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Introduction 
 
Since the last edition of this book there have been rapid developments in the use and 
exploitation of formally elicited knowledge. Previously, (Shadbolt and Burton, 1995) 
the emphasis was on eliciting knowledge for the purpose of building expert or 
knowledge-based systems. These systems are computer programs intended to solve 
real-world problems, achieving the same level of accuracy as human experts. 
Knowledge engineering is the discipline that has evolved to support the whole 
process of specifying, developing and deploying knowledge-based systems (Schreiber 
et al., 2000) 
 
Now there is a much wider interest in capturing and modelling knowledge and 
expertise. This has arisen because the importance of Knowledge Management (KM) 
is universally recognised by organisations large and small. There are many different 
characterizations of KM but the central assumption is that knowledge is a valuable 
asset that must be managed (Nonaka and Takeuchi, 1995; Stewart, 1997). What we 
are looking for in KM is a means to get the right knowledge to the right people at the 
right time and in the right form. These are difficult challenges many of them identical 
to those encountered when building early knowledge-based systems (Hayes-Roth, 
Waterman and Lenat, 1983). Acquiring, documenting, distributing, reusing and 
maintaining knowledge are all difficult and time-consuming tasks. We have argued 
elsewhere that the tools and techniques, methods and approaches of knowledge 
engineering are well suited to the KM enterprise (Milton et al., 1999) 
 
This chapter will discuss the problem of knowledge elicitation for knowledge 
intensive systems in general. These systems range from classical knowledge-based 
systems through to structured intranets, from workflow support tools through to best 
practice guidelines. The content elicited from experts does not have to exist in an 
electronic format at all. However, increasingly the results of hard won knowledge 
elicitation and expertise modelling find their way into some form of digital system. 
 
Knowledge elicitation comprises a set of techniques and methods that attempt to elicit 
an expert's knowledge through some form of direct interaction with that expert. The 
first section will review the nature and characteristics of this 'bottleneck' in system 
construction. We will then look at a range of methods and techniques for elicitation. 
Where appropriate we will describe their implementation in software. Methodologies 
for expertise modelling will be described and we will illustrate the kinds of 
knowledge that will be present in expert behaviour.  We will consider the different 
types of expert that may be encountered and the attendant consequences for 
elicitation. Finally, we will consider the extent to which the burgeoning amount of 



content on the web is changing the way might think about aspects of the knowledge 
acquisition problem.  
 
There is still no comprehensive theory of knowledge acquisition available. It remains 
an art as much as a science. It is not the purpose of this chapter to investigate the 
theoretical shortcomings of knowledge acquisition but to deliver practical advice and 
guidance on performing the process. 
 

Knowledge Intensive Systems 

In the early days of Artificial Intelligence much effort went into attempts to discover 
general principles of intelligent behaviour. Newell and Simon's (1963) General 
Problem Solver exemplified this approach. They were interested in uncovering a 
general problem solving strategy that could be used for any human task. 
 
In the early 1970s this position was challenged. A new slogan came to prominence - 
'in the knowledge lies the power'. A leading exponent of this view was Edward 
Feigenbaum of SRI. He observed that experts are experts by virtue of domain specific 
problem solving strategies together with a great deal of domain specific knowledge. 
Programs that attempted to implement detailed knowledge about tasks and the 
subjects to which they applied came resulted in the class of programs called Expert or 
Knowledge-Based Systems. These are now widely used and often quite invisible to 
the end user. The spelling and grammar checker that is being used to write this 
chapter owes its origins to knowledge-based systems technology. There are systems 
that look for patterns to detect credit card fraud, classify radar tracks, interpret patient 
vital signs and support in the design of aero engines.  
 
There are a variety of ways in which expertise is encoding in run time systems. Many 
systems will incorporate some of rule based or object orientated representation. For a 
review of the major types of knowledge based system architecture and of different 
knowledge representation formalisms see Stefik, 1993. 
 
The Problem of Elicitation 

The people who build knowledge intensive systems are typically not people with a 
deep knowledge of the application domain. However, it is they who must gather the 
domain knowledge and then implement it in a form that the machine can use. 
 
In the simplest case, one may be able to gather information from a variety of 
non-human resources: textbooks, technical manuals, case studies and so on. However, 
in most cases one needs actually to consult a practising expert. This may be because 
there isn't the documentation available, or because real expertise derives from 
practical experience in the domain, rather than from a reading of standard texts. The 
task of gathering information generally, from whatever source is called knowledge 
acquisition.(KA). The sub-task of gathering information from the expert is called 
knowledge elicitation (KE). In this chapter we will be concentrating on KE. Few 
knowledge intensive systems are ever built without recourse to experts at some stage. 
Those systems not informed by actual expert understanding and practice are often the 
poorer for it.  



  
Many problems arise before elicitation of the detailed domain knowledge. We need to 
understand the purpose and requirements for any knowledge intensive system. 
Sometimes the failure is in formulating the role of the system, on other occasions it is 
a failure to appreciate what it is realistic to build. Systems can fail because no one has 
thought of the social and organisational problems that must be resolved in deploying 
a system. Very often the effort and resources required to build systems are 
underestimated: this occurs in both the development and maintenance of systems. A 
particularly nasty situation arises when one is expected to conjure up knowledge for 
areas in which no evidence of systematic practice exists at all. Here one is expected to 
provide theories for domains where there is no theory. Providing we can resolve these 
issues then we get down to KE in the expectation that it will be time well spent.  
 
Two questions dominate in KE. How do we get experts to tell us, or else show us, 
what they do? How do we determine what constitutes their problem solving 
competence? This is a hard enough problem in itself but there are a variety of 
circumstances that contrive to make the problem even harder. Much of the power of 
human expertise lies in laid-down experience, gathered over a number of years, and 
represented as heuristics1. Often the expertise has become so routinised that experts 
no longer know what they do or why. In many cases the knowledge required to build 
a system is distributed across an organisation and in the heads of a number of experts. 
Experts do not always agree so there is the problem of reconciling conflicting or 
differing views. 
 
There are obviously clear commercial reasons to try to make KE an effective process. 
We would like to be able to use techniques that will minimise the effort spent in 
gathering, transcribing and analysing an expert's knowledge. We would like to 
minimise the time spent with expensive and scarce experts. And, of course, we would 
like to maximise the yield of usable knowledge.  
 
There are also sound engineering reasons why we would like to make KE a 
systematic process. We would like the procedures of KE to become common practice 
and conform to clear standards. This will help ensure that the results are robust. 
Robust methods are ones that can be used on various experts in a wide range of 
contexts by any competent knowledge engineer or KE practitioner. We also hope to 
make our techniques reliable. This will mean that different practitioners can apply 
them with the same expected utility. Placing elicitation on such a systematic footing 
will also be important in the development of methodologies that direct the process of 
specifying, constructing and maintaining systems.  
 
We will begin by describing, in sufficient detail for the reader to apply them, 
examples of major KE methods. We will mention other techniques and where the 
reader can find out more about them. We will then review aspects of expertise and 
human information processing that are likely to directly affect the KE process. We 
will also indicate various software tools that implement or support some of these KE 
methods. We will describe the methodologies for acquisition and modelling expertise 

                                                
1An heuristic is defined as a rule of thumb or generally proven method to obtain a result given 
particular information. 



that are beginning to emerge. Finally, we will discuss the effect that the presence of 
evermore content on the web is having on the knowledge acquisition problem  

Elicitation Techniques 
 
The techniques we will describe are methods that we have found in our previous work 
to be both useful and complementary to one another. We can subdivide them into 
natural and contrived methods. The distinction is a simple one. A method is 
described as natural if it is one an expert might informally adopt when expressing or 
displaying expertise. Such techniques include interviews or observing actual problem 
solving. There are other methods we will describe in which the expert undertakes a 
contrived task. The task elicits expertise in ways that are not usually familiar to an 
expert. The first two categories of elicitation method are both natural under this 
definition and are varieties of interview and protocol analysis.  
 

The Structured Interview 

Almost everyone starts in KE by determining to use an interview. The interview is the 
most commonly used knowledge elicitation technique and takes many forms, from 
the completely unstructured interview to the formally-planned, structured interview. 
 
The structured interview is a formal version of the interview in which the person 
eliciting the knowledge plans and directs the session. A significant benefit of the 
structured interview is that it provides structured transcripts that are easier to analyse 
than unstructured conversation. In reality the structured interview is a class of 
techniques (Hoffman et al., 1995). 
 
The formal interview specified here constrains the expert-elicitor dialogue to the 
general principles of the domain. Experts do not work through a particular scenario 
extracted from the domain by the elicitor; rather experts generate their own scenarios 
as the interview progresses. 
  
A template for such an interview is as follows. 
 

1. Ask the expert to give a brief (10 minute) outline of the target task, including 
the following information: 

 
An outline of the task, including a description of the possible solutions or 
outcomes of the task; 
 
A description of the variables that affect the choice of solutions or outcomes; 
 
A list of major rules or procedures that connect the variables elicited to the 
solutions or outcomes. 

 
2. Take each rule or procedure elicited in Stage 1, ask when it is appropriate and 

when it is not and if it is a procedure how to is preformed. The aim is to reveal 
the scope (generality and specificity) of each existing rule, and hopefully 
generate some new rules. 

 



3. Repeat Stage 2 until it is clear that the expert will not produce any additional 
information. 

 
A useful way of obtaining a domain overview (stage 1 of the structured interview) is 
to ask probe questions that relate to an individuals specific experience. It is also 
important in this technique to be specific about how to perform stage 2. We have 
found that it is helpful to constrain the elicitor's interventions to a specific set of 
probes, each with a specific function. Here is a list of probes (P) and functions (F) 
that can help in stages 1 & 2. 
 
