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New Algorithms for Polynomial J-Spectral Factorization®

Harry L. Trentelman’ and Paolo Rapisarda?

Abstract. In this paper new algorithms are developed for J-spectral factorization
of polynomial matrices. These algorithms are based on the calculus of two-
variable polynomial matrices and associated quadratic differential forms, and
share the common feature that the problem is lifted from the original one-
variable polynomial context to a two-variable polynomial context. The problem
of polynomial J-spectral factorization is thus reduced to a problem of factoring a
constant matrix obtained from the coefficient matrices of the polynomial matrix
to be factored. In the second part of the paper, we specifically address the prob-
lem of computing polynomial J-spectral factors in the context of H,, control.
For this, we propose an algorithm that uses the notion of a Pick matrix asso-
ciated with a given two-variable polynomial matrix.

Key words. Polynomial J-spectral factorization, Two-variable polynomial ma-
trix, Quadratic differential form, Dissipativity, Pick matrix.

1. Introduction

In this paper new algorithms are developed for J-spectral factorization of polyno-
mial matrices, using the notion of quadratic differential form, and the calculus of
two-variable polynomial matrices as recently developed in [19]. The problem of
polynomial J-spectral factorization arises in different areas of systems and con-
trol. Perhaps the best known is the special case in which the polynomial matrix
to be factored is positive semidefinite on the imaginary axis (equivalently, the
signature matrix J is equal to the identity matrix). This problem arises in Wiener
filtering, and in the polynomial and behavioral approaches to LQG theory (see,
for instance, [4], [7], [1], and [3]). The general case in which the polynomial matrix
to be factored is indefinite on the imaginary axis arises most notably in the poly-
nomial and behavioral approaches to the H,, control problem (see, for instance,
[8], [10], [L1], [16], and [2]).
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As also noted in [9], only very few practical algorithms for the J-spectral facto-
rization of polynomial matrices can be found in the literature. An overview of
existing algorithms was given in [9]. In the present paper some fundamentally new
algorithms are developed that are based on the calculus of two-variable polyno-
mial matrices and associated quadratic differential forms that was developed in
[19]. Our algorithms share the common feature that the problem is lifted from the
original one-variable polynomial context to a two-variable polynomial context. In
the two-variable polynomial context, factorizations can essentially be performed
by doing factorizations of constant real symmetric matrices.

The problem of polynomial J-spectral factorization is stated as follows. Given a
para-hermitian real ¢ x ¢ polynomial matrix Z(&), i.e., a real polynomial matrix
with the property that Z7(—¢) = Z(&), together with two nonnegative integers ¢
and ¢_ such that ¢, + ¢g_ = ¢, the problem is to compute a square polynomial
matrix F such that Z(¢&) = FT(=¢&)J,, , F(&). Here J,, , denotes the signature

matrix
1, 0
Jyo g = < 7 )
q+,4 0 _Iq,

Depending on the problem setting at hand, one often wants the spectral factor F
to satisfy certain additional properties. Often one requires F to be Hurwitz, or
anti-Hurwitz. Especially in H,, applications, the para-hermitian matrix Z is in
general a priori given to be of the form Z(¢&) = M T(—&)J'M(&), where J' is some
signature matrix. The spectral factor F to be computed is then often required to
satisfy the additional property that MF~! is a matrix of proper rational functions.
This property is closely connected to the property that F is a canonical factor (see
[9] and [2]). Another important property that F is often required to satisfy is that
the rational matrix MF~! is J'-lossless (see [10]).

This paper is organized as follows. Section 2 contains the basic background
material on quadratic differential forms and two-variable polynomial matrices.
Section 3 connects the problem of polynomial J-spectral factorization with the
problem of factoring a constant matrix that can be obtained from the coefficient
matrices of the polynomial matrix Z to be factored. In Section 4 we propose our
first J-spectral factorization algorithm. The algorithm is based on finding a par-
ticular solution of an algebraic Riccati equation of suitably high dimension. The
coefficients of this algebraic Riccati equation are immediately obtained from the
coefficients of the polynomial matrix to be factored, without any intermediate state
space realization step. In Section 5 we restrict attention to the positive semidefinite
case (the case that J = I). Two algorithms are proposed in this section. The first
one is based on solving a linear matrix inequality, with coefficients again immedi-
ately given by the coefficient matrices of the polynomial matrix to be factored.
The second algorithm is based on solving an algebraic Riccati equation, this time
of a priori known dimension (in contrast with the algorithm in Section 4 for the
indefinite factorization problem).

In Section 6 a completely different type of algorithm is developed. Here
we specifically address the problem of computing J-spectral factors in the H,
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context, so Hurwitz J-spectral factors F such that MF~! is a J'-lossless, proper
rational matrix. In this section we first give a necessary and sufficient condition
for the existence of such J-spectral factors. Next, we propose an algorithm that
uses the notion of a Pick matrix associated with a given two-variable polynomial
matrix.

The paper has been written in the hope of making its content accessible to po-
tential users of the algorithms. Therefore, the proof of the main result of Section 6
is given in a separate section, Section 9. This proof is strongly based on results
from Sections 7 and 8 on dissipativity and on duality of quadratic differ-
ential forms. Our algorithms are put in the form of step-by-step procedures, easily
implementable in Matlab or Mathematica, and with concrete examples.

The following notation is used in this paper. IN, IR, and C denote the sets of
natural, of real, and of complex numbers, respectively. If 1 € €, then 4 denotes its
complex conjugate. €~ and €' denote the open left-half, respectively the open
right-half, of the complex plane. R” and C" denote the n-dimensional Euclidean
spaces over IR, respectively, C. R”*? (resp. C”*?) denotes the set of real (resp.
complex) p x ¢ matrices. The set of real matrices with a finite number ¢ of rows
(resp. columns) and an infinite number of columns (resp. rows) is denoted as
R (resp. R™*%). The set of real matrices with an infinite number of rows and
of columns is denoted by R“**. For given matrices 4 and B with the same
number of columns, col(4, B) denotes the matrix obtained by stacking 4 over B.
Likewise, given two column vectors x and y, the column vector obtained by
stacking x over y is denoted by col(x, y). For a given matrix 4 € €99, A*
denotes its complex conjugate transpose. A is called hermitian if A = A*. If A is a
hermitian matrix, then we define its signature as the ordered triple of integers
sign(4) = (n-(4),n9(A),n4+(A)), where n_(A) denotes the number of negative
eigenvalues of 4 (counting multiplicities), n9(A4) denotes the multiplicity of zero as
an eigenvalue of 4, and n,(A4) denotes the number of positive eigenvalues of A4
(counting multiplicities). Of course, n_(A)+n;(A4) =rank(4). €*(R,RY)
denotes the set of infinitely differentiable IR?-valued functions. The set of p x ¢
polynomial matrices with real coefficients in the indeterminate ¢ is denoted by
RP*4[E]. If Z € RP¥4[¢], then Z(&) = S°M, Z:&', with Zy # 0. The integer M is
called the degree of Z. Z e R?*1[¢] is called para-hermitian if Z7(—¢) = Z(¢).
The set of two-variable p x g polynomial matrices with real coefficients in the
indeterminates { and 7 is denoted as R”*9[{, #].

2. Quadratic Differential Forms

Many control problems, for example, in linear quadratic optimal control and
H . -control, require the solution of an optimization problem in which a quadratic
functional of the system variables is to be minimized. It has been shown in [19]
that such quadratic functionals can be effectively represented by quadratic differ-
ential forms (QDFs in the following). This section is devoted to an exposition of
the notational conventions for QDFs and to a discussion of the results which are
relevant to the problem of J-spectral factorization.
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2.1. Basics

Let @ € R"*%[{, 5] be a real polynomial matrix in the indeterminates { and #, i.e.,
an expression of the form

() =Y O i, (2.1)
oy

where @y ; € R1*%, Vk, j. The sum in (2.1) is a finite one, and k, j € N. We call
@ symmetric if ®(C,n) = ®(y,¢)". In this paper we restrict attention to the sym-
metric elements in R?*?[{, 5], and we denote this subset by R7*7[(, 5.

Each ® € R??[{, 7] induces a QDF, i.e., a map Q¢ : ¢°(R,R?) — ¢“(R,R)

defined by
dow\ " d/w
Qa(w) =D (d:k) e ( @ >

k.j

With every @ € R?*?[{, 5] there is associated the infinite matrix with a finite num-
ber of nonzero elements

Dop Do - Doy
P Py - Dy

O = : : : : ,
Dyo Pyvi -+ DOyw

in the sense that ®({, #) is equal to the product

Q(C»ﬂ):(lq Uq gNIq c)®

@ is called the coefficient matrix of ®. Note that ®({, #) is symmetric if and only if
@ is symmetric. This correspondence between R?*“[(, ] and the set of infinite real
symmetric matrices with a finite number of nonzero elements is bijective.

Factorizations of the coefficient matrix give rise to factorizations of the corre-
sponding two-variable polynomial matrix. The relevant facts are summarized in
the following result (see Section 3 of [19]).

Proposition 2.1.  Let ® € R7[(, 5], and let ® be its coefficient matrix. Let p_ and
p. be two nonnegative integers such that p := p_ + p, = rank(®). Then the fol-
lowing statements are equivalent:
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(i) n_(®) = p- and n.(®) = p.;
(ii) there exists a matrix F € RP** with finitely many elements unequal to zero
such that ® = F'J, , F;
(iii) there exist a polynomial matrix F e RP*E] such that ®((,n) =
FI(OJp.p F(n).

If these conditions hold, then a factor F as in (iii) can be obtained as follows: factor
® as in (ii) and define F(&) := F col(I,&1,E1, . ..).

The correspondence between QDFs and two-variable polynomial matrices
allows us to develop a calculus that has applications in stability theory, optimal
control, and H,-control (see [19] and [16]). We do not illustrate all the features
of this calculus here, but we now introduce two concepts that are used extensively
in this paper. One of these is the map 0 : R¥*Y[(, 5] — R?*9[£], that associates a
one-variable polynomial matrix with a two-variable one. Given ® € R?[{, ], we
define

ID(&) := @(=¢,9).

Observe that 0® is para-hermitian. Another notion that is used extensively in
what follows is that of a derivative of a QDF. A QDF Qg is called the deriva-
tive of Qg if (d/dt)Qw = Q¢. Here (d/dt)Qw is defined as ((d/dt)Qw)({) :=
(d/dt)Qw (). In terms of the underlying two-variable polynomial matrices, this
relationship can be expressed as follows: (d/df)Qy = Qo if and only if, for the
corresponding two-variable polynomial matrices, ({ + #)¥({,) = ®({, ) holds.
In terms of the underlying coefficient matrices ® and P this relationship is equiv-
alent to

® = or (¥) + ap (),
where the right-shift, respectively downward-shift, operators og: R*** — IR***
and op: R*** — RR*** are defined as

~ ~ ~ OL]XOO
or(P) = (0ny, ¥) and op(P) ;( o )

2.2. Pick Matrices

The notion of a Pick matrix plays an important role in system and in circuit
theory; for example, it has connections with metric interpolation problems [20]
and with model matching in the H,,-norm [5]. Recently, it has been connected
with QDFs and the notion of half-line positivity of a QDF (see Section 9 of [19]).
In Section 6 of the present paper we use the Pick matrix associated with a
two-variable polynomial matrix to devise an algorithm to perform J-spectral
factorization.

