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Abstract. In this paper, we introduce a novel evolution-based segmentation al-
gorithm by using the heat flow analogy, to gain practical advantage. The pro-
posed algorithm consists of two parts. In the first part, we represent a particular 
heat conduction problem in the image domain to roughly segment the region of 
interest. Then we use geometric heat flow to complete the segmentation, by 
smoothing extracted boundaries and removing possible noise inside the prior 
segmented region. The proposed algorithm is compared with active contour 
models and is tested on synthetic and medical images. Experimental results in-
dicate that our approach works well in noisy conditions without pre-processing. 
It can detect multiple objects simultaneously. It is also computationally more 
efficient and easier to control and implement in comparison to active contour 
models.  

1   Introduction 

There are two main types of image segmentation methods that evolve to the target 
solution: active contours and region growing techniques. We first review these tech-
niques with special consideration of their advantages and practical limitations. We 
then describe techniques which are based on the use of the heat flow analogy, includ-
ing the proposed model and its advantages as a segmentation technique.  

1.1   Related Works 

Active contours (snakes) are curves that evolve to recover object shapes. Active con-
tours can be classified as Parametric Active contours (PAC) and Geometric Active 
contours (GAC). The first PAC model was introduced by Kass et al. [1]. In this, seg-
mentation is achieved by using gradient vectors of an edge map. Problems associated 
with this model are initialization and poor convergence to concave regions. These 
problems were largely solved with the development of new external force model, 
which is called the Gradient Vector Flow (GVF) [2]. GVF is computed as a diffusion 
of the gradient vectors of an edge map. However, PAC models can have difficulty 
with simultaneous detection of multiple objects, because of the explicit representation 
of curve. To solve this problem, GAC models have been introduced, where the curve 
is represented implicitly in a level set function. Caselles et al. [3] and Malladi et al. 
[4] proposed the first GAC model, which uses gradient based information for  
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segmentation. The gradient based GAC can detect multiple objects simultaneously but 
it has other important problems: boundary leakage, noise sensitivity, computational 
inefficiency and complexity of implementation. In [5], gradient based information has 
been improved to solve boundary leakage and noise sensitivity problems. However, it 
can just increase the tolerance, since gradient based information is always limited by 
noise. Several numerical schemes have also been proposed to improve the computa-
tional efficiency of the level set method, including narrow band [6], fast marching [7] 
and additive operator splitting [8]. Despite substantial improvements in efficiency, 
they are still not effective enough and can be difficult to implement. Chen and Vese 
[9] introduced a new GAC model based on the Mumford-Shah functional [10]. Their 
model uses regional statistics for segmentation. This model is good at initialization, 
handling noise and boundary leaking but still suffers from computational complexity 
and from difficulty of implementation, because of the level set method. 

Region growing is a procedure that groups pixels or sub-regions into larger regions 
based on predefined similarity criteria for region growth. The basic approach starts 
with a seed point and merges neighboring pixels that have pre-defined properties 
similar to the seed, such as intensity [11] or texture [12]. Although, region growing 
techniques can detect multiple objects simultaneously and can be more efficient than 
active contour models, the main problem is selection of the similarity criteria. They 
also have to use connectivity information to define the neighboring pixels in each step 
of growth. In addition, they can achieve region segmentation with irregular bounda-
ries and holes in the presence of high noise, since they omit smoothing. 

1.2   Heat Flow in Image Processing and Computer Vision 

The heat flow analogy has been used for image smoothing and enhancement [13] 
[14]. Anisotropic diffusion, which was introduced to vision by Perona and Malik [13], 
is the state-of-art image enhancement technique. In motion analysis, we can also see a 
significant application of heat flow by [15]. The algorithm combines anisotropic and 
isotropic heat flow to obtain moving edges. In [16], an anisotropic diffusion pyramid 
was introduced for region based segmentation. The pyramid is constructed using the 
scale space representation of the anisotropic diffusion. In [17], the anti-geometric heat 
flow model was introduced for the segmentation of regions. Here, anti-geometric heat 
flow is represented as diffusion through the normal direction of edges. 

