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Abstract. Differential repetitive processes are a distinct class of continuous-
discrete 2D linear systems of both systems theoretic and applications interest.
The feature which makes them distinct from other classes of such systems is
the fact that information propagation in one of the two independent directions
only occurs over a finite interval. Applications areas include iterative learning
control and iterative solution algorithms for classes of dynamic nonlinear op-
timal control problems based on the maximum principle, and the modelling of
numerous industrial processes such as metal rolling, and long-wall cutting etc.
The new results in is paper solve a general optimal problem in the presence
of non-stationary dynamics.
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1. Introduction

The unique characteristic of a repetitive (termed multipass processes in the early
literature) process can be illustrated by considering machining operations where
the material or workpiece involved is processed by a sequence of sweeps, termed
passes, of the processing tool. On each pass an output, termed the pass profile,
is produced which acts as a forcing function on, and hence contributes to, the
dynamics of the next pass profile. This, in turn, leads to the unique control prob-
lem for these in that the output sequence of pass profiles generated can contain
oscillations that increase in amplitude in the pass-to-pass direction.

To introduce a formal definition, let α < +∞ denote the pass length (assumed
constant). Then in a repetitive process the pass profile yk(t), 0 ≤ t ≤ α, generated
on pass k acts as a forcing function on, and hence contributes to, the dynamics of
the next pass profile yk+1(t), 0 ≤ t ≤ α, k ≥ 0. The source of the unique control
problem then appears (if at all) in the output sequence generated in the form of
the collection of pass profile vectors {yk}k.
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Physical examples of repetitive processes include long-wall coal cutting and
metal rolling operations [4, 12]. Also in recent years applications have arisen where
adopting a repetitive process setting for analysis has distinct advantages over alter-
natives. Examples of these so-called algorithmic applications of repetitive processes
include classes of iterative learning control schemes [7] and iterative algorithms for
solving nonlinear dynamic optimal control problems based on the maximum prin-
ciple [11].

Attempts to control these processes using standard (or 1D) systems the-
ory/algorithms fail (except in a few very restrictive special cases) precisely because
such an approach ignores their inherent 2D systems structure, i.e., that informa-
tion propagation occurs from pass-to-pass (k direction) and along a given pass (t
direction) and also that the initial conditions are reset before the start of each new
pass. Moreover, these initial conditions can be an explicit function of the previous
pass profile and this is a non-trivial added complexity.

In seeking a rigorous foundation on which to develop a control theory for
these processes, it is natural to attempt to exploit structural links which exist
between, in particular, the class of so-called discrete linear repetitive processes
and 2D discrete linear systems described by the extensively studied Roesser or
Fornasini Marchesini state-space models (see the original references cited in, for
example, [12]). Here again difficulties can arise due to, for example, resetting before
the start of each new pass to initial conditions which are an explicit function of
the previous pass profile which has no counterpart in these 2D linear systems.
Moreover, in so-called differential repetitive processes, the information propagation
in the along the pass direction (t) is governed by a matrix differential equation and
that in the pass-to-pass (k) by a difference equation. It is this class of processes
which is considered here and hence 2D discrete linear systems theory cannot be
applied.

A stability theory [12] for linear repetitive processes has been developed based
on an abstract model in a Banach space setting which includes a wide range of such
processes as special cases. In terms of their dynamics it is the pass-to-pass coupling
(noting again the unique control problem for them) which is critical. This is of the
form yk+1 = Lαyk, where yk ∈ Eα (Eα a Banach space with norm || · ||) and Lα is
a bounded linear operator mapping Eα into itself. Two concepts of stability can
be defined but in general it is the stronger of these, so-called stability along the
pass which is required. This holds if, and only if there exist numbers M∞ > 0
and λ∞ ∈ (0, 1) independent of α such that ||Lk

α|| ≤ M∞λk∞, k ≥ 0 (where || · ||
also denotes the induced operator norm) and can be interpreted as bounded-input
bounded-output stability independent of the pass length.

This paper continues the development of a systems theory for differential
repetitive processes using an optimal control approach and allows for one class of
nonlinearity in the process model as opposed to all the work to-date . In particular,
it is well known that the separation theorem, see e.g. [5] for convex sets is a useful
method for studying a wide area of optimization problems and here we apply this
method to establish optimality conditions in the form of the maximum principle
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for a differential non-stationary (in the along the pass direction) repetitive process
with linear state dynamics and an additive nonlinear term to account for bounds
on the available control input signal due, for example, to limited available control
action. As motivation for this work, we next give a brief description of an optimal
control problem in iterative learning control analysis and design.