P1.1 Could you tell me about a typical case? 
F1.1 Provides an overview of the domain tasks and concepts 
 
P1.2 Can you tell me about the last case you encountered? 
F1.2 Provides an instance based overview of the domain tasks and concepts 
 
P2.1 Why would you do that? 
F2.1 Converts an assertion into a rule  
 
P2.2 How would you do that? 
F2.2 Generates lower order rules 
 
P2.3 When would you do that? 
 Is <the rule> always the case? 
F2.3 Reveals the generality of the rule and may generate other rules 
 
P2.4 What alternatives to <the prescribed action/decision> are there? 
F2.4 Generates more rules 
 
P2.5 What if it were not the case that <currently true condition>? 
F2.5 Generates rules for when current condition does not apply 
 
P2.6 Can you tell me more about <any subject already mentioned> 
F2.6 Used to generate further dialogue if expert dries up 
 
P2.7 Can you tell me about an unusual case you encountered/heard about from 

some other expert? 
F2.7 Refines the knowledge to include rare cases and special procedures 
 
The idea here is that the elicitor engages in a type of slot/filler dialogue. The 
provision of template questions about concepts, relations, attributes and values makes 
the elicitor's job very much easier. It also provides sharply focused transcripts that 
facilitate the process of extracting usable knowledge. Of course, there will be 
instances when none of the above probes are appropriate (such as the case when the 
elicitor wants the expert to clarify something). However, you should try to keep these 
interjections to a minimum. The point of specifying such a fixed set of linguistic 
probes is to constrain the expert to giving you all, and only, the information you want. 
 



The sample of dialogue below is taken from a real interview of this kind. It is the 
transcript of an interview by a knowledge engineer (KE) with an expert (EX) in the 
domain of geological analysis2. 
 
KE What would you do at this stage? 
EX I would look at the grain size of the hand specimen and see how fine it was 
KE Why would you look at the grain size? 
EX That will tell me if the rock has been formed near to the surface or deep inside 

the earth. The finer the grain size the faster it cooled. Coarse crystals indicate 
that the rock was cooling slowly + forming deeper down + we say its 
emplacement is plutonic + if it cooled near the surface its emplacement is 
volcanic. 

KE Are there any alternatives to coarse and fine grain size? 
EX There are glasses + you can’t see any structure here because the rock cooled 

so fast 
KE What would you look at next? 
EX Colour is important + the lighter the rock the more acidic it is.  
KE Why is a lighter rock more acidic? 
EX Acidic rocks are higher in quartz and colour is a good indicator of quartz 

content – leucocratic or light things have a lot of quartz - melanocratic that is 
darker rocks have olivines and pyroxines. 

 
This is quite a rich piece of dialogue. From this section of the interview alone we can 
extract numerous  rules such as 
 
 IF        grain size is large 
 THEN     rock is plutonic 
 
 IF        rock is leucocratic 
 THEN     rock has high quartz content 
 
Of course these rules may need refining in later elicitation sessions, but the text of the 
dialogue shows how the use of the specific probes has revealed a well-structured 
response from the expert3. 
 

Semi-Structured Interviews 

Techniques exist to impose a lesser amount of structure on an interview. We mention 
two examples here. One of these is the Knowledge Acquisition Grid (LaFrance, 
1987). This is a matrix of knowledge types and forms: examples of knowledge forms 
are layouts and stories; examples of question types are grand tour and 
cross-checking. A grand tour involves such things as distinguishing domain 
boundaries and the overall organization of goals; cross-checking involves the 
engineer attempting to validate the acquired knowledge by, for example, playing 
devil's advocate. 
 
                                                
2 In the transcripts we use the symbol + to represent a pause in the dialogue. 
3 In fact, a possible second-phase elicitation technique would be to present these rules back to the 
expert and ask about their truthfulness, scope and so forth. 



Secondly, there is the teachback technique of (Johnson and Johnson, 1987). In this 
technique when formulates a representation of the knowledge that has been acquired 
in an interview. This is then 'taught back' to the expert, who can then check or, when 
necessary, amend the information. 
 

Unstructured Interviews 

Unstructured interviews have no agenda (or, at least, no detailed agenda) set either by 
the knowledge elicitor or by the expert. Of course, this does not mean that the elicitor 
has no goals for the interview, but it does mean that she has considerable scope for 
proceeding; there are few constraints and herein lie its advantages. Firstly, the 
approach can be used whenever one of the goals of the interview is to establish a 
rapport between the expert and the knowledge elicitor. There are no formal barriers to 
the discussion covering whatever material either participant sees fit. Secondly, one 
can get a broad view of the topic easily; the knowledge elicitor can 'fill in the gaps' in 
her own perceived knowledge of the domain. Thirdly, the expert can describe the 
domain in a way with which he is familiar, discussing topics that he considers 
important and ignoring those he considers uninteresting. 
 
The disadvantages are clear enough. The lack of structure can lead to inefficiency. 
The expert may be unnecessarily verbose. He may concentrate on topics whose 
importance he exaggerates. The coverage of the domain may be patchy. The data 
acquired may be difficult to integrate, either because it does not form a coherent body 
of content, or because there are inconsistencies. This last will be an even more likely 
occurrence if the information provided by several experts is to be collated. 
 
In all of the interview techniques mentioned so far (and in some of the other generic 
techniques as well) there exist a number of dangers that have become familiar to 
practitioners of knowledge elicitation. 
  
One problem is that in an interview experts will only produce what they can 
verbalise. If there are non-verbalisable aspects to the domain, the interview will not 
recover them. It may be that the knowledge was never explicitly represented or 
articulated in terms of language (consider, for example, pattern recognition expertise). 
Then there is the situation where the knowledge was originally learnt explicitly in a 
propositional or language-like form. However, in the course of experience such 
knowledge can become routinised or automatised4. This can happen to such an extent 
that experts may regard the complex decisions they make as based only on hunches or 
intuitions. In actual fact, these decisions are based upon large amounts of remembered 
data and experience, and the continual application of that knowledge. In this situation 
they tend to give black box replies 'I don't know how I do that....', 'It is obviously the 
right thing to do....'.  
  
Another problem arises from the observation that people (and experts in particular) 
often seek to justify their decisions in any way they can. It is a common experience of 

                                                
4We often use a computing analogy to refer to this situation and speak of the expert as having compiled 
the knowledge. 



the knowledge elicitor to get a perfectly valid decision from an expert, and then to be 
given a spurious justification as to why it was made and how it originated. 
  
For these and other reasons one should always supplement interviews with additional 
elicitation methods.  Elicitation ought always to consist of a programme of techniques 
and methods. This brings us on to consider another family of techniques much 
favoured by knowledge engineers. 
 

Protocol Analysis 

Protocol Analysis (PA) is a generic term for a number of different ways of 
performing some form of analysis of the expert(s) actually solving problems in the 
domain. In all cases the elicitor takes a record of what the expert does - preferably by 
video or audio tape - or at least by written notes. Transcripts or protocols are then 
made from these records and the elicitor tries to extract meaningful structure, rules 
and processes from the protocols. 
  
We can distinguish two general types of PA -on-line  and off-line. In on-line PA the 
expert is being recorded solving a problem, and concurrently a commentary is made. 
The nature of this commentary specifies two sub-types of the on-line method. The 
expert performing the task may be describing what they are doing as problem solving 
proceeds. This is called self-report. A variant on this is to have another expert provide 
a running commentary on what the expert performing the task is doing. This is called 
shadowing. 
  
Off-line PA allows the expert(s) to comment retrospectively on the problem solving 
session - usually by being shown an audio-visual record of it. This may take the form 
of retrospective self-report by the expert who actually solved the problem. It could 
also be a critical retrospective report by other experts, or there could be group 
discussion of the protocol by a number of experts including its originator. In the case 
in which only a behavioural protocol is obtained then obviously some form of 
retrospective verbalisation of the problem-solving episode is required. 
  
Before PA sessions can be held, a number of pre-conditions should be satisfied. The 
first of these is that the elicitor is sufficiently acquainted with the domain to 
understand the expert's tasks. Without this the elicitor may completely fail to record 
or take note of important parts of the expert’s behaviour. 
  
A second requirement is the careful selection of problems for PA. This sampling of 
problems is crucial. PA sessions may take a relatively long time, only a few problems 
can be addressed in any programme of acquisition (Shadbolt and Burton, 1989). 
Therefore, the selection of problems should be guided by how representative they are. 
Asking experts to sort problems into some form of order (Chi et al., 1981, 1982 ) may 
give an insight into the classification of types of problems and help in the selection of 
suitable problems for PA (see also the next two sections on concept sorts and 
laddering for methods that can be used to help structure a classification of types of 
problem). 
  



A further condition for effective PA is that the expert(s) should not feel embarrassed 
about describing their expertise in detail. It is preferable for them to have experience 
in thinking aloud. Uninhibited thinking aloud has to be learned in the same way as 
talking to an audience. One or two short training sessions may be useful. In these 
training sessions a simple task can be used as an example.  This puts the expert at 
ease and familiarises them with the task of talking about their problem solving. 
 
Where a verbal or behavioural transcript has been obtained we next have to undertake 
its analysis. Analysis might include the encoding of the transcript into 'chunks' of 
knowledge (actions, assertions, propositions, key words, etc.), and should result in a 
rich domain representation with many elicited domain features together with a 
number of specified links between those features. The example below is from a 
self-report of an expert geologist. It is immediately apparent that protocols can be 
extremely dense sources of information. A very significant amount of work is 
required to analyse and structure the content in this very small fragment of a self 
report on one specimen. 
 

To start off with it's obviously a fairly coarse-grained rock ... and you've 
got some nice big orthoclase crystals in here - this is actually SHAP 
GRANITE - I know it just because everybody's seen SHAP GRANITE - 
or it's a very strong possibility that it's SHAP GRANITE ... it's a typical 
teaching specimen - as I say the obvious things are these very big 
orthoclase crystals pink colouration and you can certainly see some 
cleavage in some of them - you can certainly make out there are feldspar 
cleavages in there - it's a coarse-grained rock anyway, you can see the 
crystals nice and coarsely - these large porphyritic crystals - you can see, 
in the ground mass, you can see quartz - get some light on it (HOLDS 
SPECIMAN UP TO WINDOW) quartz, which is this fairly clear mineral 
you can actually look into it and see through it as opposed to calcite or 
feldspars where it's more cloudy - you can't actually see any good crystal 
faces on these cut sections - small flakes of biotite, black micacious 
looking - small plates, you can certainly see some on this specimen even 
without a hand lens. 