The Pick matrix associated with a two-variable polynomial matrix @ is most
easily introduced in the case that 0® is semisimple. We briefly review the notion
of semisimplicity of a polynomial matrix here. Let F € R?*9[¢] be nonsingular,
i.e., det(F) # 0. We call F semisimple if for all A € C the dimension of ker(F(4)) is
equal to the multiplicity of 4 as a root of det(F). If det(F) has only simple roots,
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then F is certainly semisimple. We introduce the notion of a Pick matrix asso-
ciated with a two-variable polynomial matrix in the semisimple case only. Let
D (L, n) e R™[{, n], and assume that det(0®) has no roots on the imaginary axis.
Since 0® is para-hermitian, deg(detd(®)) is even, say 2n, and its roots can be
grouped into two disjoint subsets, {4,...,4} = € and {—A;,..., A4} = C*.
(Ai # 4; for i # j.) Denote by n; the multiplicity of A; as a root of det(d®). Let
Vie €7 be full column rank matrices such that ker(0®)(4;) = im(V;)

(i=1,2,...,k). Define Ty ;; € C"*" by
Toij:= —; Vid(4i, 4)V; (22)

Li + Aj

and define the Pick matrix Tgp € € associated with @ by
Tq; = (Tq),,"j).

Note that T is a hermitian matrix. Also note that the matrices V; are not
uniquely defined, and therefore talking about “‘the” Pick matrix associated with ®
is not entirely correct: depending on the particular choice of V;’s whose columns
span ker(0®(4;)), different matrices are obtained in (2.2). However, if Tg and T}
correspond to different choices of the V;’s, there exists a nonsingular # X n matrix
S such that STT¢S = T} Therefore, the different matrices defined by (2.2) are
congruent.

3. A Matrix Signature Condition for J-Spectral Factorization

It is well known that a nonsingular para-hermitian ¢ x ¢ polynomial matrix Z has
a J-spectral factorization for some signature matrix J if and only if the number
ny (Z(iw)) of positive eigenvalues of Z(iw) is constant over all w € R for which
i is not a root of det(Z) (see Theorem 5.1 of [13]). In particular, for given non-
negative integers ¢, and ¢_ such that ¢, + ¢_ = ¢ such factorization exists with
J=1J,, 4 if and only if n,(Z(iw)) = g+ and n_(Z(iw)) = q_ for all ® € R for
which iw is not a root of det(Z).

In this section we show that the existence of a J,. , -spectral factor of Z is
equivalent to a condition on the coefficient matrix Z = (Zy Z, --- Zy) of Z(&).
We also explain how a J,, , -spectral factorization can be obtained by perform-
ing a factorization of a comstant matrix obtained from this coefficient matrix.
This result will be achieved by lifting the problem of J-spectral factorization to a
two-variable polynomial context, i.e., by associating with the to-be-factored
one-variable polynomial matrix Z(¢) a particular two-variable polynomial matrix.
Lifting the problem to a two-variable polynomial matrix context allows us to for-
mulate the problem of J-spectral factorization in terms of QDFs and the related
concepts.

Let Z(¢) be a para-hermitian polynomial matrix, say of degree M. Write Z (&)
=Z0+ ZiE+ 20+ 4+ ZyEM | with Zy # 0. In the following, we associate
with Z(&) a symmetric, two-variable polynomial matrix ®({,#) with the property
that

o0 =27 (3.1)



30 H. L. Trentelman and P. Rapisarda

For a given Z there are always infinitely many @’s such that this property holds.
For example, whenever @ satisfies (3.1) then ®'({,7) := ®({,n) + ({+n)T(,n)
also satisfies (3.1), for any choice of T". In fact, in the following lemma we charac-
terize all @’s that, for a given Z, satisfy (3.1):

Lemma 3.1.  Let ®({,n) = >, ; Oy, ,C n’ be a symmetrzc two- varlable polynomial
matrix. Then 00 = Z iff @ — Py j1+ Do j—---+(— 1) Dy o = Zy for all
k=0,1,....M

In terms of the coefficient matrix ®, this requires that the M + 1 antidiagonals,
with an appropriate sign-pattern, add up to the coefficients of Z(&). The proof of
this lemma follows by inspection.

We now give two examples of a possible choice of ® such that (3.1) holds. As a
first example, we consider

(L) =HZ"(0) + Z(n)).

Since ®(1,0)" =1(Z(n) + Z7(0)) = ®(L,n), D(¢,n) is symmetric. Using ZT( 9
=Z(&), this ® 1ndeed satisfies (3. ) Also from the assumption that Z is para-
hermitian, it follows that ZkT = (- ) Zforall k =0,1,2,..., M. The coefficient
matrix ® of @ is equal to

220 Zv Zy - Zy O
zZl 0 0 -~ 0 0
zZI 0 0 -~ 0 0

o= o (32)
zZl 0 0 - 0 0
0 0 0 0 0

Note that the degree of @, i.e., the highest power of { and # occurring in ®({,7) is
equal to M.

We now give a second example of a possible choice of ®@. It is only valid for the
case that M is even. Assume this to be the case. Then we define @ in terms of its
coefficient matrix as follows:

27y Z V43 Zya-1 Zyp 0

zT 0 0 .- 0 —~Zyn 0

zr 0 0 - 0 Zrijre 0

(i) _1 : . . . . .

|zl 0 0o - 0 (=DM zy 0
M/2—1 M/2

ZM/2 _ZAT4/2+| ZA§/2+2 (=1) / Zyyo 21 PZy 0

0 0 0 0 0 0
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Note that the two-variable polynomial matrix ® defined in this way has degree
M/2. A related @, with degree (M + 1)/2, can be defined for the case that M is
odd. We omit the details here.

We now state the main result of this section.

Proposition 3.1. Let Z be a g x q para-hermitian polynomial matrix with
det(Z) #0. Let ® be any symmetric two-variable polynomial matrix such that
00 =Z. Let q,, q_ be two nonnegative integers such that q_ + q, = q. Then the
following three statements are equivalent:

(i) there exists a g x q polynomial matrix F such that
Z(&) = FT(=8)Jq..q F(O); (34)

(i) sign(Z(iw)) = (q-,0,q+) for all ® € R such that icw is not a root of det(Z);
(iii) there exists a symmetric matrix W € R**®  with finitely many elements
unequal to zero, such that

n(®—or(¥) —ap(¥)) =¢-,
~ ~ ~ (3.5)

n(® —or (¥) —ap(¥)) = ¢4

Assume that any of these conditions hold. Then an F such that (3.4) holds can be
computed as follows: find ¥ € R**%, with finitely many elements unequal to zero,
such that (3.5) holds, and factorize

&)—GR(\P) —O'D(‘i") :FTJ[H’,FF (36)
with F € RY** having Jfinitely many elements unequal to zero. Then the polynomial
matrix F defined by F(&) := F col(I,&I,E%1,. . ) satisfies (3.4).

Proof. We first prove the equivalence of (i), (ii), and (iii) by running the circle
(1) = (it) = (iii) = (i). To prove (i) = (ii), let iw be such that det(Z(iw)) # 0.
Note that from (3.4) it follows that det(F(iw)) # 0. This, together with (3.4), im-
mediately yields (ii). We now prove (ii) = (iii). From the fact that 0®(iw) =
D(—iw, iw) = Z(iw), Yo € R, and the fact that sign(Z(iw)) = (¢—,0,¢,) for all
o € R such that det(Z(iw)) # 0, there follows the existence (see Theorem 5.1 of
[13]) of a ¢ x ¢ Hurwitz polynomial matrix F(&) such that

D(=&,8) = FT (=), 4 F(&).
Define now

W) = ﬁ (@(Cn) — FT(O)yr.q F(1))- (3.7)

Observe that since ®((,n) and F7({)J,, , F(y) are symmetric polynomial
matrices, it follows that W({,#) is also symmetric. Therefore, ¥ is symmetric. We
now show that ® — o (¥) — op(¥) has ¢_ negative eigenvalues and ¢, positive
eigenvalues. Denote with N the degree of the polynomial matrix F, and de-
note with L the highest power of { and # in ®({,). From (3.7) it follows
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that W(¢,n) = StV "y okl and that the coefficient matrix of ®(¢,7)—
(C+n)¥P(C,n) satisfies (3.6), where F = (Fy Fy --- Fy 0 ---). Observe now that
rank(® — og (V) — op(P)) = rank @ . Also note that rank(®p,9) = rank ®(0,0)
= rank(Zy) = rank(Z(0)) = ¢4 +¢- =q. Then rank(® — aR(‘I’) —op(?)) > ¢
follows. From (3.6) it follows that ny(® — or(¥) —op(¥)) < ¢, and that
n_(® — or(¥) — op(¥)) < g-. Therefore,

q < rank(® — or (¥) — op(P))

=ny(® — or(¥Y) —op(¥)) +n_(® — or(¥) — on(¥))
<qi+q-=q.

This implies that rank(d® — oR(‘i’) - JD(‘P)) = ¢ and that the number of negative
(resp. positive) eigenvalues of ® — o (¥) — op(‘P) is ¢_ (resp. ¢, ). This concludes
the proof of (ii) = (iii). To prove (iii) = (i), observe that by (3.5) the symmetric
matrix ® — JR(‘i’) —op('¥) has g, positive and g negative eigenvalues. Hence
there exists a matrix F such that ® — o (V) — op(¥) = F'J,, , F. Multiply-
ing this equality on the left by (1, {1, --- Cqu --+) and on the right by
(g nly - 5"l ) yields ®(, 77) (C+m¥(Cn) =FT()Jy,.q Fn). Sub-
stituting —¢ for { and ¢ for # yields (3.4). This concludes the proof of the equiva-
lence of statements (i), (i), and (iii). The second part of the claim of the
proposition follows immediately. |

Proposition 3.1 brings the problem of finding a J,, , -spectral factor for Z
down to finding a matrix ¥ with a finite number of nonzero elements such that
after substracting its right-shifted version og (') and its downward-shifted version
op(P) from the coefficient matrix @ (for example, given in terms of the coef-
ficients Z; by (3.2) or (3.3)), the resulting matrix has ¢, positive eigenvalues and
q- negative eigenvalues. It is important to note that the search for such a matrix
¥ is complicated by two facts. Observe first that while the conditions (3.5) involve
infinite matrices, the largest power of { and # in W({,#) is finite. Define N to
be the effective size of W if N := min{N’ | such that ¥, ; = 0, Vk,/ > N'}. The
first problem that arises is that if ¢_ # 0, then it is unknown what we should
take as the effective size of ¥ in order to get the right signature in the matrix
® — or(P) — op(P). In other words, the number of unknown variables we should
solve for is not known a priori. In general, it is an open problem to get an upper
bound in terms of @ on the effective size of ¥ so that (3.5) is satisfied. A second
problem arises from the fact that not all ¥ such that (3.5) hold yield a Hurwitz
spectral factor. This is illustrated in Example 3.2 below.

