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Abstract 

A generalization of the tangential Nevanlinna interpolation problem will be studied from a behavioral point of view. 
Necessary and sufficient conditions for its solvability and a characterization of all its solutions are derived. These results are 
obtained by associating to the interpolation data a behavior that enjoys a special structure. @ 1997 Elsevier Science B.V. 
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1. Introduction 

Let N distinct points ,;oi in the open right-half 
complex plane be given together with N subspaces 
~"/C C q. Assume that there exist nonzero integers m 
and p with p + m = q, such that ki:= d im(~))  ~< m, 
1 ~< i ~< N, and 

v =  E~'~), with v l E C  m, v 2 c C  p 
V2 

and v :/; 0 } =~ { ]viii2 > I)'2112}- (1) 

We call such a subspace ~ a contractive subspace. 
Consider now the following problem: given the N 
pairs (2i, Y/~/), find a 2301ynomial p × m matrix U and 
a nonsingular p × p polynomial matrix Y such that 

(a) U and Y are left coprime; 
(b) (U(2i)  - Y ( 2 i ) ) v  = 0 Vv E ;~/~i, 1 <~ i <~ N; 
(c) lie ]YItH~ < 1. 

* Corresponding author E-maih rapisard@univ.trieste.it. 
I Supported by CNR-NWO and DISC. 

We will call this problem the subspace Nevanlinna 
interpolation problem (SNIP in the following), and a 
pair (U, Y) satisfying ( a ) - ( c )  above will be called a 
solution to the SNIP. 

The SNIP is a generalization of  the tangential 
Nevanlinna interpolation problem with simple mul- 
tiplicities, stated as follows: given N distinct points 
)-i in the open right-half plane and N complex vec- 
tors (ui yi)  T with ui ~ C m, Yi ~ CP, 1 ~ i <~ N,  find 
a p × m rational matrix G such that G().i)ui = Yi, 
1 ~< i ~< N, and ]]GIIH~ < 1. The SNIP and the tan- 
gential Nevanlinna interpolation problem are con- 
nected as follows. Let 

be the data o f  the tangential Nevanlinna interpolation 
problem, and define ~J;. as the one-dimensional sub- 
space spanned by (u~ y[ ) .  It is easy to see that any 
solution (Q, P )  to the SNIP with data (2i, ~F)) defines a 
solution P 1Q to the corresponding tangential Nevan- 
linna interpolation problem. On the other hand, let G 
be a solution to the tangential Nevanlinna interpola- 
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tion problem, and let P 1Q be a left coprime factor- 
ization of  G with P Hurwitz. It is easy to see that 
(Q ,P)  is a solution o f  the SNIP with data (2i, ~t~}). 

The literature on Nevanlinna-type interpolation 
problems is vast. For the scalar case (m = p = 1 and 
ki = 1 for i E N),  necessary and sufficient conditions 
for solvability and an iterative algorithm for the com- 
putation of  a solution have been stated in [9, 10]; the 
tangential version of  the problem was first solved in 
[4]. Many different methods of  solution have been de- 
vised; we refer the reader to the monograph [2], which 
gives a thorough exposition of  interpolation theory 
for rational matrix functions and a copious list of  
references. One reason why Nevanlinna-type interpo- 
lation problems have been investigated is that they are 
connected with system-, circuit- and control-theoretic 
issues as interpolation with positive-real functions 
[ 16], model approximation [5], electrical power trans- 
fer [7], robust stabilization [8], and model matching 
in the H~-norm [3]. 

In this paper we deal with the SNIP from a behav- 
ioral point of  view. We give necessary and sufficient 
conditions for its solvability and we characterize all 
its solutions. Two notions developed in the behavioral 
context will be instrumental in this: the concept of  
most powerful unfalsified model and the calculus o f  
quadratic differential forms. In order to make the pa- 
per as self-contained as possible, in Sections 2 and 3 
we illustrate these notions, restricting our exposition 
to the bare essentials; further details can be found in 
[11, 14]. In Section 4 necessary and sufficient condi- 
tions for the existence of  a solution to the SNIP are 
stated, while in Section 5 a characterization of  all so- 
lutions to the SNIP is given. 

We use the following notation. Given a setX, 2 x de- 
notes the power set of  X. N, g~ and C denote the sets of  
natural, of  real and of  complex numbers, respectively. 
C+ denotes the open right-half o f  the complex plane 
and cO+ the closed right-half plane. Given n c N, n de- 
notes the set {i E N I 1 ~< i ~< n}. ( cq )  R is the set o f  all 
maps from ~ to cq. ~ ( R ,  cq)  denotes the set of  in- 
finitely differentiable q-valued complex functions, and 
cS2(B~, cq)  the set of  square-integrable q-valued com- 
plex functions. I1" 112 denotes the 2-norm; I1" Jl ~ ,  I1" I]H~, 
and II'llJ'~ respectively the oc-, H~- ,  and S2-norms.  
We denote with a~ : (cq)  R--~(Cq) R the r-shift de- 
fned by ( c / f ) ( t ) : =  f ( t  + r) Vt E R. exp;. : ~--+ C 
is defined as exp~(t) :=e ;'~. A linear, shift-invariant, 
differential behavior with infinitely differentiahle 
q-dimensional complex trajectories is a subset 

C_ %Eoo(N, cq ) enjoying the following property: 

there exists a polynomial matrix R with q columns 
such that ,~ = {w C ~6 ~ ( ~ ,  Cq) lR (d /d t )w  -- 0}. The 
set of  all such linear, shift-invariant, differential be- 
haviors with infinitely differentiable q-dimensional 
complex trajectories will be denoted as Y(0~,C~/). 
The set of  polynomials with complex coefficients in 
the indeterminate ~ is denoted by C[~], and the set of  
polynomial ql x q2 matrices with complex coefficients 
in the indeterminate ~ is denoted by C q' × q:[~]. The 
map * : C q' × q:[~] -~ C q-" × q' [~] is defined as follows. 

