
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

The Origin of Data
Enabling the Determination of Provenance in Multi-institutional Scientific

Systems through the Documentation of Processes

by

Paul T. Groth

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

September 2007

http://www.soton.ac.uk
mailto:pg03r@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY of ENGINEERING, SCIENCE and MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

The Origin of Data

Enabling the Determination of Provenance in Multi-institutional Scientific Systems
through the Documentation of Processes

by Paul T. Groth

The Oxford English Dictionary defines provenance as (i) the fact of coming from some particular
source or quarter; origin, derivation. (ii) the history or pedigree of a work of art, manuscript,
rare book, etc.; concr., a record of the ultimate derivation and passage of an item through its
various owners. In art, knowing the provenance of an artwork lends weight and authority to it
while providing a context for curators and the public to understand and appreciate the work’s
value. Without such a documented history, the work may be misunderstood, unappreciated, or
undervalued.

In computer systems, knowing the provenance of digital objects would provide them with
greater weight, authority, and context just as it does for works of art. Specifically, if the prove-
nance of digital objects could be determined, then users could understand how documents were
produced, how simulation results were generated, and why decisions were made. Provenance
is of particular importance in science, where experimental results are reused, reproduced, and
verified. However, science is increasingly being done through large-scale collaborations that span
multiple institutions, which makes the problem of determining the provenance of scientific results
significantly harder.

Current approaches to this problem are not designed specifically for multi-institutional scien-
tific systems and their evolution towards greater dynamic and peer-to-peer topologies. Therefore,
this thesis advocates a new approach, namely, that through the autonomous creation, scalable
recording, and principled organisation of documentation of systems’ processes, the determina-
tion of the provenance of results produced by complex multi-institutional scientific systems is
enabled. The dissertation makes four contributions to the state of the art.

First is the idea that provenance is a query performed over documentation of a system’s
past process. Thus, the problem is one of how to collect and collate documentation from multiple
distributed sources and organise it in a manner that enables the provenance of a digital object
to be determined.

Second is an open, generic, shared, principled data model for documentation of processes,
which enables its collation so that it provides high-quality evidence that a system’s processes
occurred. Once documentation has been created, it is recorded into specialised repositories called
provenance stores using a formally specified protocol, which ensures documentation has high-
quality characteristics. Furthermore, patterns and techniques are given to permit the distributed
deployment of provenance stores. The protocol and patterns are the third contribution.

The fourth contribution is a characterisation of the use of documentation of process to
answer questions related to the provenance of digital objects and the impact recording has on
application performance. Specifically, in the context of a bioinformatics case study, it is shown
that six different provenance use cases are answered given an overhead of 13% on experiment run-
time. Beyond the case study, the solution has been applied to other applications including fault
tolerance in service-oriented systems, aerospace engineering, and organ transplant management.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:pg03r@ecs.soton.ac.uk

Contents

Acknowledgements ix

1 Introduction 1
1.1 A Problem of Confidence . 2
1.2 The Assurance of Provenance . 3
1.3 The Role of Documentation . 5
1.4 Thesis Statement and Contributions . 7
1.5 Presentation Overview . 8
1.6 Publications . 9

2 A Critical Analysis of Provenance Systems 11
2.1 Multi-institutional Scientific Systems . 12

2.1.1 Web Services and Service Oriented Architectures 13
2.1.2 The Use of Workflows . 15

2.2 Provenance and Process . 16
2.2.1 Provenance in Art . 16
2.2.2 Two Perspectives on Process . 17

2.3 Provenance Systems . 19
2.3.1 Version Control Systems . 19
2.3.2 Application-Specific Systems . 20
2.3.3 Operating System Level Provenance Systems 22
2.3.4 Provenance in Database Systems 23
2.3.5 Distributed Debugging, Monitoring and Recovery 25
2.3.6 Workflow-centric Systems . 27
2.3.7 Data Models for Provenance . 30

2.4 Cross-Cutting Concerns . 31
2.4.1 Levels of Abstraction . 31
2.4.2 Answering Queries Related to Provenance 33
2.4.3 Causality . 34

2.5 Analysis Conclusions . 37
2.6 Summary . 39

3 A Model of Process Documentation 41
3.1 Motivation for a Generic, Shared Process Documentation Data Model . . 42
3.2 Advantageous Characteristics for a Shared Data Model 44
3.3 The Data Model . 46

3.3.1 Process . 46

ii

CONTENTS iii

3.3.2 Process Documentation . 50
3.3.2.1 Interaction P-assertions 50
3.3.2.2 Relationship P-assertions 52
3.3.2.3 Levels of Abstraction . 53
3.3.2.4 Internal Information P-assertions 55
3.3.2.5 The P-Structure . 55

3.3.3 Actor Behaviour Required by the Model 59
3.3.4 Extracting Provenance from the P-Structure 59

3.4 High-Quality Characteristics Revisited . 61
3.5 Analysis Conclusions Revisited . 63
3.6 Related Work . 65
3.7 Summary . 66

4 Recording Process Documentation 68
4.1 The Provenance Store . 69
4.2 Deployment Patterns . 70

4.2.1 SeparateStore Pattern . 71
4.2.2 ContextPassing Pattern . 72
4.2.3 SharedStore Pattern . 73
4.2.4 Pattern Application . 74

4.3 Connecting Distributed Documentation 77
4.3.1 View Links . 77
4.3.2 Cause Links . 78
4.3.3 Linking Summary . 79

4.4 PReP: The P-assertion Recording Protocol 80
4.4.1 Properties of PReP . 81
4.4.2 Protocol Definition . 82
4.4.3 PReP’s Behavioural Constraints 84
4.4.4 A Formal Model . 85

4.4.4.1 State Space . 86
Provenance Store State Space 86
Sender and Receiver State Space 86

4.4.4.2 State Machine Rules . 89
Provenance Store Rules . 91
Sender and Receiver rules 92

4.4.5 Protocol Analysis . 94
4.4.5.1 Statelessness . 95
4.4.5.2 Factual . 97
4.4.5.3 Autonomously Creatable 97
4.4.5.4 Immutable . 99
4.4.5.5 Attribution . 100
4.4.5.6 Finalizable . 101
4.4.5.7 Termination . 102
4.4.5.8 Guaranteed Recording . 104
4.4.5.9 Process Reflection . 108

4.5 Summary . 114

CONTENTS iv

5 Case Study: The Amino Acid Compressibility Experiment 116
5.1 A Short Introduction to Biochemistry and Information Theory 117

5.1.1 Biochemistry . 117
5.1.2 Information Theory . 121

5.2 ACE: The Amino Acid Compressibility Experiment 122
5.3 ACE as a Multi-Institutional Scientific System 125
5.4 Six Provenance Use Cases . 126
5.5 Summary . 129

6 Evaluation 131
6.1 Implementation . 132

6.1.1 Non-functional requirements . 132
6.1.2 Design . 133

6.1.2.1 The Provenance Service 133
6.1.2.2 The Provenance Store Client 134

6.1.3 Technologies Used by PReServ . 136
6.2 Evaluation Environment . 137
6.3 Provenance Store Performance . 138

6.3.1 Storage Size Impact . 138
6.3.2 Multiple Client Connections Impact 139

6.4 Case Study Performance . 143
6.5 Use Case Satisfaction . 146

6.5.1 Use Case 1 . 149
6.5.2 Use Case 2 . 150
6.5.3 Use Case 3 . 151
6.5.4 Use Case 4 . 153
6.5.5 Use Case 5 . 154
6.5.6 Use Case 6 . 155

6.6 Analysis . 157
6.6.1 More detail vs. more time . 157
6.6.2 Confidence and longevity vs. space and time 158
6.6.3 Throughput vs. contention . 158
6.6.4 Space vs. time . 159

6.7 Confidence Revisited . 159
6.8 Related Work and Other Applications . 161
6.9 Summary . 162

7 Conclusion 164
7.1 Contributions . 165

7.1.1 Process Documentation and Provenance 165
7.1.2 The P-Structure . 165
7.1.3 Recording process documentation 166
7.1.4 Performance Impact . 167

7.2 Support for High-Quality Documentation 168
7.3 Future Work . 169

7.3.1 Integration . 170
7.3.2 Usage . 171

CONTENTS v

7.4 Concluding Remarks . 171

Bibliography 173

List of Figures

1.1 Brochure from Starbucks discussing the origins of their coffee 4
1.2 The labels on these eggs show their provenance 5

2.1 Provenance of the painting Woman Holding a Balance by Johannes Ver-
meer [141] . 17

3.1 A simple example application . 43
3.2 Concept map describing process . 47
3.3 Concept map describing process documentation 51
3.4 An example of documenting process at different levels of abstraction . . . 54
3.5 Concept map describing tracers . 57
3.6 An example of the contents of a p-structure that documents the interac-

tions I2 and I3 from Figure 3.1 . 58
3.7 Concept map describing provenance . 60
3.8 Causal graph describing the provenance of a numerical result 61

4.1 SeparateStore pattern diagram . 71
4.2 ContextPassing pattern diagram . 72
4.3 SharedStore pattern diagram . 73
4.4 A simple example application . 75
4.5 The SeparateStore pattern applied . 75
4.6 The SharedStore pattern applied . 76
4.7 The ContextPassing pattern applied . 76
4.8 An example of linking . 79
4.9 Contents of provenance stores . 80
4.10 The messages of PReP . 83
4.11 State Space . 87
4.12 Provenance Store rules . 91
4.13 The rules of the ASM used by sending and receiving actors 93
4.14 Measures for tables and messages defined in the ASM 103
4.15 Legend for Figures 4.16, 4.17, and 4.18 . 111
4.16 State transition diagram depicting Lemma 4.37 112
4.17 State transition diagram depicting the inductive hypothesis for proof of

Lemma 4.37 . 112
4.18 State transition diagram depicting the inductive step for proof of Lemma

4.37 . 113

5.1 The 3D structure of the myoglobin protein. 118
5.2 The amino acids and their abbreviations 118

vi

LIST OF FIGURES vii

5.3 An example mutation matrix . 119
5.4 The Taylor Categorisation of amino acids. 120
5.5 A basic communication system as defined by Shannon 121
5.6 The ACE workflow . 124

6.1 The Provenance Service Architecture . 135
6.2 Provenance store size impact on p-assertion record times. 140
6.3 Contention . 141
6.4 Throughput as the number of jobs and threads per jobs increases 142
6.5 Colour map of throughput . 142
6.6 ACE deployment workflow . 143
6.7 Frequency distribution of job times . 145
6.8 Distribution of job parallelism . 146
6.9 Frequency distribution of p-assertion recording job times 147
6.10 Maximum, Minimum and Average job record times both with and without

p-assertion recording . 147
6.11 Graph of groupings sorted by their ACE information efficiency values . . 148
6.12 A collated sequence as the product of two sequences identified by their

file paths . 150
6.13 Example of the results produced for Use Case 1 150
6.14 Example of the results produced for Use Case 2 151
6.15 Example of the results produced for Use Case 3 152
6.16 Example of the results produced for Use Case 4 153
6.17 Example of the results produced for Use Case 5 155
6.18 Example of the results produced for Use Case 6 157

Declaration of Authorship

I, Paul Groth, declare that the thesis entitled The Origin of Data:Enabling the Deter-
mination of Provenance in Multi-institutional Scientific Systems through the Documen-
tation of Processes and the work presented in the thesis are both my own, and have
been generated by me as the result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at
this University;

• where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

• where I have consulted the published work of others, this is always clearly at-
tributed;

• where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as listed in Section 1.6.

Signed:

Date:

viii

Acknowledgements

When I first started this process, I had images of a lone scholar in the midst of a library
somewhere surrounded by books writing away in isolation. For both my sanity and my
tremendous benefit, this was not the case. Without the support of the following people,
this dissertation would have never been done. More importantly, this process would not
have been so fun.

First, a big thank you goes to my parents, without your confidence in me this would not
have been possible. Your passion and belief in education are an inspiration. Thomas,
your advice on writing, creativity, and my serve is second to none. LaRue, your un-
conditional encouragement, concern, and love have been a rock to stand on during this
process.

One piece of advice my parents gave me before starting this PhD is that picking a good
supervisor is absolutely critical in order to achieve success. Luckily for me, I picked
a great one, Professor Luc Moreau. Luc, thank you for teaching me the importance
of being systematic, how to actually do a proof, how to write like a scientist, and the
importance of fluid intake. The time you have spent having intense discussions with me,
reading my work, and putting up with my realistic schedules is very much appreciated.
In summary, good job.

Thanks to Michael Luck for giving me an another perspective on academia and being a
nice guy. Klaus: Ich danke dir vielmals. Ohne dein Experiment und Rat würde diese
Doktorarbeit nie gegeben. To the Iridis guys, Ivan Woolten and David Baker, without
your help (and responding to my strange requests), I would have never pulled this off.

A special shout out goes to Paul Townend for being the first and best user of my software.
Thanks to the people on the PASOA and EU Provenance projects for using the software
and your insightful comments on my ideas. Andrej and Tibo, your summer projects
were cool, thanks for coming on board to help.

Thanks to everyone in the IAM Lab, you make it a great place to work. Thanks to
Victor Tan and Weijian Fang for always taking the time to discuss technical stuff and
putting up with my Americanisms. Maria, it was great having another North American
around. The Lab and my time in Southampton would not have been as interesting or fun
without Roxana and Shiv. I hope your current endeavours take you where you want to
go. The last bit of crunch time before submission was made bearable by my chats with
Maira. Don’t worry you’ll be finished soon. I would be amiss not to mention Danius,
who went from scary lab management guy, to a good friend. Thanks for the time at
Ceno looking at barmaids and giving me advice on my thesis.

For over two years in the lab, the desk next to mine was occupied by one Chris Bailey who
calmly put up with my commentary both verbal and via MSN as well as the occasional

ix

LIST OF FIGURES x

Nerf gun attack. Dude, thanks for the coffee in Starbucks and listening to my grandiose
ideas.

Beyond sitting in Starbucks, playing tennis has kept me in good spirits. Thanks to Kat
& the Tennis Team for showing me what British student culture is really like, oh, and
the tennis was fun as well. Thanks to Eyre for letting Moss take hours on the weekend
to do battle with me on court. Moss, hopefully, we can have a hit again one day soon.

From Pensacola, I have to thank Joe for his extended emails that remind me what
the “real” world is like. Shamma, the once a year lessons on how to be both hip and
a computer scientist are good but they still haven’t rubbed off. Thanks to Niranjan,
whose recommendation got me here in the first place and whose New Year’s Eve parties
are always the place to give an update on life’s progress. Also thanks to David Eccles,
who introduced me to the cheeky pint before I even got to England and who showed me
that TGIs is a great place to do research.