2. A Motivating Physical Problem Area

Iterative learning control (ILC) is a technique for controlling systems which are
required to continually repeat the same operation with the requirement that a
reference trajectory defined over a finite interval is followed to a high precision. In
particular, the system completes a pass (also known as a trial in some literature),
is then reset, the next pass is completed and so on. The basic idea of ILC is to use
information from previous executions of the task in order to improve performance
from pass-to-pass in the sense that the tracking error is sequentially reduced. It is
clear therefore that ILC can easily be formulated as a repetitive process and the
stability theory for them can be used to explain why an incorrectly designed ILC
scheme can result in non-convergent behavior which manifests itself as oscillations
that increase in amplitude from pass-to-pass.

Since the original work in the mid 1980’s, [2] the general area of ILC has
been the subject of considerable research in terms of the underlying theory (with
experimental verification in some cases). Commonly used ILC algorithms construct
the input to the plant or process from the input used on the last pass plus an
additive increment which is typically a function of the past values of the measured
output error, i.e., the difference between the achieved output on the current pass
and the desired plant output. Suppose that uk(t) denotes the input to the plant
on pass k which is of duration α, i.e., 0 ≤ t ≤ α < ∞. Suppose also that ek(t) =
r(t) − yk(t) denotes the current pass error. Then the objective of constructing
a sequence of input functions such that the performance achieved is gradually
improving with each successive pass can be refined to a convergence condition on
the input and error, i.e.,

lim
k→∞

||ek|| = 0, lim
k→∞

||uk − u∞|| = 0,

where || · || is a signal norm in a suitably chosen function space with a norm-based
topology and u∞ is termed the learned control.

A large number of design algorithms have been developed for this general
area, some of which have also been experimentally tested. Of these, a good number
are based on minimization of a cost function. Given the tracking nature of this
general problem in the pass-to-pass direction, it is clearly necessary to penalize
control action to prevent a ‘large’ error resulting in the demand for an unacceptably
high control input on the next pass in an attempt to minimize the error. One
class of such algorithms is termed norm-optimal (with an extension to so-called
predictive norm-optimal which is not relevant here). Here, see [13] (and the relevant
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cited references) for full details, on completion of pass k, the control input for pass
k + 1 is computed as the solution of the minimum norm optimization problem

uk+1 = arg min
uk+1

{Jk+1(uk+1) : ek+1 = r − yk+1, yk+1 = Guk+1},

where the performance index, or optimality criterion, used is defined to be

Jk+1(uk+1) = ‖ek+1‖2
Y + ‖uk+1 − uk‖2

U

where Y is a real Hilbert space of output or pass profile signals (yk) and U is a real
(and possibly distinct) Hilbert space of input signals (uk). Here the initial control
u0 ∈ U can be arbitrary in theory but, in practice, will be a good first guess at the
solution of the problem. This problem can be interpreted as the determination of
the control input on pass k + 1 with the properties that: (i) the tracking error is
reduced in an optimal way; and (ii) this new control input does not deviate too
much from the control input used on pass k. The relative weighting of these two
objectives can be absorbed into the definitions of the norms in Y and U .

Suppose now that the plant dynamics are described by the following matrix
differential equation

dxk(t)
dt

= Axk(t) +Dxk−1(t) + buk(t), 0 ≤ t ≤ α, k ≥ 0 (2.1)

where on pass k, xk(t) is the n × 1 state (equal to the pass profile or output)
vector, uk(t) is the scalar control input, A,D are constant n × n matrices and b
is a given n× 1 vector. (This model is chosen for simplicity of presentation and is
easily extended to the case when the pass profile vector is a linear combination of
the current pass state, input and previous pass profile vectors).

Then it is straightforward to show that the above formulation includes the
choice of a linear quadratic cost function as a special case but the solution has
to be modified slightly to guarantee that the resulting Riccati equation based
solution is causal in the sense that it does not, as the dynamics evolve, require
use of information which is not yet available — again see [13] for the details here.
Algorithms resulting from this approach have been experimentally tested on a
chain conveyor system with, on the whole, very encouraging results [1]. However,
in some cases it was observed that the computed control input (a scalar variable in
this application) was still above the safe operating range of the actuator device and
the experiment had to be stopped to prevent damage. Also there was a tendency
for the output at the end of each pass to ‘dip down’ in value.