We now illustrate the application of Proposition 3.1 with two examples.

Example 3.1. In this example we apply the method of Proposition 3.1 to the

matrix Z defined by
0 1-¢
Z(&) = .
(© <1+é 1—52)
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This example was studied before in [8]. The signature of Z(iw) equals (1,0, 1) for
all v € R. A matrix ® such that 0® = Z is

0 2+(—n
(¢, n) = (2+}7 e )

with coefficient matrix

0o 2 0 -1 0 O 0

2 2 1 0 0 -1 0

0 1 0 0 0 0 0

- -1 0 0 0 0 0 0
O=1

210 0 0 o0 0 0 0

0 -1 0 0 0 0 0

0 0 0 0 0 O 0

Consider the (constant) two-variable polynomial matrix

‘P(C,n)=%(_? _(1))

Its coefficient matrix is

D=
o

- o
o

Observe that

=)

R e R = = N

D — O'R(\P) — O'D(T) =

?
?
2
O OO0 O O = O
O OO0 O O = O
O OO0 O O o O
O OO0 O O o O
O OO0 O o o o

O N, O = =

and that this matrix has exactly one positive eigenvalue and one negative eigen-
value. The right-hand side of (3.8) can be factored as F7J; | F, with

Fzélgloo—%o...
2\t -1 1 0 0o -1 o -..)
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The corresponding J; j-spectral factor F(&) is given by

Va[1+E 3-8
F(é):7<l+é —;—52/2)

Note that det(F(&)) = —(£ + 1) so Fis, in fact, Hurwitz.

Example 3.2. The point of this example is to show that a ¥ such that (3.5) holds
does not necessarily yield a Hurwitz J-spectral factor. Consider the polynomial
2(&) = & — 52 + 4. Clearly, z(iw) > 0 for all w e R. The two-variable polyno-
mial ®((,n) =n? 3> =307 — Ln? — L%y + 4 satifies 00 = z. Define ¥({,n) =
Itn—1C—14n—2.Then

4 2 -2 -2
O—r(P)—opP)=( 2 1 —1|=-1](-2 -1 1.
-2 -1 1 1

However, F(&) = (=2 —1 1) col(1,¢,&%) = & — & — 2 is not Hurwitz.

As suggested in the previous example, the property that the J-spectral factor F
computed via the factorization of ® — og (¥) — op('P) is Hurwitz, depends on the
choice of an appropriate . It is of interest to devise procedures to compute a ¥
such that the corresponding factor F is Hurwitz. In the next section we develop
such a procedure, based on algebraic Riccati equations.

4. A Novel Algebraic Riccati Equation Approach to J-Spectral Factorization

It is well known that the solvability of algebraic Riccati equations (called AREs
in what follows) is closely related to polynomial spectral factorization and J-
spectral factorization (see, for example, [1] and [9]). The algorithms based on this
connection essentially consist of turning the problem into a J-spectral factoriza-
tion problem for a proper rational matrix, associating a state-space system to the
rational matrix to be factored, solving an optimal control problem, and finally
translating the result back to obtain a polynomial spectral factorization.

In this section we uncover a previously unknown aspect of the relationship be-
tween AREs and J-spectral factorization, by connecting the signature condition of
Proposition 3.1 with the solvability of an ARE. We show that the existence of a J-
spectral factorization is equivalent to the existence of a real symmetric solution of
an ARE of suitably high dimension. The coefficients of this ARE are immediately
obtained from the coefficient matrix of the polynomial matrix to be factored.

In the following, let Z be given, and let ® be a symmetric two-variable polyno-
mial matrix such that d® = Z. Let ® be the coefficient matrix of @. As before,
denote the degree of Z by M. Assume that the effective size L of @ satisfies
L < M. Note that the coefficient matrices (3.2) and (3.3) satisfy this assumption.

In the following, for any given integer K > 1, define matrices 4(K) e R¥¢*K¢
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and B(K) e RX7*1 by

Ogxg Ogxg ==+ =+ Ogxg 1,
Iq Oqu e T Oqu qucl
AK) = 0pg 1, C|. B = | O | @)
0 - 0 I, 0 044
gxq gxq g qxq

Furthermore, for K > L, denote by @ l)(K ) the ¢ x Kq matrix
&)(O’U(K) = ((DO,I (D()_z (D(),L qu(KfL)q) (42)

and by @V (K) the Kg x Kq matrix

Dy D> o @i Oyk-ryg
(O3 ®; 2 o Do Oyu(k-r)g
oM V(K) = : S S
Dy Dy > o Opp o Ogek—1)g
Ok-nygxg Ok-1)axa * Ok-Dygxa  Ok-L)axq

Obviously, the original coefficient matrix ® can then be written as
Doy OOV(K)  Opxn
O =| oK) DEV(K) Oggron
Org  Oxky  Ooxon

In the following, for notational reasons we suppress the dependence of 4, B,
@Y and @Y on K. The following result connects the existence of a J-spectral
factorization of Z with the solvability of an ARE.

Proposition 4.1. Let Z be a q x q para-hermitian polynomial matrix of degree M
with det(Z(0)) # 0, and let ® be a symmetric two-variable polynomial matrix such
that 0@ = Z and ® has effective size L < M. Let q_ and q.. be nonnegative inte-
gers such that q_ + q = q. Then the following statements are equivalent:

(1) there exists a q X q polynomial matrix F such that
Z(&) = FT(=&)Jq,q F(E); (4.4)
(i) sign(®o,0) = (¢—,0,q4) and there exists an integer K > L such that the ARE
AP+ PA+ @D — @OV + BTP) @y (@O + BTP) =0 (4.5)

has a symmetric solution P ¢ RX"K4,
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Assume that any of these conditions hold. Then an F such that (4.4) holds can
be computed as follows: First, factorize @y o = FOTJq%quo, with Fy e R?? non-
singular. Next, find a symmetric solution P of ARE (4.5). Then F(¢&) defined as

1

F(&) = Fy(l; ®4(@"") + B7P)) f.l‘f (4.6)

&k,
satisfies (4.4).

Proof. From Proposition 3.1 we have that (i) is equivalent to the existence of a
¥ such that ® — or(¥) — op(¥) has ¢ negative eigenvalues and ¢, positive
eigenvalues. Obviously, the effective size of ¥ must be finite. Call it K. Then we

have
~ -P 0Kq><rx
= :
Oacqu waoc

with P a symmetric Kg x Kq matrix. This shows that (ii) holds if and only if there
exists a symmetric matrix P such that

D OOV Okgxg P Oyxkg  Ogxg
- . + + (4.7
®ODT  HL. Oyxg  Ogxkq P Okgxq
has ¢_ negative eigenvalues and ¢, positive eigenvalues. Next, observe that (4.7)

can be written as
( Do oY 4 BTp ) "
®ONT 4 pp O 4 ATP 1 PA) '

with 4 and B the matrices defined in (4.1). Observe now that if sign(Z(iw)) =
(q-,0,¢q,) for all w € IR such that det(Z(iw)) # 0, then in particular Z(0) = Z, =
®(0,0) = @y ¢ has signature (¢_,0, ¢ ). Clearly, under this condition, the signa-
ture condition on (4.7) is equivalent to the condition that the Schur complement
of @y, in matrix (4.8) is zero. This Schur complement is equal to @1 + 47 P 4
PA— (@Y 4 BTP) ;L (d"Y + BT P). We conclude that (i) holds if and only
if sign(®o,0) = (¢-,0 q+) and there exists a symmetric solution P to ARE (4.5).
The remaining statement follows immediately from the fact that, w1th F defined
by F:= Fy(I, @ (@Y + BT P)), matrix (4.7) equals F'J,, [ ]

In general, one is not interested in just any J-spectral factor of a given Z, but
one wants to obtain a factor that is Hurwitz. It follows from Theorem 1 on p. 66
of [4] that for a given nonsingular para-hermitian ¢ x ¢ polynomial matrix Z, and
nonnegative integers ¢_ and ¢, such that g_ + g, = ¢, there exists a Hurwitz
Jy..4 -spectral factorization, i.e., a factorization Z(&) = HT(—¢)J,, , H(&) with
H Hurwitz, iff sign(Z(iw)) = (¢-,0,q+) for all € R.
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It turns out that Hurwitz spectral factors are obtained from solutions of ARE
(4.5) with the property that g(4 — By L (@Y + BTP)) « € U {0}. Note that
eigenvalues in 0 are allowed. Indeed, our followmg result states that the J-spectral
factor F given by (4.6) is Hurwitz iff the underlying P is a “‘stabilizing” (in the
sense that the “closed-loop eigenvalues™ lie in €~ U {0}) solution of ARE (4.5).

Theorem 4.1.  Let sign(®g o) = (¢_,0,q, ). For a given integer K, let P € R¥4*K4
be a symmetric solution of ARE (4.5). Let Fy be such that ®y o= F)J,. , Fo
Define

Iy

¢y
F(&) = Fo(l, @go(@"" +BTP))

&kl
Then F is Hurwitz iff (A — B@ah(ci)(o’l) + BTP)) =€ u{0}.

Proof Partition P e RX*K a5 P = (P;;) with P;; e R?Y, i,j=0,1,2,

— 1. Define Ge Rk by G := @y (@Y + BTP). Observe that the first ¢
rows of 4 — B, ((D ©.1) + BTP) coincide with G. Define a ¢ x ¢ polynomial
matrix G(£) by

Ex-ly
K2

It can be shown that the characteristic polynomial of 4 — B®,, 0((13(0’ D+ BTP) is
equal to det(G). Also, F(&) = &X FOG( /&). We show that F is Hurwitz iff G has
all its zeros in €~ u {0}. Assume F is Hurwitz and let A be a zero of G, i.e.,
det(G(1)) = 0. Since G(&) = EXF;1F(1/€), we must have 4 = 0 or det(F(1/2)) =
0. This implies that 1 =0 or Re(1) < 0. Conversely, assume that G has its zeros
in € u{0}. Let det(F(4)) =0. Then we must have 1 =0 or det(G(1/1)) =0
Again, this implies that 1 =0 or Re(1) < 0. Since however F(0) = F; is non-
singular, we conclude that Re(1) < 0. [ |

Putting together the results of Proposition 4.1 and Theorem 4.1, we obtain the
following proposition, which states that there exists a Hurwitz J-spectral factor
for Z iff ARE (4.5) of suitably high dimension has a stabilizing solution.

Proposition 4.2.  Let Z be a q x q para-hermitian polynomial matrix of degree M,
and let ® be a symmetric two-variable polynomial matrix such that 0® = Z and ®
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has effective size L < M. Let q_ and q. be nonnegative integers such that q_ + q
= q. Then the following statements are equivalent:

(i) there exists a g X q Hurwitz polynomial matrix H such that
Z(&) =H"(=8)Jy. g H(E); (4.9)

(i) sign(®g0) = (¢—,0,q9+) and there exists an integer K > L such that
ARE (4.5) has a symmetric solution P € RXK? \ith the property that
a(4 — BO L (@Y + BTP)) = € U {0}.