My time in Southampton would not have been nearly as fun without the people of 25
High Road. Thanks to all of you for your epic support. Steve, women!?, what more
can I say. Thanks for your wisdom and for proofing thesis chapters. Seb, the french
food, the french wine, the bbqs, the server, and the unbelievable guitar have made it
an awesome trip. Mischa, thanks for the talks about life, academia, and Web 2.0 as
well as proofing this entire dissertation. It is very much appreciated. I’ll always fondly
remember sprawling out on your sofa. Martin, thanks for showing the way and letting me
move into High Road in the first place. Respect. Laura, talking to you about the wider
world has made life more colourful. In the end though, who is right? The dreads: Tony
stay metal. Simon thanks for being proof that scientist actually use multi-institutional
scientific systems. Ben, thanks for showing me what life is really about. Sofie, thanks
for the living room chats.

Finally, the quality of this dissertation would be much less without the help of Geraldine
and Simon. Geraldine, thanks for making Simon and I talk about things other than
provenance. Without your intervention, dinner and drinks would not have been as
exciting. Simon, working with you has been a stupendous experience. I will miss our
lunches together. Your ideas, your arguments, your questioning have taught me a lot
about how to do research, write code, and approach life. Thank you.

Chapter 1

Introduction

Science is changing. Increasingly, it can no longer be done in the confines of a single
scientist’s lab or for that matter in a single department, research institute, or university.
Major scientific questions, such as how proteins fold, existence of the Higgs boson parti-
cle, and the human impact on the climate, require the application of skills, knowledge,
and facilities from multiple institutions. For example, to analyze the data produced by
the largest scientific instrument in the world, the Large Hadron Collider, the cooper-
ation and computing facilities of over 100 institutions across the world is needed [79].
In proteomics, the advanced simulations needed to understand how proteins fold are
computed using personal computer cycles donated by thousands of volunteers [167]. It
is not just computing power that needs to be shared. Biologists rely on the cooperative
construction and availability of open curated sequence databases to develop new drugs
and understand the intricate workings of complex biological systems [189]. To study the
dynamics of matter and the structure of blackholes, scientists and engineers from over
five institutions have cooperatively built the Laser Interferometer Gravitational-Wave
Observatory that spans two sites located 3000 kilometres apart [2]. In astronomy, the
collobarative use of telescope and processing resources is allowing astronomers to ac-
cess a complete digital catalogue of the sky [176]. By sharing large-scale experimental
apparatus over the Internet, earth quake engineers have democratised their field [146].

Therefore, it is no longer sufficient to just share results through the standard scientific
practice of producing publications. These problems can only be solved through the
sharing, not only of published results, but also of other resources including sensor data,
equipment, experimental processes, and human know-how. A system that requires the
sharing of resources from multiple institutions to achieve its scientific aims is what we
term a multi-institutional scientific system or application.

While this new approach to science has already been successful, it is still in its childhood
and a variety of issues must be addressed for it to become as mature as other scientific
techniques and tools. In this dissertation, we begin to address one of those issues,

1

Chapter 1 Introduction 2

namely, confidence in the results produced by these systems.

1.1 A Problem of Confidence

Consider, a scientist, Alice, studying an image of a supernova acquired from an online
database. This image is composed from from thousands of distinct images provided by
telescopes from around the world. Alice then runs the supernova image through various
analysis routines made available by different institutions. The outputs of these analyses
are then used by Alice’s own bespoke algorithm to generate a final set of results, which
she publishes in a journal. The journal paper contains the highlights of her results, a
description of the algorithm used and the references to the services relied upon.

Another scientist, Victor, takes a keen interest in Alice’s paper and following standard
scientific practice attempts to reproduce the experiment. He recreates Alice’s bespoke
algorithm from the paper’s description, he then finds that some of the services Alice
relied on are no longer available or have changed versions. Adapting to the problem,
Victor uses the newer versions of the services and tries to recreate the unavailable services
from code he finds on the Internet. After running the experiment, Victor finds that the
results are different than those in Alice’s paper. Victor contacts Alice who then tries to
recreate her own experiment. Unfortunately, Alice no longer has the original outputs
from the services she used and using the outputs generated by the current services
Alice’s algorithm produces a different result. The ability to reproduce results is one
of the cornerstones of the scientific method and the inability to do so, in this case,
undermines the confidence Alice and Victor have in the original results.

This simple story illustrates the difficulty in reproducing results when they are produced
using decentralised systems that dynamically evolve. In such systems, no one authority
has control over the services or data within the system. Hence, the system’s components
can evolve independently without the knowledge of other components and thus it is
hard to maintain knowledge about the past state of the system. This lack of knowledge
makes reproduction difficult. Decentralisation and dynamicity are both hallmarks of
multi-insitutional scientific systems.

While reproduction is an important factor in the confidence scientists have in a result,
there are other factors that also contribute. These factors include:

• The ability to interpret and understand a result.

• The ability to understand the experiment and chain of reasoning that was used in
the production of a result.

• The ability to verify that the experiment responsible for a result was performed
according to acceptable procedures.

Chapter 1 Introduction 3

• The ability to identify what the inputs to an experiment were and where they
came from.

• The ability to know who performed an experiment and who is responsible for its
results.

The standard scientific practices of peer-review and publication take into account these
factors and provide the bedrock on which the confidence in scientific results is based.
However, in the context of multi-institutional scientific systems, that may involve hun-
dreds of individuals, institutions, and components, it becomes difficult for scientists,
reviewers, and the public to obtain all the information they need to be confident in
the results these systems generate. Fundamentally, users need to understand how these
results were produced, their history, their origins, their provenance.

1.2 The Assurance of Provenance

The Oxford English Dictionary defines provenance as (i) the fact of coming from some
particular source or quarter; origin, derivation. (ii) the history or pedigree of a work
of art, manuscript, rare book, etc.; concretely, a record of the ultimate derivation and
passage of an item through its various owners.

In the field of art, knowing the provenance of an artwork provides collectors, curators,
and the public a context, which provides the means to understand, verify, and evaluate
that artwork. Provenance gives assurance that the artwork has value; that it is, for
example, truly painted by Johannes Vermeer and is not actually a forgery by Han van
Meegeren. Similarly, when Starbucks Coffee produces a brochure like the one in Figure
1.1, they are using a guarantee about the provenance of their coffee to both reassure
customers and indicate the quality of it.

Just as knowing the provenance of a work of art provides it with greater weight, authority
and context, knowing the provenance of a digital object or data item offers similar
benefits. In particular, when detailed enough, the provenance of a digital object contains
all the information necessary to provide confidence to its users. Each of the various
factors used by scientists in their confidence judgements are addressed by having a
comprehensive record of a digital object’s derivation.

In different domains and environments, what constitutes a comprehensive record of
derivation may vary radically. For example, in art, the provenance of a painting usually
only details its chain of ownership. However, in some cases, it is not only necessary to
know the chain of ownership but also the various restorations the painting went through.
In food science, the provenance of food purchased at a grocery store would include where
the food was grown, how it was transported, packaged, and processed. An example of

Chapter 1 Introduction 4

Figure 1.1: Brochure from Starbucks discussing the origins of their coffee

Chapter 1 Introduction 5

Figure 1.2: The labels on these eggs show their provenance

the provenance of food is the label put on all eggs sold in Germany as shown in Figure
1.2. This label indicates how the hen that laid the egg was raised, what country the
egg is from, the farm where the egg was produced, and the cage where the egg was laid.
For digital objects, the provenance could include everything from the algorithms used
in processing to the user who started a computational simulation.

Thus, depending on what information gives a user confidence, the kind of information
returned from a query about an item’s provenance varies. The unifying theme between
the above records of derivation is that they document part of the process that led to an
item in a particular state. For example, the restorations of a painting are part of the
larger process that led to the painting in its current state. Thus, knowing the entirety of
the process that led to the painting as it is would also include the various restorations it
has undergone. Therefore, conceptually, we define the provenance of a result produced
by a system as follows:

Definition 1.1. The provenance of a result is the process that led to that result.

In computational systems, results are usually data items, and thus throughout this work
we focus primarily on the provenance of data, which would be the process that led to
the data item in question. By understanding the process that led to the result produced
by a multi-institutional scientific system, a scientist can have confidence in it.

1.3 The Role of Documentation

Processes, however, are ephemeral, they occur and then are gone. Thus, to show that
a process did in fact happen some evidence is necessary. Revisiting the Oxford English
Dictionary’s definition of provenance, we note it concretely defines provenance as “a
record of the ultimate derivation and passage of an item...”. We view such a record

Chapter 1 Introduction 6

of derivation as consisting of documentation that taken together is the evidence that
a process that led to a particular item occurred. This view is natural and reflects
itself in many different settings. In law, prosecutors and defenders find various forms
of documentation to show that a crime (i.e. a process) occurred or did not occur in
a particular manner. Similarly, historians use documentation to make the case that a
historical event happened in a particular manner.

Documentation, however, comes in many forms including letters, contracts, email, stamps,
memos, input data, output data, algorithms, executable programs, code, meeting min-
utes, and lab notebooks. Therefore, to understand the provenance of a result one must
sift through all this various documentation and find the set of documentation that best
represents the process that led to the result in question.

Thus, provenance is a query answered by searching over documentation. The problem
that exists in multi-institutional scientific systems is that documentation is in multi-
ple locations, represented in different formats, and is not easily queried. Furthermore,
documentation is often lost, deleted, or modified so that it can no longer be found or
used as accurate evidence of provenance. Hence, determining the provenance of results
produced by these systems is difficult. We term this problem the provenance problem.

To solve it, we propose that documentation of all of a system’s processes should be
created according to a shared model. By specifically documenting a system’s processes,
all the various forms of documentation are connected so that together they provide
comprehensive evidence of those processes. We term documentation that describes a
system’s processes, process documentation.

It is important to ensure that process documentation enables the accurate determination
of provenance in multi-institutional scientific systems. We have identified six character-
istics that documentation should possess to achieve this goal. These characteristics are
enumerated below and discussed and justified in more detail in Section 3.2.

1. Factual - Process documentation should provide an accurate representation of the
process that occurred and thus should be factual.

2. Attributable - Knowing who is responsible for process documentation is critical to
accuracy because it provides both the ability to judge the quality of a source and
the ability to make creators of documentation accountable for it.

3. Autonomously Creatable - In a multi-institutional or distributed system, no one
central entity can accurately create documentation about the entirety of a process,
thus, process documentation must be able to be created by multiple independent
sources. Furthermore, it should be created in manner so that it can be collated
together such that the provenance of data can be determined.

Chapter 1 Introduction 7

4. Process Oriented - From Definition 1.1, provenance is defined in terms of process.
Therefore, accurate process documentation should reflect a system’s processes and
allow an individual process to be distinguished and found.

5. Immutable - Once process documentation is created, it should not be deleted or
modified. Without this guarantee, it is difficult to establish that process documen-
tation accurately and comprehensively reflects the processes that occurred.

6. Finalizable - When multiple components create process documentation, it is impor-
tant to be able to determine when a component is finished creating documentation
for part of the process. Once a component is done creating documentation, it can
then be held responsible for the completeness and thus the accuracy of its account.

Process documentation with these characteristics is what we term high quality. In this
dissertation, we introduce and specify a shared model that helps components or entities
within a multi-institutional system to create high quality process documentation.

Once documentation has been created according to our model, it can be collected into
specialised repositories, called provenance stores, responsible for maintaining and pre-
serving it beyond the lifetime of the components that created it. We term an application
that creates and records process documentation, a provenance-aware application. Af-
ter process documentation is collected into these repositories, it can be queried to find
documentation that represents the provenance of a particular digital object. Thus, the
provenance of a digital object can be determined by performing a query over process
documentation. By filtering and searching the representation of provenance returned
by such a query, various questions can be answered. For example, who authorised an
action, what computers were used in the creation of a result, and why did a process
take so long to complete. We term these questions, provenance questions. This explicit
separation of concerns between creation and querying allows components to be designed
specifically for their purpose.

1.4 Thesis Statement and Contributions

Our solution to the provenance problem can be summarised in the following thesis
statement.

The autonomous creation, scalable recording, and principled organisation of

documentation of multi-institutional scientific systems’ processes enables the

problem of determining the provenance of results produced by these systems

to be solved.

This dissertation makes the following contributions to the state of the art:

Chapter 1 Introduction 8

1. The provenance of a digital object can be answered by a query over documentation
of a system’s processes. Making this distinction explicit brings benefits in terms of
system design. It enables a separation of concerns between creators and queriers,
which allows queries to be performed by independent parties. Furthermore, it
caters for the specialisation in the design of creation, recording, and querying
components.

2. A data model for process documentation, which allows for the provenance of results
to be obtained and that is based on two key principles:

(a) Process documentation must represent causal relations between entities for
the provenance of results to be determined.

(b) To enable provenance queries to be answered accurately, documentation should
be high quality. It should have the characteristics of being factual, attributable,
autonomously creatable, process oriented, immutable and finalizable. These
characteristics are supported both by the data model and the recording of
process documentation into provenance stores.

These principles are necessary to enable provenance questions to be answered ac-
curately in distributed multi-institutional settings. This contribution is discussed
primarily in Chapter 3

3. A protocol and patterns that enable the scalable recording of documentation into
provenance stores (Chapter 4). The protocol enforces the recording of process
documentation with high-quality characteristics. This is shown through a series
of proofs (Section 4.4.5). Scalability is shown through controlled experiments
conducted on an implementation of the repository that follows the protocol spec-
ification (Section 6.3).

4. A characterisation of the use of documentation of process to answer questions
related to the provenance of digital objects and the impact recording has on ap-
plication performance. Specifically, the solution is evaluated in the context of a
real world application from bioinformatics (Chapter 5). It is shown that six dif-
ferent provenance use cases are answered given an overhead of 13% on experiment
runtime (Section 6.4). While these use cases are specific to the case study, they
reflect a range of provenance questions that scientists might pose.

1.5 Presentation Overview

This dissertation is organised as follows.

Chapter 2 discusses in greater detail the nature of provenance and its relationship to
processes. It also analyses the state of the art for determining provenance in computa-

Chapter 1 Introduction 9

tional systems with respect to multi-institutional scientific systems. From this analysis,
conclusions are drawn about the key attributes a provenance system should have.