The optimnal control problem here is the simplest which is physically realis-
tic, i.e., lead in the end to design algorithms which can be implemented on physical
plant. Clearly, however, there will be cases where the assumptions implicit in the
description given here will not be adequate to produce relevant designs. For exam-
ple, in some areas time varying plant dynamics are encountered and are such that
approximation to time invariant may not be possible. Also the initial conditions
may not be reset to exactly the same values before the start of each new trial.
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There is a clear need, therefore, to develop a more general optimal control the-
ory for repetitive processes which may then enable the removal of some of these
difficulties.

3. Problem Formulation

In practice a repetitive process will only ever complete a finite number of passes,
say N, and also the dynamics along each pass will, in general, be time-varying and
hence, on the assumption of linear dynamics, we will describe the dynamics along
each pass by a system of linear differential equations with variable coefficients.
Introduce the set T = [0, α] of values of the continuous independent variable t
over the pass length α <∞ and K = {1, 2, . . . , N}, N <∞, as the integer values
of the pass index k. Also introduce the control and state vectors as uk(t) ∈ R

r

and xk(t) ∈ R
n respectively. Then the non-stationary repetitive process model

considered in this paper has the form
dxk(t)
dt

= A(t)xk(t) +D(t)xk−1(t) + bk(uk(t), t), k ∈ K, t ∈ T (3.1)

where the entries in the n × n matrix functions A(t) and D(t) are measurable
and integrable on T and b : K × U × T → R

n is continuous with respect to
(u, t) ∈ U×T for each fixed k ∈ K, where U is a given compact subset of R

n. Here
the nonlinear term bk(uk(t), t) is included to represent the possibility of non-ideal
control actuation due, for example, to the need to impose hard limits to prevent
damage to the actual hardware used to implement the control action.

To complete the process description it is necessary to specify the boundary
conditions, i.e., the state initial vector on each pass and the initial pass profile
(i.e., on pass 0). The simplest form of these is xk(0) = dk, k ≥ 1, and x0(t) = β(t)
where the n× 1 vector dk has known constant entries and the entries in the n× 1
vector β(t) are known functions of t ∈ T. In some cases, however, it is required
to consider a state initial vector sequence whose entries are explicit functions of
points along the previous pass profile. One possible choice is

xk(0) = dk +
N∑

j=1

Jjxk−1(tj) (3.2)

where 0 ≤ t1 < t2 < · · · < tN ≤ α, are N sample points along the previous pass,
and Jj , 1 ≤ j ≤ N, is an n ×m matrix with constant entries. These have been
used elsewhere [10] (in the case of stationary along the pass dynamics) to show
that stability (and hence control) of these processes is critically dependent on the
structure of this sequence. In this paper, we write the boundary conditions as

xk(0) = d(k), k ≥ 0, x0(t) = β(k) (3.3)

where this last n × 1 vector has, for fixed k, known entries. Note also that this
model is easily extended to the case when it is only a linear combination of xk+1(t)
which is observed, this simply adds a discrete updating (in k) equation to the model
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structure. Note also that it is this form of pass state initial vector sequence which
arises in the application area of which [11] is one outcome.

Now we define the class of available and admissible input signals for the above
model.

Definition 3.1. We say that the function u : K ×T → R
r is available for (3.1) if it

is measurable with respect to t for each fixed k ∈ K, and satisfies the constraint
uk(t) ∈ U , k ∈ K, for almost all t ∈ T , where U is a given compact set from R

r.
Also the function x : K×T → R

n is a solution of (3.1) corresponding to the given
available control uk(t) if it is absolutely continuous with respect to t ∈ T for each
fixed k ∈ K and satisfies (3.1) for almost all t ∈ T and each k ∈ K.

We denote the set of available controls by U(·) and use Mi, Mi ⊂ R
n, i =

1, 2, . . . , l to denote given compact convex sets.

Definition 3.2. The available control uk(t) is said to be admissible for the process
(3.1) if the corresponding solution xk(t) = xk(t, α, β, u) of (3.1) and (3.3) satisfies

xN (τi) ∈Mi, i = 1, 2, . . . , l (3.4)

where 0 = τ0 < τ1 < τ2 < · · · < τl = α are specified elements of T .

The optimal control problem considered in this paper can now be stated as:

Minimize a cost function of the form

J(u) = ϕ(xN (τ1), xN (τ2), . . . , xN (τl)) (3.5)

for processes described by (3.1) and (3.3) in the class of admissible controls uk(t) ∈
U(·) where the function ϕ : R

nl → R is assumed to be convex.

It is easy to see that these conditions guarantee the existence and uniqueness
of an absolutely continuous solution of (3.1) and(3.3) for any available control
uk(t). To guarantee the existence of an optimal control, we assume that the set of
admissible controls is non-empty.