 
There are a number of principles that can guide the protocol analysis. For example, 
analysis of the verbalization resulting in the protocol can distinguish between 
information that is attended to during problem-solving, and that which is used 
implicitly. A distinction can be made between information brought out of memory 
(such as a recollection of a similar problem solved in the past), and information that is 
produced 'on the spot' by inference. The knowledge chunks referred to above can be 
analysed by examining the expert's syntax, or the pauses he takes, or other linguistic 
cues. Syntactical categories (e.g. use of nouns, verbs, etc.) can help distinguish 
between domain features and problem-solving actions, etc. 
 
In trying to decide when it is appropriate to use PA bear in mind that it is alleged that 
different KE techniques differentially elicit certain kinds of information (Hoffman et 
al, 1995). With PA it is claimed that the sorts of knowledge elicited include; the 
"when" and "how" of using specific knowledge. It can reveal the problem solving and 
reasoning strategies, evaluation procedures and evaluation criteria used by the expert, 
and procedural knowledge about how tasks and sub-tasks are decomposed. A PA 



gives you a complete episode of problem solving. It can be useful as a verification 
method to check that what people say is what they do. It can take you deep into a 
particular problem. However, it is intrinsically a narrow method since usually one can 
only run a relatively small number of problems from the domain. 
 
When actually conducting a PA the following are a useful set of tips to help enhance 
its effectiveness. Present the problems and data in a realistic way. The way problems 
and data are presented should be as close as possible to a real situation. Transcribe the 
protocols as soon as possible, the meaning of many expressions is soon lost, 
particularly if the protocols are not recorded. In almost all cases an audio recording is 
sufficient, but video recordings have the advantage of containing additional and 
disambiguating information. Avoid long self-report sessions. Because of the need to 
perform a double task the process of thinking aloud is significantly more tiring for the 
expert, than being interviewed. This is one reason why shadowing is sometimes 
preferred. In general, the presence of the elicitor is required in a PA session. Although 
the elicitor adopts a background role, her very presence suggests a listener to the 
interviewee, and lends meaning to the talking aloud process. Therefore, comments on 
audibility, or even silence by the elicitor, are quite acceptable. 
  
Protocol analyses share with the unstructured interview the problem that they may 
deliver unstructured transcripts that are hard to analyse. Moreover, they focus on 
particular problem cases and so the scope of the knowledge produced may be very 
restricted. It is difficult to derive general domain principles from a limited number of 
protocols. These are some of the practical disadvantages of protocol analysis. 
However, there are more subtle problems. 
  
Two actions, which look exactly the same to the knowledge elicitor, may be very 
different in their extent and intent. For example, our geologist who performs a 
particular test to a specimen may apply that same test to another but with a quite 
different purpose. The knowledge elicitor simply does not know enough to 
discriminate the actions. The obverse to this problem can arise in shadowing and the 
retrospective analyses of protocols by experts. Here the expert(s) may simply wrongly 
attribute a set of considerations to an action after the event. This is analogous to the 
problems of misattribution in interviewing. 
  
A particular problem with self-report, apart from being tiring, is the possibility that 
verbalisation may interfere with performance. The classic demonstration of this is for 
a driver to attend to all the actions involved in driving a car. If one consciously 
monitors such parameters as engine revs, current gear, speed, visibility, steering 
wheel position and so forth, the driving invariably gets worse. Such skill is shown to 
its best effect when performed automatically. This is also the case with certain types 
of decision making expertise. By asking the expert to verbalise, one is in some sense 
destroying the point of doing protocol analysis - to access procedural, real-world 
knowledge. 
  
Having pointed to these disadvantages, it is also worth remembering that context is 
oftentimes important for memory - and hence for problem solving. For most 
non-verbalisable knowledge, and even for some verbalisable knowledge, it may be 
essential to observe the expert performing the task. For it may be that this is the only 
situation in which the expert is actually able to perform it.  



  
Finally, when performing PA it is useful to have a set of conventions for the actual 
interpretation and analysis of the resultant data. Ericsson and Simon (1993) provide 
the classic exposition of protocol analysis although it is oriented towards cognitive 
psychology. Useful additional references are Kuipers and Kassirer (1983), Belkin, 
Brooks and Daniels (1987), McGraw and Harbison-Briggs (1989), Scott et al. (1991) 
and Firlej and Hellens (1991). 
 
Critical Decision Method 

This method contains elements of both interviewing and protocol analysis but in a 
context that stresses the examination of problem solving in natural decision making 
contexts (Zsambok and Klein, 1997). Klein and his colleagues developed a set of 
opening queries to stimulate recall of salient cases – cases that involved critical 
decisions (K1ein et al 1986). A set of probe questions that were designed to elicit 
specific, detailed information about the important cues, choice points, options, actions 
plans and the role of experience in decision making. A distinctive feature of this 
approach was that it seemed well suited to eliciting knowledge relating to highly 
dynamic situations where the requirement was to rapidly a situation and identify an 
effective and feasible course of action (Klein, 1993a, 1993b). Domains examined 
using the approach included acute clinical care, military planning, fire fighting and 
industri.al process control. 
 
A CDM session is organised around an account of a specific incident from the 
expert’s own experience. The expert is guided in the recall and recounting of the 
incident and its context. There then follow three information-gathering passes back 
through the incident. First a time line is built that verifies the points at which 
decisions are made. Second there is a phase of deepening that produces a more 
comprehensive and contextually rich account of the incident – focusing for example, 
on the cues used to recognise salient features of the incident. A final information 
sweep uses a “what if” approach to identify potential errors, alternative decision 
points, and expert/novice differences. 
 
The table below contains a range of probe questions types with exemplars that we 
have found to be particularly useful in various phases of the CDM. There is no reason 
to use these questions exclusively for an individual phase although it is clear that the 
options and choice probe types are likely to feature substantially in the “what if” 
phase of information gathering 
 
Probe Type Probe Examples 
Cues What were you seeing, hearing, smelling? 
Knowledge What information did you use in making this decision? How was 

it obtained? 
Analogues Were you reminded of any previous incidents? 
Scenarios Does this case fir a standard or typical scenario? Does it fit a 

scenario you were trained to deal with? 
Goals What were your specific goals and objectives at the time? 
Options What other courses of action were considered or available? 
Choice How was this option selected/other options rejected? What rule 



was being followed? 
Anticipation Did you imagine the possible consequences of this action? Did 

you imagine the events that would unfold? 
Experience What specific training or experience was necessary or helpful in 

this decision? What more would have helped? 
Decision making How much time pressure was involved in making the decision? 

How long did it take to make the decision? 
Aiding  What training, knowledge or information could have helped? 
Situation 
assessment 

If you were asked to describe the situation to a colleague at this 
point, have would you summarise the situation? 

Errors What mistakes are likely at this point? How might a novice have 
behaved differently? 

Hypotheticals If a key feature of the situation had been different, what 
differences would it have made in you decision? 

Table 1 Sample CDM Probe Questions 
A typical CDM session can last around 2 hours and depending on the domain more or 
less time might be spent on recollecting a rich complex incident whilst in another 
setting the majority of the effort is devoted to examining counterfactual situations. 
The CDM does have limitations. In distributed problem solving no one individual 
may handle more than one element of a task. They would never know whether their 
judgements or assessments were correct. In high workload environments we have 
observed that incidents and events can become merged. When responding to an 
opening query one sometimes sees an expert recount an incident but then become 
confused when asked for a time line or other details. Despite these shortcomings the 
style of interview and problem solving reflection provides a rich output from which 
the elicitor can extract important task relevant knowledge – a more detailed account 
of the method can be found in Hoffman et al 1998. 
 
The techniques discussed so far are natural and intuitively easy to understand. 
Experts are used to expressing their knowledge in these sorts of ways. The techniques 
that follow are what we what we have termed contrived and permit the expression of 
knowledge in ways that are likely to be unfamiliar to the expert. 
 
Concept Sorting 

Concept sorting is a technique that is useful when we wish to uncover the different 
ways an expert sees relationships between a fixed set of concepts. 
  
In the version we will present an expert is presented with a number of cards on each 
of which a concept word is printed. The cards are shuffled and the expert is asked to 
sort the cards into either a fixed number of piles of else to sort them into any number 
of piles the expert finds appropriate. This process is repeated many times. 
  
Using this task one attempts to get multiple views of the structural organisation of 
knowledge by asking the expert to do the same task over and over again. Each time 
the expert sorts the cards he should create at least one pile that differs in some way 
from previous sorts. The expert should also provide a name or category label for each 
pile on each different sort. 



 
Performing a card sort requires the elicitor to have some basic conception of the 
domain. Cards have to be made with the appropriate labels before the session. 
However, no great familiarity is required as the expert provides all the substantial 
knowledge in the process of the sort. We now provide an example from our geology 
domain to show the detailed mechanics of a sort. 
 
The concepts printed on the cards were the names of igneous rocks drawn from a 
structured interview with the expert. He had described 18 rock types 
 
1 adamellite 
2 andesite 
3 basalt 
4 dacite 
5 diorite 
6 dolerite 
7 dunite   
8 gabbro 
9 granodiorite 
 

 
10 granite 
11 lherzolite 
12 microgranite 
13 peridotite 
14 picrite basalt 
15 rhyodacite 
16 rhyolite 
17 syenite 
18 trachyte 
 

The expert was shown possible ways of sorting cards in a toy domain, as part of the 
briefing session, and then asked to sort the real elements in the same way. 
  
