
2

Flexible Provisioning of Web Service
Workflows

SEBASTIAN STEIN, TERRY R. PAYNE, and NICHOLAS R. JENNINGS

University of Southampton

Web services promise to revolutionize the way computational resources and business processes are

offered and invoked in open, distributed systems, such as the Internet. These services are described

using machine-readable metadata, which enables consumer applications to automatically discover

and provision suitable services for their workflows at run-time. However, current approaches have

typically assumed service descriptions are accurate and deterministic, and so have neglected to

account for the fact that services in these open systems are inherently unreliable and uncertain.

Specifically, network failures, software bugs and competition for services may regularly lead to

execution delays or even service failures. To address this problem, the process of provisioning

services needs to be performed in a more flexible manner than has so far been considered, in order

to proactively deal with failures and to recover workflows that have partially failed. To this end, we

devise and present a heuristic strategy that varies the provisioning of services according to their

predicted performance. Using simulation, we then benchmark our algorithm and show that it leads

to a 700% improvement in average utility, while successfully completing up to eight times as many

workflows as approaches that do not consider service failures.

Categories and Subject Descriptors: I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-

gence—Intelligent agents; multiagent systems

General Terms: Algorithms, Experimentation, Reliability

Additional Key Words and Phrases: Web services, semantic Web services, service-oriented comput-

ing, workflows, service provisioning, service composition

ACM Reference Format:
Stein, S., Payne, T. R., and Jennings, N. R. 2009. Flexible provisioning of Web service

workflows. ACM Trans. Intern. Tech., 9, 1, Article 2 (February 2009), 45 pages. DOI =
10.1145/1462159.1462161 http://doi.acm.org/10.1145/1462159.1462161

This article is a significantly extended version of a previous conference paper that appeared in

Proceedings of the 17th European Conference on Artificial Intelligence (ECAI-06), 295–299.

This work was funded by the Engineering and Physical Sciences Research Council (EPSRC) and a

BSE Systems studentship.

Authors’ address: School of Electronics and Computer Science, University of Southampton,

Southampton, SO17 1BJ, United Kingdom; e-mail: {ss2, trp, nrj}@ecs.soton.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1533-5399/2009/02-ART2 $5.00 DOI 10.1145/1462159.1462161 http://doi.acm.org/

10.1145/1462159.1462161

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:2 • S. Stein et al.

1. INTRODUCTION

Due to the proliferation and ubiquity of the Internet, modern computer systems
are becoming increasingly distributed in nature. This growing connectivity al-
lows organisations to share expensive computing resources, to automate and
outsource business processes, and to offer their services to a worldwide audience
[Foster et al. 2001; Medjahed et al. 2003]. In this context, service-oriented com-
puting is gaining popularity as an appropriate system engineering approach
for enabling distributed, heterogeneous software components to communicate
and interoperate through computer services [Singh and Huhns 2005]. These ser-
vices are software components that are offered over computer networks and that
are described using machine-readable descriptions. Whilst existing approaches,
such as Web service technologies [Curbera et al. 2002] and CORBA [Yang and
Duddy 1996], have concentrated on providing an infrastructure and syntactic
service descriptions, recent work on Semantic Web services has explored the
use of ontologies to augment service descriptions [McIlraith et al. 2001; Martin
et al. 2004]. The overall aim of this effort is to facilitate knowledge-based rea-
soning about their functionality, and to support interoperability between ser-
vices within an open environment. Specifically, it is envisaged that annotating
service descriptions will allow applications to automatically discover new and
previously unseen services, and invoke them as part of their workflows. In so
doing, this approach will greatly reduce human effort and address the inherent
openness and heterogeneity of the Internet, where service availability changes
over time and where services do not generally conform to standardized inter-
faces and invocation methods [Paolucci and Sycara 2003].

To date, however, most research in this area has viewed services as fully
cooperative software components that behave according to their service de-
scriptions. Thus, work has concentrated largely on expressing and reasoning
about the functional capabilities of services and has mostly ignored the inher-
ent unreliability and uncertainty of using remote service providers. However,
such uncertainty should be considered, due to the open and dynamic nature of
the Internet, where network failures, remote software bugs, transmission de-
lays and competition over limited resources are an unavoidable feature of the
environment [Bolot 1993; Long et al. 1995; Schroeder and Gibson 2006].

The resulting uncertainty is further exacerbated by the inherent autonomy
of service providers. A key feature of computer services is the fact that they
are implemented, maintained and executed on remote machines by indepen-
dent providers. While this allows for loose coupling and a high level of ab-
straction, it also means that the service implementation is completely opaque
to the consumer. Thus, the provider may use any scheduling algorithm and
allocate resources, queue or even reject service requests according to local ex-
ecution policies and depending on current levels of demand. For this reason,
service providers can be viewed as autonomous, self-interested agents that fol-
low their own decision-making procedures [Weiß 1999; Jennings 2001]. There-
fore, it cannot be assumed that services always behave as advertised. In fact,
providers may lie or overstate their capabilities to attract customers, especially
in environments where services demand remuneration (e.g., as is emerging in

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:3

the context of Grid computing [Buyya et al. 2005]) and where untruthful or
misleading service advertisements may result in a financial advantage for the
providers.

Such uncertainty in provider behavior cannot be ignored by research on Web
services, as it poses critical problems to consumers that rely on services to com-
plete their workflows. Here, a single service failure could jeopardise the overall
success of the workflow, and even unexpected service delays may result in an
unacceptable completion time. When reliable workflow execution is important
for the objectives of their owners (as is the case in most emerging application
domains, such as automated business process management [Jennings et al.
2000] or large-scale scientific workflows [Deelman et al. 2003]), workflow fail-
ure or delays are highly undesirable and can result in considerable losses to the
consumer (e.g., in terms of lost business revenue, time, or penalties incurred by
missing contractual deadlines).

To address this problem of service uncertainty, we focus on the provisioning
of Web services. In short, this is the process of assigning particular service in-
stances to the constituent tasks of abstract workflows after candidate services
have been identified by a semantic matchmaker [Zeng et al. 2003; Maximilien
and Singh 2004a]. Whilst the matchmaking stage concentrates on matching
functional service adverts to abstract task templates, provisioning uses adver-
tised or observed quality-of-service measures to allocate instances in an ap-
propriate manner. Thus, it is possible during provisioning to make predictions
about the overall performance of the workflow, to identify particularly failure-
prone tasks and to mitigate the effects of such tasks by provisioning services
appropriately.

More specifically, in this article, we present a heuristic provisioning algo-
rithm that can be used by service consuming agents to deal with service fail-
ures both proactively (by provisioning particularly failure-prone services redun-
dantly) and reactively (by re-provisioning unsuccessful services on-the-fly even
when they do not report their failure). In so doing, we employ decision theoretic
techniques to explicitly balance the cost of invoking services with the potential
reward of successfully completing a workflow. In experiments, we show that
this flexible algorithm achieves better results than current approaches that
rely only on simple semantic matchmaking. Specifically, our approach achieves
an increase in average profit of about 700%, and it successfully completes 98–
99% of workflows in most environments, even when individual services are
highly unreliable.

The remainder of this article is structured as follows. In Section 2, we discuss
the state-of-the-art and position our work in the context of current Web service
research. In Section 3, we present an abstract model of a service-oriented system
and the types of workflows we investigate. Based on this, we present our flexible
provisioning strategy (Section 4), and evaluate it experimentally (Section 5).
Finally, we conclude in Section 6 by outlining future work.

2. RELATED WORK

In this section, we examine current approaches for executing workflows consist-
ing of several interdependent tasks. First, we look at appropriate technologies

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:4 • S. Stein et al.

for describing workflows and how these use Semantic Web technologies for dis-
covering services. Then, we discuss how provisioning has been addressed so
far, and why current approaches are insufficient for dealing with unreliable
services.

Applications in service-oriented environments rarely rely on single, isolated
services, but rather combine the functionality of many distinct service offerings
to fulfil their design goals [Milanovic and Malek 2004]. Such service combina-
tions are usually expressed as workflows, which have been applied widely in
industry to define the required tasks and appropriate precedence constraints
to achieve some overall business goal [Georgakopoulos et al. 1995]. Currently,
the predominant approach for defining such workflows of interdependent Web
services is WS-BPEL (Web Services Business Process Execution Language)
[Weerawarana et al. 2005]. This language is highly expressive and offers some
flexibility by allowing workflows to refer to abstract service interfaces rather
than concrete instances. This means that services can, in principle, be selected
dynamically at run-time, depending on current service availability. However,
WS-BPEL is of limited use in large, open environments where services are of-
fered and implemented by distinct, heterogeneous agents. This is because it
requires service instances to adhere exactly to the syntactic interfaces spec-
ified by the workflow designers—an unrealistic assumption in such systems
[Akkiraju et al. 2004].

Semantic Web technologies promise to address this by offering more for-
mal service discovery and composition techniques, thus allowing applications
to bind previously unseen and heterogeneous services at run-time without hu-
man intervention. Building on knowledge representation formalisms such as
OWL [McGuinness and van Harmelen 2004], Semantic Web services present
rich metadata annotations that state the semantics of the service descriptions
rather than specifying just their syntactic usage [McIlraith et al. 2001]. As
exemplified by the emerging OWL-S ontology, such annotations provide infor-
mation about the functionality of services, the data they operate on, and the
context in which they can be invoked [Martin et al. 2004]. Because this meta-
data is presented using a machine-readable representation language (whose
underlying semantics correspond to a well defined and decidable logic theory),
it is possible for client applications to use it (in combination with their own
knowledge and other assertions available on the Semantic Web) to reason au-
tomatically about services (e.g., to discover services that meet certain user re-
quirements [Paolucci et al. 2002; Benatallah et al. 2005] or to translate between
heterogeneous services that use different data representations [Szomszor et al.
2005]).

This semantic information has been used to automate the synthesis of service
workflows. Most work in the area of service composition employs planning algo-
rithms to search for sequences of service instances that meet a given high-level
goal [McDermott 2002; Klusch et al. 2005]. Such approaches promise to require
little human intervention and rely solely on the semantic descriptions of ser-
vices, as well as simple, high-level goals given by the users. However, planning
is a computationally complex problem [Bylander 1994], and so it is likely to be
infeasible in environments where potentially thousands of services coexist.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:5

To address this complexity, some work on service composition uses abstract
workflows, which describe the necessary steps to fulfil common user objectives
[McIlraith and Son 2002; Mandell and McIlraith 2003; Sirin et al. 2005]. This
work assumes that workflows for particular objectives usually follow the same
basic steps, even if the choice of service instances is different each time, depend-
ing on the user’s personal constraints and current service availability. More
specifically, such abstract workflows usually include a number of semantically
annotated abstract tasks (e.g., using generic OWL-S process:SimpleProcess de-
scriptions in the process model) and a suitable ordering. At run-time, the ab-
stract task descriptions are used to discover service instances, which can then
be provisioned for the tasks of the workflow. If necessary, additional planning
is used to combine or substitute abstract workflow fragments [Sirin et al. 2005]
or to add intermediate services (e.g., to translate between heterogeneous data
representations) [Mandell and McIlraith 2003].

Now, a major shortcoming of the approaches discussed so far is that they do
not offer satisfactory facilities for dealing with uncertain service performance.
In fact, most work relies purely on functional service descriptions, assuming
these to be deterministic and truthful. Hence, the resulting workflows are brit-
tle and vulnerable to single service failures.

Traditionally, failures in workflows have been addressed by exception han-
dling mechanisms that follow predefined procedures for mitigating or correcting
a problem before continuing the workflow (forward recovery), or that roll-back
previous tasks of the workflow to terminate it in a consistent state (backward
recovery) [Garcia-Molina and Salem 1987; Eder and Liebhart 1995; Casati et al.
1999]. This approach is also taken by WS-BPEL, which allows workflow design-
ers to specify fault and compensation handlers that are invoked when failures
occur during workflow execution [Curbera et al. 2003]. However, relying only
on exception handling mechanisms is problematic in the environments we con-
sider. First, they are entirely reactive and so do not allow the consumer to avoid
failures proactively (this is especially important when the consumer has a fixed
deadline for its workflow). Second, the mechanisms are usually specified manu-
ally, which is labor intensive and can be unrealistic for large workflows. Finally,
they typically rely on cooperative service providers that signal failures clearly
and may allow services to be rolled-back.

To address service failures more proactively, possibly in the presence of ma-
licious providers, a considerable body of research is investigating quality-of-
service (QoS) issues for Web services [Menasce 2002; Ran 2003]. This is con-
cerned with non-functional properties of services, including reliability, service
costs and durations, and there are a number of approaches for expressing
this information. For example, WSLA (Web Service Level Agreements) is an
industry-led specification for describing the expected non-functional character-
istics of a service interaction in a contractual form between the provider and
consumer [Dan et al. 2004]. WSLA allows the specification of penalties for de-
faulting on a contract and thereby provides some protection to the consumer.
However, in case of failures, the service consumer still faces an incomplete
workflow (whose value may surpass the received penalty) and it is possible
that malicious providers do not compensate the consumer at all.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:6 • S. Stein et al.

Other work has used ontologies to describe and reason about QoS informa-
tion, which is typically assumed to have been obtained through previous inter-
actions or trusted third parties [Maximilien and Singh 2004a, 2004b; Zhou et al.
2004]. These ontologies have generally been used to place restrictions on the
types of services to be provisioned, and so complement the functional service de-
scriptions. However, such approaches are inflexible as they make binary choices
about which services are feasible, and they do not balance conflicting qualities
appropriately (e.g., sometimes a cheap, unreliable service may be preferred to
an expensive, reliable one). Hence, these approaches rely on purely qualitative
reasoning mechanisms, which are unsuitable for the largely numeric, quanti-
tative information about service qualities. Furthermore, they require a human
to annotate workflows accordingly and make feasible restrictions (i.e., that can
be satisfied by the available service instances).