At this stage, it is possible to give some motivation for considering a cost
function of this form by reference to the general area of iterative learning control.
This is a technique for controlling systems operating in a repetitive (or pass-to-
pass) mode with the requirement that a reference trajectory r(t) defined over
a finite interval 0 ≤ t ≤ T is followed to a high precision. Examples of such
systems include robotic manipulators that are required to repeat a given task to
high precision, chemical batch processes or, more generally, the class of tracking
systems. Motivated by human learning, the basic idea is to use information from
previous executions of the task in order to improve performance from pass-to-pass
in the sense that the tracking error is sequentially reduced. The objective of such
schemes is to use their repetitive process structure (i.e., information propagation
from pass-to-pass and along a pass) to progressively improve the accuracy with
which the core operation under consideration is performed, by updating the control
input progressively from pass-to-pass.
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In application, such an iterative learning controller will only ever complete
a finite number of passes, say N, and one way to approach control law design is
on the basis of minimizing a suitably constructed cost function. The cost function
of (3.5) is an abstraction of this approach. Next we develop some results necessary
for the main section of this paper.

4. Reachability Set and its Properties

To solve (3.1) and (3.3) we introduce Φ(τ, t) as the n × n matrix function which
solves the following differential equation

dΦ(τ, t)
dτ

= A(τ)Φ(τ, t), Φ(t, t) = In (4.1)

where In denotes the n×n identity matrix. Also it well known, see, for example, [6]
that the entries in the matrix Φ(τ, t) are absolutely continuous functions defined on
the set T×T . Therefore, there exists a constant 0 < C <∞ such that ‖Φ(τ, t)‖ ≤ C
for any (τ, t) ∈ T × T, where ‖ · ‖ denotes any matrix norm.

We use Hp(0, α), where p > 0 is an integer, to denote the set of all functions
f : (0, α) → R

n, which are absolutely continuous on each closed sub-interval [α, β]
from the interval (0, α1) and have almost everywhere integrable derivatives of order
up to p on (0, α). Also it can be shown that Hp(0, α) is a Banach space with the

norm ‖f‖H =
p∑

i=0

‖f (i)‖L1 and the following inclusions Hp(0, α) ⊂ Cp(0, α) ⊂
L1(0, α) hold, where Cp(0, α) denotes the space of n × 1 vector functions which
are continuously differentiable on (0, α) up to order p, and L1(0, α) the space of
n× 1 vector valued functions which are integrable on (0, α).

Now define the mapping P : L1(0, α) → H1(0, α) as

(Pf)(τ) =

τ∫

0

Φ(τ, t)D(t)f(t)dt, τ ∈ (0, α) (4.2)

and its power composition Pk : Hk−1(0, α) → Hk(0, α) as

(Pkf)(τ) = P(Pk−1f)(τ), τ ∈ (0, α)

Also define the mapping Q : L1(0, α) → H1(0, α) by

(Qf)(τ) =

τ∫

0

Φ(τ, t)f(t)dt, τ ∈ (0, α). (4.3)
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For the given available control u ∈ U(·) the corresponding solution of (3.1)
and (3.3) at t = τj on pass k = N can now be written in the form

xN (τj) = Φ(τj , 0)d(N) +
N−1∑

i=1

(P iΦ(·, 0))(τj)d(N − i) + (PNβ)(τj)

+
N−1∑

i=1

(P iQbN−i(uN−i, τj) +

τj∫

0

Φ(τj , t)bN (uN (t), t)dt, N > 1

j = 1, 2, . . . , l (4.4)

where Φ(·, τ) denotes the function Φ(t, τ) in the case when the first variable
ranges over t ∈ T with second variable fixed at τ ∈ T . Next, introduce c =
(c1, c2, . . . , cl)T ∈ R

nl, where

cj = Φ(τj , 0)d(N) +
N−1∑

i=1

(P iΦ(·, 0))(τj)d(N − i) + (PNβ)(τj), j = 1, 2, . . . , l (4.5)

and the mapping S : U(·) → R
nl as Su = (S1u, S2u, . . . , Slu)T where

Sju =
N−1∑

i=1

(P iQbN−i(uN−i(τj)) +

τj∫

0

Φ(τj , t)bN(uN (t), t)dt, j = 1, 2, . . . , l. (4.6)

We will also require the solution of the following problem, which we term
Problem A here:

Find necessary and sufficient conditions for

z = c+ Su (4.7)

to hold subject to

z ∈M, ϕ(z) ≤ δ, z ∈ R
nl, u ∈ U(·) (4.8)

where M = M1 ×M2 × . . .×Ml ⊂ R
nl, and δ is a fixed number from R.