The dimensions/piles which the expert used for the various sorts were as follows: 
 
Sort 1: grain size  Piles 1=coarse, 2=medium, 3=fine 
 
Sort 2: colour            Piles 1=melanocratic, 2=mesocratic, 3=leucocratic 
 
Sort 3: emplacement      Piles 1=intrusive, 2=extrusive 
 
Sort 4: presence of olivine Piles 1=always, 2=possibly, 3=never 
 
Sort 5: presence of quartz Piles 1=always, 2=possibly, 3=never 
 
Sort 6: % of silica      Piles 1= >68%, 2= <68%, 3= about 68% 
 
Sort 7: density   Piles 1=v.light, 2=light, 3=medium, 4=dense,5=v.dense 
 
Here is a table showing the pile of each sort for each element. You will see that many 
of the elements are distinguishable from one another - even with these few sorts. 
 
  SORT 
ROCK     1       2       3       4       5       6       7 

 
1        1       3       1       1       1       2       1 
2        3       2       2       3       2       2       3 
3        3       2       2       2       2       2       4 
4        3       2       2       3       2       3       2 
5        1       2       1       3       2       2       3 



6        2       1       1       2       2       2       4 
7        1       1       1       1       3       2       5 
8        1       2       1       2       2       2       4 
9        1       3       1       3       1       3       1 
10       1       3       1       3       1       1       1 
11       1       1       1       1       3       2       5 
12       2       3       1       3       1       1       1 
13       1       1       1       1       3       2       5 
14       3       1       2       1       3       2       4 
15       3       3       2       3       1       1       2 
16       1       3       2       3       1       1       1 
17       1       3       1       3       1       2       3 
18       3       3       2       3       2       2       2 

 
Table 1: Tabulated results from the card sort  
 
Using this information we can attempt to extract decision rules directly. An example 
of a rule extracted from the sorting is : 
 
 
 IF  the grain size is fine    (sort 1/pile 3) 
 AND   the colour is mesocratic  (sort 2/pile 2) 
 AND   its emplacement is extrusive  (sort 3/pile 2) 
 AND   it does NOT contain olivine  (sort 4/pile 3) 
 AND   may possibly contain quartz   (sort 5/ pile 2) 
 AND  it contains less than 68% silica  (sort 6/ pile 2) 
 AND  its density is medium   (sort 7/ pile 3) 
 THEN  the rock is andesite   (outcome 2) 
  
As you can see from the example such sorts produce long and cumbersome rules. In 
fact many of the clauses may be redundant - once you have established that the grain 
size is small, then it is going to be an extrusive rock. 
 
However, the utility of this technique does not reside solely in the production of 
decision rules. We can use it, as we have said, to explore the general 
inter-relationships between concepts in the domain. We are trying to make explicit 
the implicit structure that experts impose on their expertise.  
 
When using any of these KE methods knowledge elicitors should beware a type of 
semantic mindset whereby the expert or elicitor focuses on only one type of 
knowledge element. To derive the full benefit of a KE method one should play many 
variations on the theme. For example, in concept sorting the cards can name 
knowledge elements of any type not just objects in a domain. The cards might name 
tasks, goals, actions, resources etc. The restriction is that in any sorting session the 
cards should be of the same knowledge type. 
 
Variants of the simple sort are different forms of hierarchical sort. One such version 
is to ask the expert to proceed by producing first two piles, on the second sort three, 
then four and so on.  Finally we ask if any two piles have anything in common. If so 



you have isolated a higher order concept that can be used as a basis for future 
elicitation. 
  
The advantages of concept sorting can be characterised as follows. It is fast to apply 
and easy to analyse. It forces an explicit format on the constructs that are underlie an 
experts understanding. In fact it is often instructive to the expert. A sort can lead the 
expert to see structure that he himself has not consciously articulated before. Finally, 
in domains where the concepts are perceptual in nature (i.e. x-rays, layouts and 
pictures of various kinds) then the cards can be used as a means of presenting these 
images and attempting to elicit names for the categories and relationships that might 
link them. 
  
There are, of course, features to be wary of with this sort of technique. Experts can 
often confound dimensions by not consistently applying the same semantic 
distinctions throughout an elicitation session. Alternatively, they may over simplify 
the categorisation of elements, missing out important caveats. 
 
An important tip with all of the contrived techniques we are reviewing is to always 
audiotape these sessions. An expert makes many asides, comments and qualifications 
in the course of sorting ranking and so on. In fact one may choose to use the contrived 
methods as a means to carry out auxiliary structured interviews. The structure this 
time is centred on the activity of the technique. 
  
It is worth noting that we have found (Schweikert et al., 1987) an expert's own 
opinion of the worth of a technique no guide to its real value. In methods such as 
sorting we have a situation in which the expert is trying to demonstrate expertise in a 
non-natural or contrived manner. He might be quite used to chatting about his field of 
expertise, but sorting is different and experts may be suspicious of it. Experts may in 
fact feel they are performing badly with such methods. However, on analysis one 
finds that the yield of knowledge is as good and sometimes better than for 
non-contrived techniques (Shadbolt and Burton, 1990). 
 

Laddered Grids 

Another somewhat contrived technique that you will need to explain carefully to the 
expert before starting. The expert and elicitor construct a graphical representation of 
the domain in terms of the relations between domain or problem solving elements. 
The result is a qualitative, two-dimensional graph where nodes are connected by 
labelled arcs. No extra elicitation method is used here, expert and elicitor construct 
the graph together by negotiation.  
  
In using the technique the elicitor enters the conceptual map at some point and then 
attempts to move around it with the expert. A formal specification of how we use the 
technique is shown below together with an example of its use. 
  
 
 Start the expert off with a seed item 
 
 Move around the domain map using the following prompts 



 
  To move DOWN the expert's domain knowledge: 
 
   Can you give examples of <ITEM>? 
 
  To move ACROSS the expert's domain knowledge: 
 
   What alternative examples of <CLASS> are there to <ITEM>? 
 
  To move UP the expert's domain knowledge: 
 
   What have <SAME LEVEL ITEMS> got in common? 
 
   What are <SAME LEVEL ITEMS> examples of? 
 
  To elicit essential properties of an item: 
   
   How can you tell it is <ITEM> ? 
 
  To discriminate items: 
 
   What is the key difference between <ITEM 1> and <ITEM 2>? 
                   
  
The elicitor may move around the knowledge map in any order which seems 
appropriate or convenient. As the session progresses, the elicitor keeps track of the 
elicited knowledge by drawing up a network on a large piece of paper or if computer 
supported via some other graphical characterisation. This representation allows the 
elicitor to make decisions (or ask questions) about what constitutes higher or lower 
order elements in the domain, what differences exist between elements in the 
network. In order to give the reader the flavour of the technique, there follows an 
extract from a laddered grid elicitation session. Once again, the knowledge domain is 
geology. 
 

KE  So how could you tell something was dacite?  
EX  Well + examine the fresh surface and the weathered surfaces first + 

looking at grainsize, the relationship between the grains 
KE  Can I just stop you there. What type of grain size is it?  
EX  Coarse, medium, fine grain, oh, you want me to actually say what 

dacite is?  
KE  The grain, in dacite what would it be?  
EX  Er + medium grained.  
KE Medium grained, right. So can you give me other examples of 

medium grained rocks?  
EX Medium grained rocks + dolerite... Granodiorite as well... And 

we'll stay with that.  
KE Right, erm, what alternative is there to a medium grained rock?  
EX Well, you can have a coarse grained one or a fine grained one, 

those are sort of the three major ones.  
KE Right, can you give me examples of coarse grained rocks?  



EX Er, gabbro, granite... hmm, yeah, those two.  
KE And any examples of fine-grained rocks?  
EX Er, basalt... er andesite, trachyte...microgranite as well.  
KE Right, erm so. What about others 
EX Some of these are sort of a metamorphic ones where you're going 

to get large grains in a fine-grained matrix. There are phenocrysts 
in them, that's what we call the large grains 

KE Is, is there a word for that kind of texture or?  
EX Porphyritic mixture  
KE Can you give me the examples of the porphyritics...  
EX Nepheline-syenite, oh and Kentallenite 
KE How would you go about telling the difference between dolerite 

and granodiorite? What is the key difference?   
EX Whether it's got quartz or hasn't got quartz or the percentage of 

quartz present will define whether it's an acidic rock or a basic 
rock, basic not having any quartz in it at all, and then er if there's a 
low amount, that's going to be an intermediate rock  

KE Which, which are the intermediate?  
EX Dacite + you've got high quartz are granite, microgranite, and 

andesite, and no quartz gabbro, basalt, dolerite and trachyte, 
intermediate dacite.  

 
In the course of this laddered grid interview the elicitor drew up a hierarchical 
representation of the domain as shown in Figure 1. This is only one of a number of 
representations that could have been made. In this case the concepts of fine, medium 
and coarse grained rocks have been understood to be classes of rock type. Similarly 
the concept of an acidic, intermediate or basic rock has been treated as a class of rock 
type. However, the grain size and acidity (amount of quartz) could have been 
represented as properties of the particular rock types. These sorts of representational 
decisions abound in any knowledge elicitation exercise. Decisions as to which are the 
most appropriate representations come down to  



 
  
 

Figure 1 Laddered Grid in the geology domain 
 
This hierarchy gives rise to the following set of rules that could be included in the 
knowledge base of a knowledge intensive system for geological rock classification. 
 
 IF        the rock is of medium grain size 
 AND      the rock is intermediate 
 THEN    the rock may be dacite 
 
 IF        the rock is of coarse grain size 
 AND      the rock is acidic 
 THEN    the rock may be granite 
 
 IF        the rock is of coarse grain size 
 AND      the rock is basic 
 THEN    the rock may be gabbro  
 
As with the previous contrived method it is important to keep an audio record of the 
session for future review or transcription. Laddering is an excellent way of carrying 
out a structured interview. Also it is a techniques that can be used on a variety of 
knowledge types; objects, actions, tasks, goals, etc.. 
 