In this paper, we introduce a novel segmentation algorithm based on the heat flow 
analogy. The proposed algorithm consists of two parts. In the first part, we represent a 
particular heat conduction problem in the image domain to roughly segment objects of 
interest. In this problem, we consider a conductive solid body with initial and bound-
ary conditions respectively given by ( ) 00, ==tT x  and  ( ) 0, =tT x , where T  repre-

sents the temperature at position ( )yx,=x  and time t . The given conditions mean 

that the temperature is initially zero inside the body and the boundary condition is 
“Dirichlet” that has specified temperature, zero, at the boundary layer all the time. If 
we initialize a continuous heat source, which is a positive constant, at any point inside 
the body, there will be heat diffusion to the other points from the source position as 
time passes and this will cause temperature increase in the body except at the bound-
ary layer. This concept is represented in the image domain by using a control function 
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in the heat conduction equation. The control function is obtained from the source 
located region statistics, since we propose to segment the source located region. How-
ever, in noisy conditions, we can observe irregular boundaries and holes inside the 
segmented region. These problems are solved in the second part of the algorithm, 
which is geometric heat flow. In this part, the segmented image is firstly converted to 
binary form and then geometric heat flow is applied to reduce curvature in the bound-
ary, as well as to remove holes inside the segmented region. After a specified number 
of iterations, the resultant image is thresholded and the final segmentation is obtained. 
Experimental results indicate that the proposed algorithm works well in noisy condi-
tions without pre-processing. It can detect multiple objects simultaneously. It is also 
computationally more efficient and easier to control and implement in comparison to 
active contour models. As such, by using physics based analogies, we can control the 
segmentation process so as to achieve a result which offers improved segmentation, 
by a better fit to the image data.  

The rest of the paper is organized as follows: Section 2 explains the basic concepts 
of heat flow. Section 3 represents the proposed heat conduction problem in the image 
domain. Section 4 discusses the geometric heat flow. Section 5 concerns evaluation 
and experimental results and finally Section 6 is conclusions. A List of acronyms is 
also given below in Table 1. 

Table 1. List of Acronyms 

ACWE Active Contours Without Edges 
CF Control Function 
GAC Geometric Active Contours 
GHF Geometric Heat Flow 
GVF Gradient Vector Flow 
GVFS Gradient Vector Flow Snake 
PAC Parametric Active Contours 
TF Temperature Front 

2   Basic Concepts of Heat Flow 

Conduction, convection and radiation are three different modes of heat flow. Here, we 
chose to investigate use of a conduction model, which we found to operate well. Con-
duction is the flow of heat energy from high- to low- temperature regions due to the 
presence of a thermal gradient in a body [18]. The change of temperature over time at 
each point of material is described using the general heat conduction or diffusion 
equation,  

( ) QTQdyTddxTddtdT +∇=++= 22222 αα    (1) 

Where, ∇  represents gradient, α  is called thermal diffusivity of the material and a 
larger values of α  indicate faster heat diffusion through the material. Q  is the source 

term that applies internal heating. It can be uniformly or non-uniformly distributed 
over material body. The solution of this equation provides the temperature distribution 
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over the material body and it depends on time, distance, heat source, properties of 
material, as well as specified initial and boundary conditions. 

Initial conditions specify the temperature distribution in a body, as a function of 
space coordinates, at the origin of the time coordinate ( )0=t . Initial conditions are 
represented as follows, 

( ) ( )xx Φ== 0, tT                                                       (2) 

where, ( )yx,=x  is the space vector for the two-dimensional case and ( )xΦ  is the 

function that specifies the initial temperature inside the body. 
Boundary conditions specify the temperature or the heat flow at the boundaries of 

the body. There are three general types of boundary conditions: Dirichlet, Neuman 
and Robin. Here, we explain the Dirichlet condition, which is used in our algorithm. 
In the Dirichlet condition, temperature is specified along the boundary layer. It can be 
a function of space and time, or constant.  The Dirichlet condition is represented as 
follows,   

   ( ) ( )xx ftT =,                                                         (3) 

where ( )xf  is the function that specifies the temperature at the boundary layer. Many 

heat conduction problems do not have analytical solutions. These problems usually 
involve geometrical shapes that are mathematically unsuited to representing initial 
and boundary conditions. However, numerical techniques exist, such as finite differ-
ences and finite elements, which are able to handle almost all problems with any 
complex shapes. The numerical methods yield numerical values for temperatures at 
selected discrete points within the body and only at discrete time intervals.  