Other approaches in the literature take a more flexible approach than hard,
binary decisions when provisioning services based on QoS metrics. Sirin et al.
[2005] use a simple ranking mechanism that assumes preferential indepen-
dence between different QoS dimensions and then chooses a service that is
pareto optimal regarding all dimensions. However, this approach does not bal-
ance conflicting qualities or consider their magnitude. To address this, other
work combines QoS constraints with numerical optimization [Zeng et al. 2003;
Aggarwal et al. 2004; Jaeger and Mühl 2007; Yu et al. 2007]. Here, the workflow
typically has some hard constraints for a number of aggregated QoS parameters
(such as the overall duration, reliability or cost of the entire workflow). If these
can be satisfied by different service choices for each task, services are selected
so that a weighted sum of all parameters is maximised. This approach aims to
strike a balance between conflicting parameters, but is inappropriate for several
reasons. First, reliability is simply another quality, substitutable at a constant
rate with any other quality, which can result in irrational preferences (e.g., if
other qualities are raised appropriately, this mechanism will choose a service
with a 0% reliability). Second, to avoid this problem, appropriate constraints
have to be imposed, which require human effort and unnecessarily restrict the
candidate solutions. Third, setting the weights for different parameters is a
nontrivial task that requires further human input. Finally, this approach pro-
visions only single service instances for each task and so is likely to fail when
all available services are unreliable.

A more promising approach towards addressing unreliable services has been
taken in the context of agent-based computing. For example, Collins et al. [2001]
use decision-theory to provision services for abstract workflows. In this work,
the authors provision services in order to maximise the expected utility of the
consumer, which balances the utility of a successful workflow with the incurred
cost and the overall success probability. However, they consider an auction
scenario that is not directly applicable to current Web service standards, and
their approach again relies on single services for each task.

So far, the approaches mentioned here are unsuitable for scenarios where ser-
vices are highly failure-prone, as a single service failure will always result in an
overall workflow failure. To address this, some work has looked into the use of
redundancy to mitigate the problem of unreliable providers. This is a technique

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:7

from reliability theory that has been widely employed to increase the robustness
of a system by duplicating critical and failure-prone components [Tillman and
Liittschwager 1967]. In the context of fault-tolerant computing, redundancy
has been used to design software applications that provide certain guarantees
about their behavior despite component failures or malicious attacks [Cristian
1991; Gärtner 1999]. In particular, traditional Web servers often employ redun-
dancy to seamlessly mask failed components (service failover) and to distribute
requests to several replicated services (load balancing) [Ingham et al. 1999;
Aghdaie and Tamir 2003]. Similarly, the use of redundancy has been suggested
to build fault-tolerant Web services [Li et al. 2005; Merideth et al. 2005], but
such work has concentrated on designing appropriate software architectures
and protocols and is not directly applicable to the problem of provisioning ser-
vice workflows.

Redundancy has also been employed for the provisioning of services in large-
scale distributed systems. Anderson et al. [2002] describe an application in peer-
to-peer systems that provisions several functionally-identical service instances
for the same task, in order to reduce the probability of failure and to detect
malicious data providers. However, the level of redundancy is generally fixed
(i.e., there is no notion that some tasks might be more failure-prone and so
require higher redundancy than others) and it is assumed that services are
inexpensive and numerous. Jaeger and Ladner [2005] show how provisioning
redundant providers in parallel can improve the overall success probability
and duration of a workflow, but they do not consider stochastic service times or
discuss how appropriate levels of redundancy can be chosen autonomously.

A different form of redundancy is used in the work of Friese et al. [2005] on
executing WS-BPEL workflows in peer-to-peer systems. They develop a mech-
anism for dynamically discovering and invoking duplicate services after the
first service has failed. A similar approach is taken by Erradi et al. [2006], who
propose a policy-based framework for dealing with service failures. In their
work, failure handling policies are triggered by predefined events (e.g., the
violation of service level agreements or the receipt of an error message) and
specify corrective actions that should be taken. These actions include retrying
a failed service multiple times, as well as invoking one or more functionally-
identical replacement services instead. However, they rely on a human user
to specify appropriate failure policies and levels of redundancy. Finally, both
Canfora et al. [2005] and Yu and Lin [2005] adapt the numerical QoS optimiza-
tion techniques discussed earlier to find appropriate replacement services in
case of failure, but these approaches still require significant human input, as
mentioned above, and will constantly need to replan when services are highly
unreliable.

To conclude this section, we have seen that there exist powerful techniques
for modelling abstract workflows, which are provisioned automatically at run-
time. Such approaches require little human effort to adapt and maintain work-
flows in dynamic environments. However, current approaches do not deal sat-
isfactorily with unreliable providers. When reliability and other non-functional
service characteristics have been considered, they have usually been addressed
by imposing simple constraints on the required services or by optimizing a

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:8 • S. Stein et al.

Fig. 1. Lifecycle of a workflow.

weighted sum of parameters. Such an approach relies on appropriate param-
eters set by a human user and is still vulnerable when services are generally
failure-prone. While some research has looked specifically at the use of redun-
dancy to mitigate failures, no work automatically chooses the type and level of
redundancy in order to balance the cost of services with their reliability and
the benefit of completing a workflow (and the associated time). To address these
shortcomings, in the following section, we first formalise our model of a service-
oriented system, and we propose our solution for dealing with such uncertain
service providers in Section 4.

3. WORKFLOW AND SERVICE MODEL

In this section, in order to provide a formal basis for our work, we define the
types of workflows that a consumer typically faces, and the services that it can
provision in order to execute these workflows. Specifically, in Section 3.1, we
outline the context of our work and describe the lifecycle of an abstract workflow.
Then, we discuss the information that is available to the service consumer when
provisioning services: in Section 3.2, we define the workflows we consider, and
in Section 3.3, we formalise the information that is available about service
instances. In Section 3.4, we describe how services are provisioned and invoked
for the tasks of a workflow. Finally, in Section 3.5, we highlight and justify some
of the simplifying assumptions we have made.

3.1 Workflow Lifecycle

Building on the work on abstract workflows outlined in Section 2, a service
consumer in our model proceeds through four stages when executing a workflow
(Figure 1):

(1) Workflow Selection. First, an abstract workflow is chosen to suit the con-
sumer’s current objectives. This is generally created either manually by
domain experts or automatically by a planner that uses abstract templates
of common service types. Due to the complexity of generating workflows,
this may take place offline, allowing the consumer to retrieve suitable work-
flows from a repository. At this stage, an abstract workflow does not refer to
service instances, but rather contains abstract tasks, which are annotated
by semantic metadata to describe suitable services.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:9

(2) Matchmaking. Once an abstract workflow has been selected, abstract tasks
are mapped to candidate service instances via a matchmaking process.
Here, the consumer searches a public service registry or requests matching
services from a broker. This step uses the semantic annotations provided
by the abstract workflow to find suitable service instances.

(3) Provisioning. Given lists of matching services, the consumer now provisions
individual service instances for each task of the workflow. This decision con-
stitutes a tacit intention by the consumer to invoke the provisioned services
for the respective tasks, and so it is not necessarily a binding commitment.
The purpose of this stage is to allow the consumer to make predictions about
the performance of a provisioned workflow, and to explore the space of can-
didate provisioned workflows. Specifically, it is possible for the consumer to
evaluate and optimize the provisioned workflow using an appropriate util-
ity function that encodes the value of successfully completing the workflow.
During this stage, the consumer can make use of its own domain knowledge
and possibly service performance information that is available from exter-
nal sources, to identify particularly failure-prone tasks, and to proactively
provision additional services where necessary and where this increases the
expected utility of the provisioned workflow.

(4) Invocation. When appropriate services have been provisioned, the consumer
starts to invoke the chosen services as dictated by the ordering constraints
of the workflow. If services fail to complete their tasks, the consumer may
provision other services, until the workflow is successfully completed.

As outlined in Section 2, current work on Semantic Web services either views
the provisioning stage as an intrinsic part of matchmaking, or proposes solu-
tions that are infeasible in environments where services may regularly fail
to honour their descriptions. In order to develop a more effective provisioning
strategy, we proceed to describe the information that we assume to be avail-
able to the service consumer. To this end, we define the structure of an abstract
workflow in Section 3.2, and, in Section 3.3, we describe the services that are
available for the constituent tasks of the workflow.

3.2 Workflow Description

A workflow is typically a collection of tasks with appropriate ordering con-
straints. For this reason, we represent it using a directed, acyclic graph (as
shown by Figure 2). Formally, we express workflow W as:

W = (T, E, τ, u). (1)

Here, T = {t1, t2, t3, . . . , t|T |} is the set of tasks that make up the workflow, and
E ⊆ T ×T is a strict partial order over the tasks, where a member, (ti �→ t j) ∈ E,
indicates that task ti must successfully complete before t j can be started. The
function τ : T → T maps each task to an abstract service description, where
T is the set of all descriptions. Additionally, to represent its value to the con-
sumer, we attach a utility function to each workflow, u : R → R, which maps

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:10 • S. Stein et al.

Fig. 2. Example workflow consisting of six interdependent tasks. Circles represent the tasks in

T and arrows represent the dependencies as given by E (transitive dependencies are omitted for

readability).

Fig. 3. Examples of some representative utility functions.

the completion time of the workflow to a utility reward.1 We assume that this
utility is only awarded to the consumer when the whole workflow is completed
successfully and that the utility function is monotonically decreasing.2 Specif-
ically, we use a general utility function that awards a maximum utility umax

when the workflow is completed within a given deadline tmax. When this dead-
line is exceeded, a penalty rate δ is deducted from umax for every time step
that the consumer is late, until it gains no more positive utility. In this case,
the consumer receives a reward of zero, regardless of whether the workflow is
completed at a later stage or not. Formally, we express the reward function u
as follows (with umax ≥ 0, tmax ≥ 0 and δ > 0):

u(t) =
⎧⎨
⎩

umax if t ≤ tmax

umax − δ(t − tmax) if t > tmax and t < tmax + umax/δ.

0 if t ≥ tmax + umax/δ

(2)

To illustrate this, Figure 3 contains some example utility functions. The
function labelled u1(x) is a typical example with umax = 400, tmax = 100 and
δ = 4. The function u2(x) represents an example where time is more critical,
and u3(x) has no specific deadline (tmax = 0), rewarding the agent purely based
on the amount of time taken.

We now describe the service instances that are available for the tasks of the
workflow.

1This may be the expected financial gain of completing the workflow, or simply a private utility

value, as commonly used in decision theory [Raiffa 1968].
2This is consistent with much previous work—Collins et al. [2001] reward a consumer with a fixed

utility reward for completed workflows, while Arunachalam and Sadeh [2004] and Irwin et al.

[2004] describe utility functions that depend on the time of completion.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:11

3.3 Service Discovery and Performance Information

During the matchmaking stage, the service consumer discovers suitable service
instances for each task in T , using the semantic information provided by τ . If
we denote the set of all services as S = {s1, s2, . . . , s|S|}, then we can formalise
this discovery procedure as a function, μ : T → ℘(S), that maps an abstract
service description to a set of suitable services. For task ti, we denote this set
as Si = μ(τ (ti)).

In addition to the set of services for each task, we also assume that the
consumer has some knowledge about their predicted performance. However,
because the Internet is an open and dynamic environment, where services may
leave or enter at will, change their identities and publish false information, this
knowledge does not extend to individual service instances. Rather, we assume
that it will normally take the form of probabilistic estimates and distributions
over the set of all services for a particular task. Specifically, we assume the
following information about each task ti:

—Si is the set of suitable services.

— fi is the failure probability of a single service from Si.

—ci is the cost3 of a service from Si.

—di is a probability density function, representing the execution duration of a
service from Si (the total time from invocation to completion). It is conditional
on overall success.

These probabilistic measures govern how services behave in our model. In
the following section, we briefly outline how this relates to their interactions
with the service consumer.

3.4 Service Provisioning and Invocation

As described in Section 3.1, during the provisioning stage, the service consumer
allocates service instances to the tasks of the abstract workflow. Once this allo-
cation is completed, the consumer begins to invoke services for the tasks of the
workflow according to the ordering constraints given by E. Here, we assume
that the consumer can only invoke services at discrete, integer time steps. As
is common in the Web services domain, services are invoked on demand when
they are required. Hence, the cost for each service is paid only at the time of
invocation (but regardless of the eventual outcome). When invoked, a service
successfully completes the assigned task ti with probability 1− fi. The duration
of a successful service execution is distributed according to di, after which the
service consumer is notified of success (i.e., the consumer cannot be certain of
the outcome until this time has passed). When a service is not successful, we
assume that it fails silently (i.e., no response is given to the consumer).

3This usually represents a financial remuneration for the service (expressed in the same units

as the reward function u(t)), but could also quantify the effort and required bandwidth of invok-

ing the service. In reality, these costs are likely to vary across Si . However, as we use no other

service-specific information to distinguish services and as costs may change dynamically between

provisioning and invocation, we decided to use a fixed measure, representing the expected cost of

such a service.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:12 • S. Stein et al.

Furthermore, as there may be several matching services for a task, the con-
sumer can invoke more than one service for this task at the same time. In this
case, the consumer has to pay each invoked service separately, and the task is
completed when the earliest service has executed successfully (if any). When all
invoked services seem to have failed, the consumer may decide to provision new
services for this task. In this case, the consumer will ignore the previously in-
voked services and assign the task to the newly provisioned set of services. For
multiple invocations, we assume that services execute independently from each
other (i.e., the success and duration of all services are independent, identically
distributed random variables), and that the consumer is not penalised addition-
ally if several services are successful (apart from paying the associated costs).

In the following section, we summarize and justify the underlying assump-
tions and associated limitations of the model presented above.

3.5 Model Assumption and Limitations

Although we have striven to present a model that is applicable to a large range
of service-oriented scenarios, we have had to make a number of simplifying
assumptions about our problem domain that may not hold in all potential ap-
plication areas. On the one hand, these assumptions were necessary to produce
a formal model that is amenable to efficient mathematical analysis, and on the
other hand, they allowed us to present and deal with a general problem rather
than concentrate on domain-specific constraints that may occur in a concrete
application. We believe that our assumptions are reasonable in most large dis-
tributed systems and that our model constitutes a solid basis for more specific
extensions. In this section, we explicitly list and justify the assumptions we
have made. In Section 6.2, we will re-examine some of these and show how our
model can be extended to handle them.