We have found that this form of knowledge elicitation is very powerful for structured 
domains. As with other contrived techniques we have found that whilst an expert may 
think this technique is revealing little of interest, subsequent analysis provides good 
quality content. 
 
The Limited Information Task 

A technique which can prove an excellent complement to the methods already 
outlined does not provide a spatial representation of the domain, but rather a set of 
hints or suggestions which may prove useful in the construction of knowledge 
intensive systems is a technique called the limited information task (Hoffman et al, 
1995) or 20 questions (Grover, 1983). The expert is provided with little or no 
information about a particular problem to be solved. The expert must then ask the 
elicitor for specific information that will be required to solve the problem. The 
information that is requested, along with the order in which it is requested, provides 
the elicitor with an insight into the expert's problem solving strategy. One difficulty 
with this method is that the elicitor needs a good understanding of the domain in 
order to make sense of the experts' questions, and to provide meaningful responses. 
The elicitor should have forearmed themselves with a problem from the domain 
together with a crib sheet of appropriate responses to the questions. 
  
In one of the versions of the limited information task that we use we tell the expert 
that the elicitor has a scenario in mind and the expert must determine what it is. The 
scenario might represent a problem, a solution or a problem context. The expert is 
told that they may ask the elicitor for more information, though what the elicitor gives 
back is terse and does not go much beyond what was asked for in the question. The 
expert may be asked to explain why each of the questions was asked. 
  
An example of the kind of interaction produced by this technique is shown below. 
Here the problem domain is in the construction of lighting systems for the inspection 
of industrial products and processes. 
 
EX: Is this in the manufacturing industry? 
KE: Yes 
EX: So we've ruled out things like fruit, vegetables, cows? 
KE: Yes 
EX: Is it the metal industry? 
KE: The material is wood 
EX: So we could be dealing with a large object here like a chair or table 
KE: The object is large 
EX: It's likely to be a 3-D object, you've got to pick it up and turn it over 
KE: That's right 
EX: So what I need now are the dimensions of this object in terms of the cube 
 that will enclose it 
KE: It would have similar dimensions to the table top 
EX: Do I inspect one surface or all the surfaces? 
KE: All of them 
EX: Is the inspector looking for one or many faults? 
KE: One particular fault 



EX: Can you describe it for me? 
KE: It's pencil marks about half an inch long 
EX: What colour is the wood? 
KE: Dark unfinished wood 
EX: We've got a contrast problem here. At this point I'd go and look at the job + to 
 see if the graphite pencil marks reflect light + sometimes it does, but it 
 depends on the wood + if it does you can select the light to increase the  
 contrast between the fault and the background 
: 
: 
: 
EX: I'd be doing this in three phases: first a general lighting, then specific for 
 surface lighting, and then some directional light [expert then gives technical 
 specifications for these types of light] 
  
This interview gives us an interesting insight into the natural line of enquiry of an 
expert in this domain. Often traditional knowledge-based systems gather the right 
data but the order in which it is gathered and used can be very different from how an 
expert works. This can decrease the acceptability of any implemented system if other 
experts are to use it, and it also has consequences for the intelligibility of any 
explanations the system offers in terms of a retrace of its steps to a solution. 
  
It will be seen that we can once again extract decision rules directly from the 
dialogue: 
 
 IF       fault colour is black 
 AND      object colour is dark 
 THEN     contrast is a problem 
  
The drawbacks to this technique are that the elicitor needs to have constructed 
plausible scenarios and the elicitor has to be able to cope with questions asked of him. 
The experts themselves are sometimes uncomfortable with this technique; this may 
well have to do with the fact that, as with other contrived techniques, it is not a 
natural means of manifesting expertise. Whilst a few scenarios may reveal some of 
the general rules in a domain the elicitation is very case specific. In order to get a 
broad range of knowledge for a sweep of situations many scenarios would need to be 
constructed and used. 
 
An interesting variation on this method is a form of telephone consultancy. Here we 
take two domain experts and place them at opposite ends of a table and ask them to 
imagine that one is a "client" who is ringing up the other, a "consultant", to ask for 
advice concerning a particular problem. They then engage in a conversation in which 
the "consultant" tries to elicit the nature and context of the problem, and finally 
attempts to offer appropriate advice. In this variation of the limited information task 
you can rely on one of the experts to generate interesting cases. In addition, the expert 
"role playing" as the client can provide appropriate responses to the "consultant's" 
enquiries. The only drawback is that sometimes expert's construct extremely difficult 
cases for each other in order to test each other’s mettle! 
 



A Taxonomy of KE Techniques  

We have sampled some of the major approaches to elicitation and where appropriate 
given a detailed description of techniques that are likely to be of use. There are many 
variants on the methods we have described. Below we have provided a taxonomy of 
methods with which we are familiar together with a primary reference for each one. 
 
Non-contrived 
 Interviews 
  Structured 
   Fixed Probe (Shadbolt and Burton, this volume) 
   Focused Interviews (Hart, 1986, Clayton et al 1991) 
   Forward Scenario Simulation (Grover, 1983) 
   Critical Decision Method (Klein et al. 1998) 
  Semi-Structured 
   Knowledge Acquisition Grid (LaFrance, 1987) 
   Teach Back (Johnson & Johnson, 1987) 
  Unstructured (Weis & Kulikowski, 1984) 
 Protocol Analysis 
  Verbal 
   On line (Johnson, Zualkerman and Garber, 1987) 
   Off line (Elstein, Shulman and Sprafka, 1978) 
   Shadowing (Clarke, 1987) 
  Behavioural (Ericsson and Simon, 1984) 
Contrived  
 Conceptual Mapping 
  Sorting and Rating (Gammack, 1987) 
  Repertory Grid (Shaw and Gaines 1987) 
  Pathfinder (Schvaneveldt et al. 1985) 
 Goal Decomposition 
  Laddered Grid (Hinkle, 1965) 
  Limited-Information Task (Grover, 1983, Hoffman, 1987) 

Table 2 A taxonomy of elicitation methods 
 
Having discussed the principle methods of elicitation we should spend a little time 
reflecting on the nature of two other major components of the KE enterprise, namely - 
the experts and the expertise they possess. 

On Experts 
 
Experts come in all shapes and sizes. Ignoring the nature of your expert is another 
potential pitfall in KE. A coarse guide to a typology of experts might make the issues 
clearer. Let us take three categories we shall refer to as academics, practitioners, 
samurai  (in practice experts may embody elements of all three types). Each of these 
types of expert differs along a number of dimensions. These include; the outcome of 
their expert deliberations, the problem solving environment they work in, the state of 
the knowledge they possess (both its internal structure and its external manifestation), 
their status and responsibilities, their source of information, the nature of their 
training. 



  
How are we to tell these different types of expert apart when we encounter them? The 
academic type regards their domain as having a logically organised structure. 
Generalisations over the laws and behaviour of the domain are important to them. 
Theoretical understanding is prized. Part of the function of such experts may be to 
explicate, clarify and teach others. Thus they talk a lot about their domains. They may 
feel an obligation to present a consistent story both for pedagogic and professional 
reasons. Their knowledge is likely to be well structured and accessible. These experts 
may suppose that the outcome of their deliberations should be the correct solution of 
a problem. They believe that the problem can be solved by the appropriate application 
of theory. They may, however, be remote from every day problem solving. 
  
The practitioner class on the other hand are engaged in constant day-to-day problem 
solving in their domain. For them specific problems and events are the reality. Their 
practice may often be implicit and what they desire as an outcome is a decision that 
works within the constraints and resource limitations in which they are working. It 
may be that the generalised theory of the academic is poorly represented in and 
articulated by the practitioner. For the practitioner heuristics may dominate and 
theory is sometimes thin on the ground. 
  
The samurai is a pure performance expert - their only reality is the performance of 
action to secure an optimal performance. Practice is often the only training and 
responses are often automatic. 
  
One can see this sort of division in any complex domain. Consider for example 
medical domains where we have professors of the subject, busy doctors working the 
wards, and medical ancillary staff performing many important but repetitive clinical 
activities. 
  
The knowledge elicitor must be alert to these differences because the various types of 
expert will perform very differently in KE situations. The academic will be concerned 
to demonstrate mastery of the theory. They will devote much effort to characterising 
the scope and limitations of the domain theory. Practitioners, on the other hand, are 
driven by the cases they are solving from day to day.  They have often compiled or 
routinised any declarative descriptions of the theory that supposedly underlies their 
problem solving. The performance samurai will more often than not turn any KE 
interaction into a concrete performance of the task - simply exhibiting their skill. 
  
But there is more to say about the nature of experts and this is rooted in general 
principles of human information processing5. Psychology has demonstrated the 
limitations, biases and prejudices that pervade all human decision-making - expert or 
novice. To illustrate consider the following facts, all potentially crucial to the 
enterprise of KE. 
  
It has been shown repeatedly that the context in which one encodes information is the 
best one for recall. It is possible then, that experts may not have access to the same 
information when in a KE interview, as they do when actually performing the task. So 

                                                
5An excellent review of the psychology of expertise is Chi et al (1988) and a fascinating glimpse into 
the constituents of some aspects of expertise can be found in Ericsson (1996) 



there are good psychological reasons to use techniques that involve observing the 
expert actually solving problems in the context in which they normally work. In short, 
protocol analysis techniques may be necessary, but will not be sufficient for effective 
knowledge elicitation. 
  
Consider now the issue of biases in human cognition. One well-known problem is 
that humans are poor at manipulating uncertain or probabilistic evidence. This may be 
important in KE for those domains that require a representation of uncertainty. 
Consider the rule: 
 
 IF        the engine will not turn over 
 AND      the lights do not come on 
 THEN     the battery is flat with probability X 
 
This seems like a reasonable rule, but what is the value of X, should it be 0.9, 0.95, 
0.79? The value that is finally decided upon could have important consequences for 
the working of any knowledge intensive system, but it is very difficult to decide upon 
it in the first place. Medical diagnosis is a domain full of such probabilistic rules. 
However, even expert physicians cannot accurately assess probability values in their 
own domains of expertise. 
  
