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Abstract

Repetitive processes are characterized by a series of sweeps, termed passes, through a set of dynamics defined over a finite duration known as
the pass length. On each pass an output, termed the pass profile, is produced which acts as a forcing function on, and hence contributes to, the
dynamics of the next pass profile. This can lead to oscillations which increase in amplitude in the pass-to-pass direction and cannot be controlled by
standard control laws. Here we give new results on the design of physically based control laws. These are for the sub-class of so-called differential
linear repetitive processes which arise in applications areas such as iterative learning control. They show how a form of proportional-integral (PI)

control based only on process outputs can be designed to give stability plus performance and disturbance rejection.

© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The operation of a repetitive process, i.e. a series of sweeps,
termed passes, through a set of dynamics defined over a fixed
finite duration known as the pass length can lead to oscillations
in the output sequence of pass profiles which increase in
amplitude in the pass-to-pass direction. These are caused by the
previous pass profile acting as a forcing function on, and hence
contributing to, the dynamics of the next pass profile and so on.

Physical examples of these processes include long-wall coal
cutting and metal rolling operations. Also in recent years
applications have arisen where adopting a repetitive process
setting for analysis has distinct advantages over alternatives,
e.g. classes of linear iterative learning control (ILC) schemes.
For full details in all these cases see the relevant references
in Rogers, Gatkowski, and Owens (2007).
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Attempts to control these processes using standard
algorithms fail, except in a few very restrictive special cases,
precisely because such an approach ignores their inherent 2D
system structure, i.e. information propagation occurs from pass
to pass and along a given pass and also the initial conditions
are reset before the start of each new pass. In this paper we
consider control in the presence of disturbances for so-called
differential linear repetitive processes, where the dynamics in
one direction of information propagation is governed by a
linear matrix differential equation and in the other by a discrete
updating structure. We use M > 0 (respectively M < 0) to
denote a real symmetric positive (respectively negative) definite
matrix.

2. Background

Following Rogers et al. (2007) the state-space model of a
differential linear repetitive process has the following form over
0<t<a,:k=>0:

K1) = Axp1(t) + Boyi(t) + Bug41(t) + Ew(t)
Vi1 () = Cxpy1(t) + Doy (t) + Dugy1(2) + Fw(t) )

where o < +o00 denotes the pass length, and on pass &, xi(¢) €
R”" is the state vector, yx(t) € R™ is the pass profile vector,
ui(t) € R’ is the input vector, and w(t) € R? denotes the
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disturbance vector which is assumed to be constant from pass to
pass but can evolve dynamically along the pass. Consequently
the disturbances here are periodic with the period equal to the
pass length «. This is a restriction (see also the conclusions
section of this paper), but in some industrial situations, such as
long-wall coal cutting, is not unrealistic since in this application
the disturbance signal on the floor thickness measurement
device can be adequately modelled in this manner. We also
assume, as in most practical applications, that n > m > r.
Also the boundary conditions are taken as a given initial pass
profile yo(7),0 < ¢t < « and x441(0) = dg+1,: k > 0, where
dr+1 has known constant entries.

Note 1. To be clear, ‘pass to pass’ here means information
propagation in k and ‘along the pass’ the same in 7.

This state-space model allows for disturbances which affect
both the state and pass profile dynamics on each pass. The
stability theory (Rogers et al., 2007) for linear repetitive
processes is based on an abstract model in a Banach space
setting which includes a wide range of such processes as
special cases, including those described by (1). In terms of
their dynamics it is the pass-to-pass coupling, noting again the
unique control problem for them, which is critical. This is of the
form yx4+1 = Ly Yk, where yx € E,, where E, a Banach space
with norm || - ||, and L, is a bounded linear operator mapping
E, into itself.

Given the unique control problem, the stability theory for
Yk+1 = Lgyx requires that the sequence of pass profiles
generated converges strongly to zero as k — 00. Since the pass
length « can take any finite value, this holds if and only if there
exist numbers My, > 0 and Ao, € (0, 1) independent of «
such that ||L§|| < Mookléo,: k > 0, where || - || also denotes
the induced operator norm. In the case when control inputs
and/or disturbances are present, stability along the pass results
in convergence to a so-called limit profile whose dynamics is
uniformly bounded in the along the pass direction.

It is of interest to relate this theory to a physical example
in the form of long-wall coal cutting where the pass profile is
the thickness, relative to a fixed datum, of the coal left after
the cutting machine has moved along the pass length, i.e. the
coal face. The stability problem here is caused by the machine’s
weight as it rests on the previous pass profile during the cutting
of the next pass profile. The undulations caused can be very
severe and result in productive work having to stop to enable
them to be removed. Stability along the pass here means that
after a sufficient number of passes have elapsed the profiles
produced on each successive pass are the same.