(1) Failure Model. We have chosen to restrict our failure model to include only
silent failures at this time (also known as crash failures [Cristian 1991]).
In practice, failure messages may sometimes be returned to the consumer,
but silent failures are more challenging to deal with (clearly, a consumer
receiving such messages will perform at least as well as one that does not).
Furthermore, they are realistic in distributed environments, where service
providers do not reveal their internal state, and where network or machine
failures can lead to communication losses. However, we currently do not
deal with Byzantine failures, which include the return of corrupt service
results. Hence, we must assume that service results can be tested for cor-
rectness (in fact, many intractable problems can be efficiently verified), but
we plan to relax this limitation in future work. We also assume that fail-
ures (and durations) of different services are independent of each other. We
believe that this is generally the case in large-scale distributed systems,
where services reside on physically separate machines, use different im-
plementations and do not directly interfere with each other. Despite this,
failures may occasionally be correlated—for example, when two services
rely on a common third service, or when several systems are attacked by
the same virus.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:13

(2) Performance Information. As we concentrate on the provisioning problem
rather than learning techniques, we assume that the service consumer has
accurate performance information about the providers for each task. In
practice, such information may be domain knowledge provided by experts
during workflow generation [Ng and Abramson 1990], by inference over
the task descriptions and related data [Maximilien and Singh 2004a], or
by statistical estimation based on previous interactions with similar ser-
vices, possibly provided by a trusted monitoring service [Teacy et al. 2006].
However, obtaining this knowledge is clearly nontrivial and has been the
subject of much ongoing research.

Furthermore, we currently represent uncertain service durations using
simple nonconditional probability density functions. This is a common ap-
proach for modeling stochastic systems, but it is possible to envisage more
detailed joint distributions to be available, for example to model varying
service durations at different times of the day.

(3) Payment Model. Our model assumes that a service must be paid for regard-
less of its eventual outcome. Similar to our silent failure model, this is a
pessimistic assumption that will not always be true in realistic environ-
ments. Rather, cooperative services may refund the consumer on failure or
decline payment before the service is commenced. Again, a consumer that
is able to deal with this more risky case will perform at least as well when
services offer refunds.

Additionally, our model assumes that the service consumer is charged a
fixed price per invocation. We believe that this is realistic in scenarios where
services are discovered and provisioned dynamically on-demand and where
no long-term contracts exist between the provider and consumer. However,
it should be noted that other pricing schemes have been proposed, including
some that allow multiple invocations of the same service over a certain
period of time [Dan et al. 2004].

We also currently assume free disposal of unwanted services, that is,
that several successful service invocations for the same task do not incur
additional penalties above their normal cost. This may be realistic in Grid
scenarios, where the results of data processing services can be disregarded
without costs, but in a supply-chain application, the disposal of unused
goods may incur additional charges (especially for chemicals or dangerous
materials).

(4) Reward Model. Our reward function encodes the value of completing a work-
flow at a given time, and it intuitively follows the general form of many
contracts in other domains. However, certain application scenarios might
require a more expressive function that depends on multiple dimensions
(e.g., the overall time and the perceived quality of some end-product).

(5) Model Scope. To obtain a general system model, we currently do not con-
sider specific domain-dependent constraints that may occur in particular
workflow applications. For example, we do not cover cases where service in-
stances have mutually exclusive side-effects or where there are dependen-
cies between the instances provisioned for several tasks. We also represent

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:14 • S. Stein et al.

workflows as directed acyclic graphs, which is consistent with much related
work, but we note that realistic applications often require more complex
structures, including branches and loops.

Finally, in line with the overall aim of this article, we focus solely on
provider failures. Hence, we assume that workflows are correct, that appro-
priate matchmaking algorithms correctly identify suitable providers and
that the consumer is able to translate between heterogeneous data formats.
In practice, such problems are far from trivial, but they are not the focus of
this work.

This concludes the description of our workflow and service model. In the
following section, we build on this model to develop a provisioning strategy
that deals with services both proactively and reactively, in order to address the
unreliability and uncertainty of service providers.

4. PROVISIONING STRATEGIES

In this section, we outline several strategies for provisioning services for the
workflows described in Section 3. We begin in Section 4.1 by outlining a naı̈ve
strategy that formalises many current approaches towards service provisioning
that do not consider service uncertainty. In Sections 4.2 and 4.3, we develop two
simple strategies that rely on multiple services to satisfy single tasks (paral-
lel(n) and serial(w)) and that are broadly based on simple redundant strategies
found in related work. These are then combined in Section 4.4 as a flexible pro-
visioning strategy that reasons quantitatively about its provisioning decisions,
and that constitutes the main contribution of this article.

4.1 The Naı̈ve Strategy

We begin by looking at the currently predominant approach to service provi-
sioning in the literature. This gives us a basic benchmark against which we can
evaluate the strategies we develop in this section, and, in doing so, serves to
highlight the shortcomings of current work.

Now, as described in Section 2, most current work on Web services focusses
solely on the functional descriptions of services. In such research, descrip-
tions are typically assumed to be truthful and deterministic, and so service-
consuming agents do not explicitly consider the provisioning stage, but rather
pick any single service that matches their requirements. Since such a strategy
does not consider service failures, we term it naı̈ve and describe it more formally
as follows:

Definition 4.1 (Naı̈ve Strategy). A consumer agent following a naı̈ve strat-
egy always provisions a single randomly chosen service of the correct type for
each task.

A major shortcoming of this naı̈ve strategy is that it is highly vulnerable to
service failures. A single failure means that the whole workflow is lost, along
with all investments already made. To reduce this risk, we discuss two simple
techniques in the following sections for dealing with service failures.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:15

4.2 Parallel Provisioning

The first strategy we discuss in this context uses parallel provisioning to proac-
tively control the effect of unreliable services. As discussed in Section 3, a feature
of service-oriented systems is the fact that several service instances may match
a single semantic service description. For this reason, a consumer may benefit
by delegating each of its tasks to several providers at the same time, rather
than relying on a single service.

To highlight the advantage of this approach, let X n ∈ {success, failure} be a
random variable indicating the outcome for a task ti when n services are invoked
in parallel for this task. The probability that a single service (n = 1) successfully
completes the task is then P (X 1 = success) = 1− fi. When invoking two service
instances in parallel (n = 2), we have a success probability P (X 2 = success) =
1 − fi

2. For the general case with n services, we thus have:

P (X n = success) = 1 − fi
n (3)

This means that the probability of success increases as more providers are
provisioned for a single task. However, if a nonzero cost is associated with
each provision, then the total cost incurred rises with n. Based on this, we can
formulate a strategy that uses parallel provisioning to reduce the probability
of workflow failures:

Definition 4.2 (Parallel(n) Strategy). A consumer following a parallel(n)
strategy always provisions exactly n randomly chosen services of the correct
type for each task.

For this strategy, n is a fixed constant that is determined by a human user.
The strategy parallel(1) is equivalent to the naı̈ve strategy, and a higher value
for n implies a generally higher resilience against failures. However, while re-
ducing the probability of workflow failures, the parallel(n) strategy lacks any
capacity to react to failures after they have occurred. This is addressed by the
strategy in the following section.

4.3 Serial Provisioning

The second strategy we describe deals reactively with service failures. Rather
than relying on parallel provisioning, it reprovisions services when it becomes
likely that a previously provisioned service has failed. To this end, the consumer
first provisions a single service and, after invocation, waits for some time. If the
service has not been successful, the consumer tries a different one, waits and
repeats the process if necessary, until the task has been completed. However, as
services have non-deterministic duration times and because they do not notify
the consumer of failure, the consumer has to choose an appropriate waiting
period. This period should allow the service a reasonable time to finish, but
should not waste unnecessary time when it has most likely already failed.

With this in mind, let X s,w ∈ {success, failure} be a random variable indi-
cating the outcome of invoking single service instances in series for a task ti.
Here, s is the number of services that are available in total (s = |Si|), and w
is the chosen waiting period. To calculate the success probability of a single

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:16 • S. Stein et al.

service in this case, we can use the cumulative density function Di, derived
from di. Hence, we have P (X 1,w = success) = (1 − fi)Di(w), where 1 − fi is
that probability that the service will succeed, and Di(w) is the probability that
this will happen within w time steps. Generalizing this for invoking s services
in sequence, we get:

P (X s,w = success) = 1 − (1 − (1 − fi)Di(w))s. (4)

This is generally less than the success probability of invoking the same num-
ber of services in parallel, and the average time taken will also be higher for
serial provisioning because of the additional waiting time that is introduced.
On the other hand, the average cost drops, because costs are only incurred at
the time of invocation.

Hence, we define a new reactive strategy as follows:

Definition 4.3 (Serial(w) Strategy). A consumer following a serial(w) strat-
egy always provisions exactly one randomly chosen service of the correct type
for each task. After a waiting period of w time units, if no success has been reg-
istered yet and if there are still more available services, the agent re-provisions
a new, randomly chosen service and continues in this manner until the task is
completed or no more services are left.

The two approaches discussed above, serial(w) and parallel(n), deal with
service failures. However, they have several shortcomings that make them less
useful for automating the provisioning of complex workflows. First, we have so
far considered them separately, whereas they might complement each other by
allowing the consumer to provision services both in series and in parallel, as
required. Second, we have assumed that the constants n and w are provided by
a human user, but choosing these is not trivial. Especially in dynamic environ-
ments, they should be chosen automatically depending on current information
about the predicted performance of tasks. Finally, we have so far treated n and w
as global constants. However, most realistic workflows will have tasks that vary
considerably in their reliability, cost and duration distribution. Hence, it may be
necessary to use different provisioning strategies for each task in the workflow.

To address these shortcomings, in the following section, we develop a novel
strategy that provisions multiple services for tasks in a flexible manner. This
approach takes into consideration the performance characteristics of services
and the structure of the workflow, and then provisions services accordingly,
using a heuristic algorithm to deal with the inherent complexity of this task.

4.4 Flexible Provisioning

Building on the strategies presented in the previous section, we now introduce a
novel algorithm for flexibly provisioning services that are part of complex work-
flows. Because we are interested in building an agent that provisions services
automatically, we take a decision-theoretic approach, where the agent provi-
sions services so as to maximise its expected utility. Specifically, it determines
automatically how many services to invoke in parallel and it also chooses an
appropriate time-out value.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:17

Due to its autonomous decision-making process that adjusts the agent’s be-
havior to its environment, we term this approach the flexible strategy and sum-
marize it as follows:

Definition 4.4 (Flexible Strategy). A consumer following a flexible strategy
makes appropriate decisions to provision services for its workflow. To this end,
the agent finds suitable numbers of service instances to be invoked and time-
out values for each task in the workflow, so that the agent’s expected utility is
maximised.

This discussion of the flexible strategy is divided into several parts. First,
we describe our aim in devising this strategy as an optimization task (Sec-
tion 4.4.1). In the second part, we outline a heuristic local search approach
for solving this problem (Section 4.4.2). To conclude the discussion, we provide
an illustrative example of how our strategy provisions a complete workflow
(Section 4.4.3).

4.4.1 Problem Formulation. In this section, we first formulate a more fine-
grained decision problem than so far considered. Instead of choosing global
values for n and w, as in the previous approaches, we define them as vectors,
	n and 	w, with each element corresponding to one task in the workflow. In this
notation, the ith element of vector 	n, ni, is the number of services to be invoked
for task ti. Similarly, wi is the associated time-out value, indicating how long
the consumer will wait before invoking another set of ni services for task ti.

Now, we are interested in choosing 	n and 	w, so that the expected overall
utility (or profit) ū(n, 	w) is maximized (this profit captures the overall utility
of a workflow execution to the consumer and so takes into account both the
utility reward gained from completing the workflow and the costs incurred from
all service invocations). More formally, we let ūt(n, 	w) be the expected utility
reward and c̄(n, 	w) the expected cost. Then we define the expected profit as:

ū(n, 	w) = ūt(n, 	w) − c̄(n, 	w). (5)

With this, we can specify the service provisioning problem as an optimization
task:

max
	n, 	w∈N|T |

ū(n, 	w). (6)

However, finding a solution for this optimization problem is far from easy.
Simply verifying a possible solution (i.e., computing the expected profit ū(n, 	w)
for given vectors 	n and 	w) is very hard. This is because calculating the distri-
bution of the workflow completion time (needed for ūt) involves the convolution
of several probability functions (the duration functions given by d̃), which is
further complicated by the fact that there are usually interdependencies be-
tween the task completion times (as tasks in the workflow depend on their
predecessors). In fact, there is currently no known tractable method to solve
this problem exactly, even for simple distributions [Dodin 1985; Baccelli et al.
1993].

For this reason, we decided to simplify the problem and devise an algorithm
that sacrifices theoretical optimality in favor of a tractable decision algorithm

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:18 • S. Stein et al.

that produces good results in practice (a heuristic algorithm). In particular,
we employ a heuristic function for estimating the expected profit, ũ(n, 	w). De-
spite this simplification, we are still faced with the difficult nonlinear integer
programming problem of optimizing ũ(n, 	w). To address this, we find a good al-
location for 	n and 	w by carrying out steepest-ascent hill-climbing [Russell and
Norvig 2003], as described in the following section.

4.4.2 Heuristic Provisioning. We decided to use a local search algorithm to
find a good allocation, because this technique is widely employed for intractable
optimization problems [Michalewicz and Fogel 2004]. We chose steepest-ascent
hill-climbing specifically, because it is easily implemented and constitutes one
of the simplest local search techniques available.4 This algorithm starts with a
random5 initial allocation for the decision variables 	n and 	w, and then gradually
improves this by repeatedly picking the best possible neighbor of the current
allocation. More specifically, we define a neighbor allocation of (n, 	w) as (n′, 	w′),
so that exactly one component of either vector is different. To restrict the search,
we evaluate only a subset of these neighbors by picking those allocations that
differ from the original allocation by exactly one integer step, as well as up
to four further neighbors (chosen uniformly at random) for each task ti, so
that both an increase and a decrease in ni and wi are included. This means
that we evaluate up to 8 |T | neighbors at each iteration of the hill-climbing
algorithm before proceeding with the best solution. This process is repeated
until a maximum is found (i.e., all evaluated neighbors yield a lower or equal
estimated profit).