In fact there are a number of documented biases in human cognition that lie at the 
heart of this problem (see for example the classic work of Kahneman, Slovic and 
Tversky, 1982). People are known to undervalue prior probabilities, to use the ends 
and middle of the probability scale rather than the full range, and to anchor their 
responses around an initial guess. Cleaves (1987) lists a number of cognitive biases 
likely to be found in knowledge elicitation, and makes suggestions about how to 
avoid them. Faced with these difficulties many knowledge elicitors prefer to avoid the 
use of uncertainty wherever possible. 
  
Cognitive bias is not limited to the manipulation of probability. A series of 
experiments has shown that systematic patterns of error occur across a number of 
apparently simple logical operations. For example, Modus Tollens states that if 'A 
implies B' is true, and 'not B' is true, then 'not A'  must be true. However people, 
whether expert in a domain or not, make errors on this rule. This is in part due to an 
inability to reason with contrapositive statements. Also in part it depends on what A 
and B actually represent.  In other words, they are affected by the content. This means 
that one cannot rely on the veracity of experts' (or indeed anyone's) reasoning. 
  
All this evidence suggests that human reasoning, memory and the representation of 
knowledge is rather more subtle than might be thought at first sight. The knowledge 
engineer should be alert to some of the basic findings emanating from cognitive 
psychology. Whilst no text is perfect as a review of bias in problem solving the book 
by Meyer and Booker (1991) is reasonably comprehensive. 

On Expertise 
 
Clearly the expertise embodied by experts is not of a homogeneous type (Feltovich et 
al., 1997). In constructing any knowledge intensive system it is likely that very 



different types of knowledge will be uncovered which will have very different roles 
in the system. 
  
There are a number of analyses available of the epistemology of expertise. Our 
analysis is based to a large extent on that of CommonKADS (Schreiber et al, 2000). 
  
Firstly, we can distinguish what is called domain level knowledge. This term is being 
used in the narrow sense of knowledge that describes the concepts and elements in the 
domain and relations between them. This sort of knowledge is sometimes called 
declarative, it describes what is known about things in the domain. The propositions 
below can all be seen as domain level knowledge in this sense. 
 

Granite is a coarse grained rock 
Andesite has a high quartz content 

 
Extract 1 Domain Knowledge from an analysis of a laddered grid 

obtained from an expert geologist 
There is also knowledge and expertise that has to do with what we might call the 
inference level. This is knowledge about how the components of expertise are to be 
organised and used in the overall system. It tells us the type of inferences that will be 
made and what role knowledge will play in those inferences. This is quite a high level 
description of expert behaviour and may often be implicit in expert practice. The 
following is a description of knowledge about part of an inference level structure 
called systematic diagnosis. 
 

To perform systematic diagnosis we will have knowledge about a 
complaint, and knowledge about observables from the patient or object. 
We select some aspect of the complaint and using a model of how the 
system should be performing normally we look to see if a particular 
parameter of the system is within normal bounds. 

Extract 2 Analysis of verbal and behavioural protocols obtained 
from an expert in abdominal pain 

Another type of expert knowledge is the task level. This is sometimes called 
procedural knowledge. This is knowledge to do with how goals and sub-goals, tasks 
and sub-tasks should be performed. Thus in a classification task there may exist a 
number of tasks to perform in a particular order so as to utilise the domain level 
knowledge appropriately. This type of knowledge is present in the following extract. 
 

First of all perform a general inspection of the object. Next examine the 
sample with a hand lens. Next use a prepared thin-section and examine 
that under a cross-polarising microscope. 
 

Extract 3 Analysis of a verbal protocol obtained from an expert 
geologist 

Finally, there is a level of expert knowledge referred to as strategic knowledge. This 
is information that monitors and controls the overall problem solving. This can have 
to do with the way resources are used. What to do if the proposed solution fails or is 



found to be inappropriate in some way. What to do when faced with incomplete or 
insufficient data. Such information is contained in the following extract from an 
interview. 
 

If I had time I would always check the disc head alignments. If its a 
BRAND X machine I'd always check that because they are notorious for 
going wrong. 
Extract 4 Part of a structured interview transcript obtained from an 

expert computer technician 
Any field of expertise is likely to contain these various sorts of knowledge to greater 
or lesser extents. At any particular knowledge level the information may be explicit or 
implicit in an experts' behaviour. Thus in some domains the experts may have no real 
notion of the strategic knowledge they are following whilst in others this knowledge 
is very much in the forefront of their deliberations. Also, of course, the requirements 
on any knowledge intensive system about how far it needs to implement these various 
levels will vary. It is almost universally acknowledged that significant reasoning 
about problem domains requires more than just modelling simple relationships 
between concepts in the domains. It may require causal models of how objects 
influence and affect one another, models of the processes in which objects participate. 
This is a hard problem. And often the limitations of implementation technologies first 
means that sophisticated domain models cannot be supported. 
  
This brings us to a final important feature of KE. Since knowledge elicitation is such 
a time consuming and expensive business, not all of whose results can be 
immediately used, there is an increasing interest in developing ways of storing, 
archiving and retrieving knowledge that makes the best use of the elicitation 
investment (Neches et al., 1991). The key to this lies in a change in our way of 
thinking about the content of knowledge-based systems. This has already been 
outlined earlier in this section. It is called the knowledge level view and was 
originally conceived by Alan Newell (1982).  
 
Managing knowledge in this way requires using an expressive and unambiguous 
intermediate representation of the knowledge to be stored. A number of candidates 
exist for this including graphical and language oriented representations – many of 
these draw inspiration from knowledge representation languages developed in AI 
(Young and Gammack, 1987; Rich and Knight, 1991; Sowa, 1999; Norvig and 
Russell, 2003). One of the major deliverables in many projects we have worked on 
has not been any implemented system but a set of knowledge documents that describe 
in a structured way the knowledge in a particular domain. In these cases we use 
CommonKADS as a modelling and representational standard (Schrieber et al, 2000). 
 
CommanKADs embodies the knowledge level thesis put forward by Bill Clancey in 
his classic 1985 paper on heuristic classification. The structure, shown in Figure 2, 
was the result of a rational reconstruction of a number of existing knowledge 
intensive systems. His claim was that the knowledge bases of many systems were for 
the most part undifferentiated. The knowledge bases of these systems had been built 
with little regard as to how the knowledge was used. His analysis uncovered what he 
saw as an important type of problem solving system. Not all systems would contain 



and use knowledge in this way. Not all systems would be examples of heuristic 
classification, but some important ones were. 
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Figure 2 Heuristic Classification 
 
One system which Clancey characterised as heuristic classification was the classic 
MYCIN medical knowledge-based system (Shortliffe, 1979). We shall illustrate his 
approach using MYCIN-like knowledge. Figure 2 is to be understood as a structure at 
what we have termed earlier as the inference level. It tells us what kinds of inferences 
are performed in this domain and the type of knowledge used by these inferences. 
The rectangles should be seen as types of data and the ellipses as types of inferences.  
 
Let us take the left hand side of this structure that contains a process called 
abstraction. This is the process by which observations or data are transformed into 
abstract observations or findings. The process of abstraction can be realised using a 
number of methods. One of these is qualitative abstraction. Examples are shown 
below – in this example we move from quantitative observations to qualitative 
findings.  
 
 if   patient has white blood cell count < 2500  
 then   patient has low white blood cell count 
 
 if   patient has temperature > 101  
 then   patient has fever 
 
What we have provided above is the actual domain level knowledge that plays the 
inference layer role of abstraction. Much of the knowledge in MYCIN's knowledge 
base as to do with this type of knowledge level processing - the process of 
abstraction, moving from a quantitative description of data to a qualitative one. 
 
The top part of Figure 2 involves inferences from findings to abstract solutions. This 
type of inference is called match - and is understood as a type of association 
knowledge. An example of such knowledge might be a rule such as: 
 
 if   patient has fever  
 and  patient has low white blood cell count 
 then   patient has gram negative infection  
 



The concept of gram negative infection might be viewed as a diagnosis or solution 
but it is not a very specific one. What sort of gram negative infection is it? The right 
hand side of the heuristic classification structure deals with inference types that refine 
general to specific solutions. Such knowledge might consist of hierarchical typologies 
containing knowledge such as 
 
   gram negative infection  
 has sub types 
   e. coli infection  
    : 
    : 
To establish a particular infection the system is likely to use knowledge that 
discriminates the sub-types.  
 
Notice that in this account although we have talked about the inference structure from 
left to right no explicit control knowledge has been given. We might have stipulated 
that the system start with patient data and reason forward to a possible solution. We 
might have stated that the system should hypothesise a solution and see if there was 
evidence from the patient's condition to support the hypothesis. Or else a mixture of 
these ways of moving around the structure of Figure 2 might have been adopted. This 
additional knowledge is, of course, the task layer we mentioned earlier. Sometimes 
the standard method of moving around the inference structure is modified. This might 
arise if when a particular disease is suspected then one immediately looks for a 
particular piece of supporting observational data. Such knowledge comprises the 
strategic layer.  
 
What we have described was exemplified via a MYCIN-like example. But heuristic 
classification as a type of problem solving might apply to many domains; financial 
assessment of an individual's credit worthiness, the likelihood of finding a mineral 
resource at a particular location, classifying a particular work place setting as 
conforming to a particular health and safety standard etc.. It is this generality that is 
the power of these knowledge level approaches.  If we know what kind of application 
we are building we can use the models to indicate the type of knowledge we need to 
acquire, how we might structure the knowledge base, how we can archive and index 
knowledge for future use. 
 