It can be shown from results in Rogers et al. (2007) that
stability along the pass holds for (1) if, and only if,

C(s,73) = det(s] — Ay — 22A42) #0inl x U 2)
where U = {z € C: |zo] < 1},I = {s € C: Re(s) > 0}, and
~ |A By ~ 10 0

Al_[o 0}’ Az_[c D01|'

In this case the resulting limit profile, yoo(¢), is described by
a 1D differential linear system state-space model with state

matrix, setting D = 0 for simplicity, A + Bo(I,, — Do)~'C,
which is also guaranteed to be stable.

In this work, we use the following Linear Matrix Inequality
(LMI) based sufficient condition derived from (2) which, unlike
all other existing stability tests, leads immediately (see below)
to systematic methods for control law design.

Lemma 1 (Gatkowski et al., 2003). A differential linear
repetitive process described by (1) is stable along the pass if
I matrices Y > 0 and Z > 0 satisfying the following LMI:

YAT+AY (%) (%)
ZB; -7 (%) | <0O. 3)
cY DyZ -Z

In this paper we use (x) to denote off-diagonal symmetric
entries in LMIs. See also Rogers et al. (2007) for a detailed
treatment of the sufficient only condition in this result.

3. PI control

In terms of acceptable, or desired, performance from a given
example, it is clear that stability along the pass must hold and
how to ensure this property has been the subject of recent
research (Gatkowski et al., 2003). Suppose first that control
action is only to be based on current pass action, e.g. a state
feedback control law of the form wuyy1(f) = Gxgy1(¢). Then
examples are easily generated where the resulting controlled
process cannot be stable along the pass. Likewise for the use
of a control law based on previous pass information alone,
e.g. up+1(t) = Hyy(¢) applied to any example where all
eigenvalues of the matrix A do not have strictly negative real
parts. Hence control laws must be activated by an appropriate
combination of current and previous pass information.

If a process described by (1) is stable along the pass then
the resulting limit profile y.o(¢) is, as noted above described
by a standard differential linear systems state-space model. In
this paper, the design objective is stability along the pass and
a resulting y~,(¢#) which has acceptable dynamics despite the
presence of the disturbance. More precisely, we want to produce
a limit profile which has been pre-specified by interpreting
the design specifications. Referring back to the coal cutting
example, this would be to drive the coal cutting machine for
eventually producing the same floor profile on each successive
pass and hence maximizing productive work.

With the additional objective of avoiding undue control law
complexity, we now develop a solution based on a repetitive
process version of proportional plus integral or PI control.

Define for pass k and ‘position’ ¢ € [0, «] along this pass the
so-called total tracking error x(?) as

k

K@) =Y (3 (0) = yres(0)) ,

j=0

where yef(t), 0 < t < «, denotes the required reference signal.
Then it follows immediately on using (1) that

K1) = e @) + Cxp1(t) + Dugy(t)
+ Doyi(t) + Fw(t) — yre(2). @
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Note here that the pass profile vectors are the process outputs
and hence available for measurement. We also assume that
these vectors are not subject to undue levels of measurement
noise etc. The control law here does not require an observer to
reconstruct the current pass state vector (most of the currently
available control law design methods assume direct access to
all entries in the current pass state vector).

Previous work Sulikowski, Gatkowski, Rogers, and Owens
(2006) has considered the design of PI control laws for discrete
linear repetitive processes but the results here do not follow by
substitution, i.e. simple rearrangement of these previous results.
In particular, the resulting LMI is directly related to a Lyapunov
function in each case (Rogers et al., 2007). The Lyapunov
function here is a quadratic in x4 (¢) (differential updating)
plus a quadratic in yi (¢) (discrete updating).

Now, introduce the so-called extended pass profile vector as

a0 =[n®" o )

Then use of the second equation of (1) together with (4) yields
the following state-space model of the so-called augmented
differential linear repetitive process:

X1 (1) = Axg1(t) + Boza(t) + Bugi1 (1) + Ew(t)
Zir1(0) = Cxpp1(6) + Dozic(t) 4+ [0 = 117 yref(2)
~ T
+ Dug (1) + [FTFT] w(r) ©6)

A A T T1IT A Dy 0
where Bo = [Bo 0], ¢ = [cT C"]" By = [0 §].
D = [DT DT]T. Suppose that as k — 00, x;(t) = Xxoo(1),

up(t) = uoo(t) and yr(r) — yrer(?), xk(f) — Xoo(t) (hence
2k (t) — Zoo(?)). Define also the following incremental vectors:

2k(®) = 2k (1) — 200 (1), () = up(t) — uoo(t)
X (1) = xx (1) — xoo(1). (7

Then it is straightforward to obtain (by subtracting the extended
steady state model equations from (6) and applying (7))

Rir1(6) = AR (1) + BoZi (1) + Bitgy1 (1)
2k 1(t) = CRpp1 (1) + DoZi(t) + Diigs1(1) (8)

and hence the disturbance term w(t) is completely decoupled
from the process dynamics.