The numerical heat conduction problem can be investigated in the image domain, 
since the image is formed by a set of points, as well as since the image is convenient 
for the finite difference technique. Each object in image can represent bodies and each 
pixel in object can represent points within the body. 

3   Proposed Heat Conduction Problem and Representation in 
Image Domain 

Consider a two-dimensional conductive solid body with initial and boundary condi-
tions respectively given by ( ) 00, ==tT x  and ( ) 0, =tT x , which mean the temperature 
is initially zero inside the body and the boundary condition is Dirichlet that has speci-
fied temperature (zero) at the boundaries. If we initialize a continuous heat source, 
which is a positive constant, at a point inside the body, there will be heat diffusion to 
the other points from the source position. As a result of this, all the points inside the 
body will have temperature values exceeding zero, except the boundary points. This is 
then an ideal approach for object segmentation in computer images. Let us investigate 
the proposed problem on a square object that is inside the grey-level image ( )G , as 
shown in Fig. 1(a). Assume that all the temperature values of the objects and the 
background are kept in another image, which is represented by I , and the initial con-
dition of whole image is zero, ( ) 00, ==tI x . This assumption means that all objects 
have temperature initially zero inside, as well as at the boundaries. When we initialize 
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a heat source at any pixel inside the square object, as shown in Fig. 1(a), there will be 
heat diffusion to the other pixels from the source position, which will cause tempera-
ture to increase. However the temperature at the boundary layer must be kept at zero 
all the time to obtain the Dirichlet condition, where the boundary layer is defined at 
the external side of an object as shown in Fig. 1(b). To achieve this, we use a control 
function in the heat conduction equation as given below,  

( ) ( ) ( )( ) ( )xxxx QtItCFdttdI +∇= ,,, 2α                                 (4) 

 

 
         (a)                                           (b)                                          (c)                           (d) 

Fig. 1. Heat conduction modeling in image domain of size 150150 × . (a) Source position at    
0=t . (b) Boundary layer illustration. (c) TF at 30=t (iterations). (d) Final TF at 72=t . 

where ( )tI ,x  represents an image pixel value in terms of temperature at each point 
and time, α  is the thermal diffusivity and 25.00 ≤≤ α  for the numerical scheme to 
be stable in two-dimensional system [18], ( )xQ  is the source term and ( )tCF ,x  is the 

control function. The control function is obtained from the region statistics of source 
location on a given grey-level image. The proposed region statistics model is similar 
to the one used in [9]. In this model, the image is divided into two regions, interior 
and exterior, separated by contour and the model minimizes the variance inside and 
outside of the surface of desired object. In our model, the contour is represented by a 
Temperature Front (TF), where the TF is the boundary of the region that has tempera-
ture values exceeding zero. The control function, ( )tCF ,x , is formulated as follows,  

( ) 2
11 )(, inGt μλσ −= xx                                (5) 

        ( ) 2
22 )(, outGt μλσ −= xx                             (6) 

where, 01 >λ  and 02 >λ are fixed parameters for regional statistics, )(xG  is the given 

grey-level image, ( )t,1 xσ  is variance, at each point and time, with respect to the 

mean, inμ , inside of the TF  and ( )t,2 xσ  is variance, at each point and time, with 

respect to the mean, outμ , outside of the TF. Then, the following logical decision is 

applied in each position and time increment.  

( ) ( ) ( )
⎩
⎨
⎧ ≤

=
otherwise

tt
tCF

,0

,,,1
, 21 xx

x
σσ

                     (7) 

Therefore, the control function allows heat diffusion inside the object of interest 
and achieves the proposed Dirichlet condition on the boundary layer by keeping the 
temperature value at zero. However, it is better to start this process after a short diffu-
sion time by assuming 1),( =tCF x  at all points. Because, it will increase the number 
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of samples inside of the TF, which means better decision at the first step especially for 
noisy cases. In addition, the heat source must be initialized onto a smooth surface of 
the object, since the source localization to the edge pixel will give the wrong region 
statistic for our purpose. Fig. 1(c) and (d) respectively show the evolution and the 
final position of the TF. However, there is no need to continue diffusion, after the TF 
reaches its final position. For this reason, the position of the TF is controlled in each 
specified time interval and when there is no movement, diffusion is terminated auto-
matically. The main difference between [9] and our model, in using region statistics, 
we attempt to segment region of source location instead of whole image. 