- i  ~ i 
Let R(~) = j~/i=0Ri ~i;- then R*(~): ~ l = 0 & ( - g ) ,  

or, more compactly, R * ( ~ ) =  /~T(--t'), with com- 
plex conjugate. Given r matrices Ai E C z × k i E r, 
col(Ai)ic,._ denotes the (~ '] /1 ki )  × k matrix 

Given r matrices Ai~Ck'×k% iEr_, diag(Ai)ic,._ 
denotes the r × r block-matrix with the A i ' s  o n  

the main diagonal and zero blocks elsewhere. 
Jk~,k2 E C (k~*& ) x (k, x & ) d e n o t e s  t h e  s i g n a t u r e  m a t r i x  

Ik~kl Oklx/~': 
0<. x " - Ik:  / " 

2. The most powerful unfalsified model 

The notion of  most powerful unfalsified model has 
been introduced in [12] in the context of  exact mod- 
eling of  time series. Let wi • ~ ~ cq, i C S_, be given 
(continuous-time) time series. For the purposes of  this 
paper, we assume that wi E ~4 ~(N,  Cq) for every i E S_. 

Let ~II C_2 {c'P be a class o f  models, the choice of  
which reflects the assumptions that the modeler wishes 
to make on the structure of  the phenomenon that pro- 
duced the wi's; for example, if models described by 
linear constant-coefficient differential equations are 
sought, then ~..t/= L,~(N, c q ) .  ~ ~ , t / i s  an unjalsflied 
model for the data set {wi}ies_ if l~ i ~ .~ Vi E S. For 
many choices of  J//' an unfalsified model for {wi}ies 

always exists: for example, if , t /  = 2 (c'/~, one can 
take as model for the wi's the behavior consisting of  
all complex q-dimensional trajectories. Such a model 
is, however, of  little practical use: it is unfalsified 
not only by the data, but by any set of  trajectories. 
In this sense, a good model is a behavior which is 
unfalsified by the data and which explains as little 
else as possible. We formalize this intuitive notion as 
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follows. We call ~1" the most powerful  unfalsified 
model (MPUM) in ,,/¢' for {wi}i~s_ i fwi  C ~*  V i e S ,  
and {wiEld ' ,  V i E S  and ~ ' E J / }  ~ { : ~ * c ~ ' } .  
Note that the MPUM need not exist; however, for 
many interesting choices o f ,C / the  MPUM exists and 
is unique; an instance of  this is , . / /=  S ( R ,  cq).  

Let us now turn to the SNIP and its connections 
with behavioral modeling. We associate with each pair 
(zt, ~F}) the subspace 

' . -  , " t } }  c , ,~(IR, C P + " ) .  / exp;., .-- {~ exp;, I v E (2) 

We introduce now the dual subspace of  ~/'} exp;~. In 

order to do this, let us define "t"~ ± first as 

°t'}~:= {w c C m+p I#Tjv = 0 Vv ~ :r}}, (3) 

where here and in the rest of  the paper J:=Jm,p. Note 
that if °t'] is contractive, S"}± is uniquely defined, as 
shown in the next proposition. 

Proposit ion 2.1. Let  "~" be a contractive subspace o f  
~m+p. Then "#± ~ ~ " = C p+m. 

Proof.  Observe first that "1~° 7~ 5"± = {0}. In fact, let 
w E ~ '  N $"±,  with w partitioned as 

W2 

where wl E C m, w2 E C p. Since ~YJw = 0, there fol- 
lows Ilwl JJ2 - Jlw2J!2 = 0; but since the only vector in 
"/ '  satisfying Ilw1112 -Ilw2ll2 = 0 is the zero vector, 
there follows w = 0. 

Assume now that {vi}ick_ is a basis for ~F, and note 
that the full column rank matrix V:=(v l  ...  vk) is 
such that Ira(V) = ~'~. Observe also that w belongs to 
"¢~± if and only if fY'TJv---- 0, i.e. if and only i fw  is or- 
thogonal (in the Eu.clidean inner product sense) to all 
columns of  JV.  Evidently, this requirement specifies a 
unique (m+ p - k  )-dimensional subspace ~'~± C C p+m 
such that ~ ' @  ~/~-a = ~p+m. The claim is therefore 
proved. [] 

We define the dual subspace of $~ exp;, as 

~)± exp_L:=  {ve~.p ;~, Iv ~ ~t~i.±}. (4) 

Define also the data set ~ as 

~ : =  U "~} exp,,, U ~ .±  exp_ L. (5) 
i ~ N  

As we will see in Sections 4 and 5, the MPUM for 
in the model class ,W(N, C q) is instrumental in stating 
necessary and sufficient conditions for the solvability 

of  the NIP and for characterizing all its solutions. We 
now describe the main features of  this MPUM and we 
illustrate an algorithm to compute a kernel represen- 
tation for it. 

A polynomial exponential time series is a trajectory 
of  the form 

f /  

Z v~j~ exp;.,(t), Uij G C q, i ~ N. (6) Wi(t)  

j=0  
j .  