These knowledge level models have formed the basis for a number of important 
methodologies that aim to support the knowledge engineering process (Shadbolt and 
O’Hara, 1997). A similar attempt to exploit structured templates can be found in 
modern approaches to designing software – for example the work on Design Patterns 
(Gamma et al., 1995) and Object Oriented Design (Booch, 1993). The principles from 
OOD are ones that can be usefully adopted in any knowledge modelling exercise. In 
particular the concentration on acquiring hierarchical descriptions of a domain in the 
form of class hierarchies of the sort we see in Figure 1. OOD stresses the importance 
of associating with each class the necessary properties to distinguish it from other 
objects. It also holds that the classes should represent the most general levels of 
abstraction consistent with discriminating between objects.  
 
There is a growing need to standardize, share, and exchange knowledge descriptions 
in all application areas and across a wide range of individuals and organizations. For 



example, efforts are underway to build “knowledge-rich” thesauri to define the 
relevant terms in diverse fields such as medicine (Humphreys et al 1998), genetics 
(Gene Ontology Consortium, 2000) and art Petersen, 1994) – but there are also 
attempts to provide such structured resources for general terms in language, for 
example WordNet (Fellbaum, 1998). An organizing principal in these thesauri is the 
subsumption or is-a relation – but there are others such as part-of. Recently, computer 
scientists seeking to promote the exchange of knowledge between machines and 
humans have promoted the use of ontologies. These contain an explicit description of 
the semantics (“meaning”) of the types introduced. Tools and methods are now 
becoming available to support the modeling of ontologies (Noy et al., 2001). The 
construction of ontologies will be an important new application context for 
knowledge elicitation techniques.  

Methodologies and Programmes of KE 
  
We turn next to the question as to how KE techniques should be assembled to form a 
programme of acquisition and when we should use the various techniques. The choice 
may depend on the characteristics of the domain, of the expert, and of the required 
system. Furthermore, it is clear that some techniques are going to be more costly in 
terms of time with the expert, or else the effort required for subsequent analysis of 
transcripts. 
  
There are a number of articles and books available on 'how to do knowledge 
elicitation'. These often contain advice of the most general kind, and emphasise the 
pragmatic considerations of knowledge intensive system development. General 
reviews can be found in Welbank (1983), Hoffman (1987), Kidd (1977), Hart (1986) 
McGraw and Harbison-Briggs (1989), Firlej and Hellens (1991) and Clayton et al 
(1991). While these reviews are based on experience of the general kind, there have 
also been a number of attempts to make formal recommendations. 
 
Knowledge engineers have developed a number of principles that form the basis for 
the techniques and tools used for knowledge acquisition and modeling. Moreover, 
there are a number of assumptions in much of this area that are worth making explicit.  
 
Broad repertoire of techniques: There is much evidence to suggest that different 
techniques can be more or less efficient in the types of knowledge they can elicit 
(Burton et al., 1987; 1988), the so-called differential access hypothesis (Hoffman, 
Shadbolt, Burton & Klein, 1995). Hence, to efficiently acquire the knowledge in a 
domain often requires a range of techniques. 
 
Acquisition as Modelling: Traditionally, knowledge engineering was viewed as a 
process of “extracting” or “mining from the expert’s head” and transporting it in 
computational form to a machine. This has turned out to be a crude and rather naive 
view. Today, knowledge engineering is approached as a modelling activity. A model 
is a purposeful abstraction of some part of reality.  
 
The knowledge-level principle: In knowledge modelling, first concentrate on the 
conceptual structure of knowledge, and leave the programming details for later. Many 
software developers have an understandable tendency to take the computer system as 
the dominant reference point in their analysis and design activities. But there are two 



important reference points: the computational artefact to be built, but most 
importantly, there is the human side. 
 
Knowledge structures: Knowledge has a stable internal structure that is analyzable by 
distinguishing specific knowledge types and roles. It goes without saying that 
knowledge, reasoning, and problem-solving are extremely rich phenomena. 
Knowledge may be complex, but it is not chaotic: knowledge appears to have a rather 
stable internal structure. 
 
Evolutionary Development: A knowledge project must be managed by learning from 
your experiences in a controlled “spiral” way. The development of simple or very 
well-known types of information systems usually proceeds along a fixed management 
route. This is especially clear in the so-called waterfall model of systems 
development. 
 
As we have already noted the most thorough attempt to integrate KE procedure is 
provided by CommonKADS - Knowledge Acquisition and Domain Structuring 
(Schrieber et al 20000 for an overview of CommonKADS; Wielinga et al., 1992 for 
its roots). KADS embodies a number of principles for the elicitation of knowledge 
and construction of a system. These principles are: 
 
1. The knowledge and expertise should be analysed before the design and 
 implementation starts. 
2. The analysis should be model-driven as early as possible. 
3. The content of the model should be expressed at the knowledge level. 
4. The analysis should include the functionality of the prospective system. 
5. The analysis should proceed in an incremental way 
6. New data should be elicited only when previously collected data have been 
 analysed. 
7. Collected data and interpretations should be documented. 
  
Principle 1 is quite straightforward and requires no further explanation. Principle 2 
requires that one should being to bear a model of how the knowledge is structured 
early on in the process, and use it to interpret subsequent data. Principle 3 means that 
one should use an appropriate intermediate level knowledge representation device, 
and try to characterise knowledge in terms of its use and functioning. Principle 4 is a 
reminder that a complete analysis includes an understanding of how the system is to 
work - e.g. who will use it, and in what situation. One cannot gain a full 
understanding of the problem simply by trying to map out an expert's knowledge 
without regard to how it will be used.  Principle 5 emphasises the fact that there is a 
wide variety of related topics within a domain. This means that construction of a 
model should be 'breadth-first', embodying all aspects at once, rather than attempting 
fully to represent one sub-part after another. Principles 6 and 7 are once again 
straightforward. Like many of the best recommendations the utility of these 
statements is most apparent when they are not adhered to. 
  
The identification of an appropriate model for an application becomes an important 
knowledge elicitation exercise when adopting a CommonKADS approach. The 
models themselves can be organised into tree like structures, see Figure 3. A series of 



questions about the domain attempt to establish which node in the tree best 
corresponds to the features of the application (O’Hara et al., 1998). 
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Figure 3 A Taxonomic Hierarchy of Problem Solving Models 

 
Currently the most complete model set is that of CommonKADS (Schreiber, 2000). 
However, these models introduce a new level of complexity in the acquisition process 
and whilst they may by extremely helpful when trying to understand the 
implementation of expertise models whether the adoption of these various 
methodologies makes for more efficient and effective KE is a moot point as these 
claims have not been formally evaluated (Shadbolt et al 1999).  

Automatic Knowledge Acquisition 
 
As KE is acknowledged to be a time consuming and difficult process, the idea of 
automated elicitation is most attractive. A number of programs have been developed 
towards this goal, and we will briefly consider some of them in this penultimate 
section. 
 
Software tools for KE can be split three categories: (1) domain dependent  tools 
which have been developed for specific task domains; (2) domain independent tools 
which are computer implementations of one particular KE technique; and (3) 
integrated systems  for acquisition and elicitation support. 
 
Domain specific tools are tailored to elicit the types of knowledge known to be 
important in a particular application. An early example of this sort of system was 
SALT (Marcus, 1989). This had built in knowledge of the problem solving strategies 
used when configuring electro-mechanical systems. The expert interacts through an 
automated interview which allows the selection by menu of elements in the domain. 
The interview results are automatically converted into rules, and the expert has an 
opportunity to edit the resultant rules. In this task-oriented approach, the complexity 
of the knowledge acquisition process is reduced through the use of a model of the 
required knowledge as a template for customising otherwise general KA techniques 



and tools. Similar approaches can be found in medical domains such as therapy and 
treatment planning (Tu et al. 1995). These systems are by definition restricted to 
particular tasks and domains. Moreover, most of these domain oriented tools have 
remained research prototypes. 
 
The second approach to automation of the KA process is to focus on one particular 
technique and support its use. Of those systems which implement individual standard 
techniques, many of the most successful are based on the repertory grid. This 
technique has its roots in the psychology of personality (Kelly, 1955; Jankowitz 
2003) and is designed to reveal a conceptual map of a domain, in a similar fashion to 
the card sort as discussed above. The work of Shaw and Gaines was particularly 
influential in promoting its use (Shaw and Gaines, 1987). The technique as developed 
in the 50's was very time-consuming to administer and analyse by hand. This 
naturally suggested that an implemented version would be useful. 
 
One of the earliest and best known programs was ETS (Boose, 1985) although this 
was developed primarily as a research tool. KSSO (Gaines, 1989; 1990) which we 
illustrate below formed the basis for a number of commercial products. More recently 
a web enabled freely accessible version of the software has become available (Gaines 
and Shaw 1997, http://tiger.cpsc.ucalgary.ca:1500/WebGrid/WebGrid.html ) that 
provides an excellent means of experimenting with the approach and indeed 
undertaking machine supported elicitation sessions.  
 
Briefly, subjects are presented with a range of domain elements and asked to choose 
three, such that two are similar, and different from the third. Suppose we were trying 
to uncover an astronomer's understanding of the planets. We might present him with a 
set of planets, and he might choose mercury and venus as the two similar elements, 
and jupiter as different from the other two. The subject is then asked for their reason 
for differentiating these elements, and this dimension is known as a construct. In our 
example 'size' would be a suitable construct. The remaining domain elements are then 
rated on this construct.   
 
This process continues with different triads of elements until the expert can think of 
no further discriminating constructs. The result is a matrix of similarity ratings, 
relating elements and constructs. This is analysed using a statistical technique called  
cluster analysis.  In KE, as in clinical psychology, the technique can reveal clusters of 
concepts and elements which the expert may not have articulated in an interview.   
  
