work and offering many a useful suggestion. The com-
ments of the anonymous reviewers also helped us in improving the quality of
this paper.

References

1. Abrial J.-R. (1996). The B–Book: Assigning Programs to Meanings, Cambridge
University Press.

2. Bernard E., Legeard B., Luck X., Peureux F. (2004). Generation of test sequences
from formal specifications: GSM 11-11 standard case study, Software Practice and
Experience, Volume 34 (10) , pp. 915 - 948.

3. Colin, S., Legeard, B., Peureux, F. (2004). Preamble computation in automated
test case generation using constraint logic programming, Software Testing Verifi-
cation and Reliability, John Wiley, Vol. 14: 213–235.

4. Dick, J.; Faivre, A. (1993). Automating the Generation and Sequencing of Test
Cases from Model-based Specifications, Proc. of the FME’03, LNCS 670. pp. 268–
284.

5. Dalal, S.R., Jain A., Karunanithi, N., Leaton J.M., Lott C.M., Patton G.C.,
Horowitz B.M. (1999). Model Based Testing in Practice, Proc. of ICSE ’99.

6. El-Far, I.K., Whittaker, J.A. (2001). Model Based Software Testing, Encyclopedia
on Software Engineering (Ed. J.J. Marciniak), John Wiley.

7. Gannon, J.D., Hamlet R.G., Mills, H.D. (1987). Theory of modules, IEEE Trans-
actions on Software Engineering, 13(7):820–829.

8. Garey, M.R., Johnson, D.S. (1979). Computers and Intractability, W. H. Freeman
and Company.

9. Gurevich, Y. (2000). Sequential Abstract-State Machines Capture Sequential Pro-
grams, ACM Transaction on Computational Logic, Vol 1(1): 77–111.

10. Hierons R.M. (2004). Testing from a Non-deterministic Finite State Machine using
Adaptive State Counting, IEEE Transactions on Computers, Vol 53(10), pp. 1330-
1342.

11. Hierons R.M. (2006). Applying Adaptive Test Cases to Non-deterministic Imple-
mentations, Information Processing Letters, 98(2006): 56–60.

12. Jones, C.B. (1990). Systematic Software Development using VDM (2nd Edn),
Prentice Hall.

13. Lee, D.; Yannakakis, M. (1996). Principles and Methods of Testing Finite State
Machines: A survey, Proc. of the IEEE, 80(8): 1090–1123.

14. Legeard, B., Peureux, F., Utting, M. (2002). Automatic Boundary Testing from Z
and B, Formal Methods Europe ’02, LNCS Volume 2391, Springer, pp. 21–40.

15. Legeard, B., Peureux, F., Utting, M. (2004). Controlling test case explosion in test
generation from B formal models, Software Testing, Verification and Reliability,
John Wiley, pp.81–103.

16. Leuschel, M., Butler M. (2005). ProB: A Model Checker for B, Proc. FME’03,
LNCS Volume 2805, Springer, pp. 855–874.

17. Nachmanson L., Veanes M., Schulte W., Tillmann N. and Grieskamp W.(2004).
Optimal Strategies for Testing Nondeterministic Systems, ACM ISSTA’04, Boston,
July 2004.

18. Panzl, D.J. (1978). Automatic Software Test Drivers, IEEE Computer, 11(4).
19. Richardson D.J., Leif Aha A., O’Malley T.O. (1992). Specification-based Test Or-

acles for Reactive Systems, Proc. of the 14th ICSE, Melbourne, pp. 105–118.
20. Satpathy, M., Butler,M., Ramesh, S.,Leuschel, M. (2006). Automatic Testing of

Formal Specifications, Technical Report 792, Abo Akademi University, Turku, Fin-
land. (available at: http://www.tucs.fi/publications)

21. Satpathy, M., Leuschel, M., Butler,M. (2005). ProTest: An Automatic Test Envi-
ronment for B Specifications, Electronic Notes on TCS (ENTCS), 111, pp: 113–136.

22. Spivey, J.M. (1988). Understanding Z, Cambridge University Press.
23. Yannakakis M., Lee D.(1995). Testing Finite State Machines: Fault Detection,

Journal of Computer and System Sciences, Vol. 50, pp.209–277.
24. Zhang F. and Cheung T.(2003). Optimal Transfer Trees and Distinguishing Trees

for Testing Observable Nondeterministic Finite State Machines, IEEE Transactions
on Software Engineering, Vol 29(1): 1–14.

25. Zhu, H., Hall P.A.V., May J.H.R. (1997). Software Unit Test Coverage and Ade-
quacy, ACM Computing Surveys, 29(4):366–427.

Appendix – A

MACHINE TAgency2

SETS SESSION; /* A deferred set */
USER = {u1, u2}; REQ={book, unbook, null r};
SSTATES= {s1, s2, s3, s4, s5};
CARD = {valid, wrong, null C}; ROOM = {r1, r2, null R}

VARIABLES sess, scard, sstate, sreq, booking /* all partial functions */
INVARIANT sess ∈ SESSION +→ USER ∧ scard ∈ SESSION +→ CARD∧

sstate ∈ SESSION +→ SSTATES ∧ sreq ∈ SESSION +→ REQ∧
booking ∈ (ROOMS − {null R}) +→ USER ∧ . . .

INITIALISATION sess, scard, sstate, sreq, booking := ∅, ∅, ∅, ∅, ∅

OPERATIONS
id←− login(uu) = PRE uu ∈ USER THEN

ANY sid WHERE sid ∈ SESSION ∧ sid /∈ dom(sess) THEN
sess(sid) := uu || s card(sid) := null C ||
s state(sid) := s1 || s req(sid) := null r
|| id := sid

END END;
bookRoom(sid) = PRE sid ∈ SESSION ∧ sid ∈ dom(sess)∧

s state(sid) = s1 ∧ s req(sid) = nullr
THEN s state(sid) := s2 || s req(sid) := book
END;

unbookRoom(sid) = . . .
cstatus←− enterCard(sid) = PRE sid ∈ SESSION ∧ sid ∈ dom(sess)∧

s state(sid) ∈ {s2, s3}
THEN s state(sid) := s4 ||

ANY cc WHERE cc ∈ {valid, wrong}
THEN s card(sid) := cc || cstatus := cc

END END;
cstatus←− retryCard(sid) = PRE sid ∈ SESSION ∧ sid ∈ dom(sess)∧

s state(sid) = s4 ∧ s card(sid) = wrong
THEN ANY cc WHERE cc ∈ {valid, wrong}

THEN s card(sid) := cc || cstatus := cc
END END;

rstatus←− response book(sid) =
PRE sid ∈ SESSION ∧ sid ∈ dom(sess)∧ s req(sid) = book ∧

s state(sid) = s4 ∧ s card(sid) = valid
THEN s state(sid) := s5 ||
IF dom(booking) ⊂ (ROOM − {null R}) THEN

ANY rr WHERE rr ∈ (ROOM − {null R})− dom(booking)
THEN booking(rr) := sess(sid) || rstatus := rr END

ELSE rstatus := null R
END

END;
rstatus←− response unbook(sid) = . . .
again(sid) = . . .
logout(sid) = . . .

END