Note that .@ defined in Eq. (5) consists of  linear com- 
binations of  polynomial exponential trajectories with 
vi = 0 ,  i E N .  

The problem of  computing the MPUM in 5~(R, cq ) 
for a set of  polynomial exponential trajectories has 
been considered in [1]; in the following we sum- 
marize those results which are more relevant to the 
SNIP. It can be proved [1, p. 1787] that in the case 
of  polynomial exponential time series the MPUM is 
an autonomous (i.e. finite-dimensional) behavior, and 
therefore can be represented in kernel form by a non- 
singular polynomial matrix R; the dimension of  the 
MPUM equals the degree of the determinant of  R. 
It can be proved (see [ 1, p. 1789] ) that this determinant 
has all its roots at the characteristicfi'equencies 2i. To 
illustrate how the multiplicity of  ),i as a root of  det(R) 
depends on the trajectories wi to be modeled, we con- 
sider the case of  interest to us in which the ).i's are dis- 
tinct and the MPUM for the set {w U = t~'/y exp;, ]j ~ k/ 

and i E N }  is sought. Let V/:=(Vil . . .  vik,); it can 
be shown (see [1, p. 1788]) that the dimension of  the 
MPUM in this case equals ~i~'_l Rank(V/). 

Note that a kernel representation of  the MPUM is 
not unique: in fact, all other representations with R 
square can be obtained by premultiplication of  R by a 
unimodular matrix (see [ 13, p. 263]). Note also that all 
unfalsified models . ~  E S ( R ,  Cq) can be represented 
in kernel form by premultiplication of R by a suitable 
polynomial matrix (see [11, p, 565]). 

In [13] a recursive procedure for computing 
a MPUM in d([R, Cq) for a finite set of  polynomial- 
exponential data has been given. We now illustrate it 
for the data set {vi exp~, }its. 

Define the 0th step model a s  mo(~):=lq, and the 
ith step model as M/(~): Ei(~)Mi i(~), i c S, where 
Ei(~) represents a MPUM for the ith error trajectory 
ei:= M(d/d t )v i  exp,,. Note that the MPUM for a data 
set consisting of  only one trajectory v exp;, v ¢ 0, can 
be computed as (vvT/]] VII ~ ) d/dt  - 2 Iq. It can be shown 
(see [13, p. 289]) that Ms, represents the MPUM for 
{v/exp;, }/~s. In Section 4 we will use a modification 
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of this procedure to prove the existence of a special 
representation of the MPUM for ~ .  

3. Quadratic differential forms 

A q x q symmetric two-variablepolynomialmatrix 
in the indeterminates ¢ and r/is an expression 

L 

q~(~'~l) = Z ~bh'kc~hr/~ (7) 
h,k-O 

~T 
where the complex matrices 4~h,k satisfy 45h, k = k,t,. 
We associate to Eq. (7) the quadratic differentialjbrnl 
(QDF) Q4, : (6~(R, C q) -+ ~ ( ~ ,  [~) defined as 

d w  
Q~(w):= \ dt h j a.k ~ 7 .  (8) 

h,k=O 

A very convenient aspect of the association of QDFs 
with two-variable polynomial matrices is that a calcu- 
lus of QDFs is easily developed and has far-reaching 
applications (see [14, 15]). 

In many applications it is necessary to compute the 
integral of a QDF. To ensure that such an integral ex- 
ist, we assume that the argument of the QDF is an 
infinitely differentiable function of compact support. 
We will denote the set of infinitely differentiable func- 
tions from ~ to cq with compact support as @(R, Cq). 
In the context of integrals of QDFs, an important role 
in this paper is played by the notion of average- and 
half-line nonnegativity of a QDF. Q ,  is said to be 
average-nonneqative (denoted as f Q~ >~ 0) if for all 
trajectories w ¢ @(R, cq)  there holds 

f_ ~ Qe(w)dt  ~> 0. (9) 
, o c  

Define the map d : C q x q[~,/7] ____+ @q × q[~] as c ~ ( ~ )  

:= 4)(-~,~). It can be proved (see [14, p. 21]) that 
f Qe ~> 0 if and only if the Hermitian matrix ~4~(iu)) 
is nonnegative definite for all o)~ N. A QDF Qe is 
called averaqe positive, denoted by f Qe > 0, if Eq. 
(9) holds and {f-~o~ O~(w)dt=O} ~ {w=0}.  It can 
be proved (see [14, p. 21]) that f Qe > 0 if and only 
if cqq~(ioo) >/0 gco ~ ~ and det(&b) ¢ O. 

A related notion is that of half-line nonnegativity 
(positivity); Q~ is called hag=line nonnegative, de- 

j.0 
noted as Q~ ~> O, if 

.f_'~ Qe(w)dt  ~> 0 V w G ~ ( R , C  q) (10) 
oc 

,f0 
and half-line positive, denoted as Q~b > 0, if Eq. 