At the centre of this algorithm is clearly the function, ũ(n, 	w), which approx-
imates the expected profit of an allocation. Based closely on Eq. (5), we define
this as (omitting the parameters for brevity):

ũ = r̃ − c̃. (7)

Here, r̃ and c̃ are estimates of the expected reward and cost of the alloca-
tion, respectively (both unconditional on overall success of the workflow). In
the following, we describe how these estimates are calculated from a number
of parameters for the individual tasks—the success probability pi, expected
cost c̄i, expected completion time t̄i and variance σ 2

i . First, we outline how the
parameters are calculated, given the probabilistic information about service
instances discussed in Section 3.3 and an allocation, (ni, wi), for each task ti.

We start by calculating the success probability pi. This does not depend on
ni, because it is irrelevant for the overall success probability whether services
are invoked in series or in parallel. Hence, we let vi = |Si| be the total number

4This particular choice is not central to our work. We have carried out experiments with a range of

local search techniques, including simulated annealing, random restart hill-climbing and simple

hill-climbing (where the first better solution is chosen at each iteration), which all achieve similar

results.
5We generate this by drawing an integer uniformly at random from the the interval

[
1,

min(|Si | , ϕi)
]
, where ϕi = max(10,

⌈−3/ log10(fi)
⌉
) for each ni (this ensures that we do not ini-

tially provision an unnecessarily high number of providers), and by drawing a value from the

distribution di and setting wi to the nearest integer that is equal or higher.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:19

Fig. 4. Possible state transitions as consumer invokes services in sequence.

of service instances for the task, and then re-write Eq. (4):

pi = 1 − (1 − (1 − fi) · Di(wi))
vi (8)

Next, we calculate the expected cost c̄i, which depends on the expected num-
ber of invocations that are carried out for the task, before it is successful.
To illustrate this, Figure 4 shows the possible state transitions of a service-
consuming agent. In state 1, the agent invokes the first set of ni services. With
probability p̂i = 1 − (1 − (1 − fi) · Di(wi))

ni at least one of these is successful,
but with probability 1 − p̂i none of them will succeed. In the latter case, the
consumer then invokes a new set of ni services (in state 2). This process repeats
until one invocation is successful or no more services are available (for now, we
assume that vi mod ni = 0, so that there are up to m = vi/ni invocations of
exactly ni services each).

We note from this diagram that the consumer is guaranteed to pay the full
cost of invoking all ni services for task ti (nici) at least once. After this, the
consumer generally has to pay again if the previously invoked set of services
has failed (each with probability 1 − p̂i). Formally, we let f̂ i = 1 − p̂i and give
the expected cost for task ti as follows:

c̄i = nici + f̂ i · (nici + f̂ i · (nici + f̂ i · (· · · + f̂ i · (nici) · · ·)))︸ ︷︷ ︸
m instancesof nici

(9)

= nici + f̂ i · nici + f̂ i
2 · nici + f̂ i

3 · nici + · · · + f̂ i
m−1 · nici (10)

= nici · (
1 + f̂ i + f̂ i

2 + · · · + f̂ i
m−1

)
(11)

= nici

m−1∑
k=0

f̂ i
k . (12)

This summation grows with the number of available services, vi. To make it
more tractable, we note that it is a geometric series and rewrite it as follows
(assuming f̂ i < 1):

c̄i = nici · 1 − f̂ i
m

1 − f̂ i
. (13)

Equation (13) is the expected cost for task ti, assuming that vi mod ni = 0. To
generalize this result for cases where vi mod ni �= 0, we note that the consumer
will invoke all remaining services on its last try. For this case, we let m = �vi/ni
be the number of full invocations (ni services each) and r = vi mod ni be the
remaining number of services after m invocations. Then, the consumer will
pay cr = cir for the last invocation if all previous services have failed (which

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:20 • S. Stein et al.

happens with probability f̂ i
m). To generalize Eq. (13), we simply include this

cost:

c̄i = nici · 1 − f̂ i
m

1 − f̂ i
+ f̂ i

mcir. (14)

Finally, we are interested in calculating the expected time t̄i until the task
is completed. We define this as the mean time until the first service completes
the task successfully, conditional on overall success (i.e., that at least one ser-
vice is successful). First, we let μi be the mean duration of a single successful
invocation. In other words, given that ni services are invoked and that at least
one completes successfully before time-out wi, μi is the expected duration of
the fastest successful service (as observed by the consumer).

To calculate μi, we first let D̂i(x) be the cumulative (nonconditional) prob-
ability that at least one out of ni services has finished successfully by time
x:

D̂i(x) = 1 − (1 − (1 − fi) · Di(x))ni (15)

With this, we calculate μi as follows:

μi = 1

D̂i(wi)

wi∑
k=1

k · (D̂i(k) − D̂i(k − 1)) (16)

Now, to calculate the overall expected time of the task, we again assume
that vi mod ni = 0 and follow similar reasoning as for the expected cost by
considering Figure 4. When the consumer succeeds after state 1, its expected
duration is then μi, and if it succeeds after state 2, the expected duration is
wi + μi. We formulate the general case, after the kth invocation as:

d̄ k = (k − 1) · wi + μi. (17)

The associated nonconditional probability of this event (succeeding after the
kth invocation) is f̂ i

k−1(1 − f̂ i). Using this, and conditioning on an overall suc-
cess, we can now write the expected time for task ti as:

t̄i = 1

pi
·

m∑
k=1

d̄k f̂ i
k−1(1 − f̂ i)

= 1

pi
·

m∑
k=1

((
k − 1

) · wi + μi
) · f̂ i

k−1(1 − f̂ i)

= 1

pi
·

m−1∑
k=0

(k · wi + μi) · f̂ i
k(1 − f̂ i). (18)

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:21

Again, it is possible to rearrange this and write it in closed form. In particular,

we again assume that f̂ i < 1 and note that
∑∞

k=1 f̂ i
kk = f̂ i/

(
f̂ i − 1

)2
.

t̄i pi =
m−1∑
k=0

(k · wi + μi) · f̂ i
k (

1 − f̂ i
)

= (1 − f̂ i)
m−1∑
k=0

f̂ i
k(μi + kwi)

= (1 − f̂ i)

(
m−1∑
k=0

f̂ i
kμi +

m−1∑
k=1

f̂ i
kkwi

)

= (1 − f̂ i)

(
μi

1 − f̂ i
m

1 − f̂ i
+ wi

(
f̂ i − f̂ i

m

(1 − f̂ i)2
− (m − 1) f̂ i

m

1 − f̂ i

))

= μi
(
1 − f̂ i

m) + wi
f̂i − m f̂i

m + (m − 1) f̂ i
m+1

1 − f̂ i
. (19)

To generalize this, when vi mod ni �= 0, we again let m = �vi/ni be the
number of full invocations and r = vi mod ni the remaining services. We also
let λi be the mean duration to the first success when r services are invoked
(calculated analogously to μi in Eq. (16)), and we let f̌ r be the probability of
failure when invoking r services in parallel. Then we can add the impact of the
remaining services to extend Eq. (19):

t̄i = 1

pi

(
μi

(
1− f̂ i

m)+wi
f̂i − m f̂i

m + (m − 1) f̂ i
m+1

1 − f̂ i
+ f̂ i

m(1 − f̌ r)(λi + mwi)

)
.

(20)

Finally, to calculate the variance, σ 2
i , of the task, we let Ci be a random

variable representing the duration of the task, conditional on its success (note,
its expected value, E(Ci), is equal to t̄i). We are interested in the variance of
this variable, VAR(Ci), which we calculate as follows:

σ 2
i = VAR(Ci)

= E
(
C2

i

) − E(Ci)
2. (21)

We can calculate E(Ci)
2 as given by Eq. (20), but to calculate E(C2

i), further
steps are necessary. First, we consider two cases, as before: (1) the task is
successful during the first m = �vi/ni full invocations, and (2) the task is
successful in the last invocation with r = vi mod ni parallel services (if r �= 0).
We use two random variables to denote the durations in each case — Ai and Bi,
respectively (again, these are conditional on the task being successful in each
case). In order to treat both cases separately, we can now rewrite E(C2

i), letting
PA be the probability that case (1) occurs, and PB the probability that case (2)
occurs, both conditional on overall success:

E
(
C2

i

) = PAE
(
A2

i

) + PBE
(
B2

i

)
= 1 − f̂ m

i

1 − f̆ r f̂ m
i

E
(
A2

i

) + f̂ m
i (1 − f̆ r)

1 − f̆ r f̂ m
i

E
(
B2

i

)
. (22)

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:22 • S. Stein et al.

Furthermore, we separate each of these durations into the total time spent
waiting for unsuccessful invocations that are timed-out (we denote these as
AWi and BWi) and the time that passes during the last invocation before the
first service is successful (denoted as ADi and BDi), and we note that these two
components are independent of each other in our model. Beginning with the
first case, we thus write:

E
(
A2

i

) = VAR(Ai) + E(Ai)
2

= VAR(AWi) + VAR(ADi) + (E(AWi) + E(ADi))
2

= E
(
A2

Wi

) − E(AWi)
2 + E

(
A2

Di

) − E(ADi)
2 + (E(AWi) + E(ADi))

2

= E
(
A2

Wi

) + E
(
A2

Di

) + 2E(AWi)E(ADi). (23)

The expected duration of a single invocation, E(ADi), is equal to μi, which we
calculate using Eq. (16). The expected squared duration, E(A2

Di), is similarly
calculated by multiplying the term inside the summation by k2 instead of k.
The expected waiting time, E(AWi), is obtained from Eq. (19):

E(AWi) = wi

(1 − f̂ i)(1 − f̂ m
i)

(f̂ i − m f̂ m
i + (m − 1) f̂ m+1

i). (24)

To derive the expected squared waiting time, E(A2
Wi), we follow similar rea-

soning as for Eq. (18):

E
(
A2

Wi

) = (1 − f̂ i)w2
i

1 − f̂ m
i

m−1∑
k=0

k2 f̂ k
i (25)

= w2
i

(1 − f̂ m
i)(1 − f̂ i)2

(
f̂ i + f̂ 2

i − m2 f̂ m
i

− (2m + 1 − 2m2) f̂ m+1
i + (2m − 1 − m2) f̂ m+2

i

)
(26)

Next, when vi mod ni �= 0, we also need to calculate the expected squared
duration if the consumer is successful on the last invocation, E(B2

i). This is
done analogously to Eq. (23), simplified by the fact that a constant waiting time
(mwi) is associated with the last invocation:

E(B2
i) = VAR(Bi) + E(Bi)

2 = E
(
B2

Wi

) + E
(
B2

Di

) + 2E
(
BWi

)
E(BDi)

= (mwi)
2 + E

(
B2

Di

) + 2mwiE(BDi). (27)

The remaining terms, E(BDi) and E(B2
Di), are calculated as E(ADi) and

E(A2
Di), discussed above.

We have now finished analyzing the performance characteristics of a single
task ti given an allocation (ni, wi) and some knowledge about the services avail-
able for the task. In particular, we can calculate the success probability of the
task (pi in Eq. (8)), the expected cost of attempting the task (c̄i in Eq. (14)), the
expected completion time of the task, conditional on its success (t̄i in Eq. (20)),
and its variance (σ 2 in Eq. (21)). Given these calculations for each task, we are
now interested in estimating the expected reward r̃ and the expected cost c̃ for
the overall workflow, which are required for our heuristic utility function given
in Eq. (7).

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:23

The estimated total cost is the sum of all task costs, each multiplied by the
respective success probabilities of their predecessors in the workflow (where ri
is the probability that task ti is ever reached):

c̃ =
∑

{i|ti∈T }
ric̄i (28)

ri =
{

1 if ∀t j · (
(t j �→ ti) /∈ E

)∏
{ j |(t j �→ti)∈E} pj otherwise.

(29)

Next, to estimate the expected reward of the allocation, we need a duration
distribution for the complete workflow (again, conditional on overall success). To
this end, we employ a technique from operations research [Malcolm et al. 1959],
and evaluate the critical path of the workflow (i.e., the path that maximises the
sum of all mean task durations along it). To obtain an estimated distribution
for the duration of this path, we approximate it with a normal distribution
that has a mean λW equal to the sum of all mean task durations along the
path and a variance vW equal to the sum of the respective task variances.
This approach exploits the central limit theorem, which states that the sum
of arbitrary independent random variables can be approximated using such
a distribution.6 Hence, the corresponding probability density function for the
workflow duration is:

dW (x) = 1√
vW 2π

e
− (x−λW)2

2vW (30)

with

λW =
∑

{i|ti∈P}
t̄i (31)

vW =
∑

{i|ti∈P}
σ 2

i , (32)

where P = {ti | ti is on the critical path}.
Next, we use the distribution dW (x) to estimate the expected reward of the

allocation. In so doing, we assume that workflow finishing times can be con-
tinuous. This allows us to derive a closed, analytical solution, but also means
that we may slightly overestimate the reward. In practice, we believe that the
introduced error will be negligible, especially when time steps are small, and
our results support this. To this end, we assume overall success and denote the
corresponding expected reward with r̃s:

r̃s =
∫ ∞

0

dW (x)u(x) dx. (33)

6This theorem holds when the number of variables approaches infinity and makes some assump-

tions about the variables, for example, that their third moments must be finite [DeGroot and

Shervish 2002]. However, we have verified that this approximation works well in practice, even

when considering small workflows (see Section 5.7).

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:24 • S. Stein et al.