To solve this problem, first introduce the following sets

R =
{
z ∈ R

nl, z = c+ Su, u ∈ U(·)}

K(δ) =
{
z ∈ R

nl, z ∈M, ϕ(z) ≤ δ
}
.

Then it is easy to see that the necessary and sufficient condition for this problem
to have a solution is R∩K(δ) 	= ∅. Next, we establish the analytical form of this
geometric criteria which is based on the separation theorem for convex sets.

Consider first the problem of obtaining the required properties of the sets R
and K(δ). Then the main technical difficulties here are related to requirement to
show that the set R is convex and closed in order to be able to apply the separation
theorem. Here we complete these tasks by extending known results for 1D systems
(see, for example, [3]) to the repetitive process case.
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Let f : U × T → R
n be a continuous function and introduce the set

Z =




z = (z1, . . . , zl) ∈ R
nl : zj =

τj∫

0

f(v(t), t)dt, v ∈ V (·), j = 1, 2, . . . , l






(4.9)
where τj are given points such that 0 < τ1 < τ2 < . . . < τl = α, and V (·) is the
set of all measurable functions v : T → R

r such that v(t) ∈ U for almost all t ∈ T .
Then the response formulas (4.4) and (4.6) show that the required properties of
the set R can be established by studying analogous properties for the set Z.

Now we have the following results.

Lemma 4.1. Let f : U×T → R
n be a continuous function. Then for any measurable

function v(·) ∈ V (·) and for a given number ε > 0 ∃ a partition of the interval T
by points 0 = s0 < s1 < . . . < sm = α such that

m−1∑

j=0

sj+1∫

sj

‖f(v(t), τj) − f(v(t), sj)‖dt < ε (4.10)

holds for any τj satisfying sj ≤ τj ≤ sj+1, j = 0, . . . ,m.

Proof. This is based on the so-called C-property of measurable functions [9] and,
in fact, follows immediately on some routine modifications to that for continuous
functions given in [5]. Hence the details are omitted here. �

Lemma 4.2. Let f : U × T → R
n be a continuous function. Then the closure Z of

the set Z of (4.9) is convex.

Proof. Using Lemma 4.1 this reduces to a slight modification of the results in
[3, 5], and hence the details are again omitted here. �

Remark 4.3. Convexity of Z is guaranteed by the presence of the integral terms in
Z. This fact, known as hidden convexity, is an important property of continuous
time control systems which follows, in general, from the Lyapunov theorem on the
convexity of the range of an integral operator acting on vector measures. This result
is often used, see, for example, [3, 8], to prove the convexity of the reachability set
for control systems which are linear in the state variables.

Equations (4.4) and (4.6) state that each integral expression in R contains an
available control with a fixed single value of the discrete variable and, therefore, is
independent of the others. Hence, to prove that R is a closed set it is sufficient to
show that a set formed by controls with some fixed value of the discrete variable
k, k = 1, . . . , N is closed. The simplest case is often to consider k = N and then
the set to be studied has the following form

RN =
{
z ∈ R

nl : zj = aj + Ljv, v(·) ∈ V (·), j = 1, 2, . . . , l
}
. (4.11)
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Here aj = Φ(τj , 0)d(N), and the mappings Lj defined on the set V (·) are given by

Ljv =

τj∫

0

Φ(τj , t)g(v(t), t)dt

(where g(v(t), t) is the function bN (vN (t), t), t ∈ T ).

Lemma 4.4. The set RN defined by (4.11) is closed.

Proof. Suppose that the vector sequence {zn} = {(zn
1 , . . . , z

n
l )T } ∈ RN converges

to a point z∗ = (z∗1 , . . . , z
∗
l )T ∈ R

nl. Then there exists a sequence {vn(·)} of
functions from V (·) such that zn

j = aj + Ljv
n, j = 1, . . . , l and we now show that

there exists a function v∗(t), t ∈ T from V (·) such that z∗j = cj +Ljv
∗, j = 1, . . . , l.