(10) holds and {fo x O~(w)dt 0} ~ {w 0}. 
In [14] the Pick matrix associated with a QDF has 

been introduced as a tool for testing half-line positiv- 
ity; in Section 4 of the present paper we will use a 
generalization of this concept to give necessary and 
sufficient conditions for the solvability of the SNIP. In 
order to define the Pick matrix associated with a QDF, 
we have to introduce the notion of semi-simplicity of 
a polynomial matrix. Let F ¢ C q x q[~] be nonsingu- 
lar; then it is semi-simple if V2 ¢ C the dimension of 
Ker(F()~)) is equal to the multiplicity of ), as a root 
of det(F). For the purposes of the present paper, we 
introduce the notion of Pick matrix associated to a 
QDF in the semi-simple case only. Let q5 ¢ Cq x q[~, 17 ] 
be a symmetric two-variable polynomial matrix. As- 
sume that det(cS~b) has no roots on the imaginary axis, 
and let 2~ ¢ C+, i Cr, be its right-half plane roots. Let 
ai E ~q, i ¢ r, be linearly independent vectors such that 
~q~(2:)a: 0 and such that the ak's associated with 
the same 2i span Ker(~?q0(2i)). The Pick matrix of 4) 
is the Hermitian r x r matrix defined by 

I 
T@:= 7- ~ . 

\ xi +/./ / i./e; 

Finally, let us introduce the notion of dual of a QDF 
(see [14, p. 34]). Let D c C m x m[{] and N C C p × "[~] 
be right coprime matrices, and let Q ECt 'X '" [ f ]  
and P E C p x/,[~] be left coprime matrices such that 
QD PN = 0. Introduce the two-variable poly- 
nomials q~(~,t/) / sT (~ )D( r / ) -  )?T(¢)N(q) and 

7'(~,~1) Q( ¢ ) 0 T ( 1 1 )  P( ~)/sT(--r/).TheQ DF 
Q'v will be called the dual of the QDF Q~. It is 
possible to show (see [14, p. 36]) that the positivity 
properties of Q~ and Q~ are related: in fact, Qa, is 
average nonnegative (positive) if and only if Q,f, is 
average nonpositive (negative). 

4. Necessary and sufficient conditions for the 
solvability of the SNIP 

In this section we state two necessary and sufficient 
conditions for the existence of a solution to the SNIP. 
The first condition is analogous to the classical one, 
namely the positive definiteness of the Pick matrix 
associated with the data (see [2, p. 387], for the case 
ki = 1 for i E N). The second one is new, and relates 
the SNIP to special representations of the MPUM of 
the data set ~ defined in Eq. (5). 
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Before stating the main result of  this section, let 
us introduce the Pick matrix of  the data (2i, "t~i)i~/2. 
Assume that a full column rank matrix Vi ~ C q × k, 

is given such that l m ( V i ) =  "t~}, for every i ~ N .  
We will call the Hermitian (V "x hi)× tV'm ki) 

Z - ~ i = I  t Z - . , i =  I 

matrix 

( /~/TJI~/- / 

T{ ~;}<,±:= \,~; + }'JJ i, jE,X 
(12) 

the Pick matr ix  o f  the data. Note that T{~;};~,__ de- 
pends on the particular basis matrices Vi chosen, but 
that its positive definiteness depends only on the sub- 
spaces "t'].. 

We are now ready to state the main result of  this 
section. 

Theorem 4.1. The Jollowing three statements are 
equivalent: 
1. The Hermitian matr ix  T{ ~ i}<,_ is positive definite; 

2. The M P U M  f o ,  ~ has a kernel representation 
induced by a matr ix  o f  the form 

R:= ( - g *  N ; )  (13) 

3. 

whereD ~ C m × ~'[~],N ~ C p x m[~], Q E C p x m[~], 
P c C p × P[~] sa:isfy the following properties: 
(a) D and P are nonsinqular; 
(b) QD - PN = O; 
(c) P is Hurwit::; 
(d) R JR* = p p * J = R ' J R  with p ~ C[~] a Hurwitz  

polynomial; 

(e)  IIP-~Olln~ < 1; 
(f) II N*P-~II.<~ < 1; 
There exists a solution to the SNIP.  

Proof.  We will run the circle (1) ~ (2) ~ (3) 
(1). 

Let us first prove (1) m (2). We will prove this 
by induction on the number N of  subspaces ~'} to 
interpolate. 

For N -- 1, partition the basis matrix V) for ~<1 as 

Vii) 

with VII E C m × k, and VI2 E C p × <, and consider the 
model .Ni represenled in kernel form by 

Rl(~.):=(~ + ~l)lp~m - VjT 1 V1J.-T {Y, ) (14) 

For future reference, partition Eq. (14) according to 
the partition of  V1 as 

QI - P l  := 

( ) (~ + 21)Ira- VII T{~I } 17TI VIIT{~i}VI2 

• - - I  - T  - - -  - T  " t bI2T{~I}VI I (~+')q)Ip--VI2T{~II}VI2 

Note that 

d _ c  jv, 
+ ,~1 ) VI exp;, V1T{t I, } exp;., 

=(21 + 21 )V1 exp;~, 

I 

0 V I t ")q -}- fiq )exp;., = 

(15) 

Note also that if Z1 is a q × (m + p - kl ) matrix such 
that Im(Z1 ) = "t ~ ,  there holds 

( d  + ~1)ZI  exp 7., 

- v, r - '  P JZ, o. { ~, } exp-L = (17) 

Therefore, -N1 _D ~'] exp;~ and ~1 ~ ~'1 ~- exp L" In 
order to prove that .~1 is the MPUM, observe that the 
determinant of  Eq. (14) has degree p + m, and there- 
fore ~1 contains p + m  independent trajectories. Since 
dim(l~l exp;~] • ~"l -L exp L ) = m + p, the claim is 
proved. 