In order to calculate this, we let DW (x) = ∫ x
−∞ dW (y) d y be the cumulative

probability function7 of dW (x), we let Dmax = DW (tmax) be the probability that
the workflow will finish no later than the deadline tmax and Dlate = DW (t0) −
DW (tmax) the probability that the workflow will finish after the deadline but no
later than time t0 = umax

δ
+ tmax (both conditional on overall success).

Next, we consider three distinct cases, as derived from Eq. (2) for u(t). First,
the workflow may finish within the deadline tmax—in this case, which happens
with probability Dmax, the consumer will receive the full reward, umax. Second,
the workflow may finish after t0—this happens with probability 1− DW (t0), and
here the consumer receives no reward (and so we can ignore it). Finally, the
workflow may finish between these two times, which happens with probability
Dlate. Because u(t) is linear on this interval, we can calculate the expected
reward in this case by applying u(t) to the mean time on the interval, which we
denote by t̄late. Hence, we can rewrite Eq. (33):

r̃s = Dmax · umax + Dlate · u(t̄late). (34)

Now, we calculate t̄late:

t̄late = 1

Dlate

∫ t0

tmax

dW (x)x dx

= λW +
(

e
−(tmax−λW)2

2vW − e
−(t0−λW)2

2vW

) √
vW

Dlate · √
2π

. (35)

Finally, this reward (r̃s) is only obtained when the workflow is successful.
Hence, we calculate the overall probability of success, p, as the product of all
pi:

p =
∏

{i|ti∈T }
pi. (36)

This allows us to summarize our heuristic utility function as follows:

ũ = p · (Dmax · umax + Dlate · u(t̄late)) − c̃ (37)

Using this heuristic function, it is now possible to use steepest-ascent hill-
climbing as described at the beginning of this section. Through observations,
we have seen that our hill-climbing algorithm quickly converges to a good
solution.8 In particular, the heuristic function ũ can be solved efficiently in
quadratic time. The bottleneck here is the calculation for Eqs. (28) and (29).
However, after the initial calculation, only small adjustments need to be made
at each iteration of the hill-climbing procedure, further reducing the run-time
of calculating ũ. In this case, it is bounded by the critical path problem used
in Eqs. (31) and (32), which has a run-time in O(|T | + |E |) where |T | is the

7This is a common function that is usually approximated numerically. In our implementation, we

use the SSJ library (http://www.iro.umontreal.ca/~simardr/ssj).
8On average, around six iterations are needed per task in the workflow. During the experimental

evaluation of our algorithm (see Section 5), a solution was typically found within 250 ms (10 tasks)

or 5 s (50 tasks) on a 3-GHz Pentium 4 with 1 GB RAM.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:25

Fig. 5. Example bioinformatics workflow (based on workflows described in Smith et al. [1997],

Kochut et al. [2003], O’Brien et al. [2004]).

number of tasks in the workflow and |E | the number of direct, non-transitive
edges.9

To illustrate the behavior of our flexible strategy, we briefly outline the pro-
visioning of an example workflow in the following section.

4.4.3 Illustrative Example. In this section, we discuss how an example
workflow is provisioned by our algorithm, and how the various performance
measures introduced in Section 4.4.2 are calculated and used in practice. To this
end, we use a simple workflow from the bioinformatics domain — an area that
relies heavily on computationally intensive services and that has increasingly
seen the establishment of large distributed Grid systems for sharing resources,
as exemplified by the myGrid project [Oinn et al. 2006]. For our example, we
assume that a scientist has just sequenced a previously unknown gene of a
bacterium, and is now interested in visualising the shape of the associated
protein. For this, she has to carry out a number of tasks, which are shown in
Figure 5.

Her initial data comprises a large set of overlapping DNA fragments in the
form of chromatograms, as is common in shotgun DNA sequencing [Ewing et al.
1998]. These show characteristic light traces at different wavelengths, corre-
sponding to the four bases found in a DNA sequence. As these traces typically
contain some noise and errors, the scientist first needs to run a base-calling ser-
vice (BaseCall). This translates the chromatograms to the corresponding base
sequences, attaching a quality value to each base in the process that denotes
how accurate the assignment of the base is. The resulting base sequences are
then assembled to a single continuous DNA sequence by identifying and merg-
ing overlapping fragments, using the quality values to find and repair errors.
This task is performed by a sequence-assembling service, which also identifies
and isolates the coding region of the gene (GeneAssemble).

When the coding region of the gene has been assembled, it is then trans-
lated to the corresponding amino acid sequence using a simple translation ser-
vice (Translate). As the primary structure of the protein, this forms the input
to the computationally-intensive folding service (Fold), which predicts the 3-
dimensional shape of the protein based on a search for the conformation with
the lowest free energy. The output of this—a file containing the tertiary struc-
tural data—is then rendered in high resolution using an appropriate graphics
service (Render). In parallel with the folding simulation, the scientist is also

9We also assume that the probability density functions of service invocation durations and related

expected values, as calculated in Eq. (16), can be efficiently calculated (or else approximated).

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:26 • S. Stein et al.

Table I. Service Types Used in the Example Workflow

Fail. Mean

Service Prob. Cost ($) Number Duration (min.) Var.

BaseCall 0.2 1 50 Gamma(1.5,2) 3 6

GeneAssemble 0.1 5 50 Gamma(5,2) 10 20

Blast 0.3 2 500 Gamma(5,3) 15 45

LookUp 0.5 5 10 Gamma(1.5,1.5) 2.25 3.375

Render 0.1 10 25 Gamma(30,3) 90 270

Translate 0.7 0.5 200 Gamma(1,1) 1 1

Fold 0.2 10 5 Gamma(3,30) 90 2700

Print 0.2 2 20 Gamma(2,3) 6 18

interested in comparing the new gene to previously discovered sequences. To
this end, she searches through public collections of known proteins to find the
closest match using a specialised service (Blast), and then accesses commercial
database services to retrieve structural information about the protein (LookUp).
This is rendered again, and both images are printed as part of a report on a
local printer (Print).

The constituent service types for the scientist’s workflow are detailed in
Table I, along with their failure probabilities, invocation costs, numbers avail-
able, their respective duration distributions10 and associated means and vari-
ances. These were chosen to represent a set of services with variable perfor-
mance characteristics—for example, Translate is a cheap, fast and unreliable
service type, while Render is expensive, slow and reliable.

Now, for our illustrative example, we assume that the scientist has a
deadline of four hours, and values the workflow at $150, which decreases
by $1 for each minute that it is late. Figure 6 shows the initial allocation
for the workflow. As outlined in Section 4.4.2, the algorithm begins here
by randomly provisioning service instances for the constituent tasks of the
workflow.

To illustrate the calculations11 our algorithm performs on this allocation,
we consider the upper Render task in the workflow (t4). Here, the algorithm
first calculates the probability of success for the task, p4, using Eq. (8). As
there are a number of service instances (v4 = 25), this probability is p4 =
1−(1−(1−0.1)·0.62)25 = 1.00. Next, the algorithm calculates the expected cost,
c̄4, using Eq. (14). This is high (c̄4 = 1 · 10 · 1−0.443725

1−0.4437
= 17.98), because the initial

allocation will ignore any services that finish after the mean duration (even if
they are successful). Finally, the expected completion time, t̄4, is calculated
using Eq. (20). Again, this is high (t̄4 = 1

1
· (80.22155 · (1 − f̂ 25

4) + 94 · (f̂4 − 25 ·

10We assume that services in this example follow a gamma distribution Gamma(k, θ) with pdf

p(x, k, θ) = xk−1e− x
θ
(k)−1θ−k , which has been chosen because it is well suited for uncertain service

times that are always positive, but are not usually bounded above. The gamma distribution also

includes common other distributions such as the exponential and Erlang distributions, both of

which are often used in the analysis of service and queueing times [Trivedi 2001]. However, this

choice is only for illustrative purposes - in practice, an arbitrary distribution can be used to model

service durations.
11For readability, all values presented here are reported to two decimal places, except where addi-

tional precision is necessary during the calculations.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:27

Fig. 6. Initial provisioning allocation.

f̂ 25
4 + (25−1) · f̂ 25+1

4) · 1

1− f̂ 4
) = 155.19, where f̂4 = 0.44367) for the same reason

as the expected cost.
Given these values for all tasks in the workflow, the algorithm next derives

the overall expected performance measures for the workflow (these are sum-
marized in the box to the right of the workflow). First, the overall success
probability, p, is calculated using Eq. (36). This is low, due to the inappro-
priate time-out value for the Fold task (t6), which results in a high failure
probability of that task (p = ∏

{i|ti∈T } pi = 1.007 · 0.26 = 0.26). The expected
cost, c̃, is estimated next using Eq. (28). In this case, we derive an estimated
cost of c̃ = ∑

{i|ti∈T } ric̄i = 175.25 for the whole workflow. After this, the algo-
rithm estimates the distribution of the overall completion time by summing
the expected completions times and variances along the critical path, using
Eqs. (31) and (32). This yields a mean of λW = ∑

{i|ti∈P} t̄i = 1.620 + 5.356 +
10.867+2.747+155.187+2.130 = 177.91 and a variance of vW = ∑

{i|ti∈P} σ 2
i =

0.87+2.81+36.63+4.88+12759.06+1.18 = 12805.43. Using these as the mean
and variance of a normal distribution (dW (x) in Eq. (30), which was derived us-
ing the central limit theorem), we estimate that the workflow will finish within
the deadline tmax with probability Dmax = ∫ tmax

−∞ dW (y)d y = 0.708395. We also
estimate that the probability of finishing between the deadline and t0 is Dlate =∫ t0

tmax
dW (y)d y = 0.261157. In the latter case, we calculate the expected comple-

tion time using Eq. (35) (t̄late = 296.766592). Finally, using these intermediate
values in Eq. (37) yields a total utility estimate of ũ = 0.262624·(0.708395·150+
0.261157 · u(296.766592)) − 175.245220 = −140.94. This is low because of the
high degree of parallelism in the workflow (resulting in unnecessary expenses)
and the low overall success probability (resulting in a low estimated reward).

To improve this initial allocation, our algorithm now repeatedly considers
a number of neighbor allocations and, at each iteration, picks the one that
promises the highest estimated profit. This is repeated until no more improve-
ments can be made. Figure 7 shows the final allocation found by our algorithm,
which includes several tasks where providers have been provisioned in parallel,

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:28 • S. Stein et al.

Fig. 7. Finally provisioned workflow.

but mostly relies on serial provisioning as this saves money. Contrasting this
with the initial allocation, the improvements are clearly visible—for example,
the expected cost of the Render task in the upper branch (t4) has now been
reduced from c̄4 = 17.98 to 11.11 and its expected duration has been low-
ered, simply by choosing a more appropriate waiting time (from t̄4 = 155.19 to
109.84). It is also evident that the structure of the workflow has been taken into
account—two providers have been provisioned in parallel for the lower Render
task (t7), despite being the same type of service. This means that the task is
faster (c̄7 = 84.41), but also more expensive (c̄7 = 20.22) than its counterpart in
the upper branch. This is beneficial, because the durations of the lower tasks
are generally longer, and so the consumer has to invest more resources in or-
der to meet its workflow deadline. Overall, the consumer now expects to finish
within the deadline tmax = 240 with probability Dmax = 0.7593, and between
the deadline and t0 = 390 with probability Dlate = 0.2397. In the latter case,
its expected finishing time is t̄late = 276.4548, leading to an overall estimated
utility of ũ = 0.9977 · (0.7593 · 150 + 0.2397 · u(276.4548)) − 77.6572 = 63.13.

To give a second example, Figure 8 shows the same workflow in a scenario
where the scientist requires her results in a far shorter time period (within 150
minutes), where she values the outcome more highly (the value is now $1,000),
and where the penalty is higher than in the previous example ($20 per minute).
Here, our algorithm is using a far higher level of redundancy than previously,
because that allows the agent to finish more quickly and reliably. For example,
for the Render task in the lower branch, the algorithm has now provisioned
five services in parallel, which is very expensive (c̄7 = 50.00), but also results
in a low expected duration (t̄7 = 73.32) necessary to meet the overall deadline.
Nevertheless, the algorithm still chooses to provision a single service for the
LookUp task. As before, this is because the tasks on the lower branch take
longer, and so the consumer can save some costs by executing the upper tasks
in series. Overall, the consumer now expects to finish within the deadline tmax =
150 with probability Dmax = 0.78 and it is late with probability Dlate = 0.22 (in

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:29

Fig. 8. Provisioned workflow with shorter deadline and higher reward.

which case its expected finishing time is t̄late = 163.23). Due to the high levels of
redundancy, the estimated expected cost has now more than doubled compared
to the previous case (c̃ = 167.35), but the overall higher reward results in a
high estimated utility of ũ = 762.22 that justifies the expenses.

In order to evaluate this strategy and to compare it against less flexible
approaches, in the following section, we describe a set of experiments that we
carried out to this end.

5. EXPERIMENTAL EVALUATION

In this section, we experimentally compare our proposed strategies to the cur-
rently predominant naı̈ve approach.12 The aim of this part of our work is to
compare the performance of our strategies to current approaches when there is
some uncertainty in the behavior of services. We also intend to verify that our
flexible strategy in particular takes appropriate decisions and makes an overall
profit over a variety of environments while achieving high success rates. We de-
cided to conduct an experimental study (rather than an analytical one), because
of the inherent difficulty of calculating workflow completion distributions (see
Section 4.4.1).

To this end, we investigate the average profit gained by all strategies, as
well as the average proportion of successfully completed workflows. We begin
in Section 5.1 by describing our experimental testbed and our methodology. In
Section 5.2, we outline a set of hypotheses to guide our experiments and in
Sections 5.3–5.5 we present our results. Then, in Section 5.6, we show how our
strategy deals with larger workflows, and in Section 5.7, we compare it to the
optimal strategy (for a simplified scenario).

12As we assume limited information about each task, the naı̈ve strategy also subsumes a number

of other QoS optimization approaches that were discussed in Section 2. This is because they rely on

more detailed information about individual service instances and user-specified constraints that

are not available in our model.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:30 • S. Stein et al.