Consider the set R(dN , 0) = {y ∈ R
n : y = a1 + L1v, v ∈ V (·)}. Then it is

easy to see that R(dN , 0) is the reachability set at t = τ1 for the following system

ẏ(t) = A(t)y(t) + g(v(t), t), y(0) = d(N) v ∈ V (·), t ∈ T. (4.12)

Also it is well known, see, for example, [8], that R(dN , 0) is a closed set. Hence,
for the sequence {zn

1 } → z∗1 , n → ∞, zn
1 ∈ R(dN , 0), n = 1, 2, . . . there exists

a function v1 ∈ V (·) such that z∗1 = a1 + L1v
1. Now introduce the sequence

z̃n
2 = ã2 + L̃2v

n, where ã2 = Φ(τ2, τ1)z∗1 and L̃2v
n =

τ2∫
τ1

Φ(τ2, t)g(vn(t), t))dt, i.e.,

z̃n
2 is the solution of the system (4.12) corresponding to the function vn(t) and

initial condition y(τ1) = z∗1 , where z̃n
2 and vn(t) are restricted to the interval

[τ1, τ2]. We show next that z̃n
2 → z∗2 .

It is known [6] that the fundamental matrix Φ(τ, t) satisfies Φ(τ, s)Φ(s, t) =
Φ(τ, t), 0 ≤ τ < s < t ≤ t∗, and the Cauchy response formula now yields

zn
2 = Φ(τ2, 0)d(N) +

τ2∫

0

Φ(τ2, t)g(vn(t), t)dt

= Φ(τ2, τ1)
[
Φ(τ1, 0)d(N) +

τ1∫

0

Φ(τ1, t)g(vn(t), t)dt
]

+

τ2∫

τ1

Φ(τ2, t)g(vn(t), t)dt = Φ(τ2, τ1)zn
1 +

τ2∫

τ1

Φ(τ2, t)g(vn(t), t)dt.

Then

z̃n
2 = Φ(τ2, τ1)z∗1 +

τ2∫

τ1

Φ(τ2, t)g(vn(t), t)dt

and hence

‖z̃n
2 − z∗2‖ ≤ ‖z̃n

2 − zn
2 ‖ + ‖zn

2 − z∗2‖ ≤ C‖zn
1 − z∗1‖ + ‖zn

2 − z∗2‖



Vol. 60 (2008) Optimal Control of Non-stationary Repetitive Processes 211

where C = ‖Φ(τ2, τ1)‖ < ∞ is a constant. Also since zn
1 → z∗1 , z

n
2 → z∗2 , it follows

immediately from the last inequality that z̃n
2 → z∗2 .

Introduce the set

R(z∗1 , τ1) = {y ∈ R
n : y = ã2 + L̃2v, v ∈ V (·)}. (4.13)

Then it is obvious that R(z∗1 , τ1) is the reachability set at t = τ2 for the system
(4.12) restricted to the interval [τ1, τ2] with initial condition y(τ1) = z∗1 . As shown
above, R(z∗1 , τ1) is a closed set and therefore for the sequence z̃n

2 → z∗2 , n → ∞
such that z̃n

2 ∈ R(z∗1 , τ1), ∃ a function v2(t), τ1 ≤ t ≤ τ2, v2 ∈ V (·), such that
z∗2 = ã2 + L̃2v

2.
In an analogous way, it can be established that on every interval [τj , τj+1] ∃

a function vj+1 ∈ V (·), j = 1, . . . , l− 1, such that z∗j+1 = ãj+1 + L̃j+1v
j+1, where

ãj+1 = Φ(τj+1, τj)z∗j , L̃j+1v =

τj+1∫

τj

Φ(τj+1, t)g(v(t), t))dt.

Finally, we define on T = [0, α] the function

v∗(t) =






v1(t), 0 ≤ t < τ1,

v2(t), τ1 ≤ t < τ2,

. . . . . .

vl(t), τl−1 ≤ t ≤ α

where clearly v∗ ∈ V (·). Also, it follows immediately from

z∗j = ãj + L̃jv
j = Φ(τj , τj−1)z∗j−1 +

τj∫

τj−1

Φ(τj , t)g(vj(t), t)dt

= Φ(τj , τj−1)
[
Φ(τj−1, τj−2)z∗j−2 +

τj−1∫

τj−2

Φ(τj−1, t)g(vj−1(t), t)dt
]

+

τj∫

τj−1

Φ(τj , t)g(vj(t), t)dt = Φ(τj , τj−2)z∗j−2

+

τj−1∫

τj−2

Φ(τj , t)g(vj−1(t), t)dt+

τj∫

τj−1

Φ(τj , t)g(vj(t), t))dt · · ·



212 Dymkou, Dymkov, Rogers and Galkowski IEOT

that

z∗j = Φ(τj , 0)d(N) +

τ1∫

0

Φ(τj , t)g(v1(t), t)dt

+

τ2∫

τ1

Φ(τj , t)g(v2(t), t)dt+ · · · +
τj∫

τj−1

Φ(τj , t)g(vj(t), t)dt

= Φ(τj , 0)α(N) +

τj∫

τ0

Φ(τj , t)g(v∗(t), t)dt = aj + Ljv
∗, j = 1, . . . , l

and hence that v∗(t) is the required function. Hence z∗ ∈ RN , i.e., RN is a closed
set and the proof is complete. �

Remark 4.5. In the cases when k 	= N, the additional terms in the formulas for aj

and Lj in the set Rk do not change the essence of the proof of this last result.