We now prove that the representation given by Eq. 
(15) satisfies (2a)-(2f) .  Since DI and Pi in Eq. (15) 
are row proper, they are nonsingular. Q1DI - P I  NI = 0 
follows from straightforward manipulations. To prove 
that P~ is Hurwitz, assume by contradiction that there 
exists a ~t c CO+ and a nonzero vector v E C p such that 

Pl(/x)v=(/x+ 21)v+ VieT{~l, iVT2v O. (18) 

Multiplying Eq. (18) on the left by/ i f ,  we obtain 

(19) 

From the assumption that 7"{~i} is positive definite 
follows that the second term in Eq. (19) is strictly 
greater than zero; it is easy to see that this implies 
Re(p) < 0, a contradiction with it E cO+. 

(16) 
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Let us now prove (2d). Observe that 

R,JR~ = [(~ + 21 )Ip+m - V, T-l{,, } PTJ] 

X J [ ( - ~  q- .,:q )Ip+m -- JUl T -1 pvj] 
- l r , }  

= (~ + L ) ( - ~  + ,~ ~ - (,~.1 + ;1 )u, r~, ~., / P~ 

+( )q  + ~ ) V i T  ~ -T { ~ ~ } VI 

- ( {  + ,~, ) ( - ~  + 21 )J. ( 2 0 )  

The second equality of  (2d) can be proved analo- 
gously. 

To prove (2e), observe that from (2a) and 
(2b) it follows that PI-~Q1 = NID7 ~. In order 
to prove ]IP~IQ~]]~ < 1, we will therefore con- 

sider the QDF induced by T(~,r/) = / )T(~)DI01  ) -  

3?T(~)N~ (t/) and prove that 6 T(ico) = D] ~ (i(o)Dl (ko) 
-N~(io))N~(ie)) > 0  for every ~,)~N. Note that 
D'(D~ - N ~ N I  is the (1, 1)-block of RIJR~ and, by 
(2d), on the imaginary axis it equals 

( - i v )  + 21 )(i~ + 21 )/m, (21) 

which is positive definite for every co E N. To prove 
claim (2f), note that NI (ie))Nl*(ico) - P~(icO)Pl(io)) 
is the (2, 2) block OfRl(ie))*JRi (io)) and that by (2d) 
it is negative definite for all o) ¢ R. This concludes the 
proof  of  (2a ) - (2 f )  for the representation given by Eq. 
(14) of  the MPUM f o r N  = 1. 

Let us now assume that the claim (1) ~ (2) holds 
for a number j o f  subspaces to interpolate, j ~ N - 1. 
In order to prove the claim for N subspaces we will 
proceed as follows. We have shown above that there 
exists a representation R1 of  the MPUM for ~/~1 exp;~ @ 
f~~ exp 2, that satisfies (2a) (2f). We will show that 
the Pick matrix of  the errors {R1 (d/dt)~/} exp;, }2 ~i.<,v 
associated with this representation is positive definite. 
Then we will apply the inductive assumption and con- 
clude that a representation R' of  the MPUM for the 
errors satisfying (2a) (2f) exists. Combining the rep- 
resentations of  the two MPUMs as RtRI we obtain a 
representation of  the MPUM for ~ ,  and we will show 
that it satisfies (2a) (2f). 

Assume now that a representation given by Eq. (15) 
of  the MPUM for ~q exp;~, C~ °t"~ exp_;7 ' has been 
computed, satisfying (2a)- (2f) .  The error subspaces 
of  this model are 

Vi':=()oi + ~, )Vi - VIT{~!,} VTjVi. (22) 

We now prove that the Pick matrix 7"{ j ~}~ , ,  is posi- 
tive definite. Note first that for 2 ~< i ~< N, 2 ~< j ~< N 
the (i 1,j 1)th block element of  T l ~ is 

- I T  / 

V i JV;  ~ -T 
2,,- + 2 i [(2' +/~' )V, - P~JV, 7"{ ,; } pV] 

× J [ ( ;~ /+L)v , -  u~r ~ P~,JV;] 

× (,~i + )v) 1. (23) 

Easy computations show that Eq. (23) equals 

('~i -- 21 ) ( ; j  ~- XI ) -Z _ v,  J r ,  - PyJv ,  r - '  V,Jv>-T 
2, + 2/ {J '} 

(24) 

Partition now Tt~;},,, as 

T{~,,/ (25) 
T{ J ,}~ <~i4;v 

- i  /v 
with b = co l (V iJVl /x i  + )q)2~<i~<,\,, and define 
A :=  diag((2i + 21 )&  )2~<~<~,. Observe that 

-1 -T - ;, 

(26) 

We prove now that the (2,2)  block of  Eq. (26) co- 
incides with T{j ;}~,.,~,. In fact, the ( i , j ) th block of 

AT{ ~i}~,,., A AbT{II}DT]] equals 

(7¢i Jr- .)q ) (@ q- ~1 ) f . T j v  j -T -1 -T 
_ - v~dvj, ).i @ ).j Vi JVI  T{ "t , t 

(27) 

and, since the ( i , j ) th block of  T/~ ;}. ,.~, is given by 
Eq. (24), this proves the claim. Note also from Eq. 
(26) that T{1;},~,_ > 0 implies T{, ;}_~ ,.:, > 0. There- 
fore, there exists a representation of  the MPUM for 
{~l/;}2<.i<.N of  the form 