Fig. 9. Several random workflows with 10 tasks, 3 different services types (indicated by the task

labels) and varying degrees of parallelism.

5.1 Testbed and Methodology

In order to analyze our strategies experimentally, we developed a computer sim-
ulation of a service-oriented system. In this simulation, the system is populated
by agents offering services, as described in Section 3. During each experimental
run, a random workflow is first created according to some predefined variables.
These include the number of tasks in the workflow, the service types that should
be included, and a parameter indicating the parallelism of the workflow. The
latter is a variable ranging from 0 to 1, where 0 results in completely linear
workflows (i.e., the task dependencies form a total order), while 1 causes work-
flows to be completely parallel (i.e., there are no dependencies between tasks).
Any intermediate value indicates the number of edges that should be introduced
as a proportion of the number of edges possible13 (see Figure 9). This workflow
is then executed by a service-consuming agent using one of the strategies out-
lined in Section 4. These runs are episodic and each involves the execution of
exactly one workflow, with no interactions between successive runs.

To analyze the performance of a particular strategy, our simulation executes
a large number of experimental runs (the data in this section was collected
using 1,000 runs for each experimental setup) and then records the following
statistics14:

—The proportion of successful workflows for the strategy (where the strategy
completes the workflow within time t, so that u(t) > 0).

—The average profit of the strategy (the profit of a workflow execution is the
difference between the utility reward u(t) for completing the workflow and
the incurred cost).

These indicate the extent to which the consumer agent manages to complete
its workflows within the given time-constraints and whether it manages to

13We implement this by randomly populating an adjacency matrix until the given threshold is

reached.
14To test for statistical significance, we also record the variances of all averages.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:31

achieve a high average profit at the same time, without making an overall
loss.

To concentrate on the core issues of uncertain service behavior and because
our approach does not deal directly with differentiating between individual
services of the same type at this time, we examined environments with homo-
geneous service instances (i.e., all services share the same success probability
and duration distributions) for a given service type.

For the data presented in this section, we used workflows with 10 tasks
and a linearity parameter of 1 (i.e., without parallel tasks). This means that
the experiments presented here are particularly relevant to scenarios where
workflows are highly interdependent. By using such linear workflows, we were
also able to check some of our results analytically to verify that our simulation
is correct (in particular, we verified the results presented in Sections 5.3 and
5.4).

Furthermore, we assumed that there were 1,000 services for every task with
each service having a cost of 10 and a gamma distribution with shape k = 2
and scale θ = 10 as the probability distribution of the service duration. We set a
deadline of 400 time units for each workflow, an associated maximum utility of
1,000 and a penalty of 10 per time unit. We also performed similar experiments
in a variety of environments, including heterogeneous and parallel tasks, and
observed the same broad trends that are presented in the following section
(some of these results are presented in Section 5.6).

To prove the statistical significance of our results, we averaged data over
1,000 test runs and performed an analysis of variance (ANOVA) where appro-
priate to determine whether the strategies we tested produced significantly
different results [Cohen 1995]. When this was the case, we carried out pairwise
comparisons using the least significant difference (LSD) test. Thus, all results
reported in the following sections are statistically significant (at the p = 0.001
level).

5.2 Hypotheses

Before discussing the results of our experiments, we outline four hypothe-
ses that drive our investigation. The first two are concerned with the effects
of the two basic, nonflexible strategies, parallel(n) and serial(w). The aim of
these hypotheses is to show that it is possible to achieve better results us-
ing simple techniques for handling failures than when relying on the naı̈ve
strategy.

Hypothesis 1. Adopting strategy parallel(n) in uncertain environments can
lead to an improvement in the average profit over the naı̈ve strategy.

Hypothesis 2. Adopting strategy serial(w) in uncertain environments can
lead to an improvement in the average profit over the naı̈ve strategy.

The other two hypotheses are concerned with evaluating the flexible strategy.
Here, we present two hypotheses concerned with the average profit and the
success probability. This presents the flexible strategy in more detail than the
previous two strategies due to its importance to our research.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:32 • S. Stein et al.

Fig. 10. Effect of provisioning different numbers of services in parallel (data shown with 95%

confidence intervals).

Hypothesis 3. The flexible strategy produces a higher profit than any of the
other examined strategies, averaged over all cases.

Hypothesis 4. The flexible strategy successfully completes a higher propor-
tion of workflows than any of the other examined strategies, averaged over all
cases.

To evaluate Hypotheses 1–4, we tested each of the four strategies naı̈ve, par-
allel(n), serial(w) and flexible using the same experimental variables (as out-
lined in Section 5.1). We summarize the results by discussing each hypothesis
separately.

5.3 Parallel Provisioning (Hypothesis 1)

In our first experiment, we compared the performance of strategy parallel(n)15

with the naı̈ve approach in environments where services have a varying prob-
ability of failure, as shown in Figure 10 (throughout this section, we vary the
failure probability in steps of 0.01 from 0 to 1). From this, it is clear that there
is a considerable difference in performance between the different strategies—
the average profit gained by the naı̈ve strategy falls dramatically as soon as
failures are introduced into the system. In this case, the average profit gained
by provisioning single services falls to around 0 when the failure probability of
services is only 0.3. A statistical analysis reveals that the naı̈ve strategy dom-
inates the other two when there is no uncertainty in the system. However, as
soon as the failure probability is raised to 0.02, parallel(2) begins to dominate
the other strategies. Between 0.35 and 0.65, parallel(6) then becomes the dom-
inant strategy as increased service redundancy leads to a higher probability of

15Here, we arbitrarily chose n = 2 and n = 6 as representative of the general trends displayed by

the strategy as more services are provisioned.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:33

Fig. 11. Effect of different amounts of waiting times for serial provisioning (data shown with 95%

confidence intervals).

success. Above this, the parallel strategies do not yield better results than the
naı̈ve strategy as they also begin to fail in most cases.

Summarizing these trends, it is obvious that parallel provisioning yields a
considerable improvement over the naı̈ve approach in a range of environments.
For example, when the failure probability is 0.2, provisioning two services re-
sults in an average profit of 497.2 ± 26.6 (with 95% confidence interval), while
the naı̈ve strategy achieves only 58.2 ± 17.9. This leads us to conclude that the
parallel(n) strategy can indeed lead to an improvement and, hence, that Hy-
pothesis 1 holds. However, no parallel strategy dominates the other and they
all eventually make losses when the probability of failure increases to such an
extent that the chosen redundancy levels do not suffice to ensure success. In
this context, it is interesting to note the losses of each strategy become smaller
again after a certain minimum is passed (e.g., parallel(6) reaches a minimum
when the failure probability is around 0.8). This is because the strategies fail
earlier in the workflow and therefore lose a lower investment. In conclusion,
parallel provisioning is sensitive to the right choice of n and might even lead to
an overall loss if the wrong parameter is chosen.

5.4 Serial Provisioning (Hypothesis 2)

We carried out a similar experiment to verify the advantage of serial provi-
sioning over the naı̈ve strategy (see Figure 11). Here, again, there is a marked
improvement over the naı̈ve strategy for failure probabilities up to and includ-
ing 0.5. This improvement is due to the fact that serial provisioning responds
to failures as they occur, while only paying for additional services when neces-
sary. However, as the failure probability rises, this strategy begins to miss its
deadlines and hence incurs increasingly large losses.

Overall, a significant improvement in the average profit for some environ-
ments leads us to conclude that Hypothesis 2 holds. Again, the strategy is

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:34 • S. Stein et al.

Fig. 12. Average profit of flexible strategy (data shown with 95% confidence intervals).

sensitive to the choice of parameter w, but this time, serial(30) dominates se-
rial(100) when there is uncertainty, until both make a loss.

5.5 Flexible Provisioning (Hypotheses 3 and 4)

To show how the flexible strategy compares against the naı̈ve provisioning ap-
proach and our nonflexible strategies, Figure 12 plots the average profit of vari-
ous strategies against the service failure probabilities. Here, it is clear that the
flexible approach performs better than any of the other strategies. This is due,
in part, to the flexibility of the strategy that allows it to provision more services
for later parts of the workflow, where success becomes more critical as a higher
investment has already been made. The flexible approach also combines the
benefits of the other strategies, allowing the agent to choose between parallel
(e.g., when there is little time) and serial provisioning (e.g., when the agent can
afford the extra waiting time) or a mixture of the two. Although performance
degrades as services become more failure-prone, flexible provisioning retains
a relatively high average profit when all other strategies start to make a loss.
Furthermore, the strategy avoids making an overall loss due to its prediction
mechanism, which ignores a workflow when it seems infeasible.

In Figure 13, we plot the success probability of each strategy against the
service failure probabilities. While maximizing the workflow success probability
was not the primary aim of devising the flexible strategy, the results show that
the strategy performs very well over a range of environments. More specifically,
it initially completes almost all workflows successfully, and maintains this trend
up to a failure probability of 0.8, by which all other approaches have large failure
rates. When this failure probability is exceeded, the strategy suddenly begins
to ignore all workflows, because it cannot find a feasible allocation to offer a
positive return. While the parallel(6) strategy still succeeds in a small fraction of
workflows, it is incurring significant losses, as explained in the previous section.

From these results, it is clear that hypotheses 3 and 4 hold. While there are
some cases where other strategies achieve similar results (e.g., when services

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:35

Fig. 13. Success probability of flexible strategy (data shown with 95% confidence intervals).

Table II. Summary of Results with 95% Confidence Intervals

Strategy Average Profit uc Profit vs Naı̈ve Success Rate ps

naı̈ve 65.16 ± 1.68 1 0.095 ± 0.002

serial(100) 142.47 ± 2.46 2.19 ± 0.07 0.258 ± 0.003

parallel(2) 177.98 ± 2.37 2.73 ± 0.08 0.272 ± 0.003

parallel(6) 180.06 ± 1.86 2.76 ± 0.08 0.626 ± 0.003

serial(30) 217.12 ± 3.06 3.33 ± 0.10 0.439 ± 0.003

flexible 523.90 ± 2.20 8.04 ± 0.21 0.795 ± 0.003

never fail), the flexible strategy achieves consistently good results, and, aver-
aged over all results discussed in Sections 5.3–5.5, dominates all other strate-
gies. This is summarized in Table II, which contains the performance statistics
of our representative strategies, averaged over all environments that we tested
so far (using the same data as in Figures 10–13). These results highlight the
benefits of our strategies, and show that the flexible strategy by far outperforms
the naı̈ve approach. In particular, we achieve an improvement of approximately
700% in average profit and successfully complete around 80% of all workflows.
To show that these results also hold in other scenarios, in the next section, we
consider a more complex case than the workflows discussed so far.

5.6 Performance in Complex Environments (Hypotheses 3 and 4)

In the previous section, we examined the performance of our strategies in the
context of a small, sequential workflow with only one type of service. As men-
tioned above, this allowed us to verify some results analytically. In this section,
we briefly present the results of a more complex problem, and, in doing so,
demonstrate that the same overall trends can be observed.

For this experiment, we created random workflows that consist of 50 tasks
and have a parallelism parameter of 0.25 (an example is given in Figure 14).
We also chose a random service type for each task from a set of seven types
that are detailed in Table III. These service types were chosen to display
a variety of parameters. For example, T1 is extremely fast and will almost

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:36 • S. Stein et al.

Fig. 14. An example workflow consisting of 50 tasks.

Table III. Service Types Used to Test Complex

Workflows

Mean

Service Cost ($) Duration (min.) Var.

T1 0.1 Gamma(1,0.1) 0.1 0.01

T2 0.1 Gamma(1,10) 10 100

T3 1 Gamma(5,1) 5 5

T4 1 Gamma(5,10) 50 500

T5 2 Gamma(10,1) 10 10

T6 2 Gamma(10,5) 50 250

T7 2 Gamma(100,0.1) 10 1

certainly complete by the next time step following its invocation, while, at the
other end of the scale, T4 and T6 both have a mean duration of 50 time units
(Figure 15(a) shows the duration functions for some of the services). Services
of type T1 are also very cheap (0.1 units), while those of T7 cost 20 times as
much.

Furthermore, we assumed that there were 100 instances of each service
type, and we used a utility function with a deadline of 1,000 time units, a
penalty of 1 per time unit and a maximum utility of 1,000 (this is shown in
Figure 15(b)). Again, we tested our strategies in environments where services
have different failure probabilities (0,0.01,0.02, . . . ,1), but this time we included
some variance in the failure probabilities of different service types. Specifically,
during each experimental run for a particular average failure probability f ,
we assigned a failure probability to each service type that was drawn from a
beta distribution16 with parameters α = f · 10 and β = 10 − α (unless f = 0
or f = 1, in which case all services had the same failure probability). This
process, which was repeated for all 1,000 runs for each value of f , meant that
the average failure probability of all service types would approach f , but still
allowed considerable variance between the different types of services.

16The beta distribution was simply chosen because it always ranges between 0 and 1.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:37

Fig. 15. Experimental settings: (a) shows some service duration functions and (b) gives the utility

function we use.

Fig. 16. Average profit for various strategies when faced with complex workflows (data shown

with 95% confidence intervals).

With these experimental settings,17 we again tested the flexible strategy
against several other approaches (see Figure 16). Here, a similar pattern as
shown in Figure 12 emerges and our flexible approach clearly dominates the
other approaches when service success is uncertain (i.e., when the failure prob-
ability is greater than 0). When no services fail (failure probability is 0), the
flexible strategy does as well as the naı̈ve approach and better than any of the
others.

To complete the summary of this experiment, Figure 17 shows the success
probabilities of the strategies we tested. Again, the flexible strategy performs
very well compared to the other approaches. Although it is initially slightly
lower than parallel(10), it stays at a high level and only starts to drop below
90% when the failure probability rises to 70%. Overall, the results presented
in this section further highlight the promise of flexible provisioning techniques
and show that our strategy is applicable to large workflows with heterogeneous

17These parameters were chosen to exemplify the performance of the strategy. We have experi-

mented with other values and observed the same broad trends.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:38 • S. Stein et al.