Chapter 3 defines a data model, the p-structure, designed to support both the require-
ments outlined in Chapter 2 as well as high-quality characteristics. The data model
is defined conceptually using concept maps and thus is not bound to any particular
technology or implementation.

Chapter 4 introduces the concept of a provenance store, a specialised repository for
storing process documentation. It defines three design patterns that can be used to
determine how to best deploy a set of provenance stores. Additionally, the chapter
specifies how distributed documentation can be linked. Finally, a protocol for record-
ing process documentation is formally specified. Using this formal specification, the
protocol is shown to support the recording of process documentation with high-quality
characteristics.

Chapter 5 introduces the bioinformatics case study, the Amino Acid Compressibility
Experiment, and its associated provenance use cases.

Chapter 6 presents an evaluation of an implementation of our approach. It considers
three different aspects of the implementation. One, the scalability of the implementation
in a controlled environment. Two, the impact recording process documentation has on
the case study and three, whether the use cases from the case study can be effectively
answered with the approach. Recommendations on the use of the implementation in
applications are also given.

Chapter 7 outlines various avenues for future work and concludes the dissertation.

1.6 Publications

The work in this dissertation is derived from a number of peer-reviewed publications,
which are listed below:

• P. Groth, M. Luck, and L. Moreau. Formalising A Protocol for Recording Prove-
nance in Grids. In Proceedings of the UK OST e-Science Second All Hands Meeting
2004 (AHM’04), Nottingham, UK, September 2004

• P. Groth, M. Luck, and L. Moreau. A Protocol for Recording Provenance in
Service-Oriented Grids. In T. Higashino, editor, Proceedings of the 8th Interna-
tional Conference on Principles of Distributed Systems (OPODIS’04), volume 3544
of Lecture Notes in Computer Science, pages 124–139, Grenoble, France, December
2004. Springer-Verlag

Chapter 1 Introduction 10

• P. Groth, S. Miles, W. Fang, S. C. Wong, K.-P. Zauner, and L. Moreau. Recording
and Using Provenance in a Protein Compressibility Experiment. In Proceedings of
the 14th IEEE International Symposium on High Performance Distributed Com-
puting (HPDC-14), pages 201–208, July 2005

• P. Groth, S. Miles, and L. Moreau. PReServ: Provenance Recording for Services.
In Proceedings of the UK OST e-Science Fourth All Hands Meeting (AHM05),
September 2005

• P. Groth, S. Miles, and S. Munroe. Principles of High Quality Documentation
for Provenance: A Philosophical Discussion. In Moreau and Foster [135], pages
278–286

• P. Groth, S. Miles, and L. Moreau. A Shared Model for Documentation of Pro-
cesses Enabling the Determination of Provenance. ACM Transactions on Internet
Technology, 2007. Under Review

In addition, results of this dissertation were used as the basis of other applications, and
published as follows:

• P. Townend, P. Groth, and J. Xu. A Provenance-Aware Weighted Fault Tolerance
Scheme for Service-Based Applications. In Proceedings of the 8th IEEE Inter-
national Symposium on Object-oriented Real-time distributed Computing (ISORC
2005), pages 258–266. IEEE Computer Society, May 2005

• V. Tan, P. Groth, S. Miles, S. Jiang, S. Munroe, S. Tsasakou, and L. Moreau.
Security Issues in a SOA-Based Provenance System. In Moreau and Foster [135],
pages 203–211

• S. Miles, S. C. Wong, W. Feng, P. Groth, K.-P. Zauner, and L. Moreau. Provenance-
based Validation of e-Science Experiments. Journal of Web Semantics, 5(1):28–38,
2007

• S. Miles, P. Groth, S. Munroe, S. Jiang, T. Assandri, and L. Moreau. Extracting
Causal Graphs from an Open Provenance Data Model. Concurrency and Compu-
tation: Practice and Experience, 2007

• S. Miles, P. Groth, S. Munroe, M. Luck, and L. Moreau. AgentPrIMe: Adapting
MAS designs to build confidence. In Proceedings of 8th Internation Workshop on
Agent Oriented Software Engineering, 2007

Chapter 2

A Critical Analysis of Provenance

Systems

In this chapter, we provide a critical analysis of the state of the art for determining
the provenance of data produced by applications that span multiple institutions. The
analysis results in six conclusions:

1. The Service Oriented Architecture style is the primary software engineering ap-
proach to designing multi-institutional applications.

2. Provenance systems should take into account the important distinction between
past processes and prospective processes.

3. A data model for provenance should be well-defined and independent from any
one domain or technology to cater for multiple platforms and programs.

4. Multiple levels of abstraction must be supported to satisfy a range of queries.

5. The storage of provenance-related information should be separated from its col-
lection point to ease management and query processing.

6. Causal dependency tracking is critical for understanding the provenance of data.

The rest of the chapter is organised as follows. We begin with a description of multi-
institutional scientific systems and a review of the technologies used to implement them.
This review identifies provenance as a critical concern for such systems, which leads
to a discussion of provenance as a concept. From its use in art, several characteristics
of provenance are derived including the relationship between provenance and process.
After this discussion, the distinction between past and prospective processes is presented.
With this context, a review of various systems for determining provenance is given with
respect to their effectiveness for multi-institutional scientific systems. After this review,

11

Chapter 2 A Critical Analysis of Provenance Systems 12

we identify three cross-cutting concerns in the development of a provenance system for
multi-institutional systems. Following the discussion of the cross-cutting concerns of
abstraction, querying and causality, we present the conclusions of our analysis. Finally,
we summarise the chapter.

2.1 Multi-institutional Scientific Systems

As the complexity of scientific problems has increased, it has become difficult to as-
semble the necessary resources (manpower, data, processing power, apparatus, etc.) to
solve these problems within one institution or at one site. For example, in earthquake
engineering, large physical resources such as shake tables and buildings are often not in
the same place. Furthermore, many simulations require large scale computational re-
sources often hosted at specialised supercomputing facilities such as the National Center
for Supercomputing Applications (NCSA) [146]. Because it is difficult to perform earth-
quake engineering at a single site, the problem arises as to how these various distributed
resources can be brought together effectively.

Foster, Kesselman and Tuecke stated this problem precisely as coordinated resource
sharing and problem solving in dynamic, multi-institutional virtual organisations, where
a virtual organisation (VO) is defined by the rules that govern the sharing of resources
between a set of individual and/or institutions [70]. VOs provide a useful model for
coordinating the interactions of diverse resources controlled by multiple participants.
It allows diverse resources to be assembled and qualities of service to be negotiated
without the possibility of adversely effecting resource providers. A VO typically follows
the following four stage lifecyle [172].

1. Resources are discovered.

2. The terms and purpose of the VO are negotiated.

3. The resources are used by the VO to generate a result.

4. The VO is disbanded.

During this lifecyle resources can be dynamically added or subtracted and the rules of
the VO may be renegotiated. Systems that require the sharing and coordination of
resources across multiple institutions for a particular scientific domain or question are
what we term a multi-institutional scientific system. Such systems can be identified by
three properties [69].

• Sharing - A multi-institutional scientific system requires the sharing of resources
in order to accomplish its task.

Chapter 2 A Critical Analysis of Provenance Systems 13

• Heterogeneous - The kinds of resources available in a multi-institutional scientific
system often vary widely. Furthermore, the rules and policies that govern the
various resources vary dramatically across institutions.

• Dynamic - The resources available to a multi-institutional scientific system vary
over time: members may join or leave, facilities may be introduced, removed or
upgraded and the problem set may evolve. Furthermore, there may be a dynamic
range of participation in the system. For example, some institutions could be
core members of the system whereas others are on the periphery providing only a
small contribution. Likewise, there may be a core set of problems that the system
addresses and a series of smaller related problems.

Multi-institutional scientific systems exist in a variety of domains including earthquake
engineering [146], high energy physics [85], chemistry [75], climatology [20], weather fore-
casting [148], astronomy [177], and medicine [166]. These systems rely on software and
hardware infrastructure collectively known as the Grid [64]. This infrastructure enables
systems to share and cope with dynamic heterogeneous resources provided by multiple
parties. The software portion of the Grid is provided through common middleware (i.e.
software libraries and services used by applications). There are various Grid middleware
packages available including the Globus Toolkit [66], the UNiform Interface to Comput-
ing Resources (UNICORE) [173], gLite [79], and the Open Middleware Infrastructure
Institute stack [14]. These middleware packages provide services ranging from security to
resource discovery and thus ease the creation of multi-institutional scientific systems by
allowing them to take advantage of existing software that deals with the complications
of aggregating distributed resources.

2.1.1 Web Services and Service Oriented Architectures

One of the goals of these middleware packages is to facilitate interoperability between
disparate systems. To encourage and strengthen interoperability, the Grid community,
as represented by organisations like the Open Grid Forum and the Organization for the
Advancement of Structured Information Standards (OASIS), have embraced World Wide
Web technologies, particularly, Web Services [14]. By using standard technologies that
are widely deployed such as eXtended Markup Language (XML) [33], Uniform Resource
Locators (URLs) [19] and the Hypertext Transfer Protocol (HTTP) [63], Web Services
provide cross-platform communication and data interoperability between applications.
The adoption of Web Services means that the plethora of Web-based resources can also
become part of the Grid infrastructure. For example, iSpecies.org combines data from
the Google Scholar and Yahoo Image search websites with processing power from the
National Center for Biotechnology Information (NCBI) to generate species specific web
pages.

Chapter 2 A Critical Analysis of Provenance Systems 14

The adoption of Web Services also reflects the move towards the use of the Service
Oriented Architecture (SOA) style of designing multi-institutional systems [69, 65]. SOA
is an architectural style that views applications as a set of loosely coupled services
communicating via a common transport. A service, in turn, is defined as a well-defined,
self-contained, entity that takes input and produces output in accordance with a well-
defined interface1. In the context of Web Services, a service’s interface can be expressed
in the Web Services Definition Language (WSDL) [42] and it can communicate using
the common transport protocol SOAP [130].

The SOA style provides three benefits when building multi-institutional scientific sys-
tems. First, it hides implementation behind an interface allowing a service’s implemen-
tation to change without impacting the user. For example, in the case of iSpecies.org,
NCBI could change the underlying hardware or programming language it uses to pro-
cess requests while not impacting the website. This is important in a multi-institutional
context because an institution may wish to change the implementation of its services
without having to involve collaborators. Loose coupling achieves the second benefit of
the SOA style, service reuse. The ability to reuse services is particularly important in
dynamic systems, where institutions are transient members and the landscape of re-
sources changes. In such an environment, it is critical for institutions to be able to
reuse and reallocate the services they provide to different collaborations. Finally, the
SOA style encourages platform independence. By only requiring a common transport,
the SOA style allows the use of the programming language, operating system, or im-
plementation technique that is best suited for a particular service. For example, in the
case of earthquake engineering, a shake table will use bespoke hardware and software
whereas computational simulators would use a parallel programming platform like MPI
(Message Passing Interface) [182].

Because of the benefits of SOA and Web Services, Grid middleware (such as Globus
Toolkit 4 [66], gLite [79] and UNICORE [124]) has transitioned to these technologies.
Furthermore, many multi-institutional systems from a variety of domains, including
climate modelling [20], weather forecasting [148], and astronomy [177], have adopted
these techniques and technologies. Bioinformatics is a particularly good example of a
domain that has used and benefited from service orientation [189, 169, 81]. Databases
containing a variety of genetic and biomedical data along with services to analyse that
data have been made available by a variety of institutions including the NCBI and the
European Bioinformatics Institute [170, 187]. These services have been then integrated
in order to investigate biological problems such as Williams-Beuren syndrome [171].
Because the bioinformatics community has widely adopted the service oriented approach
to building multi-institutional systems, we have chosen a case study from the field to
evaluate our provenance solution.

1This definition was derived from [186], [121] and [69].

Chapter 2 A Critical Analysis of Provenance Systems 15

2.1.2 The Use of Workflows

Once institutions make their resources available as services using Grid middleware, they
can then be assembled either dynamically or through an off-line process to create new
multi-institutional systems. In order to tie services together, one technique that is often
used is workflow and workflow enactment [197]. Workflows are scripts that describe
the dependencies between different tasks. These workflows are then executed using
a workflow enactment engine, which invokes various services to accomplish the tasks
specified. In essence, workflows allow for a scripted form of VO where the script specifies
the resources used by the VO to generate a result [70].

Workflow can be represented as graphs [76] and divided into two types, abstract and
concrete [55]. Abstract workflows are those in which the task dependencies are defined
but are not bound directly to a particular service. In contrast, concrete workflows are
those where the tasks are bound to services. Software such as Pegasus [55] and FreeFluo
[194] take abstract workflows and generate concrete workflows dynamically taking ad-
vantage of available resources. Users can create workflows directly either specifying them
by hand or by using workflow editing software such as Taverna [98]. These workflows
are then executed with a workflow enactment engine like Condor [76]. The trend in the
development of workflow systems is to enable workflows to be specified at an evermore
abstract level, which enables scientist to focus on science rather than the underlying
technology [82].

As workflows become more generic and reusable, they are beginning to be exposed as
services themselves [196]. Furthermore, services often rely on other services to achieve
their functionality. Essentially, the use of SOA is encouraging the movement away from
coordinating services centrally to multi-level hierarchies of workflows and peer-to-peer
interactions between services [49].

The workflow community has identified a significant problem in current support for
multi-institutional scientific systems, namely, the inability to reproduce scientific anal-
yses or processes [56]. This inability is caused by inadequate information describing the
provenance of results produced by such systems. Without provenance related informa-
tion, it is difficult for scientists to repeat, analyse or understand results. Thus, a core
component of the scientific method cannot be practised effectively by scientists working
in a multi-institutional environment [56]. Beyond its necessity for the practice of science,
provenance is also regarded as a key component in determining data quality [163].

While there are still some difficulties in determining provenance in systems that run
only within one institution, the problem has already been extensively addressed. As
long as a computational experiment or program is run within a single execution envi-
ronment, whether it is an operating system, workflow enactment engine, or database, it
is possible to capture everything that has occurred. For example, the Provenance-Aware

Chapter 2 A Critical Analysis of Provenance Systems 16

Storage System [137] captures the execution of any program executing within the Linux
Operating System. In a single institution, it is possible to mandate the adoption of a
particular execution environment. However, in systems spanning multiple institutions,
it is difficult for institutions to impose such a mandate on each other. Furthermore,
in multi-institutional scientific systems, it is highly unlikely that all provenance-related
information pertaining to a particular experiment can be stored or aggregated into one
centralised location. Because these systems are dynamic and no one institution would
either want to be responsible for maintaining all the information after the experiment’s
end or give up its own information to some other institution, a unique challenge arises
that is not present in a single institution scenario. Thus, the inability to determine the
provenance of scientific results in multi-institutional scientific systems is a significant
problem and the one we aim to address.