The only problem in the above analysis is that (8) is not
stable along the pass since Dy has at least some eigenvalues
of modulus unity and hence (2) cannot hold. This means that
no limit profile can exist and hence design can only proceed by
application of a control law designed to give stability along the
pass.

For the incremental model of (8), define the output (or pass
profile) only actuated control law as

1 () = K12501(0) + K2 (0)
= Kiifir1() + Kiofar1 (0 + Kai 5k (1) + Ko (1), (9)

Now we have the following result.

Theorem 1. Suppose that a control law of the form (9) is
applied to (8). Then the resulting process is stable along the
pass if there exist matrices v > 0, 7> 0, X > 0, M and N
such that the following LMI holds:

YAT + AY + C"TNTBT + BNC (%) (%)
ZBl + M"B"T -7 (%)
CY +DNC DoZ+DM —Z

<0 (10)

with the equation constraint XC=CY. If this condition holds,
the matrices Ly and K are given by

L,=NX"1, K.=MZ"! (1)

and hence in (9)
g1 =Ly + DLX)_I

~ . . . . (12)
Ky=[I—-L,(I+DL,)"'DIK, — L,(I+DL,)"'Dy.
Proof. Simply note that (8) is qf the f0r£n (1) (with w(r) = 0).
Then from (11) we halvg thatAly = L, X and substitution into
the LMI of (10) with XC = CY applied yields

Y(AT + CTLTBT) + (A4 BL,C)Y (%) (%)
ZBY + MTBT -7 (%)
(C+ DL,C)Y DoyZ+DM -2
< 0.
Finally, set L,C = K, to obtain an LMI which is just that

of (3) interpreted for the controlled process and the proof is
complete. [

The equation constraint in this last result places no restrictions
on the results developed here when using, e.g., Scilab
LMITOOL but could be a source of difficulty in other cases,
e.g. in uncertainty analysis where the resulting robust control
problem may not be convex.

To implement (9), note that it can also be written as

up1(t) = (K11 + ElZ))’kH(’) + EzlYk(f)
+ (Ko + K12) xi (1) — Kiayret(t). (13)

The form of the control law is proportional (arising from
the yx(¢)) plus integral (arising from the xj(f) terms). Note
also that this last result may have use in ILC designs for
multivariable plants, a subject which is not yet fully resolved
and is left here for further research.

As a numerical example, to also highlight channel
interaction effects in the light of the last comment, consider the
case when

3.6 02 —14 —17
A_| 01 —63 16 19
129 -—02 —-49 57|

|44 —14 27 -1.1

(1.7 —22 1.9

14 —-34 -34
B=113 2 _i6]|

(0.5 —2.1 2.8
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passes 40

points on pass

Fig. 1. First channel response.

11 1
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Bo=1105 09| £=| 06 |
03 0 —0.1
o_[-05 04 —02 -o1
=l 0o —06 04 -—06|
14 —04
Do = [—0.1 0 }
43 57 -55 —17
02[4 4.7 —4.7] F:[IB]'

over the pass length « = 50 when the entries in the disturbance
vector w(t) have been randomly generated using a uniform
distribution with range £1.

In order to assess the quality of the controlled process
performance we focus on the fact that the limit profile is
described by a standard differential linear system and follow
the standard route of using a step signal applied in each of the

two channels in turn. Fig. 1 shows the response to the case
when yer(r) = [ 2 01T,0 < ¢ < 50. Here interaction
in the second channel is initially present but critically the
process converges relatively quickly to the limit profile which
has the required dynamics along the pass and, in particular, the
integral term completely kills off the interaction. (The boundary
conditions here are dyy; = [—0.610.36 — 0.390.08]T and
f@o)y=M11"%0<r<50)

4. Conclusions

The results in this paper show that a previously known
stabilization design based on an LMI setting can be extended
to allow the design of the control law to also meet performance
specifications for differential linear repetitive processes. The
tools used have their origins in robust control theory (see
e.g. Scherer, Gahinet, and Chilali (1997)), and yield relatively
simple structure control laws and hence onward benefits in
terms of implementation costs. Extending the results in Scherer
et al. (1997) to the repetitive process setting could allow
treatment of disturbances which are not constant in the pass-
to-pass direction by developing H,/H> attenuation results.
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