-D'* N'*'~ Q, _ p , ]  (28) 

satisfying (2a)- (2f ) .  The MPUM for {';~}}ie,v is rep- 
resented by 

k o'  - P ' J  \ QI -P, " 
(29) 
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We now show thin: Eq. (29) satisfies (2a) (2f). In 
order to prove that P is nonsingular, note from Eq. 
(29) that - P  = Q'N( +P'Pl .  Since liP' ~Q'II~ < 1 
and IIN~+p~all~ < l  by inductive assumption, the 
matrix P'-IQ'N~<P i + I  =P'  l ( - P ) P l i  is nonsin- 
gular on the imaginary axis, and the claim follows. 
The nonsingularity of  D is proved as follows. Ob- 
serve from Eq. (2k) that - D *  = D~*D~ + N'*QI. 
Note also from Eq. (15) that Ql = -N1,  and therefore 
- D  = D I D ' - N ~ N ' = D I ( I - D ~ I N ~ N ' D  ' l )D' .  Note 
that HN'D' ~]]~ <:1 by inductive assumption and 
also that ]]D[IN~ I~ < 1 because R~JR1 - PP*J, 
with R1 the matrix in (15). There follows that 
(I D~-IN~N'D ' ) is nonsingular on the imaginary 
axis. This implies that D is non-singular. 

In order to prow; (2b), note that QD - PN is the 
(2, 1) block of  

Since Eq. (29) holds, and the representations of  Eqs. 
(28) and (15) satisfy (2d) by inductive assumption, 
the claim follows easily. 

We now prove that P is Hurwitz. Assume by con- 
tradiction that there exist p E C ° and a nonzero v C C p 
such that 

(Nl*(/x) "~ v = 0. (31) P(p)v = (Q'(#) --P'(lx)) t, Pj(#)/I 

Since IIN~P~ l IIH~ < 1 and P1 is Hurwitz, for every 
/x E C ° and every v E C p there holds IIN~*(~)~'II7 < 
IIp~(~)vll2; but then Eq. (31) contradicts the fact that 
p,-IQ~ is contractive. Therefore P is Hurwitz. 

Claim of  (2d) can be proved by a straightforward 
computation, using Eq. (29) and the inductive assump- 
tion. 

Let us prove (2e). It has been proved above that 
P and D are nonsingular and that QD - PN = 0; 
there follows P -  1Q = ND- i. Therefore, we show that 
D*D - N*N > 0 on the imaginary axis. Note that 
D*D - N*N is the (1, 1 ) block of  

Q, _p '  ] t, QI - P l  

X J ( N  Dl _TljQ!,)(-N D' _p ,* j  (32) 

and by (2d), this block equals p(ieJ)p*(kO)Im > 0 
for every o ~ N. The proof  of  (2f) follows a similar 

argument, since NN* - P*P is the (2, 2) block of  

Pi <) \ N' -P '* )  
// D'* N'* '~ ( - D ~  < NI* ) 

×J \ O' - P ' J  \ Qi - P 1 ,  " (33 ) 

This concludes the proof  of  (1) => (2). 
Let us now prove (2) ~ (3). Let (Q - P ) =  

F(U -Y), with F a greatest common left divisor of  
Q and P. We will show that ( U  - Y )  is a solution 
to the SNIP. Note that since P is Hurwitz, F is also 
Hurwitz. Since by assumption P -  i Q = y - i  U satis- 
fies the metric constraint, we only have to show that 
(U - Y )  is such that (U(2i)  - Y ( )~i ) )V = 0 VC E T'i, 

i E N. Since Eq. (13) is unfalsified on the data set ~ ,  
there follows 

(Q(2i) -P()q))  

= F(2,  )(U().i) - Y(2i ) )v = 0 (34) 

Vv E ~) ,  Vi c N. Since F is Hurwitz, F()q) is nonsin- 
gular for i E N, and the claim follows. 

To prove (3) ~ (1), denote with (U - Y )  a 
solution to the SNIP. Since U and Y are left co- 
prime, there exist right coprime matrices Z and X 
with X nonsingular such that UX - YZ = 0. This 
implies Y-1U = ZX i and s ince  ]]y-1UIIH~ < 1, 
for every trajectory WE~PZ([J~,C q) there holds 
liZ(d/dt)wi]~,:(~,o,) < liX(d/dt)wil~:(r~,c<,). There- 
fore, the QDF induced by q~( ( , r / )=  ) ( ( ( )Tx( t / )  
--2(()Tz(r/) is averagely positive. We now show that 
this implies the positivity of  T(~;},~,z. By resorting to 
the Smith form of  

it is easy to show that for every i E N there exists a 
matrix Li C C m × k, s u c h  that 

(X(d/d t )~  
Z(d/dt),] Li exp;, = Vi exp;,. (35) 

Consider now a trajectory a = ~ N  1Liei exp:,, where 

~ E C k' x I. It is easy to see that 

f Qe(a)dt=(Y~T.. .  -~ T 0~ N ) {:t ;},E~_ . (36) 

The trajectory a is not of  compact support, but 
an approximation argument yields that Eq. (36) is 
positive. Since the ~i's are arbitrary, there follows 
T{~;},~± > 0. [] 
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Remark 4.1. The proof of  implication (1) ~ (2) 
in Theorem 4.1 suggests the following algorithm for 
computing a solution to the SNIP. 

Input: )-i E C+, ,;t~} subspace of  Cq, i ~ N; assume 
that *~} is contractive, Vi is a full column rank matrix 
such that lm Vi = "~], and ir{~i},c , > 0. 