Fig. 17. Success probabilities for various strategies when faced with complex workflows (data

shown with 95% confidence intervals).

service types and parallel workflow tasks. In particular, the results confirm that
our hypotheses 3 and 4 hold in these environments, as the same trends as in
the previous section are observed.

5.7 Optimality of Flexible Provisioning

As discussed previously, the flexible strategy uses a heuristic utility function
and a hill-climbing mechanism that is not optimal in general. However, adopt-
ing this heuristic method has made the provisioning of complex workflows
tractable. In this section, we compare the performance of our algorithm to the
theoretical optimal. More specifically, we first show our results in a simple en-
vironment (we consider a workflow with three sequential tasks, each of which
has a cost of 3, duration distribution Gamma(2,4), 20 providers, and a utility
function with deadline 30, maximum utility 100 and penalty 10). This sce-
nario allows us to solve our original optimization problem (as given by Eq. (6))
analytically. This is then followed by an analysis of the environment used in
Sections 5.3–5.5. Because deriving the optimal solution is intractable in this
case, we designed a new analytical flexible strategy. This is based on our flexible
strategy, but accurately calculates the expected utility, rather than relying on
a heuristic function. It then repeatedly performs a hill-climbing search with
random restarts (we restart the algorithm 200 times with random initial al-
locations). We believe that this is a reasonable approximation to the optimal,
and, in fact, there is no significant difference between its performance and the
theoretical optimal in the smaller environment.

Figure 18 shows the average profit of our strategy in these two environments
(here, failure probabilities were varied in steps of 0.1 due to the computational
cost of calculating an optimal solution). In both cases, while clearly suboptimal,
our strategy comes close to the expected utility of the optimal or near-optimal
strategies. In fact, when averaging over the failure probabilities we examined,
for 3-task workflows (Figure 18(a)), our flexible strategy achieves an average

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:39

Fig. 18. Average profit of flexible strategy (with 95% confidence intervals), compared to the optimal

strategy for 3 tasks in (a) and to the near-optimal strategy for 10 tasks in (b).

utility of 41.7 ± 0.7, compared to the optimal expected utility of 42.5, which
corresponds to achieving 98.2 ± 1.7% of the optimal. For 10-task workflows
(Figure 18(b)), we achieve even closer results with an average utility of 512.0±
7.0 compared to the near-optimal expected utility of 516.1. In fact, a t-test
confirms that this is not a statistically significant difference (p = 0.764). This
improvement, compared to the smaller workflows, may be due to our reliance
on the central limit theorem to estimate the duration distribution. When the
workflows become larger, this tends to give more accurate estimates. Overall,
these results are promising, because they show that our strategy achieves a
level of performance that is close to the optimal in the environments we tested,
using a fast heuristic method that is tractable even for large workflows.

6. CONCLUSIONS

In this section we conclude by first summarising the contribution of this article
(Section 6.1) and then outlining our future work (Section 6.2).

6.1 Summary

In this article, we highlighted the inherent unreliability and uncertainty of
computer services in open, distributed systems. This is becoming a particularly
pertinent problem as Semantic Web technologies enable previously unseen ser-
vices to be discovered and provisioned dynamically at run-time. However, much
work in this area has focussed only on functional service descriptions and there-
fore does not consider the possibility that providers may regularly fail to honour
these descriptions or take uncertain amounts of time to execute their services.
To address these shortcomings, we developed a heuristic provisioning strategy
that allocates multiple services for unreliable tasks to reduce the probability
of failure. Moreover, this strategy flexibly varies the number of provisioned
services for each task in order to maximize the service consumer’s expected
utility. In experiments, we showed that this strategy performs well in a variety
of environments, and that it consistently outperforms approaches that consider
services to be reliable or that rely on simple, nonflexible redundancy.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:40 • S. Stein et al.

By focussing on the provisioning of abstract workflows, our work builds on
and extends existing research in the area of Semantic Web services. Specifically,
we view service provisioning as an additional, intermediate stage between the
semantic matching of functional service capabilities and the invocation of ser-
vice instances. Frameworks such as OWL-S 1.1 [Martin et al. 2004] support
both the notion of functional service descriptions, characterising the service in
terms of its interface (i.e., Input, Output, Condition and Result), and nonfunc-
tional parameters that represent QoS properties for use in service selection and
provisioning tasks. To support the QoS metrics assumed by our method within
the OWL-S Profile, a set of additional definitions have been specified, such
as provision:SuccessProbability and provision:InvocationCost, that extend the
profile:ServiceCategory class [Stein et al. 2006]. The DatatypeProperty ranges
supported by these new classes contain real numbers, thus facilitating the
quantitative reasoning used by the different strategies described in Section 4.
An additional ObjectProperty, provision:sParameterSource, has been defined
to identify where these parameters were generated (e.g., the service provider
or another, trusted, third party service, such as the CONOISE quality agent
[Norman et al. 2004]).

A key advantage of the method presented in this article is that it does not rely
on a particular service framework, description language or matchmaking tech-
nique. Rather, we have focussed on providing a principled, abstract approach
for provisioning services that can be adapted by agent developers and system
designers to deal with uncertainty in their specific applications. In particular,
we believe that our flexible strategy can easily be integrated into to a large
number of existing systems for invoking abstract workflows in service-oriented
systems (e.g., McIlraith and Son [2002] and Friese et al. [2005]). In this con-
text, we envisage our work to be particularly important in scenarios where
workflows are of tangible value to the consumer, where some costs are associ-
ated with service invocation, and where there are time constraints for workflow
completion. Common application domains where these issues arise include au-
tomated business process management, high-performance utility computing,
peer-to-peer systems and scientific Grids.

However, by devising a general model, we could not cover the multitude of
domain-specific constraints that may arise in particular application scenarios,
and we have made a number of simplifying assumptions that do not always
hold in all possible environments. Some of these will be addressed in future
work, as outlined in the next section.

6.2 Future Work

In Section 3.5, we listed a number of assumptions underlying our work. In the
following, we describe how we plan to relax them in future work:

(1) Failure Model. It is easy to extend our model to include explicit failure mes-
sages, for example, by including a new mode of failure, where the provider
notifies the consumer of its failure after invocation. This would generally
reduce the expected duration of tasks as the consumer does not necessarily
need to wait for the specified time-out (Eq. (20)), but would not alter our
overall strategy.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:41

Considering Byzantine failures is more challenging, but our strategy forms
a solid basis for tackling this problem. As we already rely on redundancy,
it is straightforward to include voting schemes that select the majority of
several different service outcomes. Dealing with correlated failures also
poses new challenges, but there are a number of existing techniques for
modelling and learning such correlations, and for avoiding services that
are prone to correlated failures [Nicola and Goyal 1990; Weatherspoon et al.
2002; Townend et al. 2005].

(2) Performance Information. Although we assume accurate performance in-
formation to be available, we have conducted a separate evaluation using
inaccurate information and have shown that our strategy is robust to small
to moderate inaccuracies in most environments [Stein et al. 2007b]. Also,
while we concentrate on scenarios with limited information about service
populations in this article, we have extended our model for heterogeneous
environments in other work [Stein et al. 2007a].

(3) Payment Model. Again, it is easy to modify our model to include either re-
funds of failed services (with a certain probability) or extra charges that
might be incurred for the disposal of additional successful service invoca-
tions. Both of these only require small modification to Eq. (14).

(4) Reward Model. Our utility function can easily be extended to cover more
complex cases, especially as we use a generic hill-climbing algorithm to
optimize the overall provisioning allocation.

(5) Model Scope. In future work, we will cover more extensive workflow models
that may occur in practice, and which will require small modifications to the
way we aggregate performance parameters over the workflow. We envisage
that a large number of other domain-specific requirements can be easily
incorporated into our approach by placing appropriate constraints on the
hill-climbing algorithm. For example, when it is impossible to provision mul-
tiple services in parallel for a particular task, the corresponding parameter
n can be held constant at 1. Similarly, when there are close dependencies be-
tween several services offered by a single provider, these can be aggregated
and viewed at a higher level of abstraction as a single unit (e.g., a book ven-
dor’s submitOrder and payOrder services might be aggregated, as they only
produce the desired result of ordering a book when used in conjunction).

In addition to addressing the above issues, we are currently investigating
more complex pricing models where consumers and providers participate in
dynamic electronic service markets with constantly changing availability of
services [Jennings et al. 2001; Buyya et al. 2005]. In this work, we are particu-
larly interested in devising a strategy that automatically decides when to pro-
vision particularly critical or scarce services far in advance, and when to leave
sufficient flexibility to deal with unexpected failures or delays by provisioning
services on demand.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their comprehensive com-
ments on early drafts of this article.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:42 • S. Stein et al.

REFERENCES

AGGARWAL, R., VERMA, K., MILLER, J., AND MILNOR, W. 2004. Constraint driven web service composi-

tion in METEOR-S. In Proceedings of the IEEE International Conference on Services Computing
2004 (SCC 2004). IEEE Computer Society Press, Los Alamitos, CA, 23–30.

AGHDAIE, N. AND TAMIR, Y. 2003. Fast transparent failover for reliable web service. In Proceedings
of the 15th IASTED International Conference on Parallel and Distributed Computing and Systems
(PDCS). 757–762.

AKKIRAJU, R., VERMA, K., GOODWIN, R., DOSHI, P., AND LEE, J. 2004. Executing abstract web process

flows. In Proceedings of the ICAPS Workshop on Planning and Scheduling for Web and Grid
Services. 9–15.

ANDERSON, D. P., COBB, J., KORPELA, E., LEBOFSKY, M., AND WERTHIMER, D. 2002. SETI@home: An

experiment in public-resource computing. Comm. ACM 45, 11, 56–61.

ARUNACHALAM, R. AND SADEH, N. 2004. The 2003 supply chain management trading agent com-

petition. In Proceedings of the 6th International Conference on Electronic Commerce (ICEC ’04).
113–120.

BACCELLI, F., JEAN-MARIE, A., AND LIU, Z. 1993. A survey on solution methods for task graph

models. In Arbeitsberichte der IMMD, N. Götz, U. Herzog, and M. Rettelbach, Eds. Vol. 26 (14).

Universität Erlangen-Nürnberg, Erlangen, Chapter Second QMIPS Workshop, 163–183.

BENATALLAH, B., HACID, M.-S., LEGER, A., REY, C., AND TOUMANI, F. 2005. On automating web ser-

vices discovery. VLDB J. 14, 1, 84–96.

BOLOT, J.-C. 1993. End-to-end packet delay and loss behavior in the internet. In Proceedings of the
ACM SIGCOMM ’93 Conference on Communications Architectures, Protocols and Applications.

ACM, New York, 289–298.

BUYYA, R., ABRAMSON, D., AND VENUGOPAL, S. 2005. The grid economy. Proc. IEEE 93, 3, 698–714.

BYLANDER, T. 1994. The computational complexity of propositional STRIPS planning. Artif.
Intell. 69, 1-2, 165–204.

CANFORA, G., PENTA, M. D., ESPOSITO, R., AND VILLANI, M. L. 2005. QoS-aware replanning of compos-

ite web services. In Proceedings of the IEEE International Conference on Web Services (ICWS’05).
IEEE Computer Society Press, Los Alamitos, CA. 121–129.

CASATI, F., CERI, S., PARABOSCHI, S., AND POZZI, G. 1999. Specification and implementation of ex-

ceptions in workflow management systems. ACM Trans. Database Syst. 24, 3, 405–451.

COHEN, P. R. 1995. Empirical methods for artificial intelligence. MIT Press, Cambridge, MA.

COLLINS, J., BILOT, C., GINI, M., AND MOBASHER, B. 2001. Decision processes in agent-based auto-

mated contracting. IEEE Internet Comput. 5, 2, 61–72.

CRISTIAN, F. 1991. Understanding fault-tolerant distributed systems. Comm. ACM 34, 2, 56–78.

CURBERA, F., DUFTLER, M., KHALAF, R., NAGY, W., MUKHI, N., AND WEERAWARANA, S. 2002. Unraveling

the web services web: An introduction to SOAP, WSDL, and UDDI. IEEE Internet Comput. 6, 2,

86–93.

CURBERA, F., KHALAF, R., MUKHI, N., TAI, S., AND WEERAWARANA, S. 2003. The next step in web

services. Comm. ACM 46, 10, 29–34.

DAN, A., DAVIS, D., KEARNEY, R., KING, R., KELLER, A., KUEBLER, D., LUDWIG, H., POLAN, M., SPREITZER,

M., AND YOUSSEF, A. 2004. Web services on demand: WSLA-driven automated management.

IBM Syst. J. 43, 1, 136–158.

DEELMAN, E., BLYTHE, J., GIL, Y., KESSELMAN, C., MEHTA, G., VAHI, K., BLACKBURN, K., LAZZARINI, A.,

ARBREE, A., CAVANAUGH, R., AND KORANDA, S. 2003. Mapping abstract complex workflows onto

grid environments. J. Grid Comput. 1, 1, 25–39.

DEGROOT, M. H. AND SHERVISH, M. J. 2002. Probability and Statistics, 3rd ed. Addison-Wesley,

Reading, MA.

DODIN, B. 1985. Bounding the project completion time distribution in PERT networks. Oper.
Res. 33, 4, 862–881.

EDER, J. AND LIEBHART, W. 1995. The workflow activity model WAMO. In Proceedings of the 3rd
International Conference on Cooperative Information Systems. 87–98.

ERRADI, A., MAHESHWARI, P., AND TOSIC, V. 2006. Recovery policies for enhancing web services

reliability. In Proceedings of the IEEE International Conference on Web Services (ICWS’06). IEEE

Computer Society Press, Los Alamitos, CA. 189–196.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:43

EWING, B., HILLIER, L., WENDL, M. C., AND GREEN, P. 1998. Base-calling of automated sequencer

traces using phred. I. Accuracy assessment. Genome Res. 8, 3, 175–185.

FOSTER, I., KESSELMAN, C., AND TUECKE, S. 2001. The anatomy of the grid: Enabling scalable virtual

organizations. Int. J. High Perform. C. 15, 3, 200–222.