One difficulty arises when the source located region intersect with the image 
boundary. This problem can be solved by assuming that image is surrounded by a 
boundary layer, at the external side, which has temperature value zero all the time 
(Dirichlet). Fig. 2 shows the evolution and the final position of the TF, which has 
source location at the background. The result, in Fig. 2, also shows that multiple ob-
ject detection can be achieved and the heat can diffuse through the narrow regions 
within the spiral object.  

 
                              (a) Source position       (b) 110=t            (c) 221=t (final) 

Fig. 2. TF is moving on background in the image of size 150150 ×  

It is also required to consider the control function when the given image is bi-
modal. In this case, the control function attempts to segment the whole image while 
the TF segments the source located region. The reason for this is that, the control 
function assigns unity to the pixels that are similar to the inside of the TF, and assigns 
zero to the pixels that are not similar.  

All the results so far have been on synthetic images without added noise. If we 
simulate this algorithm on noisy medical images, such as human heart image shown in 
Fig. 3(a) with the heat source location, we observe some drawbacks in segmentation. 
The drawbacks are irregular boundaries and holes inside the segmented region, as 
shown in Fig. 3(b). These problems are solved by using the heat flow analogy again 
as described in the next section. 

4   Geometric Heat Flow 

Geometric Heat Flow (GHF) is a kind of anisotropic diffusion and is widely used for 
image denoising and enhancement [14]. It diffuses along the boundaries of image 
features, but not across them. It derives its name from the fact that, under this flow, 
the feature boundaries of the image evolve in the normal direction in proportion to 



 Shape Extraction Via Heat Flow Analogy 559 

their curvature. Thus, GHF decreases the curvature of shapes while removing noise, 
in the images. GHF equation is obtained with the following consideration. 

Edge directions are related to the tangents of the feature boundaries of an image B . 
Let η  denote the direction normal to the feature boundary through a given point (the 
gradient direction), and let τ  denote the tangent direction. Since η  and τ  constitute 

orthogonal directions, the rotationally invariant Laplacian operator can be expressed 
as the sum of the second order spatial derivatives, ηηB  and ττB , in these directions 

and the heat conduction equation can be written without using the source term,  

( )ττηηαα BBBdtdB +=∇= 2                                           (8) 

Omitting the normal diffusion, while keeping the tangential diffusion yields the 
GHF equation as  

    
( )

( )22

22 2

yx

xyyyxxyyxx

BB

BBBBBBB
B

dt

dB

+
+−

== αα ττ                           (9) 

          
         (a) Source position   (b) Final TF at 59=t          (c) ( )xB                     (d) ( )xS  

           
          (e) Final shape                (f) ( )xCF          (g) ( )xCF  after GHF       (h) Final shape  

Fig. 3. Illustration of GHF for the purpose of obtaining smooth boundaries and removing holes 
inside the prior segmented regions. GHF is applied both to the binary form of the TF segmenta-
tion, ( )xB , and to the control function ( )xCF . The size of the human heart image is 178177× . 

In our model, GHF is used to decrease curvature for the purpose of obtaining 
smooth boundaries and removing holes that appear because of noise. This is achieved 
as follows. Firstly, a segmented region is converted to a binary form as given below 
and also shown in Fig. 3(c), 

     ( ) ( )
( )⎩

⎨
⎧

=
>

=
0,0

0,1

x

x
x

I

I
B                                                (10) 

where ( )xI  is the temperature distribution after terminating diffusion and ( )xB  is the 
binary form of the segmented image that assigns unity to the region of interest. Then, 
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GHF is applied to the ( )xB  until the specified time (number of iterations) and finally 
the resulting image is thresholded to obtain the final segmentation. The process is 
formulated below,  

       ( ) ( )( )
( )( )⎩

⎨
⎧

<
≥

=
5.0,,0

5.0,,1

s

s

tBGHF

tBGHF
S

x

x
x                                   (11) 

where, st  is the number of iterations and ( )xS  is the binary form of the final segmen-

tation, which assigns unity to the region of interest. The final segmentation is shown 
in Fig. 3(d) and (e), where 50=st  for this illustration. The selection of st  depends on 

the user and it is determined due to the noise condition of the image. However, as  st  

increases, the extracted shape evolves to a circle, then to a point and then it is lost. For 
this reason, we should avoid to use large values for st .  