Before detailing our solution to the provenance problem, we analyse the available systems
to see their deficiencies and strengths with respect to a multi-institutional environment.
To help in this analysis, we first discuss the concept of provenance and its relation to
process in more detail.

2.2 Provenance and Process

Provenance has a long history of usage in art. By understanding its usage in that
domain, some general characteristics of the concept can be derived, which are useful in
understanding the concept within computer systems, particularly the relation between
provenance and process. We now discuss provenance in art from which we explicate two
perspectives on process. When we discuss process throughout this dissertation, the word
should be understood by its common sense definition: a continuous and regular action
or succession of actions, taking place or carried on in a definite manner, and leading to
the accomplishment of some result (Oxford English Dictionary).

2.2.1 Provenance in Art

In art, the term provenance is used to describe the history of ownership of a work of
art (Oxford English Dictionary). For example, Figure 2.12 shows the provenance for a
painting by Johannes Vermeer. Notice that several statements in the provenance are of
the form “possibly...”, this exemplifies the uncertainty of the provenance of the painting.
This uncertainty about the provenance of an artwork is not unusual; on the contrary, it is
the norm especially with works created before the 17th century [101]. Thus, much of the
work in determining the provenance of an artwork is finding, analysing and judging the

2The image and provenance information in Figure 2.1 are used with permission of the National Gallery
of Art, Washington.

Chapter 2 A Critical Analysis of Provenance Systems 17

Possibly Pieter Claesz van Ruijven [1624-1674], Delft; possibly by

inheritance to his wife, Maria de Knuijt [d. 1681], Delft; possibly by

inheritance to her daughter, Magdalena van Ruijven [1655-1682],

Delft; possibly by inheritance to her husband, Jacobus Abrahamsz.

Dissius [1653-1695], Delft;(sale, Amsterdam, 16 May 1696, no. 1);

Isaac Rooleeuw, Amsterdam; (sale, Amsterdam, 20 April 1701, no. 6);

Paolo van Uchelen [d. 1703], Amsterdam. (sale, B. Tideman,

Amsterdam, 18 March 1767, no. 6); Kok. Nicolaas Nieuhoff,

Amsterdam; (sale, Ph. van der Schley, Amsterdam, 14 April 1777, no.

116); Van den Bogaard.[3] (sale, Maximilian I Joseph (1756-1825),

Munich, 5 December 1826, no. 101, as by Gabriel Metsu). Louis

CharlesVictor de Riquet de Caraman [1762-1839], Paris; (sale,

Lacoste, Paris, 10 May 1830, no. 68). Casimir Péreir; (sale, Christie &

Manson, London, 5 May 1848, no. 7); Péreir's son; by inheritance to

Comtesse de Ségur-Péreir; (P. & D. Colnaghi & Co., London, and M.

Knoedler & Co., New York); sold 11 January 1911 to Peter A. B.

Widener, Lynnewood Hall, Elkins Park, Pennsylvania; inheritance

from Estate of Peter A. B. Widener by gift through power of

appointment of Joseph E. Widener, Elkins Park, Pennsylvania; gift

1942 to National Gallery of Art, USA.
Woman Holding a Balance c. 1664

Johannes Vermeer (Dutch, 1632 - 1675)

Figure 2.1: Provenance of the painting Woman Holding a Balance by Johannes Ver-
meer [141]

authenticity of various pieces of documentation. This is a difficult task. It involves the
physical examination of the work itself as well as research in catalogues, photo archives,
correspondence and registrar records. Additionally, the task is made more difficult by
false claims and actual suppression of provenance information, for example, when a piece
has been stolen, smuggled or illegally excavated. However, if the complete provenance
of an artwork (i.e. accurate documentation of its movement from its origin to its current
location) is known, it can be an indicator of superior quality [101].

Three general characteristics of provenance can be taken from its use in art. First,
provenance is demonstrated by accurate documentation. The role of a curator, collector,
or historian is to find, verify and then present documentation so that it gives a convincing
account of the artwork’s history. Second, provenance is fundamentally about the past:
the provenance of the work tells one where it was, not where it will be. Third, provenance
is about tracking processes. In art, the process of importance is the movement of an
artwork through a chain of custody or its restorations. In terms of multi-institutional
scientific systems, the processes considered are broader. However, just as in art, knowing
the process that led to a digital object lends the object greater authority and allows it
to be better understood.

2.2.2 Two Perspectives on Process

Given that process is intertwined with provenance, we now aim to distinguish between
two different but complementary perspectives that can be taken on the notion of process.

On one hand, when considering a future, prospective process, tools may be used to
model such a process so that it can be analysed and simulated, in order to understand

Chapter 2 A Critical Analysis of Provenance Systems 18

its properties, and decide whether they meet requirements [23]. Being satisfied with a
process model, notations can be used that describe the model and that are processable
by computers [115, 12]. Such notations can also be optimised or compiled to ensure that
computers can execute them efficiently [5]. In other cases, one may not be interested in
identifying all the different steps that must be followed, but instead broad goals can be
specified, from which a computer system is expected to infer the necessary actions to
take, so that goals become satisfied [54]. What these process-related activities all have
in common is that they are undertaken without ever needing the process to actually take
place.

On the other hand, there is a whole set of activities that pertain to past processes, such
as the calculation of an operation’s actual duration, the determination of the actual
input data used in an end result’s production, or finding evidence that an experiment
occurred as planned. These activities are about analysing processes after they have
taken place. Broadly, activities related to past processes include judging reliability and
quality, auditing, reuse and reproduction, managing process change and evolution, and
ascertaining credit and ownership [83].

In the context of multi-institutional scientific systems, prospective processes are denoted
by workflows, programs for services, and policy statements. Fundamentally, these define
what could happen in the system. In contrast, a past process is the execution of a
workflow, program, or policy. This execution is what has happened in the system. Past
processes have information that a workflow or plan cannot contain. Examples of this
information include the following:

• runtime decisions such as choice of branches or selected input values,

• errors or problems that arise during execution,

• performance characteristics such as the length of time for a program to execute in
a particular environment.

Therefore, when answering questions related to past processes, workflows provide in-
adequate information and may result in possibly inaccurate answers. For example, a
workflow may show that a particular service was called when, in fact, an error occurred
and the service was never contacted.

From our brief discussion of provenance in art, we asserted that provenance is about
the past. Understanding where, why, and how a result was produced is dependent upon
knowing the past process that to led it, not how the process was intended to occur. Thus,
computational systems for determining provenance should consider past processes.

Having described the environment we consider and refined the concept of provenance,
we now analyse related work with respect to systems that support provenance in com-
putational systems.

Chapter 2 A Critical Analysis of Provenance Systems 19

2.3 Provenance Systems

The subject of provenance has not gone without notice in the literature. Under the
heading of lineage, a comprehensive overview of provenance related systems is given by
Bose and Frew [27]. Similarly, a focused survey of provenance in the domain of e-Science
is presented by Simmham et al. [161]. Two compilations of the current state of the art
are given in [136] and [134]. The former provides detailed descriptions of the work done
by various teams for the Provenance Challenge3, a community effort to understand
and compare systems addressing provenance. The literature refers to provenance using
several other terms including audit trail, lineage [113], and dataset dependence [9]. We
use these terms interchangeably to refer to provenance.

Our goal in this section is to review the various systems for the determination of prove-
nance in computational settings (provenance systems) and judge whether they ade-
quately address the needs of multi-institutional scientific systems. We divide these
systems into the following categories:

• Version Control Systems

• Application Specific Systems

• Operating System Level Provenance Systems

• Provenance in Database Systems

• Distributed Debugging, Monitoring and Recovery

• Workflow-centric Systems

• Models

Each category of system has different inadequacies and benefits with respect to multi-
institutional scientific systems. Therefore, we intersperse the review of each category
with our own conclusions to provide a context for the analysis.

2.3.1 Version Control Systems

We begin our review with version control systems, which are systems that maintain mul-
tiple versions of a document or file to track changes in them. These systems allow the
changes in files to be seen overtime, previous versions of files to be retrieved, changes in
files to be associated with particular users, and comments to be made about those sys-
tems. Version control systems such as Concurrent Versions System [97] and Subversion

3http://twiki.pasoa.ecs.soton.ac.uk/bin/view/Challenge/WebHome

Chapter 2 A Critical Analysis of Provenance Systems 20

[147] support multiple users modifying files by maintaining a master file, including all
previous versions of the file, on a centralised server. Users then must synchronize their
local copy of a file with the server after editing the file or to retrieve the edits of another
user. Thus, the user is responsible for indicating when a file is a new version. Version
control systems also support the merging of changes between between the local copy of
a file and the master file. Version control systems are widely used in software develop-
ment, an overview of various version control systems and techniques in that context is
given in [45].

Versioning file systems are similar to version control systems except that they are inte-
grated with the file system. Every time a file is saved or modified on disk a new version
is created. Thus, the user is not responsible for indicating the creation of a new ver-
sion. Versioning file systems allow for the immediate undo of accidental operations and
the long term history of a file to be viewed by the user [153]. Examples of versioning
file systems include Wayback [47] and Elephant [153]. Like a versioning file system,
the Mac OS X’s integrated backup management system, Time Machine4, keeps track of
all changes to files on disk and provides an easy to use interface for retrieving earlier
versions.

While version control systems are used by scientists everyday, for example when writing
notes on Wikis5, they cannot provide a comprehensive view of the provenance of data
because they do not describe the process by which a file or document was generated. For
example, if a JPEG image was produced by converting an image output from an image
registration algorithm applied to two other files, a version control system would be unable
to inform a scientist that JPEG conversion and image registration were involved in the
creation of the JPEG image. Thus, the provenance for that end result is incomplete.
The systems we describe next not only capture the changes to data (i.e. files) but also
how those changes occurred.

2.3.2 Application-Specific Systems

Many provenance systems are designed for the needs of one application or domain. We
review these systems here.

Some of the first research in provenance was in the area of Geographic Information
Systems (GIS)[113]. Knowing the provenance of map products is critical in GIS applica-
tions because it allows one to determine the quality of those derived map products [113].
Lanter developed two systems for recording retrieving the provenance of map products
in a GIS. The first system was a meta-database for recording data about GIS processes.

4http://www.apple.com/macosx/leopard/features/timemachine.html
5The Oxford English Dictionary defines Wiki as a type of web page designed so that its content can

be edited by anyone who accesses it, using a simplified markup language. Implementations of Wikis
allow for the revision history of a page to be seen and older versions retrieved [11].

Chapter 2 A Critical Analysis of Provenance Systems 21

The second system was for tracking operations in the Arc/Info GIS system’s graphical
user interface and command line [112, 114].

Provenance is also needed in the area of statistical analysis. S is an interactive system
for statistical analysis where the results of user commands are automatically recorded
in an audit file [18]. These results include the modification or creation of data objects
as well as the commands themselves. S’s AUDIT utility can then be used to analyse the
audit file to retrieve the provenance of a statistical analysis. This utility can also create
a script to reexecute a series of commands from the audit file.

Manipulating arrays is an important procedure in many computational models. In
the context of the Array Manipulation Language (AML), the Sub-pushdown algorithm
tracks all the array operations performed when executing AML programs [120]. Using
an implementation of the algorithm called ArrayDB, the provenance of output arrays
produced by AML programs can be retrieved.

The above systems are inadequate for multi-institutional environments because they are
domain specific, program specific, and cannot work in distributed environments. The
next five systems are designed for distributed settings but are again application specific.

Another system in the GIS domain is GOOSE [8], a tool for the creation of large geo-
graphical models by multiple participants. GOOSE was designed to work in a GIS envi-
ronment that resembles a multi-institutional system where multiple tools, data sources,
and researchers work together to create scientific results. GOOSE deals with this envi-
ronment by providing a user interface to a GIS modelling engine and a shared repository
accessible by multiple users. As the user goes about creating an object for a geograph-
ical model an operations log is kept. When the user stores the object the operations
log is kept along with it. Then, when another user makes use of the object, they can
retrieve the operations log for that object and thus its lineage. GOOSE mandates a
common user interface and storage layer and is specific to one domain and is therefore
not sufficient for the kind of environment we consider.

Another domain where provenance is of interest is satellite image processing. The Earth
System Science Workbench (ESSW) is designed for processing satellite imagery locally
[73]. It provides a lab notebook service for tracking processing steps and a No-Duplicate
Write Once Read Many storage service for storing files. Essentially, the system pro-
vides wrappers for each program a user calls, which transparently gather the input and
output of the executing programs. After the fact, ESSW can recreate the lineage of
science objects from the data stored in the notebook service. Newer versions of the
software, named ES3 [74], are closer to the operating system level provenance systems
discussed below in that the software captures operating system calls. To aggregate the
data produced by separate workbenches, a lineage server is proposed that merges data
to produce a repository of lineage data that can be searched [26]. ESSW identifies im-
portant parts of a generic provenance solution, however, it is still tied to the particular

Chapter 2 A Critical Analysis of Provenance Systems 22

domain of satellite image processing.

The Collaborative Analysis Versioning Environment System (CAVES) and Collaborative
Development Shell (CODESH) are designed to provide a virtual logbook for distributed
collaborative groups [28]. Both CAVES and CODESH are interactive shells that users
log into to perform various data analysis tasks. Similar to S, the systems track the
user interaction with the shell and stores them as session logs. These logs are then
published to a server allowing other members of the collaborative group to investigate
and replay other users’ sessions. The system is designed specifically for sharing users’
interactive analysis sessions in multi-institutional collaboratories, however, it is not a
complete solution because it does not capture what goes on outside the interactive shell.

In the context of distributed job execution on the Grid, work has concentrated on gath-
ering statistical information and re-running jobs. Both Quill++ [151] and gLite Job
Provenance [60] support these tasks. These systems are designed to be scalable and to
mimimise the impact of provenance on job execution. Capturing data for provenance
in job execution environments is an important part of an overall solution for multi-
institutional scientific systems, however, both Quill++ and gLite are tied completely to
their execution engines (Condor and gLite respectively) and thus are not adequate as a
total solution for heterogeneous systems.

2.3.3 Operating System Level Provenance Systems

By capturing the execution of programs and their dependencies between each other
through the operating system, operating system level provenance systems are more
generic than the systems discussed above because they are application and domain
independent.