Output: (U, Y) solution to the SNIP 
• Ro=lq;  
• V~=Rk_~(&)V~ 

• = - V ~ T t l  2}  k 

• (Q P )  (0pxm /~)R~, 
• Compute left coprime (U~ Y) such that Y-~U = 

P IQ. 

This procedure can be considered as the behav- 
ioral counterpart of  the classical Nevanlinna recursive 
scheme for computing a solution to the scalar Nevan- 
linna interpolation problem (see [6, p. 165]). 

Remark4 .2 .  The structure of  the representation 
given by Eq. (13) of  the MPUM for f,t is close to that 
of  the J-contractive rational matrix O at the core of  
the usual approach to metric interpolation problems 
(see [2, p. 386]). To illustrate this relationship, we 
will consider the tangential Nevanlinna interpolation 
problem (k~ 1 for every i ~ N). In this case the O 
matrix is a q x q rational matrix such that 
(a) O is analytic in cO; 
(b) O*JO = J  on the imaginary axis, and O*JO <~ J 

on C+; 
(c) Ker(O(2i) )  = ~c;. for every i c N ,  where ~ ;  is a 

one-dimensional subspace; 
(d) 2i is a zero of  nmltiplicity one for de t (0 )  for 

every i E N. 
We will show how to compute a rational matrix sat- 

isfying (a) (d) above from a particular representation 
of  the MPUM for 2 .  Observe that since dim(~ )) = I, 
i ~ N, there follows dim( ~i. ± ) = q - 1, and therefore 
the determinant of  any kernel representation of  the 

N 
MPUM for ~ equals I~i=l(<_ + ~,)q 1(3 ).i). We 
now show that there exists a representation R of  the 
MPUM tbr 2 that satisfies (2a) - (2f )  of  Theorem 4.1 
and is row proper. In fact, for N = 1, a representation 
for the MPUM is given by Eq. (14), with leading row 
coefficient matrix equal to the identity. Assume now 
that for j C N 1 there exists a representation R j  o f  

the MPUM for the first j subspaces and their duals, 
satisfying (2a) - (2f )  of  Theorem 4.1 and with leading 
row coefficient matrix equal to I v. A representation of  
the MPUM for N subspaces is obtained by premulti- 

plying Rx 1 by a representation EN of  the MPUM for 
the Nth error subspace and its dual. This representa- 
tion EN can be chosen to have leading row coefficient 
matrix equal to the identity. It is easy to see that the 
leading row coefficient matrix of  E,vRN-t is also the 
identity. Note that this implies that there exists a rep- 
resentation R of  the MPUM for ~ satisfying (2a) - (2f )  
of  Theorem 4.1 such that every entry is a polynomial 
of  degree lower than or equal to q. 

Consider now the rational matrix 

1 
o ( ~ ) .  - ,v ~ - 

I L = ~ ( ¢  + L )  q R(~); 
(37) 

we now show that it satisfies (a) (d) above. Observe 
that each entry of  Eq. (37) is a proper rational function 
with denominator Hi=l(¢  + Li)q and therefore is an- 
alytic in C °.  Since the representation for the MPUM 
satisfies (2d) of  Theorem 4.1, it is easily seen that 
OJO J for every point in C °.  Observe also that 
Ker(O(2/)) Ker(R(2i)) = i ~ N. Finally, note 
that det(O) N . Hi= 1 (~ /~i )/(¢ + Xi ), whose only zeros 
are the/,~" 's, each of  multiplicity one. 

5. Characterization of  all solutions to the S N I P  

In this section we provide a characterization of  all 
solutions to the SNIP in terms of  a representation given 
by Eq. (13) of  the MPUM for 2 satisfying (2a) - (2f )  
of  Theorem 4.1. The main result of  this section is the 
following. 

Theorem 5.1. Let a kernel representation o f  the 
M P U M  Jor ~ be ,qiren as in Theorem 4.1. Then 
( U - Y)  is a solution to the S N I P  i f  and only i f  there 
exist H ~ C p × m[~], q~ ¢ C p x p[~], and F C C p × P[~] 
with F, q5 Hurwitz  and II@-IHIIH~ < 1, such that 

Y ( C  Y ) = ( H  ~ )  . (38) 

Proof.  Let us first prove sufficiency, assuming with- 
out loss of  generality that U and Y are left coprime. 
Note that since F ( U  - Y )  is a left multiple of  the 
MPUM for ~ ,  it is unfalsified by ~ and in particular 

F(~.~ )( U(;~ ) - F (;.~) )v = 0 

Vv E ":C) and Vi E N. (39) 

Since F is Hurwitz, F(2i)  is nonsingular for all i c N; 
this, together with Eq. (39), implies that (U - Y )  
is unfalsified by ~}exp~.,, i C N .  We now prove 
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that IIY-~UIb~ < 1. In order to do this, we first 
show that Y is Hurwitz. Note from Eq. (38) that 
- F Y  = HN* + ~P. Assume by contradiction that 
Y is not Hurwitz; then there exists a /~ C C ° and a 
nonzero r E C p such that 

- f(l~)Y(l~)V = [H(la)N*(I.t) + 4)(/a)P(/O]v 

= 0. (40) 

Since P and q~ are Hurwitz, 4)(/0 and P(/O are 
nonsingular. Therefore from Eq. (40) we have 

[~( /~)-1H(lON.( l ( ,P( tQ-~ + Ip]v' = 0 (41) 

where v ' - P ( k t ) v .  The assumptions IIN*P I I l ~  < 1 
and ]lq~-'HIl#~ < 1 imply 

I I P - ' ( ~ ) Q ( ~ ) ~ - I 0 0 F / ( ~ ) I I  < 1 (42) 

and consequently ¢I,(I~)-I H(I~)N*(I~)P(I~) -~ + Ip is 
nonsingular. But this contradicts Eq. (41). 