Assume that any of these conditions hold. Then a Hurwitz polynomial matrix
H such that (4.9) holds can be computed as follows: First, factorize ®g o=
H[J,, 4 Ho, with Hy e R?? nonsingular. Next, find a symmetric solution P of
ARE (4.5) as in (ii). Then H (&) defined as

1

H(&) := Hy(I, @a})(dﬂo-n + BTP))

&t
is Hurwitz and satisfies (4.9).

Proof. (i) = (ii) Proceeding as in the proof of Proposition 3.1 we conclude that
(i) implies that the coefficient matrix ¥ associated with

_ T
(e, ) = 2N " +<2J(H,4H<m

satisfies the signature conditions (3.5). As in the proof of Proposition 4.1, we have

that, for some K,
~ -P Oquw
¥ =
Oooqu Oocxoo

with P e RX7*X4 symmetric, and that P satisfies ARE (4.5). Our aim is to show
that this P is a stabilizing solution. Let F be such that @y = FOTJ% ¢ Fo and
define F := Fy(I, @, (@D 4+ BTP)). Let F(&) be the polynomial matrix cor-
responding to_the coefficient matrix F. We claim that F is Hurwitz. Indeed,
F'J, , F=®—0r(¥)—op(¥),soweget HI ()], , Hin) =FT(0)J,, 4 F(n).
In terms of the associated bilinear differential forms this implies that for all
w,w' e € (R, RY) we have (H(d/dt)w')"J,. , H(d/dt)w = (F(d/dt)w')"J,. , -
F(d/dt)w. Assume now that w is such that F(d/dtf)w = 0. Then for all w’ we have
(F(d/dtyw')"J,, , F(d/dt)w =0, so (H(d/dt)w")"J,, , H(d/dt)w = 0. This can
be seen to imply that H(d/dt)w = 0. Since H is Hurwitz, this yields w(¢) — 0 as
t — oo, proving that F is indeed Hurwitz. By Theorem 4.1 we now conclude
that o(4 — BOy L (@Y + BTP)) = € U {0}. The implication (i) = (i) and the
remaining statements of the proposition follow immediately from Theorem 4.1
and Proposition 4.1. |
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Remark 4.1. Note that Propositions 4.1 and 4.2 do not claim that the existence
of suitable J,, , -spectral factors is equivalent to the existence of suitable solu-
tions to an a priori given ARE. Instead, there should be suitable solutions to an
ARE of sufficiently high dimension. 1t is a drawback of our results that this di-
mension is not known a priori (see also the remarks following Proposition 3.1). In
the case where we deal with positive semidefinite factorization, i.e., J,, 4 = I,
see Section 5, this drawback disappears. It turns out that in this case we can
always take the dimension equal to the degree of the polynomial matrix to be
factored.

The previous proposition can be applied to obtain algorithms to compute a
Hurwitz J-spectral factor for a given polynomial matrix. As noted in Section 3,
for a given Z there exist many two-variable polynomial matrices @ such that
0® = Z. Of course, different choices of @ lead to different Riccati equations (4.5).
As an example, below we state an algorithm that is based on the choice (3.3) of ®.

Algorithm 4.1.

Input: A para-hermitian polynomial matrix Z € R™9[¢], Z(&) =Zy+ Z1E+ - -
+ ZyEM ) with Zy #0, and two nonnegative integers ¢_ and ¢, such that
q- + g+ = q and such that sign(Z(iw)) = (¢—,0,q4) for all € R.

Output: A Hurwitz polynomial matrix H e R?9[¢] such that Z(¢) =
HT(=8)Jy,.4 H(E).

For a given positive integer K, let A(K) and B(K) be given by (4.1). Also, define

S(K) = %(Zl 22 s ZM qu(KfM)q)~

Step 1. Calculate Hy € R?*? such that HJ] J,. , Ho = Z.

Step 2. Assign the value M to the variable K.
Step 3. If is exists, find a real symmetric solution P € RX7*k4 of the ARE

AK)"P+ PA(K) — (S(K) + B(K)"P)" Z;1(S(K) + B(K)" P)
=0 (4.10)

such that ¢(4(K) — B(K)Zy"'(S(K) + B(K)" P)) =« €_ u {0}.

Step 4. If such a P does not exist, then let K = K + 1 and go to Step 3. Else, par-
tition the first ¢ rows of P into (Poo Po,1 --- Po x-1), with Py ; € R
and let

M K
H(f)ZHOZOI<20+Z(%Zi+1’o,i—l)fl+ > Po,i—15'>-
P Syt

Note that, due to Proposition 4.2, ARE (4.10) indeed has a required solution for
some K. Thus the above algorithm terminates after finitely many iterations.

Example 4.1. Consider the polynomial matrix of Example 3.1:

0 1-¢
Z¢) = <1+é 1—62)
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We have sign(Z(iw)) = (1,0, 1) for all ® € R. Furthermore, M =2, ¢ = 2, and

0 1 0 -1 0 o
a=(ih) 20 ) 20 )

We have

S O O
oS O O

AQ2) =

S = O O
—_ o O O
S O O

It can be calculated that

We find that
0 % 0 0
P % 0 0 0
0 0 0 O
0 0 0 O

is a solution of the ARE, and that it satisfies o(4(2) — B(2)Z,'(S(2) + B(2)" P))
= {0,0,0, —1}. The algorithm then yields

0o 1L
@ =+ mzy' (12+ () §))er mzy' iz,

5 0
which yields
3-¢&2
I+d —
H(E) =1V2 2
1pe 12¢
2

5. Positive Semidefinite Spectral Factorization

Let Z be a ¢ x g nonsingular para-hermitian polynomial matrix. In this section
we restrict attention to the case where Z is positive definite on the imaginary axis,
except in its singularities. Obviously, this requirement is equivalent to the con-
dition Z(iw) > 0 for all w € R, and in this case the number of negative eigen-
values, ¢_, equals 0, and the number of positive eigenvalues, ¢, equals ¢. Also,
Jq..q. =1, the g x g identity matrix. It follows from Proposition 3.1 that there
exists a ¢ x ¢ polynomial matrix F such that Z(&) = FT(=¢&)F(&). It is easy to
show that this requires the degree, M, of Z to be even, and that any spectral factor
F has degree %M . This a priori knowledge of the degree of the spectral factor
translates into information on the effective size of the unknown matrix ¥ in (3.5),
and on the dimension of the AREs to be solved.
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The first result of this section is an extension of Proposition 3.1 to the case at
hand.

Proposition 5.1.  Let Z be a g x q para-hermitian matrix of degree M with det(Z)
# 0, and let ® be a symmetric two-variable polynomial matrix such that 0O = Z.
Denote the effective size of ® by L. Let ®yuye denote the (L+ 1)g x (L + 1)q
matrix consisting of the first (L+ 1)q rows and columns of ®. The following
three statements are equivalent:

(1) there exists a g x q polynomial matrix F such that
Z(&) = FT(=¢)F(&); (5.1)

(ii) Z(iw) = 0 for all € R;
(iii) there exists a real symmetric solution P e R to the linear matrix
inequality (LMI)

) Oy P Opers Oy
L(P);:d)mc+<L” >+<“q ”)20. (5.2)

Oqu quLq P OLqu

Assume that any of these conditions hold. Then there exists a solution P with the
additional property that rank(L(P)) = q. An F such that (5.1) holds can then be
computed as follows: find a real symmetric solution P € R1**9E of the LMI such
that rank(L(P)) = q, and factorize

L(P)=FTF (5.3)

with Fe RN Then the polynomial matrix F defined by F(¢):=
F col(I,E1,E1,. .. EXT) satisfies (5.1).

Remark 5.1.  Note that, for example, (3.3) yields @ with effective size L = IM.
This choice of ® thus yields an LMI with unknown P of size (¢/2)M x (q/2)M

Proof. The equivalence of (i) and (ii) is already known. We prove (i) = (iii).
From 0® = Z, we obtain L > 1 M. Hence, certainly the effective size of —FTF
is less than or equal to L. Deﬁne Y(n) = 1/ +m)(@n) — FT()F(n).

Then the coefficient matrix of ®((,7) — FT(()F(y) equals o (¥) + op(¥), so
the latter also has effective size less than or equal to L. Obviously, the matrix
obtained by taking the first (L + 1)g rows and columns must then be of the form

Ogxg —P i Ogxrg  Ogxq

Ogxg  OgxLq =P Oryxg
for some real symmetric matrix P e R7*4E Since also @ — og (¥) — ap(P) =
FTF, for this P we obtain L(P) > 0. We now prove (iii) = (i). Let ¥({,7) be the
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two-variable polynomial matrix corresponding to the coefficient matrix

g 7 O
quLq OleI

Since L(P) >0, it can be factored as L(P) = FTF for some matrix F. Next,
premultiply L(P) by (I, {1, --- (*I,) and postmultiply by (I, nl, --- nLIq)T,
and use (5.2) to obtain ®({,n) — ({+n)¥((,n) = FT({)F(y), with F the poly-
nomial matrix associated with the coefficient matrix F. Applying the d-operator,
we then obtain Z(&) = FT(—¢&)F(&), which immediately implies Z(iw) > 0 for all
o € R. To prove the remaining statement, note that if F satisfies (5.1), then
det(F) # 0. This can be seen to imply that the rows of F are linearly independent.
Consequently, the P constructed above must satisfy rank(L(P)) = q. |

Of course, in the positive semidefinite case an extension of Proposition 4.1 also
holds, in which the order of ARE (4.5) is equal to the effective size of ®. We
do not explicitly formulate this result here, but instead concentrate on methods
to obtain Hurwitz spectral factors. First note that for a given para-hermitian
matrix Z there exists a ¢ x ¢ Hurwitz polynomial matrix H such that Z(¢) =
HT(=&)H (&) iff Z(iw) > 0 for all w e R. It was shown in [17] that if Z(iw) > 0
for all w, then LMI (5.2) has real symmetric solutions P_ and P, such that any
real symmetric solution P satisfies P_ < P < P,. It was also shown in [17] that if
Z(iw) > 0 for all w, then the choice P = P, i.e., the largest real symmetric solu-
tion of the LMI, yields a Hurwitz spectral factor. In fact, we quote from [17]:

Proposition 5.2. Let Z be a q x q para-hermitian matrix of degree M with det(Z)
# 0, and let ® be a symmetric two-variable polynomial matrix such that 0® = Z.
Denote the effective size of ® by L. Let ®yyye denote the (L+ 1)g x (L+ 1)gq
matrix consisting of the first (L+ 1)q rows and columns of ®. Assume that
Z(iw) > 0. Let P, € R pe the largest real symmetric solution of LMI (5.2).
Then rank(L(P.)) = q. Furthermore, any factorization

L(P,)=HTH

with He RN yields  a  Hurwitz  spectral — factor — H(&) :=
H col(I,E1,E%,. .. EFD).