One example of such a system is the Transparent Result Caching (TREC) prototype
[184]. TREC uses the Solaris UNIX proc system to intercept various UNIX system calls
in order to build a dependency map between those calls. Using this map, a trace of a
program’s execution can be transparently captured, which can be used for example to
automatically build a makefile from the users interaction with the operating system.

Similar to TREC and ES3 [74], the Provenance-aware Storage System (PASS) integrates
with the Linux kernel to capture all operating system calls, storing arguments to those
calls as well as the dependencies between them. PASS stores this data in the Berkeley
DB database, which allows a variety of queries and processing to be performed on the
database [137]. Although PASS successfully completed the Provenance Challenge and
was able to run the scientific workflow described, that workflow had to be run on a single
computer [156]. PASS differs from TREC by integrating with the kernel directly. By not
executing in user-space as TREC does, PASS is able to gather more information than
TREC. For example, PASS captures read and write system calls whereas TREC does

Chapter 2 A Critical Analysis of Provenance Systems 23

not, which means that TREC must infer whether a specific file is input or output to an
executing program. Furthermore, PASS supports queries that TREC does not [32].

Both PASS and TREC provide for the transparent documentation of program execution
on individual computers. They are not designed for gathering and integrating data
across multiple distributed computers. Additionally, because the data is captured with
respect to the operating system, these systems have a problem in providing meaningful
results to a scientist [32]. Thus, PASS and TREC do not provide the facilities necessary
to determine provenance in multi-institutional scientific systems. However, they can
provide valuable input data to a provenance system that is designed for the multi-
institutional environment [137].

2.3.4 Provenance in Database Systems

Much of the data used by scientists for their experiments resides in databases. Further-
more, for some time, the database community has actively addressed the problem of the
provenance of data stored within databases [190]. Therefore, we now briefly look at the
work from this community.

Provenance in database systems has focused on the data lineage problem [53]. This
problem can be summarised as given a data item, determine the source data used to
produce that item. Woodruff and Stonebraker looks at solving this problem through
the use of the technique of weak inversion [191]. Given some output data, a weak
inversion function attempts to lazily recreate the input data used to generate the output.
Unfortunately, this requires that a user who creates a new database view must also
define a weak inversion function for that view. This technique has been used to improve
database visualisation [192].

Cui et al. formalises the data lineage problem and presents algorithms to generate lineage
data in relational databases [53]. The generation algorithms are similar to automatically
creating weak inversion functions for every new view in a database, which allows users
to “drill through” the lineage of a data item seeing the source data (tuples) that con-
tributed to the given data item [51]. This work was also extended to deal with general
transformations of data sets inside a data warehouse [52]. While data warehouses collect
and cleanse a variety of data from many different sources, they are designed to work
within one organisation [106, 3]. Furthermore, they are designed specifically to work
with data stored and available using standard database technologies [106, 7]. Build-
ing on this and other work, Trio not only captures lineage information but also provides
mechanisms to manage and query it [188]. Trio provides an extension to SQL for queries
both over lineage and accuracy information [3].

Weak inversion approaches have benefits in terms of the size of data needed to be
maintained as well as, in many cases, the ability to generate the inversion function

Chapter 2 A Critical Analysis of Provenance Systems 24

automatically. However, these systems are not as comprehensive as other approaches.
They do not capture, for example, the parameters used by functions, the version of a
workfow executed, or the published source of the data [161, 2]. Furthermore, in many
cases it may not be possible to generate inversion functions because particular operations
are not invertible.

Another system that looks at the data lineage problem in a data warehouse context
is AutoMed [62]. AutoMed is designed to track the changes between data formats
or schemas. As data evolves between differing schemas the lineage of those schema
transformations can be tracked. AutoMed, then, is not focused on capturing the process
by which data is generated but instead on how the formatting of data changes over time.

Buneman et al. [37] redefine the data lineage problem as “why-provenance” and define a
new type of provenance for databases, namely, “where-provenance”. “Why-provenance”
is why a piece of data is in the database, i.e. what data sets (tuples) contributed to a data
item, whereas, “where-provenance” is the location of a data element in the source data
[37]. Based on this terminology a formal model of provenance was developed applying to
both relational and XML databases. This emphasis on the kinds of queries that need to
be supported was an important step. However, these are only two kinds of provenance
queries that need to be supported by a provenance system.

In other work, Buneman argues for a time-stamped based archiving mechanism for
change tracking in contrast to the diff-based mechanisms used by version control sys-
tems. It is argued that these mechanisms may not capture the complete process of
database modification because there may be multiple changes between each archive of
the database. Therefore, a diff-based mechanism is not a reliable approach for the
development of a general provenance system [36].

To address the problem of scientists constructing databases “by hand” through manual
methods such as entering data directly in the system or copying data from other sources,
a copy-paste model of database update can be used [35]. This model attaches information
to database fields about the kind of updates that occurred to it during a transaction
(i.e. whether the field stayed the same, data was inserted or copied into it).

While work in the database community is significant, it fails to completely address the
requirements of multi-institutional environments. First, the systems presented do not
address how to capture the execution of applications that span multiple heterogeneous
platforms. Second, they do provide mechanisms to track the services used to achieve
a particular result. Third, database systems are often not designed to cope with the
unstructured data and complex operations that scientific systems use. Finally, they do
not address the need to determine the provenance of data when the provenance includes
documentation provided by distributed sites.

Chapter 2 A Critical Analysis of Provenance Systems 25

2.3.5 Distributed Debugging, Monitoring and Recovery

Thus far, the systems we have described are either specific to a given application or are
not designed to deal with distributed environments. In distributed systems research,
there has been much work on debugging and monitoring distributed applications as well
as recovering when those applications fail. A common theme in the research is generating
a trace of execution, which can then can be used to either determine what went wrong
in an application or, if the trace is detailed enough, restart the application after failure.
Such a trace of execution could be used to determine the provenance of a digital object.
Because these systems support both a trace of program execution and are designed for
distributed environments, we review them now.

Hollingsworth and Tierney provides a survey of current monitoring and debugging frame-
works and tools for Grids [96], which follows on from earlier work in distributed systems
[103, 17]. One can divide the components of an end-to-end monitoring and debugging
framework into three levels (cf. 20.1, p.322 [96]). At the first level is instrumentation,
which is the integration of probes or sensors into software or hardware to measure their
state. Sensors produce what is known as event data. This is data that a particular event,
such as reading from the network, has occurred at a particular time. At the second level
is presentation. Components, at the presentation level, gather event data produced by
instrumentation, store it, and make it available for use. They are also responsible for
archiving event data and managing the underlying sensors. Thus, the storage of event
data is separated from the capturing and analysis of the data. The third level is analy-
sis. Components at this level analyse monitoring data to, for example, find bugs, spot
performance problems, and detect security breaches.

An example of such a framework is the NetLogger toolkit [95]. It provides libraries
for instrumentation, tools for collecting and archiving event data, and a visualisation
analysis tool. To work in heterogeneous systems, Netlogger specifies a common format
for all event data. Netlogger was built to capture very detailed information in a high
performance setting, however, one of the drawbacks to the approach they take is their
dependence on accurate synchronised clocks on all computers using Netlogger. While
this is a reasonable assumption in an environment where all computers are controlled
by one administrator, in a multi-institutional environment synchronized clocks are the
exception not the norm.

Frameworks such as NetLogger and Ganglia [122] provide detailed logs of events that
occur in large scale distributed systems. Using this data, the connections between events
can be inferred. For example, the NetLogger analysis tool has the ability to visualise
sets of events on a “lifeline” by associating events that operate on the same data. Other
systems infer the causal connections between events (i.e. that event A was caused by
event B). For example, the DeWiz system uses event data from Grid-based logging
systems to infer the causal connections between events building an event graph model

Chapter 2 A Critical Analysis of Provenance Systems 26

[108]. DeWiz analyses, such as determining if a message was lost in transmission, can be
performed on the event graph model using the Grid. Instead of relying on an event based
log, Aguilera et al. views distributed systems as a set of connected “black boxes” and
develops algorithms for inferring the causal paths between events from message based
logs. By visualising these causal paths, performance bottlenecks can be identified by
developers [4]. The approach of tracking messages passed between components modelled
as black boxes can also be used for mobile agent security [180]. These systems are
interesting because they provide a trace of the execution of distributed applications.
However, they are not data-focused and thus do not help in determining the provenance
of data produced by applications.

If the logs created by an application are detailed enough, then, the application can be
successfully restarted using what is known as rollback-recovery protocols. Elnozahy et
al. is a survey of the research in this area [61]. Rollback-recovery protocols rely on
snapshots of a distributed systems’ state called checkpoints. Essentially, each program
executing in the distributed system captures its state periodically, then, when an error
occurs, these states can be meshed together to form a total picture of the system’s state
[39]. The system can then be “rollled back” to a previous stable state and restarted.
One difficulty these protocols have is how to mesh together states created at different
times. To address this problem, checkpoints are combined with message logging data
to allow the relationship between checkpoints to be ascertained. One way of identify-
ing the relationship between checkpoints is to determine the causal connection between
distributed checkpoints [174]. This approach is superior to related techniques because
it isolates executing programs from the failure of other programs, avoids synchronized
checkpointing, and reduces the overhead on storage because only the most recent check-
point is stored [61]. Rollback-recovery protocols have been widely researched, however,
they have not been widely deployed in practice, probably due to the complex modifica-
tions to the operating system or runtime that they require [61]. For example, support
for checkpointing in Java required rewriting the Java Virtual Machine [175]. In science,
checkpointing has been used in the context of long running programs on multi-processor
computers [152].

Both rollback-recovery protocols and monitoring systems provide mechanisms to trace
the execution of distributed applications, however, this is not adequate for determin-
ing provenance. First, they capture events and not data and thus do not allow the
provenance of data to be determined. Second, none of the systems described provide
a mechanism for identifying a particular digital object and retrieving its provenance.
Third, even if the systems were modified to have this functionality, the data they pro-
vide is at too low of a level to be of use to scientists. The systems do not represent
the data at multiple levels of abstraction: a scientist cannot view past processes at a
scientific level and then “drill down” to obtain more technical information. In sum-
mary, distributed debugging, monitoring and recovery systems provide valuable insight

Chapter 2 A Critical Analysis of Provenance Systems 27

into capturing processes in distributed environments but do not provide the requisite
functionality to determine provenance.

2.3.6 Workflow-centric Systems

As discussed in Section 2.1, workflows currently play an important role in allowing
scientists to design multi-institutional experiments. Thus, there are several provenance
systems that are workflow centric. In the Provenance Challenge, eight of the seventeen
systems were based on a particular workflow environment.

Barga and Digiampietri proposes that the workflow enactment engine should be respon-
sible for the automatic collection of provenance information at runtime [15]. The system
described, called REDUX, is a modification of Windows Workflow Foundation [31] and
stores provenance information according to a multi-layered model. The four level model
starts with abstract service descriptions. The second level represents the actual services
used at runtime. Providing even greater detail is the third level which contains the data
and parameters used during workflow execution. The final level contains runtime specific
information such as timing information and information about the machines used during
execution. Thus, a user can start from an abstract representation of the provenance of
an item and drill down to the actual instance level information. Leveraging the model,
the size of the information stored can be significantly decreased [16].

In the context of the myGrid project, the Taverna workflow enactment engine has been
modified to generate provenance according to a Resource Description Framework (RDF)
based data model [200]. Data generated according to Taverna’s provenance model is
stored in a triple store. Once stored, a query application programming interface (API),
ProQA, enables a wide variety of provenance queries to be executed over the provenance
RDF graph[199]. Because provenance information is stored as RDF, it enables both
workflow annotations and provenance information to be queried over simultaneously
[198]. Moreover, using the semantic web browser, Haystack, provenance can visualised
and browsed [200]. One of the drawbacks to the Taverna provenance model is that it
has remnants of its origins in bioinformatics, namely, the use of Life Science Identifiers
(LSIDs) to label all provenance information. The use of LSIDs requires that the infras-
tructure to issue them must be in place and accessible in order for Taverna to create
provenance information.

Like Taverna and Windows Workflow Foundation, VisTrails provides a graphical user
interface for building workflows. However, instead of just capturing the execution of
a workflow, VisTrails also captures how the workflow was created by the user [154].
This system is the first to be specifically designed to capture the workflow evolution
process [72]. While VisTrails motivating domain is visualization [159], the provenance-
based querying and workflow construction techniques such as “Query by Example” and

Chapter 2 A Critical Analysis of Provenance Systems 28

“Creation by Analogy” are domain independent [155]. Using the system, users can
return to previous versions of workflows and workflow runs to compare their results.
Furthermore, portions of workflows can be combined together to create new workflows
and the origin of this new workflow is also tracked. Essentially, VisTrails allows for
the user to serendipitously explore a space of workflows while not losing any of their
previous work. The data describing the provenance of a workflow is captured using an
open, self-describing data model to enable sharing and publication [72].

Another workflow system is Kepler, which aims at supporting multiple kinds of work-
flows from those designed for high-level conceptual bioinformatics experiments to those
designed for job control and data movement in Grids [117]. To allow for a wide range of
workflows, Kepler adopts a formal model that supports different computational styles.
It contains components called actors that are very similar to services, producing output
and taking input. Furthermore, it adds a notion of a Director that governs how a pair
of actors interact. For example, a Director may state that one actor cannot execute
until receiving data from another actor [117]. Based on this formal model, a prove-
nance model centered on recording read, write and state-reset events in an event log is
outlined by Bowers et al. [30]. Using the log, write events (i.e. the output of data)
can be paired with several read events (i.e. the input of data) and a dependency graph
can be built. State-reset events in the event log identify when previous read events
can be discarded as precursors to subsequent write events. Using this approach, sev-
eral provenance queries can be answered [30]. However, these queries are dependent on
the workflow to bound the query by having an event log per workflow. Furthermore,
to support queries about the functional relationships between inputs and outputs, the
model depends on actors implementing only one kind of functionality (i.e. actors cannot
support more than one function). With modifications to support explicit dependencies
and metadata, the execution of workflows in Kepler can be captured with the Kepler
Provenance Recorder [10]. The implementation allows for the smart-rerun of workflows
based on the algorithms from VisTrails [10].