To prove that IIY ' u l l ~  < 1, we show that 
U ( i w ) U * ( i w )  - Y( iw)Y*( ie~)  < 0 for all eJ ~ ~. Ob- 
serve that the representation for the MPUM for 
satisfies (2d) of  Theorem 4.1, and therefore 

F ( i w ) ( U ( i w )  -Y(i¢o))J  ( U**,iw)( "~ F*(ioJ) 
k Y (iw)// 

= p ( iw)p* ( iw) (H( iw)H*( i e ) )  - q~(iw)@*(iw)) 

(43) 

for some Hurwitz polynomial p. Since I I ~ - l n l l ~  
< 1, the right-hand side of  Eq. (43) is negative definite 
for all w E R and this, together with Y Hurwitz, 
implies that II r - '  g I1.~ < 1. 

Let us now prove necessity of  the claim. Given 
a solution ( U - Y )  o f  the SNIP, define p ( ~ ) =  
H N  ~ ,-  - 

i= l t g + Zi) and F : =  plp. Then F(  U Y ) is unfalsi- 
fled by 5:/and there?ore there exist H and 4, such that 
Eq. (38) holds. We now prove that ]]~-lHl]o~ < 1. 
Note that 

F( iw) (U( iw)U*( iaO - Y(ico)Y*(ioJ))F*(iw) 

= p ( i w ) p * ( i w ) ( H ( k o ) H * ( i c o ) -  q)(iw)q~*(iw)). 

(44) 

Recall that ]]Y-JUHH ~ < 1 and that F is Hurwitz; 
there follows that the left-hand side of  Eq. (44) is neg- 
ative definite on the imaginary axis, and therefore that 
H ( i w ) H * ( i w )  - ~(ko)~*( iw)  < 0 for all eJ C ~. We 
now prove that det(cb) has no roots on the imaginary 

axis. In fact, if det q)(iw) = 0 for some w E R, there 
exists v E C p such that gT@(iw)v = 0 and therefore 

gT(/7(ko)H*(iog) - ~P(iw)<P*(i~o))v 

= IIH(i,o>ll 2 < 0, (45) 

which is a contradiction. This concludes the proof that 

114' - 'n l l~  < 1. 
Consider now the biproper rational matrix 

Ip + ~dp 1 H N . P  l, where :¢ E R satisfies 0 ~< ~ ~< 1. 
Observe that contractiveness of  N ' P - 1  and of  q~ 1H 
implies that Ip + ecI)-IHN*P 1 is invertible on the 
imaginary axis for all 0 ~< e ~< 1; note that this also 
implies that Ip + ~cp-aHN*P -I is nonsingular as a 
rational matrix. 

Consider now the rational matrix function ( - F Y ) - l  
= ( _ p y )  l From Eq. (38) follows - p Y  = 6pp + 
HN*,  and therefore 

( - p Y )  ~ = [ ~ ( l + C b  IHN*P I)P] 

= P - I ( I + ~ - J H N * P - I ) - I @ - I .  (46) 

Evidently there holds 

d e t ( ( p y ) - l )  

= de t (P- i  ) det((I + q)-1 FIN*P-I )-1 ) det(cb-i ). 

(47) 

In order to prove that 4~ is Hurwitz, we will prove 
that 1/detq~ has no poles in C+ by computing its 
winding number wno(1/det 4)) from the expression 
given by Eq. (47). Observe that from the fact that 
U and Y are coprime and I Iy-1u[IH~ < 1  there 
follows p Y  is a Hurwitz polynomial matrix. 
Therefore, w n o ( d e t ( ( p Y )  l)) is zero. Applying the 
logarithmic property of  the winding number function 
and the fact that P is a Hurwitz polynomial matrix, 
there follows from (47) that 

0 = wno(det(P I ) ) + w n o ( d e t ( i +  q~-i H N . p - 1  )-I  ) 

+ wno(det(@ l)) 

= wno(det(I  + cF-1FIN*P -1 )) 

+wno(det(@ I )). (48) 

Note that wno(det(I  + :~cl)-IFIN*P -I )) is a contin- 
uous function of  z¢ taking integer values, and there- 
fore that its value is independent of  ~; this implies 
that wno(det(I  + ~ IFIN*P 1)) = wno(det(1)) = 
0 for all 0 ~ ~ ~< 1. Then from Eq. (48) we have 
wno(det(@ i )) = 0, and this implies that the number 
of  zeros of  det(q~) in C+ is zero. This concludes the 
proof. [] 
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Remark 5.2. The characterization Eq. (38) of  all 
solutions to the SNIP bears close resemblance to 
the characterization of  the solutions to the tangential 
Nevanlinna interpolation problem given in the linear 
fractional transformation setting (see [2, p. 386]). 

6. Conclusions 

The main results of  this paper are Theorems 4.1 and 
5.1 that bring together the MPUM and the calculus 
of  QDFs to provide a behavioral point of  view on the 
solvability of  the SNIP and on the characterization of  
all its solutions. This interpretation allows to compute 
a solution to the SNIP by recursively computing the 
MPUM of a set of  data with a special structure. 
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