As before, different choices of ®@ such that 0® = Z yield different LMIs. Below we
state an algorithm for Hurwitz spectral factorization that is based on the particu-
lar choice (3.3) of ®:

Algorithm 5.1.

Input: A para-hermitian polynomial matrix Z e R?E], Z(&) =Zy+ Zi¢
+ -+ Zy &M with Zy, # 0, such that Z(iw) > 0 for all € R.

Output: A Hurwitz polynomial matrix H e R??[¢] such that Z(&) =
HT(=)H().
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Define a (%M—i— l)q X (%M—i— l)q matrix Q by

27y Z Zy e Zyjr1 Zy)
zf 0 0 0 —Zym
z 0 0 0 Zyjp2
0:=3
Zhn 0 0o - 0 ()M zy
M/2-1 M2
ZAT4/2 *ZATI/2+1 Zza/2+2 (*1) / ZAT[—I 2(*1) / Zy

Step 1. Find the largest real symmetric solution P, € R 4/2*M4/2 of the LMI

L(P):= 0+ (OM‘]/M i ) n <0qXMq/2 Do ) > 0.

0gxq quMq/2 P OMq/2Xq

Step 2. Factor L(P,) = H"H with H e R?M/2+1)q,
Step 3: Define
1

éM/ZIq

Remark 5.2. The computation of the largest real symmetric solution of the LMI
in Step 1 amounts to maximizing the convex function P — trace(P) over the con-
vex set of all real symmetric solutions of the LMI. This compuation can be per-
formed using the LMI toolbox of Matlab. For this, one should first rewrite L(P)
in the usual state space (4, B, O, R, S)-format as (4.8), with 4 and B given by
(4.1). Of course, once we have found P, a factorization L(P.) = H”H can be
computed using any numerical algorithm to compute a Schur decomposition of
the symmetric matrix L(P.) (see [6]).

We now extend Proposition 4.2 to the positive semidefinite case. As stated be-
fore, in this case the dimension of the corresponding ARE can be taken to be
equal to the effective size L of the underlying ®. In the following, let 4 := A(L)
and B:= B(L) with A(L) and B(L) given by (4.1) with K = L. Also, let @V
and ®'V be given by (4.2) and (4.3) with K = L, so without the zero-blocks.
Then, obviously, the truncated coefficient matrix Dyryne 18 equal to

(i) B (DO,O d)(o.l)
trunc — (i)(O,l)T d)(lsl) .

Proposition 5.3.  Let Z be a q x q para-hermitian polynomial matrix of degree M,
and let ® be a symmetric two-variable polynomial matrix such that 0® = Z and ®
has effective size L < M. Then the following statements are equivalent:
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(1) there exists a q X q Hurwitz polynomial matrix H such that
Z(E)=H"(-OH(&):; (54)
(ii) @o,0 > 0 and ARE (4.5) has a symmetric solution P € REL4 vith the prop-
erty that o(A — B(Da’})((l)(o"l) +BTP)) c € u{0}.

Assume that any of these conditions hold. Then a Hurwitz polynomial matrix H
such that (5.4) holds can be computed as follows: First, factorize ®y o = H{ H,
with Hy € R nonsingular. Next, find a real symmetric solution P of ARE (4.5) as
in (ii). Then H defined as

Iy

—1 (0,1 T <y
H(&) := Hy(l, q>0$0(<1><’ )+ BTP))

&,
is Hurwitz and satisfies (5.4).

Proof. The proof is completely analogous to the proof of Proposition 4.2, the
only difference being that we can now take the ARE to be of dimensions gL x ¢L,
with L the effective size of ©. |

As before, different choices of @ such that 0® = Z yield different AREs. Below
we describe an algorithm for Hurwitz spectral factorization that is based on the
particular choice (3.3):

Algorithm 5.2.

Input: A para-hermitian polynomial matrix Ze R7¢E], Z(&) =Zy+ Zi&
4+ ZyEM with Zy, # 0, such that Z(iw) > 0 for all w € R.

Output: A Hurwitz polynomial matrix H e R?9[¢] such that Z(&) =
HT(=&)H(Q).

Let A:= A(3M) and B:= B(} M), given by (4.1). Define a (symmetric) § Mg x
%Mq matrix Q by

0 0 0 —Zmjn
0 0 0 Zyjra
0 ::% :
0 0 0 (—1)M/2712M_1
M/2-1 M2
~Zypa Zypn 0 (21 Pzh o 2=1)MPzy

and a ¢ x § Mg matrix S by

S = %(Zl Zz ZM/271 ZM/Z)
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Step 1. Calculate Hy € R?7*? such that H] Hy = Z.
Step 2. Find a real symmetric solution P € R%/ 2t 2 of the ARE
ATP+PA+0Q—(S+B"P)"7;'(S+ BTP) =0,

such that (4 — BZ;'(S + BTP)) = € U {0}.
Step 3. Partition the first ¢ rows of P into (Poo Po1 - Pomj-1), with
Py j e R”% and put

M)2 '
H(&) = Ho+ HoZy" Y " (3Zi+ Po1)E".

i=1

We now illustrate the application of this algorithm with two examples.

Example 5.1.  Consider the polynomial z(¢) = 4 — 5&% + &* used in Example 3.2.
Inthiscase, M =4, Zy=4,7Z,=0,2Z,=—-5,7Z5 =0, and Z4 = 1. Hence,

() o (Y ()

The matrix
6 2
= ( : )
9
2

satisfies the corresponding ARE, and, in fact, satisfies o(4 — BZ; '(S+ BTP)) c
C" . The algorithm yields H(¢) =24 3¢ + &2,

(O8]

Example 5.2. We now consider an example which was also studied in Section §
of [7]. In this example, ¢ = 3 and M = 3. Let Z(&) be given by

1
4

4
Z(&) =] 1+¢
0

Therefore we have

N o=~
I
S
(=)
I
—_
=)

Zo = zZi=|l1 o0 -

-1 0 0
o, 22:( 0 —1 o).
0 1 0 0 0 -1

2

O DI—= A=
Bl— A=

-

Thus we have 4 = 0343, B=I343, 0= —Z5,and S = %Zl. It turns out that

0.5000  0.8660 —0.2500

(0.5000 0.5000  0.000 )
0.0000 —0.2500  0.5000
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is a solution of the ARE, and that ¢(4 — BZ;'(S+ BTP)) = €. This yields a
Hurwitz spectral factor

0.4095+0.8191¢  0.2832 — 0.5665¢  0.0452 + 0.0905¢
H(&) = [ 0.2832 4 0.5665¢ 1.3783 +0.7739¢ —0.1416 — 0.2832¢
0.0452 4+ 0.0905¢ —0.1416 4 0.2832¢  0.4774 + 0.9548¢

6. A Pick Matrix Approach to J-Spectral Factorization

One of the areas in which the problem of polynomial J-spectral factorization
arises is the polynomial approach to H,, control (see [16], [8], [10], and [11]). In
that context the para-hermitian polynomial matrix Z € R?*?[¢] to be factored is
usually given as

Z(&) = MT(=&)J,, , M(Q), (6.1)

where M € R7*‘[¢] is given, p > ¢, and p_ and p, are given positive integers
such that p_ + p, = p. We can partition M according to (6.1) as

=4 )

where M, has p, rows and M_ has p_ rows, so Z(&) = MI(=&)M.(&)—
MT(=E)M_(&). In the polynomial H,, control context, the J-spectral factoriza-
tion problem is to find a Hurwitz polynomial matrix H € R7*9[¢] such that
Z(&)=HT(-&)J,p , H(&) and such that the following two additional require-
ments are satisfied:

(1) MH™" is a matrix of proper rational functions.

(2) The matrix
M
H,

is Hurwitz. Here, H is the polynomial matrix consisting of the first ¢ — p_
rows of H.

Note that the algorithms described in Sections 3 and 4 do not address the issue of
finding H such that the additional two properties (1) and (2) hold. A J-spectral
factor H of Z is called regular if (1) holds, and stabilizing if (2) holds.! Of course,
a necessary condition for the existence of such a J-spectral factor H is that
sign(Z(iw)) = (p-,0,q — p_) for all w € R. However, the signature condition on
Z(iw) is certainly not sufficient for the existence of a regular, stabilizing, Hurwitz
J-spectral factor H. In [16], necessary and sufficient conditions for the existence of

' It can be shown that a Hurwitz J-spectral factor H of Z satisfies (1) and (2) iff G := MH “lisa
Jp.,p_-lossless proper rational matrix, i.e., it is proper and satisfies G(/) TJI,“,,, G(A) < Jy—p_p. for
Re(4) = 0, with equality at infinity (see [11]).
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such J-spectral factors were given. Below, we briefly review these conditions and
state an algorithm to compute such J-spectral factors.

Let Z be given by (6.1). In the remainder of this section we assume that the
matrix M in (6.1) has the property that M (1) has full column rank for all 1 e C.
We also assume that det(Z) has no roots on the imaginary axis and that Z is
semisimple. Define now the symmetric two-variable polynomial matrix ® by
) =M"()J, , M(n). Let A1, 4s,..., 4 be the distinct roots of det(Z)
in €, and let V; be full column rank matrices such that im(V;) = ker(Z(4;))
(i=1,2,...,k). Let Ty be the corresponding Pick matrix associated with ®@. The
following result from [16] gives necessary and sufficient conditions for the exis-
tence of a regular, stabilizing, Hurwitz J,_, , -spectral factorization of Z:

Proposition 6.1.  There exists H € R[&] such that

MT(=&)y, p M(E)=H"(=E)J4—p p H(E),
H is Hurwitz,
MH™" is a matrix of proper rational functions,

bl

M-
(H ) is Hurwitz (here, M_ is the polynomial matrix consisting of the last
+

p_ rows of M, and H. is the polynomial matrix consisting of the first ¢ — p_
rows of H)

if and only if the following two conditions are satisfied.:
1. there exists € > 0 such that for all w € R it holds that
sign(M ™ (—iw)J,. , M(iw) +eM ™ (—iw)M(io)) = (p—,0,g —p_); (6.2)
2. Tp < 0.

In the following we refer to (6.2) as the strict signature condition.

Remark 6.1. We note that if Z is unimodular, then of course det(Z) has no
roots, so the Pick matrix does not exist. In that case, the condition T¢ < 0 in
Proposition 6.1 should be interpreted to be automatically satisfied.

Remark 6.2. It can be shown that there exists ¢ > 0 such that (6.2) holds for all
o € R iff there exists & such that (6.2) holds for all 0 < & < ¢, for all @ € R (this
will follow, e.g., from Lemma 8.3 in this paper). Thus, this condition requires
not only that M T (—iw)J, , M(iw) has signature (p_,0,q —p_), but also that
the signature does not change by adding a sufficiently small positive multiple of
M7 (—iw)M (iw).