The above systems capture provenance-related information only from the workflow en-
actment engine, the Karma Provenance Framework [165], on the other hand, supports
the capture of this information both from the workflow enactment engine and from
the services used. This capture is facilitated by a notification model. The workflow
enactment engine and services publish information about their execution to a notifica-
tion services as XML. The Provenance Repository then listens for those notifications
and stores them. This has the benefit that services can asynchronously submit their
provenance information and thus not delay execution. The data model Karma used is
centered on the notion of workflow activities (i.e. the invocation of a service). To tie the
various XML submissions about each activity, a workflow identifier is attached to each.
Furthermore, activities are ordered by attaching a logical time stamp generated by the
workflow enactment engine. The model also assumes that each service instance within a

Chapter 2 A Critical Analysis of Provenance Systems 29

workflow run is identified uniquely [162]. A variety of provenance related queries can be
answered by Karma using a combination of SQL queries and a Web Services API [164].

The Virtual Data System (VDS) is a workflow system, which focuses on data inten-
sive scientific applications [202]. The system takes a functional approach: Executable
applications are described as transformations (i.e. functions) and the input to those
applications are described by derivations that bind particular data to a transformation
(i.e. function calls). The syntax to describe derivations and transformations is called the
Virtual Data Language (VDL) [71]. Workflows described in VDL can then be submitted
to workflow planners such as Pegasus [55] or converted to run in workflow enactment
engines such as Condor DAGMan [76]. When the concrete workflow is executed the pa-
rameters along with information about the runtime environment are stored in the VDS.
Like Karma this parameter and runtime information is submitted back to the VDS by
the invoked services. Once stored in the VDS, parameter and runtime information can
then be combined with lineage information inferred from the VDL to answer a variety
of provenance queries [201]. This reliance on the existence of a workflow to infer prove-
nance is one of the major disadvantages to the VDS approach because it does not allow
provenance to be determined in cases where the workflow no longer exists.

Szomszor and Moreau argues for infrastructure support for provenance in Grid and Web
Service applications [178]. An architecture and implementation was developed around
a workflow enactment engine recording data into a separate repository. To cater for
reproducibility all the inputs and outputs to Web Services are recorded along with the
workflow script and the interface definitions of services. The recording interface provided
by the implementation supports both the asynchronous and synchronous submission of
data. The implementation also has a validation capability that determines if a particular
result is current by re-executing the workflow and comparing the execution to the one
documented in the repository.

The workflow systems described here can all answer a variety of queries about the prove-
nance of data. However, as multi-institutional scientific systems become increasingly
decentralised, centralised workflow enactment engines do not have all the information
necessary to provide the complete provenance of various results. For example, if a
workflow enactment engine, A, called a service, B, which also executes a workflow, the
provenance-related information stored by A would not contain the information about
how B produced its results and thus the complete provenance of the output of A could
not be determined. Furthermore, with the exception of VDT and Karma, the systems
described only capture the workflow enactment engines view of a service invocation, this
leads to the possibility of manipulation of provenance-related information produced by
the workflow enactment engine. In a multi-institutional environment, both the work-
flow enactment engine and the service in an interaction need to record documentation of
their involvement with each other. Finally, while all these systems have accessible well
specified data models, they are all tied to the particular notion of workflow implemented

Chapter 2 A Critical Analysis of Provenance Systems 30

by each system. In heterogenous environments, a model is needed that is not tied to
any particular workflow environment.

2.3.7 Data Models for Provenance

From the above discussion, it is apparent that data models are particularly important
for representing data so that the provenance of results can be retrieved. The necessity
of a common data model is underlined by Bose and Frew [25], who identify the lack of a
common data model as preventing researchers from determining the provenance of their
data.

Much of the work in data models is focused on employing Semantic Web technolo-
gies, and particularly RDF. One goal of using RDF is to facilitate interoperability [78].
Frutelle and Myers describes [78] the integration of RDF encoded provenance-related
information produced by two independent execution environment and the queries per-
formed over the combined data. Because a specific model is not defined, queries are
performed under an interpretation of the commonality between the data produced by
the two execution environments. While this is possible for two environments, it be-
comes increasingly difficult as the number of environments and data models increase.
Scientific Application Middleware takes a similar tack by allowing the querier to decide
what types of RDF metadata define provenance [140]. Allowing the querier to define
provenance, makes it difficult to provide generic tools for reasoning about and analysing
the provenance of digital objects.

As the availability of RDF data becomes greater [59], there have been several proposals
to track when and by whom various pieces of RDF are created [77, 38]. These proposals
extend the RDF triple format to contain extra elements containing attribution, security
and timing information. Knowing the creator of an RDF statement is important but that
information alone does not describe other important parts of its provenance including
how and why the statement was made.

Golbeck and Hendler define a provenance data model in the Ontology Web Language
(OWL) to take advantage of the language’s greater reasoning capabilities [84]. The
OWL language makes this possible by adding to RDF a larger vocabulary of terms and
a richer formal semantics [123]. The OWL provenance model assumes that services in
an application create metadata about their execution and that all inputs and ouput files
are placed on the Web and can be addressed by URIs. The assumption that data being
processed by services can be made available on the Web does not take into account the
large amount of data stored in private databases or that cannot be easily addressed by
URIs.

In contrast to RDF based models, ZOOM is built around a relational model with tran-
sitive closures [44]. The model consists of a set of Step-classes that describe a type of

Chapter 2 A Critical Analysis of Provenance Systems 31

service (i.e a function, actor, black box). When a workflow is executed a partial order of
Steps are created. Steps are instances of Step-classes with the input and output of the
Step attached. Thus, there is a direct link between specification and execution represen-
tation. Furthermore, Step-classes can inherit from other Step-classes allowing multiple
levels of abstraction to be expressed. However, the system relies on the presence of a
workflow definition (step-classes), which may not always be available, to understand the
functionality of a given service. Furthermore, when using the model, queries must infer
connections between steps by using time stamps and input/output matching. In a dis-
tributed system, timestamps may not be correctly ordered thus causing false connections
between steps to be present.

2.4 Cross-Cutting Concerns

Having reviewed a variety of provenance systems with respect to multi-institutional
scientific systems, we now analyse three cross-cutting concerns, namely, the level of
abstraction systems address, the nature of queries, and the fundamental role causality
plays in provenance.

2.4.1 Levels of Abstraction

The literature often discusses the “granularity” at which provenance-related information
is captured [161]. We find this term confusing, it is not clear what makes a system fine
grain or course grain. Instead of discussing granularity, we focus on the notion of various
levels of abstraction within applications. There are three axes in our notion of levels of
abstraction for provenance systems. They are the nesting of components, the nesting of
data, and the vocabulary used to describe processes. We address each in turn.

From a software engineering perspective, applications are often built using a hierarchy of
components. In object-oriented systems, objects contain other objects which contain ob-
jects themselves. Likewise, in a functional systems, functions call other functions which
in turn call other functions. This nesting of components is critical to the reusability of
software. It allows applications to be built by reusing and hooking together components
to create new functionality. With respect to provenance systems, it enables provenance
to be queried at different levels of component nesting. For example, a Web Service that
plots a graph contains components that perform various mathematical and drawing rou-
tines. A provenance system can capture the fact that a Web Service was called and a
graph was returned but it can also capture the use of the various drawing or mathemat-
ical components within the Web Service. This allows a user to view the provenance of a
result in terms of high-level components and then progressively break these components
down to view how the nested components contributed to result’s generation.

Chapter 2 A Critical Analysis of Provenance Systems 32

Data, like components, can also be nested. For example, an array consists of elements,
which may be arrays themselves. A user could be interested in the provenance of the
array, its elements, or all of them together. Thus, a provenance-system needs to be able
to determine the provenance of data as well as its nested elements.

Finally, a provenance system can use different vocabularies to describe the same pro-
cess. For example, in bioinformatics many services take textual input and process them
using utilities like grep or gzip. While these services are manipulating text, they are
also performing scientific operations through those manipulations. Thus, we could, for
example, describe a service that estimates the information content of a protein sequence
as a text compression service. Both these descriptions are valid and useful. They rep-
resent the exact same operation at different levels of abstraction. Thus, it is important
for a provenance-system to allow for different vocabularies to be used in the description
of the same operation or process.

Hence, a provenance-system can cater for multiple levels of abstraction in three different
and complimentary ways. It can allow provenance-related information to be captured
about the nesting of components, the nesting of data, and using various vocabularies.
As previously mentioned, a scientist should be able to start at a high level of abstrac-
tion, perhaps describing scientific operations, and then “drill down” to lower levels, for
example, to see problems with program instructions. Therefore, it is critical to be able
to capture and handle information about these various levels of abstraction. However,
most of the systems, we have described do not cater for this need. They are essentially
fixed at their systems designated abstraction level. For example, the database systems
discussed only capture the transformation of tuples, whereas versioning systems only
describe the changes between files.

Braun et al. [32] recognised the need to provide provenance-related information at
different levels of component nesting and proposed to integrate the PASS system with
workflow-based systems to achieve better coverage. This integration between systems is
an important endeavour and will help in the uptake of provenance systems by scientists.
Likewise, the Kepler system provides inspiration for describing workflows using various
vocabularies as there system is designed to cope with various kinds of workflows ranging
from high-level scientific workflows to those for Grid execution. To the best of our
knowledge, Kepler does not allow for multiple abstraction levels within one workflow.

From this analysis, we believe that a provenance system should cater for multiple levels of
abstraction in terms of nesting of components, nesting of data, and multiple vocabularies.
One way a provenance system can cater to this need is to support queries at different
abstraction levels. We now analyse how provenance systems support queries and provide
a framework for thinking about queries with respect to provenance.

Chapter 2 A Critical Analysis of Provenance Systems 33

2.4.2 Answering Queries Related to Provenance

The fundamental goal of provenance systems is to enable users to answer questions
about the results produced by their systems. Expanding on Buneman’s categorisation
of why-provenance and where-provenance, the W7 model [150] identifies the broad range
of queries that fall under the heading of provenance. This conceptual model categorises
provenance into “what”, “when”, “where”, “how”, “who”, “which” and “why” questions
and provides Entity-Relationship diagrams defining data elements useful when answering
each question. To give an intuition as to the questions that would be asked by scientists
using a multi-institutional system, we now list example queries mapping to each category.

• What were the inputs to this experiment?

• When did the experiment run?

• Where did the experimental data come from?

• How fast did the experiment execute?

• Which data sources were accessed while running the experiment?

• Why did this part of the experiment fail?

To answer these questions, the reviewed provenance systems, query the data they have
collected using a range of implementations from extensions to SQL [3] to their own query
APIs [199]. A common thread to all these systems is that, to answer questions related to
the provenance of data, they rely on the equivalent of a dependency graph between data
or events, which is then traversed to obtain an answer. In the case of Workflow-based
systems, the dependencies expressed by the workflow are used to generate the graph.
In systems such as PASS and ES3, the dependencies between operating system calls are
explicitly captured and used to create a graph. Likewise, in database systems, weak
inversion functions express dependency information. These graphs may not contain all
the information necessary to answer a specific question, however, they provide a method
to connect the information required.

Thus, such a dependency graph is a representation of provenance and share two prop-
erties. First, the edges of the graph represent connections or relationships between data
or events. These relationships denote functions or operations applied to data. In gen-
eral, they represent the causal connection between data or events. For example, the
output of a function is caused by its inputs or the execution of a program is caused by
the user double clicking an icon. The notion of causality as a general way to represent
these connections stems from work in distributed systems [4, 108, 119]. Furthermore, in
rollback-recovering protocols, causal connections provide benefits over synchronisation
and transaction based approaches [174]. For example, a synchronisation-based approach

Chapter 2 A Critical Analysis of Provenance Systems 34

involves synchronising application execution with checkpointing, which, unlike a causal
approach, delays application execution [174]. Likewise, using transactions requires that
systems be serializable and thus is not a generally applicable rollback-recovery approach
[174]. Second, dependency graphs are also often directed and acyclic. This is a conse-
quence of causation flowing from the past towards the future. In the next section, we
will discuss causality in a more detail.

These dependency graphs or causality graphs are built from data (or documentation)
captured by the provenance system. The documentation captured by these provenance
systems are partial or complete representations of the process of a particular application
or environment. For example, in versioning systems, documentation of the file modi-
fication process is captured. Similarly, Workflow-based systems create documentation
of the workflow execution process. Therefore, provenance queries can be generalised
to extracting the appropriate causality graph from the documentation of process. No
matter what form the provenance question takes whether “why”, “how” or “when”, the
mechanism for queries is the same.

Hence, the framework through which we view provenance queries is three steps.

1. Identify the data to find the provenance of.

2. Extract the causality graph representing the provenance from documentation of
process.

3. Traverse the causality graph to answer a specific question.

This view is simpler than the W7 conceptual model of provenance because it focuses
on one concept, process, from which a range of provenance questions can be answered.
The framework motivates the development of our solution to the provenance problem,
which takes into account the need to make extracting causal graphs easy. Given that
causality plays a central role in our framework for queries and thus how we represent
documentation, we now discuss the definition we adopt.

2.4.3 Causality

From our analysis, it is apparent that knowing the connections and relationships between
data is critical for understanding the provenance of digital objects. Specifically, causal
relationships allow us to create the causality graphs described in Section 2.4.2. Thus, we
discuss the notion of causation in more detail and provide a specific definition suitable for
provenance in multi-institutional environments. Intuitively, most people have a general
idea that causality is the relationship between cause and effect. However, philosophers
have argued about its exact meaning for thousands of years6. We best understand it

6See Aristotle’s Metaphysics and Posterior Analytics for a 2300 year old discussion of causation.

Chapter 2 A Critical Analysis of Provenance Systems 35

using a counterfactual definition [116], that is: if A had not occurred, then B would not
have occurred, all else being equal.

Much of the work on causation in computer science has focused on inferring causal
relationships from data sets [168]. Inferring causal relationships helps solve problems
in a variety of areas including artificial intelligence [144] and data mining [160]. Pearl
gives a systematic and mathematical treatment of causality [145]. He defines causality
in terms of probabilistic functions and directed acyclic graphs. Specifically, the following
definition for causal structure is given.

A causal structure of a set of variables V (defined as probability distribu-
tions) is a directed acyclic graph (DAG) in which each node corresponds to a
distinct element of V, and each link represents a direct functional relationship
among the corresponding variables.

From this definition, Pearl goes on to present tools for mathematically reasoning about
and inferring causality. A wide variety of techniques based on similar models are available
for inference of causal relationship relationships, particularly using Bayesian methods
[168]. Unlike this work, we are not trying to infer causality from some data set but
instead rely on observations to document causality within systems, specifically within
distributed systems. We use the notion of “observation by participation” that is a
component within a distributed system can observe data or events when it processes
such data or generates such events.