FRIESE, T., MÜLLER, J. P., AND FREISLEBEN, B. 2005. Self-healing execution of business processes

based on a peer-to-peer service architecture. In Proceedings of the 18th International Conference
on Architecture of Computing Systems (ARCS ’05), System Aspects in Organic and Pervasive
Computing. Lecture Notes in Computer Science, vol. 3432. Springer-Verlag, Berlin, Germany.

108–123.

GARCIA-MOLINA, H. AND SALEM, K. 1987. Sagas. In Proceedings of the 1987 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD ’87). ACM, New York. 249–259.

GÄRTNER, F. C. 1999. Fundamentals of fault-tolerant distributed computing in asynchronous

environments. ACM Comput. Surv. 31, 1, 1–26.

GEORGAKOPOULOS, D., HORNICK, M. F., AND SHETH, A. P. 1995. An overview of workflow management:

From process modeling to workflow automation infrastructure. Distrib. Parallel Dat. 3, 2, 119–

153.

INGHAM, D. B., PANZIERI, F., AND SHRIVASTAVA, S. K. 1999. Constructing dependable web services. In

Advances in Distributed Systems, Advanced Distributed Computing: From Algorithms to Systems.

Springer-Verlag, Berlin, Germany, 277–294.

IRWIN, D. E., GRIT, L. E., AND CHASE, J. S. 2004. Balancing risk and reward in a market-based

task service. In Proceedings of the 13th IEEE International Symposium on High Performance
Distributed Computing (HPDC-13 ’04). IEEE Computer Society Press, Los Alamitos, CA. 160–

169.

JAEGER, M. C. AND LADNER, H. 2005. Improving the QoS of WS compositions based on redundant

services. In Proceedings of the International Conference on Next Generation Web Services Practices
(NWeSP 2005). 189–194.

JAEGER, M. C. AND MÜHL, G. 2007. QoS-based selection of services: The implementation of a

genetic algorithm. In Proceedings of the KiVS 2007 Workshop: Service-Oriented Architectures
und Service-Oriented Computing (SOA/SOC). 359–370.

JENNINGS, N. R. 2001. An agent-based approach for building complex software systems. Comm.
ACM 44, 4, 35–41.

JENNINGS, N. R., FARATIN, P., LOMUSCIO, A. R., PARSONS, S., SIERRA, C., AND WOOLDRIDGE, M. 2001.

Automated negotiation: Prospects, methods and challenges. Group Decis. Negot. 10, 2, 199–

215.

JENNINGS, N. R., FARATIN, P., NORMAN, T. J., O’BRIEN, P., AND ODGERS, B. 2000. Autonomous agents

for business process management. Appl. Artif. Intell. 14, 2, 145–189.

KLUSCH, M., GERBER, A., AND SCHMIDT, M. 2005. Semantic web service composition planning with

OWLS-XPlan. In Proceedings of the 1st Int. AAAI Fall Symposium on Agents and the Semantic
Web. 55–62.

KOCHUT, K., ARNOLD, J., SHETH, A., MILLER, J., KRAEMER, E., ARPINAR, B., AND CARDOSO, J. 2003. In-

telliGEN: A distributed workflow system for discovering protein-protein interactions. Distrib.
Parallel Dat. 13, 1, 43–72.

LI, W., HE, J., MA, Q., YEN, I.-L., BASTANI, F., AND PAUL, R. 2005. A framework to support survivable

web services. In Proceedings of the 19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’05). IEEE Computer Society Press, Los Alamitos, CA. 93.2.

LONG, D. D. E., MUIR, A., AND GOLDING, R. A. 1995. A longitudinal survey of internet host reliability.

In Proceedings of the 14th Symposium on Reliable Distributed Systems (SRDS’95). 2–9.

MALCOLM, D. G., ROSEBOOM, J. H., CLARK, C. E., AND FAZAR, W. 1959. Application of a technique for

research and development program evaluation. Oper. Res. 7, 5, 646–669.

MANDELL, D. AND MCILRAITH, S. 2003. Adapting BPEL4WS for the semantic web: The bottom-up

approach to web service interoperation. In Proceedings of the 2nd International Semantic Web
Conference. Lecture Notes in Computer Science, vol. 2870, Springer-Verlag, Berlin, Germany.

227–241.

MARTIN, D., PAOLUCCI, M., MCILRAITH, S., BURSTEIN, M., MCDERMOTT, D., MCGUINNESS, D., PARSIA, B.,

PAYNE, T., SABOU, M., SOLANKI, M., SRINIVASAN, N., AND SYCARA, K. 2004. Bringing semantics to

web services: The OWL-S approach. In Proceedings of the 1st International Workshop on Semantic

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

2:44 • S. Stein et al.

Web Services and Web Process Composition (SWSWPC 2004). Lecture Notes in Computer Science,

vol. 3387, Springer-Verlag, Berlin, Germany. 26–42.

MAXIMILIEN, E. M. AND SINGH, M. P. 2004a. A framework and ontology for dynamic web services

selection. IEEE Internet Comput. 8, 5, 84–93.

MAXIMILIEN, E. M. AND SINGH, M. P. 2004b. Toward autonomic web services trust and selection.

In Proceedings of the 2nd International Conference on Service-Oriented Computing (ICSOC ’04).
212–221.

MCDERMOTT, D. 2002. Estimated-regression planning for interactions with web services. In Pro-
ceedings of the 6th International Conference on AI Planning and Scheduling (AIPS’02). 204–

211.

MCGUINNESS, D. AND VAN HARMELEN, F. 2004. OWL web ontology language overview. Recommen-

dation, W3C. February. (http://www.w3.org/TR/2004/REC-owl-features-20040210/).

MCILRAITH, S. A. AND SON, T. C. 2002. Adapting golog for composition of semantic web services.

In Proceedings of the 8th International Conference on Knowledge Representation and Reasoning
(KR2002). 482–493.

MCILRAITH, S. A., SON, T. C., AND ZENG, H. 2001. Semantic web services. IEEE Intel. Syst. 16, 2,

46–53.

MEDJAHED, B., BENATALLAH, B., BOUGUETTAYA, A., NGU, A. H. H., AND ELMAGARMID, A. K. 2003.

Business-to-business interactions: issues and enabling technologies. VLDB J. 12, 1, 59–85.

MENASCE, D. 2002. QoS issues in web services. IEEE Internet Comput. 6, 6, 72–75.

MERIDETH, M. G., IYENGAR, A., MIKALSEN, T., TAI, S., ROUVELLOU, I., AND NARASIMHAN, P. 2005. Thema:

Byzantine-fault-tolerant middleware for web-service applications. In Proceedings of the 24th
IEEE Symposium on Reliable Distributed Systems (SRDS’05). IEEE Computer Society press,

Los Alamitos, CA. 131–142.

MICHALEWICZ, Z. AND FOGEL, D. B. 2004. How to solve it: Modern Heuristics, 2nd ed. Springer-

Verlag, Berlin, Germany.

MILANOVIC, N. AND MALEK, M. 2004. Current solutions for web service composition. IEEE Internet
Comput. 8, 6, 51–59.

NG, K.-C. AND ABRAMSON, B. 1990. Uncertainty management in expert systems. IEEE Expert 5, 2,

29–48.

NICOLA, V. F. AND GOYAL, A. 1990. Modeling of correlated failures and community error recovery

in multiversion software. IEEE T. Software Eng. 16, 3, 350–359.

NORMAN, T. J., PREECE, A., CHALMERS, S., JENNINGS, N. R., LUCK, M., DANG, V. D., NGUYEN, T. D., DEORA,

V., SHAO, J., GRAY, A. W., AND FIDDIAN, N. J. 2004. Agent-based formation of virtual organisations.

Knowl.-Based Syst. 17, 2–4, 103–111.

O’BRIEN, A., NEWHOUSE, S., AND DARLINGTON, J. 2004. Mapping of scientific workflow within the

e-protein project to distributed resources. In Proceedings of the UK E-Science All Hands Meeting
(AHM 2004). 404–409.

OINN, T., GREENWOOD, M., ADDIS, M., ALPDEMIR, M. N., FERRIS, J., GLOVER, K., GOBLE, C., GODERIS, A.,

HULL, D., MARVIN, D., LI, P., LORD, P., POCOCK, M. R., SENGER, M., STEVENS, R., WIPAT, A., AND WROE, C.

2006. Taverna: Lessons in creating a workflow environment for the life sciences. Concurrency
and Computation: Practice and Experience 18, 10, 1067–1100.

PAOLUCCI, M., KAWAMURA, T., PAYNE, T. R., AND SYCARA, K. P. 2002. Semantic matching of web

services capabilities. In Proceedings of the 1st International Semantic Web Conference (ISWC
2002). Lecture Notes in Computer Science, vol. 2342, Springer-Verlag, New York. 333–347.

PAOLUCCI, M. AND SYCARA, K. 2003. Autonomous semantic web services. IEEE Internet Com-
put. 7, 5, 34–41.

RAIFFA, H. 1968. Decision Analysis: Introductory Lectures on Choices Under Uncertainty.

McGraw-Hill, Englewood Cliffs, NJ.

RAN, S. 2003. A model for web services discovery with QoS. SIGecom Exch. 4, 1, 1–10.

RUSSELL, S. AND NORVIG, P. 2003. Artificial Intelligence: A Modern Approach, 2nd ed. Prentice-

Hall, Englewood Cliffs, NJ.

SCHROEDER, B., AND GIBSON, G. A. 2006. A large-scale study of failures in high-performance com-

puting systems. In Proceedings of the International Conference on Dependable Systems and Net-
works (DSN2006). 249–258.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

Flexible Provisioning of Web Service Workflows • 2:45

SINGH, M. P. AND HUHNS, M. N. 2005. Service-Oriented Computing: Semantics, Processes, Agents.

Wiley, New York.

SIRIN, E., PARSIA, B., AND HENDLER, J. 2005. Template-based composition of semantic web services.

In Proceedings of the AAAI Fall Symposium on Agents and the Semantic Web. 85–92.

SMITH, T. M., ABAJIAN, C., AND HOOD, L. 1997. Hopper: Software for automating data tracking and

flow in DNA sequencing. Comput. Appl. Biosci. 13, 2, 175–182.

STEIN, S., JENNINGS, N. R., AND PAYNE, T. R. 2007a. Provisioning heterogeneous and unreliable

providers for service workflows. In Proceedings of the 22nd AAAI Conference on Artificial Intel-
ligence. 1452–1458.

STEIN, S., PAYNE, T. R., AND JENNINGS, N. R. 2006. Flexible provisioning of semantic web service

workflows using a QoS ontology. In Proceedings of the 5th International Semantic Web Conference
(ISWC 2006), Online supplement. (available at http://eprints.ecs.soton.ac.uk/12992/).

STEIN, S., PAYNE, T. R., AND JENNINGS, N. R. 2007b. An effective strategy for the flexible provisioning

of service workflows. In Proceedings of the Workshop on Service-Oriented Computing: Agents,
Semantics, and Engineering (SOCASE 2007). Lecture Notes in Computer Science, vol. 4504.

Springer-Verlag, Berlin, Germany, 16–30.

SZOMSZOR, M., PAYNE, T. R., AND MOREAU, L. 2005. Using semantic web technology to automate data

integration in grid and web service architectures. In Proceedings of the Semantic Infrastructure
for Grid Computing Applications Workshop in Cluster Computing and Grid (CCGrid). 189–195.

TEACY, W. T. L., PATEL, J., JENNINGS, N. R., AND LUCK, M. 2006. TRAVOS: Trust and reputation in

the context of inaccurate information sources. J. Auton. Agents Multi-Agent Syst. 12, 2, 183–198.

TILLMAN, F. A., AND LIITTSCHWAGER, J. M. 1967. Integer programming formulation of constrained

reliability problems. Manage. Sci. 13, 11, 887–899.

TOWNEND, P., GROTH, P., AND XU, J. 2005. A provenance-aware weighted fault tolerance scheme

for service-based applications. In Proceedings of the 8th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC’05). IEEE Computer Society Press,

Los Alamitos, CA, 258–266.

TRIVEDI, K. 2001. Probability and Statistics with Reliability, Queuing, and Computer Science
Applications, 2nd ed. John Wiley & Sons, Inc., USA.

WEATHERSPOON, H., MOSCOVITZ, T., AND KUBIATOWICZ, J. 2002. Introspective failure analysis: Avoid-

ing correlated failures in peer-to-peer systems. In Proceedings of the 21st IEEE Symposium on
Reliable Distributed Systems. 362–367.

WEERAWARANA, S., CURBERA, F., LEYMANN, F., Storey, T. AND FERGUSON, D. F. 2005. Web Services
Platform Architecture. Prentice-Hall, Englewood Cliffs, NJ.

WEISS, G., Ed. 1999. Multiagent systems: A modern approach to distributed artificial intelligence.

MIT Press, Cambridge, MA.

YANG, Z. AND DUDDY, K. 1996. CORBA: A platform for distributed object computing. ACM Oper.
Syst. Rev. 30, 2, 4–31.

YU, T. AND LIN, K.-J. 2005. Adaptive algorithms for finding replacement services in autonomic

distributed business processes. In Proceedings of Autonomous Decentralized Systems (ISADS
2005). 427–434.

YU, T., ZHANG, Y., AND LIN, K.-J. 2007. Efficient algorithms for web services selection with end-to-

end QoS constraints. ACM Trans. Web 1, 1, 6.

ZENG, L., BENATALLAH, B., DUMAS, M., KALAGNANAM, J., AND SHENG, Q. Z. 2003. Quality driven web

services composition. In Proceedings of the 12th International World Wide Web Conf. (WWW ’03).
411–421.

ZHOU, C., CHIA, L.-T., AND LEE, B.-S. 2004. DAML-QoS ontology for web services. In Proceedings of
the IEEE International Conference on Web Services (ICWS 2004). IEEE Computer Society Press,

Los Alamitos, CA, 472–479.

Received December 2006; accepted April 2007

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 2, Publication date: February 2009.