The automated versions are run in such a way that the repertory  grid is built-up 
interactively, and the expert is shown the resultant knowledge. Experts have the 
opportunity to refine this knowledge during the elicitation process. In Figure 4 we can 
see that the expert has so far generated seven constructs along which the planets vary. 
In this case a seven point rating scale has been used and in the case of the construct 
size the smallest planet, mercury, has been given a rating 1 and the largest, jupiter, a 
rating of 7. The other planets have been rated in a comparative manner along the size 
construct6 . The analysis has already revealed clusters of both constructs and 
elements. Thus jupiter and saturn are clustered together at around 82% similarity, 
                                                
6In Figure 4 shading in the matrix is also used highlight ratings. Heavy shading designates a high value  
for an element on a construct. 



neptune and uranus at around 88%, and these two pairs are clustered at around 80%. 
An astronomer might well observe that this group of four planets constitute the gas 
giants. A new concept has been uncovered. Similarly, constructs can be clustered. We 
see that the constructs relating to temperature and distance from the sun are clustered. 
Such associations can reveal causal or other law-like relations in the domain.  
 

 
 
 

Figure 4 Knowledge elicited using WebGrid-III 
 
We are also able to draw inferences from these structures in terms of implications 
between the constructs and elements. Examples of the sorts of implications we can 
draw are shown below  
 
high density -> hot (3) 
low density -> cold (5) 
 
Overall Evaluation 
  Correct 8/8  100.00% 
 
fast orbital velocity -> high density (4) 
slow orbital velocity -> low density (5) 
 
Overall Evaluation 
  Correct 9/9  100.00% 
 
high density -> near to sun (4) 
low density -> far from sun (5) 
 



Overall Evaluation 
  Correct 9/9  100.00% 
 
big -> ringed (2 E1) 
small -> non ringed (5) 
 
Overall Evaluation 
  Correct 7/8  87.50%   Errors  +:1  -:0  Total Errors 1/8  12.50% 
 
 

Variants on this technique allow you to run sociograms so that one can compare one 
individual’s view of a domain with another’s – highlighting areas of consensus and 
difference. These systems can be found a place in any programme of elicitation. 
 
Another widely used machine supported method is concept mapping. The maps were 
developed by Joseph D. Novak in educational contexts to help students express and 
share their knowledge. In this technique the expert and knowledge elicitor construct a 
graphical network of nodes and relations representing knowledge about a domain. A 
concept map is a two-dimensional representation of a set of concepts and their 
relationships, shown as concept names connected by directed arcs encoding 
propositions in the form of simplified sentences.  
 
A number of computer supported versions of this tool have been developed but one of 
the most accessible can be obtained from the Institute for Human Machine Cognition 
(Cañas et al, 1999) at the following URL http://cmap.ihmc.us . In a browser, 
concept-map links can lead to diagrams, digital video, text, and arbitrary remote 
resources. Using these tools, domain experts can easily construct, navigate, share, 
criticize, and collaboratively refine knowledge models. 
 
A related technology allows one to elicit and construct graphical networks that 
represent the rationale behind actions and decisions (Selvin and Buckingham Shum, 
2000).  Research has also been carried out trying to understand how to build KA tools 
for domains in which graphical representations are the most important (Cheng et al., 
2001). 
 
Although programs continue to be written to support single KA techniques there is an 
increasing trend towards the third type of approach mentioned at the beginning of this 
section. This approach is to integrate several KA tools. The idea is that the whole is 
greater than the parts (Shadbolt et al, 1993; Motta et al., 1993). One such system, 
PCPACK (Schreiber et al, 2000 Chapter 8includes protocol editing (enabling text and 
documents to be annotated and analysed), concept and process laddering, card sorts 
and various other rapid knowledge formation methods. The results of elicitation are 
stored in a persistent object-oriented database. All the tools are able to access this 
database providing a means of transferring knowledge between the various tools. The 
entire package is interfaced through an intuitive direct manipulation interface. A 
flexible web publication hypertext system is able to annotate objects in the database 
together with concise documentation and tutorial material. A demonstration version 
of PC PACK can be downloaded from www.epistemics.co.uk and evaluated. More 
recent versions have begun to incorporate templates and problem solving models that 
guide the user through the elicitation of process so as to populate a knowledge 
repository.  
 



I have not included individual or collections of tools that originate from the 
disciplines of data mining (Witten and Frank, 1999) and machine learning (Mitchell, 
1997). Such a discussion is beyond the scope of this chapter and as such they are not 
techniques that are used in sustained face to face knowledge acquisition sessions with 
experts. However, good references to the state of the are contained in the references 
given above. 

Expertise and the Web 
 
The most significant difference between the world of knowledge we now inhabit as 
against that of a decade ago is the extraordinary rise of the importance of the internet. 
Any figures provided become rapidly out of date but as of 2002 estimates are that the 
indexed web – the web the search engines can get at – comprises some 10 billion 
indexed pages and this is dwarfed by the so-called deep web. This deep web consists 
of huge numbers of databases, innumerable excel spreadsheets, a deluge of other 
content that is potentially available as an information resource but is as yet either not 
included or fully indexed. 
 
What is undeniable is that this provides access to a huge potential resource for the 
construction of any prospective knowledge intensive system. Recently systems have 
been built with significant recourse to knowledge on the web. The MIAKT project 
(Hu et al,. 2003) has used information from the web to help build an ontology for the 
domain of breast disease. It has also located on the web an extensive library of images 
that are indexed with a range of information about patients and symptoms. Similarly 
if one takes the domain used throughout this chapter – classification of rocks and 
minerals – there are substantial online resources. These range from dictionaries and 
definitions of terms, succinct summaries of the process of rock formation, compact 
representations of diagnostic heuristics, and extensive online databases. 
 
The ability to search out content of this sort offers a new and powerful way to build 
initial knowledge structures. However, one should be aware of the very considerable 
problems that attach to this sort of content. These include issues of provenance, 
context and interpretation. 
 
When we locate an apparently relevant piece of content on the web how are we to 
judge its provenance? Who asserted the content, how long ago, what sources did the 
author use, what qualifications are associated with the content? At the moment very 
little if any of this information is associated as meta-data with the content we are 
interested. In the absence of such information one tends to resort to the tried and 
trusted notion of looking at the brand associated with the content. One is likely to take 
the content hosted on an IEEE standards web site or a Governmental Medical agency 
on trust rather more than that offered in more informal networks. However, it is now 
apparent that individuals and organisations will go to real lengths to appear to be the 
trusted sites of reputable organisations when in fact they are seeking to misinform. 
This whole issue of trusting digital content is attracting considerable interest and 
attention.  
  
A more general problem is that of context – we may be able to download significant 
amounts of content but how are we to recognise the context in which it is appropriate 
to apply that knowledge. Human experts are extremely sensitive to the conditions 



under which knowledge should be applied. They are also often very aware of the 
context in which a piece of knowledge should not be applied or else relied upon. A 
third problem is one that to solve would require a general solution to providing 
machines with a full understanding of the meaning of language. Take quite 
straightforward scientific knowledge such as the following taken from two web sites 
dealing with Kepler’s Laws of planetary motion. Consider the differences and ask 
how it is that we see them as essentially the same. We as humans seldom notice 
because we are so adept at understand the equivalences between statement, the 
nuances of different phrases, and the conditions under which more or less precise 
statement are required. 
 
1 The orbit of a planet/comet 

about the Sun is an ellipse 
with the Sun’s centre of mass 
at one focus 
 

Planets move in orbits that are 
ellipses 
 

2 A line joining a planet/comet and 
the Sun sweeps out equal areas in 
equal intervals of time 

The planets move such that the line 
between the Sun and the Planet 
sweeps out the same area in the same 
time no matter where in the orbit 
 

3 The squares of the periods of the 
planets are proportional to the 
cubes of their semimajor axes 

The square of the period of the orbit 
of a planet is proportional to the 
mean distance from the Sun cubed 
 

 
There is no doubt that the web as an extended knowledge repository is set to figure 
even larger in years to come. This is precisely the aim of research underway in 
bringing about the so-called Semantic Web (Berners-Lee, 2001). The aim is to build 
content that is much more richly described and enriched with information about the 
content itself – its provenance, its context of acquisition and so on. This attempt to 
bring about a range of knowledge services that can populate the web with such 
content and then exploit it in a number of ways is the focus of current research for 
one of the authors (www.aktors.org). 
 
With a new generation of knowledge technologies, with techniques from data mining 
and machine learning we can expect to see larger amounts of knowledge intensive 
processing driven by knowledge that has been acquired in an automatic or 
semi-automatic fashion (Crow and Shadbolt, 2001). These topics go well beyond the 
scope of this chapter but they will set the agenda for research in knowledge intensive 
systems for the next decade and beyond. 

Conclusions 
 
Notwithstanding the developments alluded to in the last section it is folly to imagine 
that face to face knowledge elicitation, one human with another, will cease to be 
important and necessary. In fact it is essential for all of the reasons outlined above – 
to know the provenance of the content, to understand the conditions under which it is 
to be applied, to know how to interpret a problem solving context. Human experts are 
able to demonstrate a mastery of when, where and how their knowledge applies and 



more particularly when, where and why it might not. Human experts have 
accumulated their expertise over thousands of hours. This experience enables them to 
recognise situations and contexts that fall inside and outside of their competence. It 
enables them to make subtle judgements about the quality of the information they are 
presented with and the decisions they make. The fact that expertise and knowledge is 
ultimately grounded in human practice means that we need to understand the methods 
and techniques, problems and opportunities afforded by knowledge elicitation. 
 
The problem of knowledge elicitation remains a subtle and complex one. This chapter 
has described some of the methods and techniques that are used in this enterprise. We 
have also sought to provide an indication of the difficulties inherent in doing this kind 
of work. Knowledge elicitation is itself a form of complex expertise. Experienced 
knowledge engineers come to recognise the characteristics of expert thinking. They 
develop skills that allow them to capture an expert's knowledge despite the many 
obstacles they face. Recently, methodologies have begun to emerge that seek to 
structure and manage the acquisition process. 
 
As knowledge intensive systems become more widely deployed more people will 
face the challenges of knowledge elicitation. Whether it is in the form of a corporate 
intranet or a clinical decision support system knowledge is still the power driving 
these applications. Knowledge elicitation remains an important area of research and 
practical application.  
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