Remark 6.3. In [16] it was proven that the strict signature condition (6.2) and
To < 0 hold if and only if the full information H,, control problem associated
with the system in image representation w = M (d/dt)¢ admits a solution. The fact
that solvability of this H,, control problem is equivalent to the existence of a reg-
ular, stabilizing, Hurwitz spectral factorization of M7 (—=¢)J,. , M(&) was al-
ready established in [11].
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In the J-spectral factorization algorithm that we give in this section, an impor-
tant role is played by the notion of a state map of a linear differential system (see
[14]). We briefly review this notion here. To the polynomial matrix M (&) = My +
Mié+ - + ME" we associate the linear differential operator M (d/dr) :== My +
M (d/dt) + -+ My (d*/dt*). This operator defines a linear differential system
(M) = (R, R?,B(M)) with behavior equal to the image of M (d/dt):

B(M) := {we C°(R,R?) | there exists £ € € (IR, R?) such that w = M (d/dt)¢}.
(6.3)

Given a polynomial matrix M € R”*?[¢], a polynomial matrix X € R"?[¢] is
said to define a state map for (M) or, simply, for M, if the system X, =
(R,IR" x IR?, B,) with B, defined by

B, : = {(w,x) e € (R, R? x R") | there exists £ € € (R, RY) such that

d d
w= M<E)€ and x = X<E>£}

is a state representation of (M), i.e., x satisfies the axiom of state (see [18]).
Given M, a state map X for M can be computed as follows. If necessary, permute
the components of w so that M is of the form

()

with U e R7*[¢], det(U) # 0, and YU~! a proper rational matrix (such a per-
mutation exists and can be found with the procedure outlined in [18]). It can be
shown that the set of polynomial row vectors

{re R™ & |rU" is strictly proper} (6.4)

is a vector space over R. Moreover, X (d/dt) is a state map for M if and only if
the rows of X (&) span (6.4); it is a minimal state map if and only if the rows of
X (&) form a basis for (6.4). In this case the number of rows of X is called the
McMillan degree of (the system defined by) M. This number is denoted by n(M),
or simply by n. It can be shown that n(M) = deg(det(U)).

The following theorem is the main result of this section. It serves as the theo-
retical background for our J-spectral factorization algorithm. We distinguish be-
tween the case that the Z to be factored is not unimodular, and the case that it is
unimodular. First, we treat the non-unimodular case.

Theorem 6.1. Assume that det(Z) has at least one root and that Z is semisimple.
Assume that (6.2) holds and that det(Te) # 0. Then we have n(=n(M)) =
1 deg(det(Z)). Let X € R"*?[¢] define a minimal state map for M. Then the matrix
W e C"™" defined by

We=XMVi X()Va - X(A)Vi)
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is nonsingular. Furthermore, there exists H € R [&] such that

M7y, p M) — (C+m)X TV ToW ' X () = H (O g-p_p H(n).
(6.5)

Moreover, for any H € RYY[E] such that (6.5) holds we have det(H) # 0 and
MH™" is a matrix of proper rational functions. If, in addition, Tg < 0, then for any
H such that (6.5) holds, H and col(M_, H ) are Hurwitz.

Proof. The proof of this result uses intermediate results on dissipativeness and
duality of QDFs. These topics are discussed in Sections 7 and 8. In Section 9 a
proof of Theorem 6.1 is given. |

Note that any H as in the above theorem immediately yields a regular, stabiliz-
ing, Hurwitz J-spectral factor. Indeed, by taking { = —¢ and # = ¢ in (6.5) we
obtain the J-spectral factorization M7 (—&)J,, , M(&) = HT (=&)J,—, , H(E).
The importance of the theorem is that formula (6.5) can be used in an algorithm
to calculate a desired J-spectral factorization. Below we list the steps of this algo-
rithm. In the remainder, for a given polynomial matrix P, P denotes its coefficient
matrix. As before, or and op denote the right and downward shift operators.

Algorithm 6.1.

Input: A p x q real polynomial matrix M, and positive integers p_ and p, such
that p_ + p; = p. It is assumed that M (4) has full column rank for all 1 e C.
Also, it is assumed that Z(&):= MT(=¢&)J, , M(¢) is semisimple, and
det(Z(iw)) # 0 for all w € RR.

Output: A g x q polynomial matrix H such that:

L MT(=&)J,. p M(&)=H"(=&)Jyp , H(E);
2. H is Hurwitz;
3. MH™!is a matrix of proper rational functions;

M_\ . . . . . .
4. ( o > is Hurwitz (here, M _ is the polynomial matrix consisting of the last
+

p_ rows of M, and H. is the polynomial matrix consisting of the first
q — p_ rows of H).

Step 1. Check whether there exists ¢ > 0 such that
sign(M ™ (—iw)J,, , M(iw) +eM ™ (—iw)M(iw)) = (p_,0,g — p_)

for all w e R. If yes, go to Step 2, otherwise terminate: no suitable H
exists.

Step 2. Compute the distinct roots A;, 4y, ..., 4 of det(Z) in €, and compute
matrices V; € C of full column rank such that im(V;) = ker(Z(4;)).
Compute the Pick matrix

1 —
o (/ﬂbﬁij P M (2i) Ty p M () _/>
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Check whether T < 0. If yes, go to Step 3, otherwise terminate: no suit-
able H exists.

Step 3. Compute an n X ¢ polynomial matrix X such that X is a minimal state
map for M. Let X denote the coefficient matrix of X.

Step 4. Compute the complex nxn matrix W= (X)V X()V2 ---
X () V).

Step 5. The hermitian matrix

MTJ, , M —og(XT(W*) " TeW*X) —ap(XT(W*) ' TeW*X)

has p_ negative eigenvalues and g — p_ positive eigenvalues. Factorize it
asH'J,_, , H.
Step 6. Let H(&) := H col(l,, I,¢, 1,E,...).

Remark 6.4. In Lemma 8.3 it is proven that if Re R(P~9*4[¢] is such that
RM =0 and R(Z) has full column rank for all 1€ €, then the strict signature
condition of Step 1 in Algorithm 6.1 is equivalent to: there exists ¢ > 0 such that
R(iw)(J,, . —el)RT(—iw) >0 for all w e R. This condition seems in general
easier to check than the original one.

We now illustrate the application of this algorithm with an example.

Example 6.1. We consider the case of a mixed sensitivity problem from Exam-
ple 4.4.3 of [10], with parameters r = 0, ¢ = 1, and y = 2. In this example we have

| —1-¢
M) = (—1 0 )
2 ¢

so p=3and ¢g=2. We take p_ =2 and p, =1, and we want to find a J; ;-
spectral factorization of

Z(f)=MT(—f)Jz,1M(£)=( -2 ‘”3’5).

—1-3¢ 1+3&
The relevant two-variable polynomial matrix ® is given by

-2 —143y )

T J—
M= () 1M (n) = (_1+3g 1+{+n—3

It can be verified that Z(iw) + eM T (—iw)M (iw) has constant signature (1,0, 1)
for & > 0 sufficiently small. Also, det(Z(¢)) = 3(£% — 1), so the only left half-plane
root of det(Z) is —1, with multiplicity 1. It can also be seen that Z is semisimple.
The kernel of Z(—1) is spanned by (=2 1)”, and the Pick matrix is therefore the
1 x 1 matrix given by

T¢=}2(—2 1)(3 j‘)(_f) =-2.
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Note that Ty is indeed negative definite. A minimal state map for M can be
chosen to be X(&) = (0 1), so

W =(0 1)(‘?) =1.

MTI M —ag(XT(W*) ' ToW*X) —op(XT(W*) ' ToW*X)

We now compute

2 1 0 3
1 1 0 3
o o o o

3 3 0 -3

This matrix has p; =1 negative eigenvalue (—6.69) and ¢ — p_ =1 positive
eigenvalue (2.69). Therefore it can be factored as H7J; | H, with
~ (026 —137 0 —0.86
N 144 094 0 —-193)

A regular, stabilizing, Hurwitz J; ;-spectral factor H(£) can then be computed as

(=026 —1.37—0.86¢
H(f)—< 1.44 0.94—1.935)'

For the sake of completeness, we also treat the case when the polynomial
matrix Z is unimodular. Recall that in this case the Pick matrix does not exist. We
then get the following:

Theorem 6.2. Assume that Z is unimodular, and that (6.2) holds. Then there exists
H e RE such that

MT(C)JP+=P—M(’7) = HT(C)Jqu,.pr(n)' (66)

Under these assumptions, any H € R[] such that (6.6) holds is unimodular,
MH™" is a matrix of constants, and col(M_, H) is unimodular.

This theorem immediately yields an algorithm to compute a regular, stabilizing,
Hurwitz J-spectral factorization of the unimodular Z. Indeed, in this case the
coefficient matrix M7 pr.mM has p_ negative eigenvalues and ¢ — p_ positive
eigenvalues, and can hence be factored as H”J,_, , H. The corresponding poly-
nomial matrix H(¢) is a regular, stabilizing, Hurwitz J-spectral factor. The proof
of Theorem 6.2 is given in Remark 9.1 below.

7. Dissipativity and Storage Functions

In this section we illustrate the concepts connected to dissipativity of systems
that we need in our proof of Theorem 6.1 and Algorithmn 6.1. The notions of
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dissipativity and storage function in the context of linear differential systems and
QDFs were treated extensively in [19] and [15]. We start this section with a brief
review of this material. After that, we present a new result stating that the smallest
storage function can be computed in terms of the Pick matrix associated with the
dissipative system.

Let M € R”*9[¢] and consider the associated behavior B(M), described in
image representation by (6.3). Assume that M (1) has full column rank for every
A€ C. Let ® be a symmetric two-variable polynomial matrix, and let Qg be the
associated QDF. This QDF is called the supply rate. The system B(M) is called
dissipative with respect to the supply rate Qg, if for all we B(M) of compact
support, j:o Qo(w)dt > 0 holds. The system B(M) is called strictly dissipative
with respect to the supply rate Qg if there exists an ¢ > 0 such that, for all
weB(M) of compact support, [* Qo(w)dt>e[”, wl|*dr holds. A system
can be effectively tested for (strict) dissipativity as follows. Define ®'({, ) :=
MT()®(L,n)M(n). It can be shown (see Proposition 5.2 of [19]) that dissipativity
of B(M) with respect to Qg is equivalent to 0@’ (iw) > 0 for all w € R; strict dis-
sipativity is equivalent to the existence of ¢>0 such that 0®'(iw) >
eM T (—iw)M (i) for all w € R.

We now review the concept of storage function. A QDF Qy is a storage func-
tion for (B(M), Qo) if

& 0ulw) < 0alw) (.1)

for all we B(M). It can be shown (see Proposition 5.4 of [19]) that a system is
dissipative with respect to a QDF if and only if there exists a storage function. It
was also shown in [19] that the set of all storage functions of a given dissipative
systems contains a smallest and a largest element, in the sense that there exist
storage functions Qg and Qg, for (B(M), Qo) such that any storage fuction Qw
satisfies the inequality Q¢ < Oy < QOy,.

A possible interpretation of supply rate is the power going into a physical sys-
tem, and a storage function can be thought of as measuring the quantity of energy
which is stored instantaneously in the system. Therefore, it is to be expected that
storage functions are related to the memory, i.e., the state, of a system. Indeed, if
the two-variable polynomial matrix @ is constant, equivalently, if the supply rate
O (w) is a quadratic function of w (and not of its derivatives), then it can be
shown (see Theorem 5.5 of [19]) that if B(M) is dissipative with respect to Qo,
and if Qw is a storage function for B(M), then for every X € R"/[£] that defines
a state map for B(M) there exists a symmetric matrix K € R"*" such that ¥({,#)
— XT(OKX ().