Since the illustrated human heart image seems bimodal, we can also consider the 
final form of the control function as shown in Fig. 3(f). To smooth boundaries and 
remove holes, we simply continue with Eq. (11) and observe the result in Fig. 3(g) 
and (h). 

5   Evaluation and Experimental Results 

In this section, we first present the evaluation of segmentation by TF and then there 
are some illustrative examples on medical images.  

Segmentation by TF is compared with the Active Contour Without Edges (ACWE) 
[9] and Gradient Vector Flow Snake (GVFS) [2]. The evaluation is done on a har-
monic object with varying normal distributed noise ( )2, σμN , as shown at the top 
row in Fig. 5. The sum of squared error (SSE) is employed to quantify the perform-
ance of each algorithm.  

( )∑ ∑
= =

−=
M

i

N

j
jiji ASSSE

1 1

2
,,                                            (12) 

Where, S  is the binary segmented image and A  is the actual binary segmented image 
of size NM × . The quantity of noise is considered in terms of standard deviation σ  
with zero mean.  

ACWE is a region based GAC model that is implemented with a level set function. 
It applies global minimization to especially segment bimodal images as a whole. 
However, in this evaluation, we choose the biggest segmented region, since we are 
concerned with the harmonic object segmentation. Otherwise, it will cause very high 
errors in noisy conditions because of the segmented noises outside the harmonic ob-
ject. In this evaluation, the selected parameter values for ACWE are: 121 == λλ  (pa-

rameters for regional statistics), 0=v (the area parameter), 1=h  (the step space), 
1.0=Δt  (the time space), 1=ε  (the parameter for the Heaviside and Dirac delta 

functions) and  2255*1.0=μ (the length parameter).  
GVFS is a gradient based PAC model that uses GVF as an external force. In this 

evaluation, the selected parameter values for GVFS are: 25.0=α  (smoothness of the 
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contour), 0=β (rigidity of the contour) and 2.0=μ (in calculating GVF), 1=Δt  (the 
time interval). In addition, we use 80 iterations to diffuse gradient vectors.  

In our algorithm, we use an explicit scheme of finite differences in the first and in 
the second part. In this evaluation, the selected parameter values for TF are: 25.0=α  
(thermal diffusivity), 121 == λλ  (parameters for regional statistics), 5=Q (the energy 

generated from the source position per unit time interval), 1=Δt  (the time interval), 
1=Δ=Δ yx  (the spatial intervals), 10=st  (specified time for GHF). In addition, we 

start to use regional statistics after 10=t  to increase the number of samples inside of 
TF and in each 10 iterations we control the movement of TF to determine the termina-
tion of the first part. 

 

Fig. 4. Performance of TF, ACWE and GVFS 

 
                            (a) 0=σ     (b) 40=σ     (c) 60=σ   (d) 80=σ   (e) 100=σ  

Fig. 5. Results for TF (second row), ACWE (third row) and GVFS (forth row) with respect to 
increasing Gaussian noise in the image of size 100100 ×  
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In this evaluation, the contours and the heat source are initialized inside the har-
monic object. Fig. 4 shows performance of TF, ACWE and GVFS. It is observed that 
TF and ACWE perform much better than GVFS. The reason for this is that TF and 
ACWE use region based algorithms, on the other hand GVFS uses a gradient based 
algorithm, which is very sensitive to the noisy conditions. When we compare TF and 
ACWE, ACWE performs better than TF until 40≅σ . This appears to be due to the 
smoothing operation in TF. GHF attempts to smooth the original shape and cause 
errors in TF, when there is no noise or low noise in the image, since st  is fixed in the 

evaluation. However, from 40≅σ  to 80≅σ , TF segments better than ACWE. The 
main reason is again the smoothing operation. TF applies smoothing after rough seg-
mentation without any relation to the regional statistic constraints, while ACWE uses 
smoothness constraint with regional statistic constraints during the segmentation. 
After 80≅σ , it is seen that ACWE shows better performance than TF. Because, 
ACWE segments many regions outside the harmonic region in the presence of high 
noise and then some of the segmented noise remains connected to the original region 
when we select the biggest region. Fig. 5 shows some of the results for TF (second 
row), ACWE (third row) and GVFS (forth row). 