At this stage, we have established that R and K(δ) are closed and convex
sets and the next result gives the solution of Problem (A), where the inner product
of vectors g and f from R

nl is denoted by gT f.

Theorem 4.6. Problem (A) has a solution if, and only if,

max
‖g‖

Rnl =1

{
gT c− max

z∈K(δ)
gT z + min

u∈U(·)
gTSu

} ≤ 0. (4.14)

Proof. Sufficiency. Suppose that the condition of (4.14) is valid, but Problem (A)
has no solution. Then, R ∩K(δ) = ∅ and the separation theorem for convex sets
yields that ∃ a nontrivial vector g ∈ R

nl, ‖g‖ = 1 such that

min
z∈R

gT z > max
z∈K(δ)

gT z. (4.15)

Hence

gT c− max
z∈K(δ)

gT z + min
u∈U(·)

gTSu > 0 (4.16)

which contradicts (4.14).
Necessity. Suppose that Problem (A) has a solution. Then there exist ū and

z̄ satisfying (4.7)–(4.8) such that gT c+gTSū = gT z̄ holds for each g ∈ R
nl. Taking

the maximum and minimum respectively of the two terms in this last expression
now yields

gT c− max
z∈K(δ)

gT z + min
u∈U(·)

gTSu ≤ 0 (4.17)

as required and the proof is complete. �
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5. Solution of the Optimal Control Problem

We now use the results of the previous section to develop a solution in the form
of a maximum principle for the optimal control problem considered in this paper.

Introduce the function Λ : R → R as

Λ(δ) = max
‖g‖

Rnl =1

{
gT c− max

z∈K(δ)
gT z + max

u∈U(·)
gTSu

}
(5.1)

which is easily shown to be a non-increasing continuous function. Hence the opti-
mal value of the performance index (3.5) can be characterized as follows.

Theorem 5.1. The control u0 ∈ U(·) is the optimal solution of the problem defined
by (3.1)–(3.5) if, and only if, δ0 := J(u0) is the smallest root of the equation
Λ(δ) = 0.

Proof. Necessity. Let u0 ∈ U(·) be an optimal control of the problem (3.1)–(3.5).
Then u0 is the solution of Problem (A) with δ0 := J(u0). Therefore, Theorem 4.6
yields that Λ(δ0) ≤ 0.

Suppose now that Λ(δ0) < 0. Then since Λ(δ) is a continuous and monotone
function, there exists a number δ̄ such that δ̄ < δ0 and Λ(δ̄) ≤ 0. Hence, Theorem
4.6 yields that Problem (A) has a solution with δ = δ̄ since otherwise there would
be an available control ū ∈ U(·) and a vector z̄ ∈ M satisfying (4.7)–(4.8) in the
case when δ = δ̄. Hence, J(ū) < J(u0), which contradicts the optimality of the
control u0 and therefore Λ(δ0) = 0. Finally, the fact that δ0 is the smallest root of
the equation Λ(δ) = 0 can be proved as above.

Sufficiency. Let u0 ∈ U(·) be a control function such that δ0 is the smallest
root of Λ(δ) = 0. Suppose also that u0(t) is not an optimal solution of the problem
(3.1)–(3.5). Then there exists an available control function ū ∈ U(·) and a vector
z̄ ∈ M such that c − z̄ + Sū = 0 and J(ū) < J(u0) holds. This establishes that
Problem (A) has a solution for δ̄ = J(ū), and hence Λ(δ̄) ≤ 0.