In distributed systems research, causality is discussed primarily with respect to asyn-
chronous distributed systems. Such systems are modelled by sets of automata that
perform three kinds of actions: sending a message (send event), receiving a message
(receive event), and internal events [119, 458]. For modelling reliable first in, first out
communication channels between automata, Lynch defines a cause function that maps
a receive event to a prior send event in the same channel, β [119, 460]. This function is
defined as follows:

1. For every receive event E1, E1 and cause(E1) contain the same message argument.

2. cause is surjective (onto)

3. cause is injective (one-to-one)

4. cause preserves order, that is, there do not exist receive events E1 and E2 with E1
preceding E2 in β and cause(E2) preceding cause(E1) in β.

Intuitively, the definition is saying that receipt of a message is caused by the sending of
that same message. Lynch expands the notion of causality to include the idea that an

Chapter 2 A Critical Analysis of Provenance Systems 36

event occurring in an automata is caused by all the preceding events in the automata.
This is termed the depends on relationship and is defined as follows [119, 465]:

An event E2 depends on E1 if one of the following holds:

1. E1 and E2 are events of the same automata where E1 precedes E2.

2. E1 is a send event and E2 is the corresponding receive event (as defined by the
cause relationship above).

3. E1 and E2 are related by a chain of relationships of types 1 and 2.

The definition given in Lynch for depends on is the same as the happened before rela-
tionship described by Lamport for the ordering of events in a distributed system [111].
Thus, as stated in Lamport, this definition encompasses all possible causal relationships
within an automata (i.e. because all causal relationships are temporal capturing, all hap-
pened before relationships will capture all possible causal relationships). This approach
is conservative and appropriate in systems where causality must only be understood in
an abstract manner, for example, where understanding the causal relationships existing
within an automata is unnecessary.

However, we are particularly interested in understanding causality between data and thus
we need to know in more detail how data was exactly transformed and the explicit causal
connections between data items within automata. The definition provided by Lynch does
not support the kind of detailed specific expression of the causal connection between
data items that is required for the provenance of data to be adequately expressed. To
provide greater detail, we, therefore, define causality in terms of a combination of the
ideas presented above. Because multi-institutional scientific systems are distributed, we
adopt the notion that the receiving of a message is caused by its sending. Secondly within
automata (or services), we use the definition provided by Pearl, namely, that causality
is expressed as functional relationships between variables (i.e. data). We expect such
functional relationships to be expressed by the automata that executes the function,
i.e. the observer of the execution. Using this functional notion allows causality between
data items to be clearly indicated. Furthermore, it allows for the type of causality to
be identified. For example, we can say not only that data item D2 was caused by data
item D1 but we can also say that D2 was caused by a a Fast Fourier transformation on
D2.

To bring these two definitions together, we amalgamate data and events together under
the notion of an occurrence. An occurrence is either an event or a data item at event.
Therefore, sending a message is an occurrence in which sending is the event and the
message is the data at that event. This association provides for the location of a data
item at given point in time as defined by an event. Again, we reiterate the point that

Chapter 2 A Critical Analysis of Provenance Systems 37

an occurrence can only be known by the executor of it, any other automata or service
would only be able to infer the existence of the occurrence.

Using the notion of occurrence, we define our own notion of causality as follows:

Definition 2.1 (Causation). An occurrence O2 is caused by an occurrence O1 if one
of the following hold:

1. O2 is functionally related to O1 (i.e. O2 has a direct functional relationship to O1
from Pearl).

2. O1 is the sending of a message and O2 is the corresponding receiving of the message
(as defined by the cause relationship from Lynch).

3. O1 and O2 are related by a chain of relationships of types 1 and 2.

In summary, Definition 2.1 differs from the definitions provided by Lamport and Lynch
in two important aspects. First, the definition deals with both events and data. Second,
it provides a specific traceable causal connection between the reception of a message and
subsequent sending of another message. These two aspects make Definition 2.1 more
suitable for determining the provenance of results.

In this section, we have briefly discussed two views of causality from distributed systems
and causal inference research. Based on these views, we defined a particular notion of
causality suited to provenance and multi-institutional scientific systems.

2.5 Analysis Conclusions

We have presented a wide range of systems and models that address the problem of
provenance in computational systems. We also have investigated three cross-cutting
concerns: multiple levels of abstraction, queries and causality. From our analysis, we
have come to the following six key conclusions.

1. The Service Oriented Architecture style is the primary software engineering ap-
proach to designing multi-institutional applications.

In Section 2.1.1, we noted that the SOA style is suited to multi-insitutional scien-
tific systems because it hides implementation, enables service reuse, and encourages
platform independence. Because of these benefits, the SOA style has been used in
a variety of scientific systems that consider a range of domains from bioinformatics
to weather forecasting. Furthermore, the SOA style is being adopted by a vari-
ety of Grid-middleware platforms, including the Globus Toolkit. These platforms
provide the basis for a large number of multi-institutional scientific systems [67].

Chapter 2 A Critical Analysis of Provenance Systems 38

Therefore, as reenforced by Foster [69], the SOA style is the primary approach to
engineering these systems.

2. Provenance systems should take into account the important distinction between
past processes and prospective processes.

From Section 2.2.2, we have shown the distinction between prospective processes
and past processes. There is a fundamental difference between what is supposed
to happen and what has happened. Provenance is by definition about what has
happened and is thus about past processes. Moreover, relying on prospective
processes can result in a possible incorrect representation of the provenance of a
result, for example, when an error or problem occurs during execution. Thus, it
is critical to maintain the distinction between past and prospective processes in
provenance systems.

3. A data model for provenance should be well-defined and independent from any one
execution environment to cater for multiple platforms, programs and domains.

Because multi-institutional systems span a wide variety of platforms, a common
data model is necessary to allow provenance to be determined in these systems [25].
Therefore, specifying a data model that is independent from a particular execution
environment is critical. An example of such an independent data model is the
OWL provenance model [84]. However, while the model needs to be independent it
must also be well-defined enough so that it can be clearly understood by multiple
institutions. Thus, adopting purely RDF without specific schemas as proposed
by Frutelle and Myers [78] is too lax. Furthermore, many of these systems we
discussed were specific to a particular domain and thus cannot generically address
the provenance problem arising from a variety of scientific systems.

4. Multiple levels of abstraction must be supported by a provenance system to satisfy
a range of queries.

Several authors have recognised the need for provenance systems to provide dif-
ferent levels of detail and work at different levels within the scientific application
software stack [161, 32, 74, 15]. In Section 2.4.1, we recast this as the notion that
provenance systems must allow for multiple levels of abstraction in terms of the
nesting of components, the nesting of data, and multiple vocabularies for process
description. We introduced the concept that scientists need to be able to drill
down from a high level of abstraction to more levels in order to best satisfy their
needs. Such “drill-down” functionality was inspired by Cui [50] and is similar to
the ideas of ZOOM [44].

5. The storage of provenance information should be separated from its collection point
to ease management and query processing.

In Section 2.3.5, we presented a framework from Hoollingsworth et. al. for debug-
ging and logging in Grid environments that separates the collection (the instru-

Chapter 2 A Critical Analysis of Provenance Systems 39

mentation level) and storage of data (the presentation level) [96]. This framework
has been successfully used on the Grid via the NetLogger toolkit [95]. We adopt
this approach, given that the data needed to be stored by provenance systems
is similar to logging data and Grids are a core part of many multi-institutional
scientific systems.

6. Causal dependency tracking is critical for understanding the provenance of data.

Section 2.4.2 identified causality graphs as a common representation of provenance
used by different provenance systems. Furthermore, the ability to extract causality
graphs is at the core of our framework for viewing provenance queries. Causal
dependency tracking has also had favorable results in checkpointing systems [61].
Thus, tracking and being able to extract causal relationships is a core attribute of
any provenance system.

Many of the systems discussed support some of these attributes; however, none supports
them all and thus provides a comprehensive solution to determining provenance in multi-
institutional scientific systems.

2.6 Summary

In this chapter, a detailed description of multi-institutional scientific systems was given.
This description identified the evolution of these systems towards greater decentralisa-
tion through the use of the SOA architectural style. After describing the environment
considered, three characteristics of provenance were given by analysing its use in the
field of art. Provenance was identified as being about the past and process was identi-
fied as playing a key role. Thus, the important distinction between past and prospective
processes was explained. In this context, we reviewed a range of provenance systems
from those designed for specific domains to those integrated with workflow construction
and enactment environments. We identified three cross cutting concerns: support for
multiple levels of abstraction, a framework for understanding provenance queries, and
the role of causality in understanding the provenance of a result. To understand the
nature of causality, we briefly reviewed work in the area and arrived at a definition of
causality suited to provenance in multi-institutional systems.

From our analysis, we arrived at six conclusions, which can be summarised as follows.
First, current systems do not cater fully for heterogeneous SOA-based multi-institutional
systems; they are often domain or technology specific. Second, they do not not take into
the difference between a prospective process (such as a workflow) and past process (such
as documentation of the workflows execution). Third, they do not specifically define
the causal nature of the relationships they express between data nor do they support
multiple levels of abstraction and nesting. Fourth, they do not distinguish between

Chapter 2 A Critical Analysis of Provenance Systems 40

the data they capture and store (process documentation) and the representation of
provenance that they retrieve from that data. Finally, open, generic, data models are
important in allowing provenance describing multi-site processes to be retrieved.

In the next Chapter, we describe an open data model that supports high-quality char-
acteristics and takes into account our analysis conclusions.

Chapter 3

A Model of Process

Documentation

At the beginning of this dissertation, we outlined the need for the provenance of results
in order to establish confidence in those results especially when they are produced by
dynamic multi-institutional scientific systems. Furthermore, we introduced the notion
that provenance is a question answered by querying documentation of an application’s
process. This novel distinction between provenance and process documentation allows
provenance questions, unknown at the time of application execution, to be successfully
answered provided enough documentation has been produced. Additionally, this sepa-
ration of concerns allows components to be specialised for their specific role, either the
creation of process documentation or its querying. To enable the creation and query-
ing of process documentation by distributed software components, there must be some
shared understanding between all these components. In this chapter, we present a data
model for process documentation that provides this shared understanding.

But what should this data model look like? In Chapter 2, we arrived at six conclu-
sions about the state of the art for determining provenance in multi-institutional sys-
tems. Taking these conclusions into account, this chapter specifies a model of process
documentation that is compatible with SOAs, provides explicit veridical relationships
between occurrences, and is both technology and domain independent. Furthermore,
as discussed later, the data model is designed to support high quality characteristics
derived from a use case analysis.

Therefore, the contributions of this Chapter are as follows:

• A more detailed description of the set of characteristics that define high quality
process documentation.

• A precise conceptual definition of a generic data model for process documentation

41

Chapter 3 A Model of Process Documentation 42

that supports the creation of high quality process documentation and allows for
the provenance of results to be determined.

The rest of the Chapter is organised as follows. First, a generic, shared model of process
documentation is further motivated and a simple example application is introduced.
Next, a set of characteristics are enumerated, which define high quality process doc-
umentation. After which the data model is conceptually specified. The specification
begins by describing our definition of process, it then proceeds to describe how to cre-
ate process documentation for applications once they are mapped to this perspective.
After completely defining the model, we show how the provenance of a data item can
be extracted from it. We also see how the characteristics defined earlier are supported.
Finally, related work is briefly revisited and we conclude.

3.1 Motivation for a Generic, Shared Process Documenta-

tion Data Model

Just as the provenance of a work of art may include multiple owners, institutions, and
handlers, the provenance of a particular digital object may include processes that oc-
curred at different sites, at different institutions, and at different times. Because these
processes may be different in terms of domain focus, underlying assumptions, and imple-
mentation technology, it is helpful to have a generic data model for their documentation
so that the provenance of results can be traced back through these various interconnected
processes.

Take the simple example application in Figure 3.1, at the request of a client initiator
a mathematical calculation is performed on a collated sample, S, provided by a service
that collates a sample from data provided by several sources. This application contains
at least two sub-processes: Process A, the mathematical calculation, and Process B,
the collation of the sample. The process documentation for Process A would document
actions of addition, subtraction, and formula evaluation. On the other hand, the process
documentation for Process B would document the collation of S, for example, by doc-
umenting who was responsible for the data items being collated, what institutions the
data items are from, and whether the data items were produced experimentally or were
synthesised from publications. The documentation for these two sub-processes differ
in their level of detail and the kind of information included. However, using a generic
model, we can still obtain the provenance of the numerical result that includes the whole
of the process.

A model that is applicable to multiple processes could be generated on a case-by-case
basis. However, a number of benefits arise from a data model that is not only generic but

Chapter 3 A Model of Process Documentation 43

Client

Initiator

Mathematical

Function

Collate

Sample

I2 I3

I1

I4

I1: initiator request

I2: collate sample request

I3: collate sample response

I4: numerical result

Figure 3.1: A simple example application

also shared across applications and application components. The benefits of a generic,
shared model of process documentation are enumerated below.

1. Future proofing: It allows application developers to be sure that the process
documentation their applications create today will be understandable by future
applications and usable with process documentation generated by these future
applications. This is vital since today’s process documentation will be part of the
provenance of tomorrow’s results.

2. Sharing: It allows different institutions to share their process documentation
without the need for conversion between models.

3. Common tools: Using it, tools can be designed that allow for the visualisation,
reasoning, and filtering of process documentation irrespective of the domain.

4. Independent creation: With it, process documentation created independently
by application components can be integrated together, which allows trailing anal-
yses to be performed over unanticipated groupings of process documentation.

5. Clear guidelines: Application developers may want their applications to create
process documentation, however, they may not know what data belongs in process
documentation and what the structure of it should be. A generic, shared model
provides a set of guidelines that help developers determine what data should be
part of process documentation and how that data should be structured.

Chapter 3 A Model of Process Documentation 44

6. Platform independence: Internet applications are often developed using a va-
riety of platforms (i.e. operating systems, programming languages, architectures).
Such a model allows for provenance to be determined from process documentation
generated by application components running on any platform.

3.2 Advantageous Characteristics for a Shared Data Model

While any generic, shared data model could provide these benefits and allow the prove-
nance of results to be determined. The data model that we specify is designed to support
the creation of accurate process documentation. In Section 1.3, we outlined a number
of characteristics that help ensure accurate process documentation. We termed process
documentation that adheres to these characteristics, high quality. These characteristics
were derived from an analysis of use cases from several domains [126]. We looked at both
the technical requirements enumerated in the analysis as well as the use cases themselves.
We found that in a majority of the use cases, process documentation provides evidence
that a process occurred. Thus, these characteristics are justified by philosophical ar-
guments that equate process documentation to evidence. Beyond these philosophical
arguments, a number of the characteristics also directly support a technical requirement
enumerated in the use case analysis. We now revisit these characteristics and justify
them in greater detail below.