Simulation results also show the effectiveness and the computational efficiency of 
our algorithm in comparison to the GVFS and ACWE. All the evaluations and the 
simulation results are obtained by using MATLAB 7.0 on a Pentium IV computer, 
which runs Windows XP operating system with 3.2 GHz CPU and 1GB RAM. Fig. 6 
 

 

 
                              (a)                                    (b)                                   (c) 

 
                                                (d)                                    (e) 

Fig. 6. Segmentation of pulmonary arterial branches in the chest image of size 250259 ×  by 
TF and GVFS. (a) Initial contour and the source position. (b) Segmentation by TF is shown by 
the black contour on the image. All the parameters are same as in evaluation except 5=st . 
(CPU=7.85 second). (c) Segmentation by TF is in binary form. (d) Segmentation by GVFS is 
shown with black contour on the image. All the parameters are same as in evaluation except the 
iteration to diffuse gradient vectors is 70. (CPU=9.23 second). (e) Segmentation by GVFS is in 
binary form. 
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               (a)                                  (b)                                  (c)                                  (d) 

Fig. 7. Segmentation of human lung image of size 118123 ×  by TF, CF and ACWE. (a) Initial 
contour and the source position. (b) Segmentation by TF is shown with white contour on the 
image. All the parameters are same as in evaluation except 15=st  (CPU=1.96 second). (c) 

Segmentation by CF. 15=st . (CPU=1.96 second). (d) Segmentation by ACWE. All the pa-

rameters are same as in evaluation except the length parameter
2

25508.0 ×=μ . (CPU=15.92 
minutes).  

shows the segmentation of pulmonary arterial branches in the chest image by TF and 
GVFS. The initial contour for GVFS and the source position for TF are shown in Fig. 
6(a). Fig. 6(b) shows the segmentation by TF in the given image with black contour, 
however the segmented arterial branches are not visible with this illustration and the 
segmentation is also shown with the binary form in Fig. 6(c). On the other hand, Fig. 
6(d) and (e) show segmentation by GVFS respectively with black contour in the im-
age and the binary form. It is observed that TF segments the desired arterial branches 
better than GVFS. By this result, TF can easily handle topological changes and flow 
into the arterial branches with CPU=7.85s. However, GVFS cannot handle topologi-
cal changes and cannot flow into the arterial branches. Although GVFS segments a 
smaller region than TF, the CPU=9.23s, which is more than for TF.  

Fig. 7 shows the segmentation of bimodal human lung image by TF, CF and 
ACWE, where the initial contour for ACWE and the source position for TF are shown 
in Fig. 7(a). Fig. 7(b) and (c) respectively show the segmentation by TF and CF with 
white contour in the image. Fig. 7(d) shows the segmentation by ACWE. It is ob-
served that TF and CF achieves segmentation with CPU=1.96 seconds and ACWE 
achieves with CPU=15.92 minutes.  This big difference in CPU time appears because 
of the computational complexity of ACWE that is implemented with level sets. It is 
also observed that CF can extract feature boundaries better than ACWE especially at 
the middle and at the bottom of the lung image. 

6   Conclusions 

We have presented a novel segmentation algorithm based on heat flow analogy. In the 
first part of the algorithm, we roughly extract the desired feature boundaries by repre-
senting particular heat conduction problem in the image domain. The representation in 
image domain is achieved by using a control function (CF) in the heat conduction 
equation. This formulation also provides advantage when the given image is bimodal, 
since CF attempts to segment whole image in this case. In the second part, we use 
geometric heat flow (GHF) to tune the curvature of the extracted feature boundaries 
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and remove possible noise that arises from the first part of the segmentation. Evalua-
tion results indicate that temperature front (TF) has better performance than gradient 
vector flow snake (GVFS) and active contour without edges (ACWE) with respect to 
increasing Gaussian noise. For the bimodal images, TF and CF are again more effi-
cient and effective than both GVFS and ACWE based on the simulation results. As 
such, the heat analogy can be deployed with success for shape extraction in images.    
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