In the remainder of this section we assume that the supply rate is a quadratic
function of w, i.e., Qp(w) = wlSw, with S a given symmetric matrix. Define
@' (¢,n) .= MT({)SM(y). Again, we only treat the semisimple case: in the re-
mainder of this section we assume that 6@’ is a semisimple polynomial matrix.
Let A1, 4, ..., /4 be the distinct roots of det(o®’) in €, and let V; € C¥" be
full column rank matrices such that im(V;) = ker(0®’(4;)). Let Ty be the asso-
ciated Pick matrix. We now prove a lemma that states that if the system B(M) is
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strictly dissipative, then the size of the Pick matrix is equal to the McMillan de-
gree of M:

Lemma 7.1. Let B(M) be strictly dissipative with respect to Qp(w) = wT Sw.
Then deg(det(0®")) = 2n(M).

Proof. There exists a permutation matrix Il and polynomial matrices U e
R[¢] and Y e RP=9*4[¢] such that TIM = col(U, Y), with G:= YU™' a
proper rational matrix. For any such U we have n(M) = deg(det(U)). Define
G := lim;_,, G(4). Obviously, UT(=&) 1o’ (&)U (&)™ is a proper rational
matrix, so deg(det(6®’)) < 2n(M). We show that, in fact, equality holds. Be-
cause of strict dissipativity, there exists ¢ > 0 such that for all w € R we have
M7 (—iw)SM (iw) = eM T (—iw) M (iw). This implies that

‘l‘im UT(—iw) "0/ (io) U (iw) = MISM,, = eMI M,

w[— 00
with M, = lirr;MHOO M(iw)U ! (iw). Clearly, MIM, =1+ GIG, > 0. This
implies that U7T(—&) 'a®’(&)U(£)™" has a proper inverse, which yields our
claim. |

We now formulate the main result of this section. Recall that ¥_ denotes the
two-variable polynomial matrix associated with the smallest storage function of
the system B(M) with supply rate Qgp.

Theorem 7.1.  Assume that B(M) is strictly dissipative with respect to Qo(Ww) =
wTSw. Let X € R"[&] define a minimal state map for B(M). Define W € C"" by

W .= (X(l])V] X(}z) Vz te X(}k) Vk).
Then det(W) # 0 and
Yo () = XT QW) To W' X (). (7.2)

Proof. There exists ¢ > 0 such that 0®'(iw) = eM T (—iw)M (iw) >0 for all
o € IR. Hence (see [19]) W_ is given by

_ (¢ - H"({)H(n)
(+n

where H € R7*[¢] is Hurwitz, and a spectral factor of 0®', ie., 0®'(¢) =
HT(=&)H(&). Since HT(-¢) is anti-Hurwitz, the roots of det(H) are Ay, As,. ..,
Ak, and H(A;)V; =0 (i=1,2,... k). We first prove that if X (&) is a minimal
state map for B(M), then W is a nonsingular matrix. Assume, on the contrary,
that Z,k:1 X(A4)Via; =0, col(ay, ay, ..., a;) # 0. Define £ by £(z) := Z,k:1 "' Via;.
Then ¢ # 0. We have (X (d/df)¢)(r) = Zle e X (A)Via;, so (X (d/dt)€)(0) = 0.
Also, H(d/df)¢ = 0. We now prove that this implies that £ = 0, in contradiction
with what has been concluded above. In order to do this, let U be such that, pos-
sibly after rearranging the components of w, M = col(U, Y), and YU~! is proper.

¥_({n)

b
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Using the inequality 0®'(iw) > eM T (—iw)M (iw), it can be shown that MH~!,
UH™!, and HU™! are proper. Consider the extended system B(M, H), given in

image representation by
w\ ([ M(d/dr)
()= Crearan ) 7

Since MH~! is proper, in (7.3) col(w, ) is in fact an input/output partition, with
input /2 and output w (see Section 3.3 of [12]). We claim that X (d/dt) is a minimal
state map also for B(M, H). This follows immediately from the fact that, for
any polynomial row-vector r € R 4[¢], rU~! is strictly proper iff rH " is strictly
proper. Thus, in the system B(M, H) we have input &7 = H(d /dt)¢ = 0, and initial
state (X (d/dr)¢)(0) = 0. This implies that the output variable w satisfies w =
M (d/dt)¢ = 0. From the assumption that M (2) has full column rank for all A € C
we then conclude that ¢ = 0, which is a contradiction. This proves that 1 is non-
singular.

Next we prove (7.2). First note that there exists a symmetric n X n matrix, say
K_, such that W_({,7) = XT({)K_X(5). Thus we have

@'(Cn) = HN(OH(n) = (C+mXT(OK-X ().

By taking { = J; and # = A;, and by premultiplying (7.4) by V;* and postmultiply-
ing by V; we get

Vi (2, Vi = (i + ) Vi X T () K- X (4) V.

This immediately yields Tg = W*K_W, equivalently, K_ = (W*)"' Ty W*. This
completes the proof of the theorem. |

8. Duality of Quadratic Differential Forms

We now review the notion of duality of QDFs. This concept and the related no-
tion of a matched pair of state maps was introduced in [19].

Let M € R?*9[¢] be such that M (A) has full column rank for all 1 € €. As in
the previous section denote by B(M) the system with image representation w =
M(d/dt)¢. Let S e RP*? be nonsingular and symmetric, and define ®({,7) :=
MT()SM(n). In what follows we deal with the dual of the system B(M). This
is defined as the system with time axis R, signal space R? and with behavior
B(M)* defined by

B(M)*": = {ue@:*(m,w)

Jw wl(tyv(t)dt =0

— o0

for all w e B(M) with compact support}.

It can be shown that if R € R?~9*¢[¢] is such that RM = 0 and R(A) has full row
rank for all A € C, then an image representation of the dual system is given by
v=RT(—(d/d0))l', ie., B(M)" = B(R™), with R~ (&) := R7(—¢&). The latent
variable ¢’ takes its values in IR”7%. It can be shown that n(M) = n(R™), i.e., the
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McMillan degrees of B(M) and B(M)* are the same. Associated with the dual
system we define a QDF ®*({,7) := R(—{)S™'RT(—#), and we say that ®* is the
dual of phi. The main result of this section states that, under certain conditions,
the Pick matrices associated with ® and ®* coincide. As a first step toward this
result, we prove that 0® and d®* have the same roots. In fact:

Lemma 8.1. Let p and q be positive integers such that p > q. Let M € RP*4[¢]
be such that M (1) has full column rank for all ). € €, and let R € RP~D*4[¢] be
such that RM =0 and R(A) has full row rank for all A€ C. Let S € R”? be
nonsingular and symmetric and let ®(,n) := MT(O)SM () and ®*+((,5) =
R(=0)S™'RT(—n). Then for all i € C we have det(0®(1)) = 0 iff det(dd* (1)) = 0.
For any such . we have dim(ker(0®(1))) = dim(ker(0®*(4))).

Proof. It is easily seen that for all 1€ € we have ker(R(1)) = im(M (1)) and
im(R7(A)) = ker(MT(J)). Now assume that det(0®(4)) =0. Then there exists
0#veC? such that o®(A)v=0, so SM(A) eker(MT(-1)). Consequenly,
there exists v’ € €’ ¢ such that SM(4)v = RT(—A)v’. Note that, since M (1)
has full column rank, v’ # 0. Since also SM(1)v e ker(R(4))S™!, we have
R(A)ST'RT(=A)v" =0, so det(éd*(4)) = 0. Because of symmetry, the converse
implication also holds. The fact that the dimensions are equal follows from the
equality RT(—2)ker(0®* (1)) = SM (A)ker(0dD(1)). [ ]

Our next lemma states that if ® and ®* are dual, then the signature along the
imaginary axis of @ is completely determined by that of 0®:

Lemma 8.2. Let R, M, S, ®, and ®* be as in Lemma 8.1. Then for all ® € R
such that det(0®(iw)) # 0 we have

sign (0@ (iw)) + sign(0D™* (iw)) = sign(S).

Proof. Let w be such that det(0®(iw)) # 0. Define W (iw) e € by

- (“427)

We claim that W (iw) is nonsingular. Indeed,
00 (iw) MT(—ia))SRT(—ico)>

W (iw)(M (i) RT(—iw)>—< 0 R(i®)RT (—iw)

The claim follows from the fact that the right-hand side of this equation is a non-
singular matrix. The proof of the lemma is then completed by noting that

0(iw) 0 )

W (io)SWT (—iw) = ( 0 o0 (i)

In our next lemma we apply this result to the case in which S is a signature
matrix. It turns out that, along the imaginary axis, 0® satisfies a strict signature
condition with negativity equal to the negativity of the given signature matrix iff
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od* is strictly positive definite. Under this condition, the degrees of the determi-
nants of 0® and dd®* are the same.

Lemma 8.3. Let R and M be as in Lemma 8.1. Let p_ and p_ be positive integers
such that p_+ p, = p. Define ®(,n):=MT()J, , M(n) and ®-((,n) =
R(=0)J,. , RT(—n). Let & > 0. Then the following two statement are equivalent:

(i) sign(0®@(iw) +eM T (—iw)M (iw)) = (p_,0,q — p_) for all w € R;
(ii) 0D (iw) > eR(iw)RT (—iw) for all w € R.

Assume that there exists ¢ >0 such that this condition holds. Then we have
deg(det(0d)) = deg(det(0d™)). Consequently, 0® is semisimple iff 0D is semi-
simple.

Proof. Define S, :=J,, , +¢&l. Foralle >0, ¢ # 1, and for all w € R we have
sign(M 7 (—icw)S; M (iw)) + sign(R(iw)S; ' R (—iw)) = sign(S,).

As a consequence, for all such ¢ we have n_ (M7 (—iw)S,M(iw)) <n_(S;) < p_
for all w. Now assume that (i) holds. Then ¢ # 1, for otherwise S, > 0, which
would imply M T(—iw)S,M (iw) > 0. Hence we get n_(S;) = p_, so ¢ <1 and
sign(S,) = (p_,0,p,). This implies that for all weR we have
sign(R(iw)S;'RT (—iw)) = (0,0,p —g). By mnoting that S;'=(1/(1-¢?))-
(Jp.,p. —el), we conclude (ii). To prove the converse, if (ii) holds, then we must
have ¢ < 1. Reversing the previous argument then yields (i).