Conversely, since the function Λ(δ) is monotone Λ(δ̄) ≥ Λ(J(u0)) = 0, which
contradicts the assertion that δ0 is the smallest root. Hence u0 is an optimal control
and the proof is complete. �

Now let g0 = (g0
1 , . . . , g

0
l )T ∈ R

nl be a maximizing vector for Λ(δ0) and on
the interval T = [0, α] introduce the function λ : R → R

m as

λ(t) =
l∑

i=j+1

(g0
i )T Φ(τi, t), τj ≤ t < τj+1, j = 0, . . . , l − 1. (5.2)

Then it is a simple task to verify that the function λ(t) satisfies

dλ(t)
dt

= −λT (t)A(t), λ(τj−) − λ(τj+) = g0
j , j = 1, . . . , l − 1 (5.3)

and the optimality conditions for (3.1)–(3.5) are given by the following theorem.
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Theorem 5.2. If the number δ0 is the smallest root of the equation Λ(δ) = 0, then
there exists an optimal control u0

k(t), k ∈ K, t ∈ T for the problem (3.1)–(3.5)
such that J(u0) = δ0 and for almost all t ∈ T

ψT
k (t)bN−k+1

(
u0

N−k+1(t), t
)

= min
v∈U

ψT
k (t)bN−k+1(v, t) (5.4)

holds for all k ∈ K. Here the function ψ : K × T → R
n is given by

ψk(t) =

t∫

0

ψT
k−1(τ)D(τ)Φ(τ, t)dτ, ψ1(t) = λ(t), k ∈ K (5.5)

where the function λ(t) is given by (5.3).

Proof. Since Λ(δ0) = 0, Theorem 5.1 yields that Problem (A) has a solution for
δ = δ0. This implies that there exists an available control u0 ∈ U(·) and a vector
z0 ∈ M satisfying (4.7)–(4.8). Hence ϕ(z0) = J(u0) ≤ δ0 and the assumption
J(u0) < δ0 leads to a contradiction with the assumption that δ0 is the smallest
root of the equation Λ(δ) = 0. Therefore, J(u0) = δ0, and, consequently, u0 is
optimal control for (3.1)–(3.5).

The function u0
k(t), k ∈ K, t ∈ T satisfies

(g0)TSu0 = min
u∈U(·)

(g0)TSu (5.6)

and if we assume that (g0)TSu0 > min
u∈U(·)

(g0)TSu, then

Λ(δ0) < (g0)T c− (g0)T z0 + (g0)TSu = 0 (5.7)

which is impossible since δ0 is a root of Λ(δ) = 0. Finally, to establish the desired
optimality condition (5.4) we employ (5.6). Then

min
u∈U(·)

(g0)TSu = min
u∈U(·)

l∑

j=1

(g0
j )T

( N−1∑

i=1

P iQbu(N − i)(τj) +

τj∫

0

Φ(τj , t)bN (t)dt
)

= min
u∈U(·)

{ τ1∫

0

[
(g0

1)
T Φ(τ1, t) + · · ·

+(g0
l )T Φ(τl, t)

]
bN (uN (t), t)dt+

τ2∫

τ1

[
(g0

2)
T Φ(τ2, t) + · · ·

+(g0
l )T Φ(τl, t)

]
bN (uN (t), t)dt+ · · ·

+

τl∫

τl−1

(g0
l )T Φ(τl, t)bN (uN (t), t)dt+ · · ·
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+

τ1∫

0

[
(g0

1)
T Φ(τ1, t) + · · · + (g0

l )T Φ(τl, t)
]
D(t)

×
t∫

0

Φ(t, s)bN−1(uN−1(t), t)dsdt

+

τ2∫

τ1

[
(g0

2)
T Φ(τ2, t) + · · · + (g0

l )T Φ(τl, t)
]

×D(t)

t∫

0

Φ(t, s)bN−1(uN−1(t), t)dsdt+ · · ·

+

τl∫

τl−1

(g0
l )T Φ(τl, t)D(t)

×
t∫

0

Φ(t, s)bN−1(uN−1(t), t)dsdt + · · · +
τ1∫

0

[
(g0

1)
T Φ(τ1, t) + · · ·

+(g0
l )T Φ(τl, t)

]
D(t)PN−1Qbu(1)(t)dt+ · · ·

+

τl∫

τl−1

(g0
l )T Φ(τl, t)D(t)PN−1Qbu(1)(t)dt

}

= min
u∈U(·)

{
ψT

1 (t)bN (u) + · · · + ψT
N (t)b1(u1(t), t)

}

=
∑

k∈K

min
v∈U

ψT
k (t)bN−k+1(v, t)

which yields (5.4) and the proof is complete. �

6. Conclusions

This paper has formulated and solved an optimal control problem for differential
linear repetitive processes which are a class of 2D systems of both systems theoretic
interest. Indeed, the abstract problem solved here is well motivated by applications
area and, in particular, iterative learning control.
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