We now prove the second part of the lemma. First note that if (ii) holds, then
the system B(R™) is strictly dissipative with respect to the supply rate v7J,, , v.
From Lemma 7.1 it then follows that deg(det(o®*)) =2n(R~). There exist
permutation matrices T and IT such that R = (P Q)Il, with Q~!'P a proper
rational matrix, and M = IT'col(Y, U), with YU~! a proper rational matrix. In
that case we have n(M) = deg(det(U)). Define M, := limy;_.,, M(2)U~'(4), and
R = limy_.. 0" (A)R(4). Note that R, has full row rank. Now, from (ii) it is
easily seen that R.,J,, , RL > eR,RL >0,s0 R,.J,, , RL is nonsingular. From

this it follows that the matrix
( >
Roc-]m,p,

is nonsingular. Indeed, we have that

MT , MIM, 0
(M@ Roc ) = T
RWJP%[’— R‘}OJP+~P— MOO ROCJP+7P—Rw

is nonsingular. We claim that M*J, , M. is also nonsingular. This follows
from the matrix equality

MT MTJ ),M) 0
: Ip.p (Mo Jp>.p7R;:) — w?py,p- Moo |
Ry, p ; . o .

0P+, P-"ro0
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From the fact that M £Jp+_ p. M, is nonsingular, it finally follows that the proper
rational matrix (UT(=¢&)) "' MT(=&)J,. , M(E)U(E)™" has a proper inverse. This
implies that deg(det(0®)) = 2deg(U) = 2n(M). By recalling that n(M) = n(R™)
the claim on the degrees follows. The remaining equivalence follows by combin-
ing the fact that the degrees are equal with the fact that for all roots 4 we have
dim(ker(0d(1))) = dim(ker(0d*(2))). |

We now apply the previous lemmas to obtain the main result of this section.
Again assume that S is a signature matrix. The next theorem states that if 0O sat-
isfies a strict signature condition along the imaginary axis, with negativity equal
to the negativity of the given signature matrix, then the Pick matrices of ® and
@~ coincide.

Theorem 8.1. Let R, M, ®, and ®* be as in Lemma 8.3. Assume that there exists
>0 such that for all welR we have sign(0®(iw)+eMT(—iw)M(iw)) =
(p_,0,q — p_) and assume that 0D is semisimple. Let A, 2, ..., A be the distinct
roots of det(0®) in C~, and let V; e T be full column rank matrices such that
im(V;) = ker(ﬁ(l)(/l )) (i=1,2,...,k). Then there exist full column rank matrices
V! e P~ such that

Jp. p RT(=2))V] = M) V. (8.1)

For such matrices V! we have im(V/) = ker(0®"*(4)) (i = 1,2,...,k). Furthermore,
fori,j=1,2,. kwehave

Vid( )V, VO (4 4)V;
PR di+ 7

i.e., the corresponding Pick matrices To and Ty coincide.

Proof. The strict signature condition on J®, together with the assumption
that 0@ is semisimple, implies that the sets of distinct roots of det(d®) and
det(0®™) are the same, and equal to {A1,2s,..., Ak, —A1,—22,..., Ak}, with
{41,722, ..., 4} = €. Furthermore, the multiplicity »n; of 4; as a root of det(J®)
is equal to the multiplicity of 4; as a root of det(d®"); this number »; is equal to
the dimension of ker(d®(4;)), which is equal to that of ker(d®(1;)).

Let V; € C7*" be a full column rank matrix such that im(V;) = ker(0®(4;)).
Then 1rn(Jp+ » M(7:)V:) = ker(MT(—4;)) =im(R7(—%;)). Hence there exists V/
e CP~9*" sych that

Jy. p M(2)Vi=R" (=1 V. (8.2)

Since M (4;) has full column rank, ¥/ has full column rank, and since
RN, » RT(=2:)V! =0, we have im(V/) = ker(0®"(/;)). The claim that the
Pick matrices coincide then follows 1mmed1ately from (8.2). |

The notion of a matched pair of state maps is connected to that of duality of
QDFs. We now review this concept. Assume that M and R are as above. Let
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X € R"™ define a minimal state map for B(M). It can be shown (see [19]) that
there exists a polynomial matrix X’ e R"*?~9[¢] defining a minimal state map
for the dual system B(R™), such that for all infinitely often differentiable ¢, ¢’ it

holds that , ,
) K () o

A pair (X, X”) of state maps satisfying (8.3) is called a matched pair of state maps;
equivalently, we say that X and X’ are matched. Note that (8.3) is equivalent to
C+mX'T(O)X(n) = R(={)M(n). Our next theorem states that the Pick matrix
of ® can be computed in terms of a matched pair of state maps of M and R™.

Theorem 8.2. Let R, M, ®, and ®* be as in Lemma 8.3. Assume there exists
e>0 such that for all welR we have sign(0®(iw)+eMT(—iw)M(iw)) =
(p_,0,q — p_) and assume that 0D is semisimple. Let A1, 22, ..., A be the distinct
roots of det(0®) in C~, and let V; e T be full column rank matrices such that
im(V;) = ker(0®(4)) (i =1,2,...,k). Let V} € CP~9"" be full column rank ma-
trices such that (8.1) holds. Then for any matched pair of state maps (X, X") of M
and R™ it holds that

W"W = T, (8.4)

where W and W' are the complex n x n matrices defined by
W .= (X(;L]) V1 X(/"uz) V2 s X(lk) Vk),

W' .= (X/()ul) V1l X/(;LZ) Vzl T X/(ik) V/é)

Proof. In the equality ((+#n)X'TT()X(n) = R(—={)M(y), take {=2; and
n = 4;. Next, pre- and postmultiply by V/* and V; to obtain

(Zi+ ) VX T )X (2) V= VI R(=20) M (%) V.
Finally, by (8.1) we have V/*R(—4;) = V;M(J;)J,, , , which yields

V;/*X/T(/«I[)X(/«L/) V/ _ Vi*M(;:i);]PJMP—M(}Lj) VJ _ I/l*qz(/’f” )“j) VJ )
’ ’ }.,’ + }vj ;Li + ;Lj

9. Proof of Theorem 6.1

In this section we give a proof of Theorem 6.1. The proof is based on the results
on dissipativity illustrated in Section 7, and on the duality results that were
derived in Section 8. Again let p and ¢ be positive integers such that p > ¢, and let
M e RP*[E] be such that M(Z) has full column rank for all e C. Let Re
RP~9*4[¢] be such that RM = 0, and R(/) has full row rank for all 1 € €. Recall
from Section 8 that B(R™) is the dual of B(M). Recall also that if B(R™) is dis-
sipative with respect to a given supply rate, and if W({,#) yields a storage func-
tion, then for each minimal state map X'(&) of B(R™) there exists K = K7 €
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R™" such that W({,n) = X'T({)KX'(n). As before, we denote by ¥_ the two-
variable polynomial matrix associated with the smallest storage function. Our
proof of Theorem 6.1 is heavily based on the following result from Lemma 9.3 of
[16]:

Proposition 9.1. Let p_ and p, be positive integers such that p_+ p_ = p.
Assume that B(R™) is strictly dissipative with respect to the supply rate
vTJ,. p v (equivalently: there exists ¢ >0 such that R(iw)J,. , RT (—iw) >
eR(iw)RT (—iw)). Assume that n(M) # 0, and let (X,X') be a matched pair of
minimal state maps of M and R~. Let K- = KT € R™" be such that ¥_({,n) =
XT(OK_X'(n). If det(K_) # 0, then there exists H € R7*[¢] such that

MOy, p M) = (C+mX(OK X () = HT(O)Jy —p-,p-H(n).  (9.1)

Under these assumptions, for every H such that (9.1) holds we have det(H) # 0 and
the rational matrix MH~" is proper. If, in addition, K_ < 0, then for any H such
that (9.1) holds, col(M_, H) and H are Hurwitz. Here M_ and H are obtained
by taking the last p_ and the first ¢ — p_ rows of M and H, respectively.

Proof of Theorem 6.1. We have ®((,) = MT({)J,. , M(n) and Z = d®. Now
assume that (6.2) holds. Then, according to Lemma 8.3, B(R™) is strictly dis-
sipative with respect to v7J,, , v. Also, deg(det(o®)) = deg(det(od)L)) Applying
Lemma 7.1 to the system B(R™~), we get deg(det(0d*)) = 2n(R~) = 2n(M). This
yields 1 deg(det(Z)) = n(M) as claimed.

Let X’ be a minimal state map of R~ such that (X, X”) is a matched pair. Also,
let 7/ be full column rank matrices such that (8.1) holds. Define

W= (X'0)V] X' ()Vy o X))

According to Theorem 8.2, W"™* W = Tg. Hence, if det(Ty) # 0, then W is non-
singular.

Now apply Theorem 7.1 to the system B(R"~). The theorem says that W_({,#),
the two-variable polynomial matrix associated with the smallest storage function
of B(R™), is equal to

Y_(Ln) = XTQOW) Ty (W) X (),

i.e., we can take K_ = (W’*)f Ty (W)~ Since by Theorem 8.1 Tg = Ty, we
conclude that K='= W'Tg' W™, Since also from Theorem 8.2 W’ = To W™,
we obtain

K- ' = (W) ' ToTy' ToW ™' = (W) ' Tew .

Plugging this expression for K=! in (9.1), the existence of H such that (6.5) holds
follows. The remaining statements follow from the fact that K < 0iff T < 0. W

Remark 9.1. In Proposition 9.1 it is assumed that the McMillan degree n(M) of
M is not zero. If n(M)(=n(R~)) =0, then it can be shown that the following
holds: Let p_ and p, be positive integers such that p_ + p, = p. Assume that
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B(R™) is strictly dissipative with respect to the supply rate v7J, , v. Then there
exists H € R9[£] such that

MT(C)JP+=P—M(’7) = HT(C)Jqu,.p,H(ﬂ)- (92)

Under these assumptions, any H such that (9.2) holds is unimodular, MH™! is
a constant matrix, and col(M_, H,) is unimodular. Note that this immediately
yields a proof of Theorem 6.2, dealing with the case that Z is unimodular.

10. Conclusions

In this paper we have developed new algorithms for J-spectral factorization of
polynomial matrices. These algorithms are all based on the calculus of two-
variable polynomial matrices and their associated quadratic differential forms.
The algorithms developed in the first part of this paper originate from the idea of
associating with the (one-variable) polynomial matrix Z to be factored, a two-
variable polynomial matrix @ such that 0® = Z. The problem of computing J-
spectral factors for Z is then translated into the problem of factoring a constant
matrix that can be obtained from the coefficient matrix of ®@. In Section 4 this
problem is formulated in terms of solvability of AREs whose coefficients can be
obtained immediately from the coefficient matrix of Z, without any intermediate
state space realization step. An interesting feature of this approach is that differ-
ent choices of ® yield different algorithms and different AREs; this aspect can
probably be exploited in order to improve the numerical stability and the compu-
tational efficiency of the procedures. In Section 5 the results of Section 4 are ap-
plied to the special case in which the polynomial matrix to be factored is positive
semidefinite on the imaginary axis. In the second part of the paper, starting in
Section 6, a different type of algorithm is introduced, which is especially aimed at
computing J-spectral factors for polynomial matrices appearing in the context of
the polynomial approach to H,, control. A crucial role in this algorithm is played
by the Pick matrix associated with the two-variable polynomial matrix ®@. The al-
gorithm is based on several original results connected with dissipativity and dual-
ity of QDFs which are of independent interest.
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