Characteristic 1 (Factual). In the previous chapter, we noted that a number of prove-
nance systems produce documentation that contains both factual and inferred informa-
tion. With this combination, it is difficult to determine whether the process evidenced
by the documentation actually occurred as described. Thus, we introduce the notion
that process documentation should be factual: it should only be about what is known
to have occurred in an application. To support this characteristic, we adopt the notion
of observation by participation that is process documentation that evinces a particu-
lar application operation should only be created by the component that performed the
operation.

Characteristic 2 (Attributable). In a court of law, evidence, particularly testimony,
is judged by the person or institution who provides it. Furthermore, if it is found
that the evidence given is false then remedial action can be taken against the provider.
Similarly, if a user deems that process documentation is somehow erroneous, the user
must know who is responsible for the creation of the documentation so that the party
can be held accountable. By insuring users know the accountable party, they will have
greater confidence in process documentation.

Characteristic 3 (Autonomously Creatable). In both criminal and scientific in-
vestigations, evidence is gathered at the most appropriate time and by the most ap-
propriate person, device, or institution. By analogy, the distributed components of a

Chapter 3 A Model of Process Documentation 45

multi-institutional scientific system should be able to create process documentation at a
convenient point in time without having to synchronise with any other component. Fur-
thermore, process documentation created in an autonomous manner should be able to
be collated together to present a complete representation of processes that occur across
multiple components.

Characteristic 4 (Process Oriented). Evidence is only useful in a court if it can
be put together to make a convincing case that a particular crime occurred. Likewise,
process documentation is only useful if it can be put together to show that a process
occurred. Thus, for a process documentation to be useful, it must be connected such
that the process that led to a result can be determined from it. We term this notion of
connectedness, process orientation. Therefore, for the data model defined here to meet
the motivating use case, it must be process oriented.

Characteristic 5 (Immutable). In a legal setting, once evidence has been collected,
it is criminal to tamper with it because it corrupts the view the court has on what
occurred. Therefore, if we treat process documentation as evidence, once an application
has created it for a particular execution, it should not be modified or deleted. Many
times, it is not apparent that process documentation is useful until it is needed. Indeed,
many users are caught off-guard when data they previously produced is deleted. Thus, it
is important to maintain process documentation even when it is thought to be unimpor-
tant. Furthermore, in a multi-institutional setting, where the provenance of data might
be used for scientific or legal verification, process documentation must not be tampered
with. Hence, process documentation should be made immutable after creation.

Characteristic 6 (Finalizable). If process documentation is created in the context of
a dynamic multi-institutional system, it is helpful to know when the components within
the system have fully documented their processes so that the system can be disbanded
or the component can be relinquished. Furthermore, it is helpful for users to know when
full evidence (i.e. process documentation) has been provided for a particular process,
otherwise, it is hard to know when a judgement can be made about the evidence. Thus,
process documentation should be finalizable (i.e. markable as the final representation of
a past process).

We term process documentation that possesses these six characteristics high quality
process documentation. We now present our data model for process documentation
called the p-structure. After presenting the p-structure in detail, we show how the
design decisions for the p-structure support both these high quality characteristics and
our analysis conclusions from Section 2.5.

Chapter 3 A Model of Process Documentation 46

3.3 The Data Model

We now present the various concepts that underpin the p-structure using our simple
example shown in Figure 3.1. First, we define a specific notion of process represented by
the p-structure. Next, we detail the data model and its constituent parts. After which,
requirements on component behaviour are defined. Finally, we describe how provenance
can be determined from process documentation organised using the model.

For each set of concepts, we provide a concept map [143] that gives an overview of the
concepts and the relationships between them. Concept maps were chosen because they
are designed for human consumption. Computer parsable representations are available
in XML [138], OWL1 and Java [89]. The use of concept maps was inspired in part by the
Web Services Architecture specification [24], which also uses concept maps. The concept
maps, shown in Figures 3.2, 3.3, 3.5 and 3.7, contain concepts represented by shaded
rounded rectangles and relationships linked by lines between concepts. The words in
the middle of a line denote the kind of relationship between the linked concepts. Maps
are read downward, or if an arrow is present, in the direction which the arrow points.
For example, the top portion of Figure 3.2 can be read as “Actors play a role”, ‘Actors
have points of communication’. In the text, we italicise the first occurrence of concepts
that appear in a concept map.

3.3.1 Process

The concepts discussed in this section are summarised by Figure 3.2. Applications are
developed to address a variety of problems using different programming languages, design
approaches, and execution environments. To represent this dynamic range of situations,
we take a particular perspective on all applications, which embraces the principles of
encapsulation and abstraction to enable process documentation to be created at varying
levels of detail while still preserving coherence across applications and their components.

The perspective we take is to view applications as composed of entities, called actors,
each of which represents a set of functionality within the application. Actors interact
with other actors by the sending and receiving of messages through well-defined points
of communication. Such a view naturally fits with service oriented architectures, one of
the primary software engineering approaches for complex multi-institutional applications
[69]. Our decomposition of applications is conceptual and is not restricted to applications
already based on message passing. For example, as we view messages as information
exchanged by actors, two threads communicating by a shared memory can also be viewed
as actors.

To aid developers in the mapping of their applications to this conceptual perspective,
1http://www.pasoa.org/schemas/ontologies/pstruct025.owl

Chapter 3 A Model of Process Documentation 47

Figure 3.2: Concept map describing process

Chapter 3 A Model of Process Documentation 48

a software engineering methodology for the decomposition of applications into actors
has been created [139]. For example, using this methodology, the example application
was decomposed into actors that map to each step in the workflow i.e. Client Initiator,
Mathematical Function, and Collate Sample. Each actor represents some functionality
at a level of abstraction. Through the addition of actors, application functionality can be
represented at a greater level detail. For instance, some of the functionality encapsulated
by the Mathematical Function actor is represented in more detail by the Collate Sample
actor.

When decomposing an application, specific points of communication are pinpointed and
given an identifier called a message source or message sink that respectively denote
where messages are sent and received. An actor may have any number of points of
communication; the only restriction is that they are clearly identified. For example, in
a Web Services context, a message sink would be the endpoint reference of an actor.
An actor’s functionality may only operate or work upon messages and by extension
the data within messages that it has received or that have been created by the actor’s
functionality. Therefore, to define the boundary of an actor, we define the scope of an
actor as the set of messages that have been received or been created by the actor (i.e.
message creation and message reception). Thus, the scope defined here is not a static
scope defined by software components but a dynamic scope that exists in the space of
execution. Concretely, an actor that represents a procedure would contain within its
scope not only all the inputs to the procedure and all the output data the procedure
returns, but also all the data it may read or store in memory.

From scope, we define the notions of inside and outside an actor. Data is said to be
inside an actor when it is part of a message that is an element of an actor’s scope.
Likewise, data is said to be outside an actor when it is not part of a message that is
an element of an actor’s scope. This definition also applies to the events within an
application. If an event happens to data inside an actor, then it is also said to be inside
the actor. Correspondingly, if an event happens to data outside an actor, then the event
is also said to be outside the actor. Thus, both receive and send events are inside an
actor when the message being sent or received is also inside that actor.

Scope provides a mechanism that allows data or events to be located within an appli-
cation. However, a mechanism is also needed that expresses how events and data are
connected together to form a process within an application execution. Given our mes-
sage passing perspective, all data is contained within messages and the basic events that
we consider are the sending and receiving of messages. Therefore, we define how these
primitives are connected.

From Part 2 of Definition 2.1, we maintain that the receipt of a message is caused
by the sending of that same message. The combination of a send and receive event
along with the message exchanged is termed an interaction. Therefore, an interaction

Chapter 3 A Model of Process Documentation 49

expresses both a causal connection between a sending event and a receiving event as well
as the contents of the message being exchanged. Specifically, an interaction describes
an external causal connection, a logical connection formed where, for a given actor, the
event inside the actor is caused by an event outside the actor. An interaction matches
this definition because the internal receive event is caused by a send event outside the
receiving actor. An example of an interaction is the sending of a response from the
Collate Sample actor to the Mathematical Function actor.

With respect to interactions, actors can also play different roles. An actor may have the
role of a message sender in one interaction and may play the role of a message receiver in
another. An interaction can have metadata associated with it. This metadata is usually
embedded within the message being exchanged. However, it may be associated in some
other manner. Using this metadata, a sender can share information with a receiver
that enables process documentation produced by these separate actors to be collated
together. Specifically, a sender can generate a unique key for an interaction, termed an
interaction key, and share this with the receiver. Thus, allowing the two actors to refer
to a specific interaction using the same identifier. Based on the interaction key both the
sending and receiving events can be identified by event identifiers. As we later show,
these identifiers are crucial to organising process documentation.

Interactions express the causal connection between the sending and receiving of a mes-
sage. However, they do not express the causal connection between the receiving of a
message and the sending of another message within the scope of an actor. The sending
of a message by an actor is caused by the execution of some functionality within the
actor and this, in turn, is caused by the receipt of a set of messages. This causal connec-
tion follows from Part 1 of Definition 2.1. We term the causal connection between the
receiving of messages and the sending of messages caused by an actor’s functionality a
transformation.2 This causal connection is termed an internal causal connection because
the events being connected are both inside the actor.

Consequently, in an application, the receiving of data by an actor may cause a transfor-
mation to occur. This transformation may cause the sending of data, which itself causes
the receipt of data in another actor, which in turn may cause a transformation and so
on. Thus, a process can be defined as follows:

Definition 3.1. (Interaction-based Process Definition) A process is a causally connected
set of interactions and transformations.

Using this definition, precise organised process documentation can be created. We now
describe a model, the p-structure, tied to this definition of process.

2Our model of process does not allow sequences of connected transformations inside an actor. This
restriction ensures a simple decomposition rule: if more detail is needed about a transformation, the
actor must be decomposed into more actors. Furthermore, the introduction of transformation sequences
within an actor would necessitate the introduction of more primitives, thus, adding complexity to the
model.

Chapter 3 A Model of Process Documentation 50

3.3.2 Process Documentation

The concepts discussed in this section are summarised by Figure 3.3. Thus far, we have
discussed process documentation in the abstract. We now distinguish between the whole
of process documentation and its individual parts. A p-assertion is an assertion that is
made by an actor and pertains to a process. Process documentation then consists of a
set of p-assertions. Actors that create p-assertions are termed asserters.

We place a restriction on all asserters that they only create p-assertions for events
and data (what we termed occurrences in Section 2.4.3) that are inside their scope.
Thus, asserters only create process documentation about what they know to be the
case because they observe them through participation in either the creation or reception
of messages. Scope defines participation and therefore defines observation. Asserters,
then, are restricted to reporting on what they know to have occurred in a process, which
supports the characteristic of factuality.

Every p-assertion also contains an asserter identity. This is the identity of the responsible
party or parties for the p-assertion. Thus, the asserter identity will always contain the
identity of the actor but may also contain, for example, the identity of the owner of the
actor.

We now define two p-assertions that can be used to document the causal connections
previously discussed.

3.3.2.1 Interaction P-assertions

Interactions are represented by interaction p-assertions, which contain four parts:

1. An asserter identity.

2. An event identifier.

3. A representation of the message exchanged in the interaction.

4. A documentation style describing how the representation was generated.

As with all p-assertions the interaction p-assertion contains an asserter identity. The
event identifier uniquely identifies an event through a combination of a role identifier
and an interaction key. The interaction key names the sender and receiver in the inter-
action by their message source and message sink respectively. It also contains a field
that distinguishes this interaction from any other interaction happening between the
message source and sink. The role identifier denotes whether the actor creating the p-
assertion was the sender or receiver in the interaction and thus whether the event being
documented is the sending or receiving of a message.

Chapter 3 A Model of Process Documentation 51

F
ig

u
r
e

3
.3

:
C

on
ce

pt
m

ap
de

sc
ri

bi
ng

pr
oc

es
s

do
cu

m
en

ta
ti

on

Chapter 3 A Model of Process Documentation 52

The representation of the message contained in the interaction p-assertion often contains
an exact duplicate of the message, but, in some instances it may not be feasible to have
such a representation, for example, when the data being transferred needs to remain
anonymous to users of process documentation or is of a large size. In the example appli-
cation, this occurs when the sample generated by the Collate Sample actor is replaced
with a reference to save storage space. To allow for these cases while still preserving an
accurate representation, we allow a message to be transformed in a well-defined manner
during the generation of a p-assertion, which is termed styling the p-assertion. The
styling that is performed is defined explicitly by a documentation style. Causal depen-
dencies are not tracked for these styling transformations because they pertain to the
creation of process documentation as opposed to the production of application results.
Likewise, the created p-assertions are not seen as application data and are not in the
scope of an actor. For example, when the Collate Sample actor receives a large mes-
sage, it may store that to a local database. To document the reception of the message, it
generates a p-assertion with a reference to the data within it. While documentation pro-
duced after styling may not be as detailed as a copy of a message, it still provides critical
evidence that a process occurred while allowing practical issues such as anonymization
and scalability to be catered for. Therefore, like all other process documentation, it
should should be immutable. We discuss the particular case of references in more detail
in Section 6.6.2

Interaction p-assertions document both the data within applications as well as the ex-
ternal causal connections between the actors within those applications.

3.3.2.2 Relationship P-assertions

Unlike interaction p-assertions, relationship p-assertions represent internal causal con-
nections between occurrences, which are defined as events or data items involved in
events. For example, in our simple example application, an occurrence is the reception
of an initiator request by the Mathematical Function actor. The data items in ques-
tion can be entire messages or parts of messages. To locate a part of a message within
process documentation data accessors are introduced, which are descriptions of how to
find parts within p-assertions that document messages. Therefore, an occurrence within
a relationship p-assertion is identified by locating the p-assertion where the event is
documented and, if necessary, a data accessor.

A relationship p-assertion identifies one or more occurrences that are causes and one
occurrence that is the effect of those causes. We limit a relationship p-assertion to
one effect to make it easier to find the provenance of a particular occurrence: with this
approach, there is no need to disambiguate which causes are associated with a particular
effect. The specific relationship between these causes and the effect is described by a
relation. The two types of causal relationships that are allowed between occurrences are

Chapter 3 A Model of Process Documentation 53

listed below:

1. Structural. Relationships of this type describe the composition of a data item from
its constituent parts. They do not describe how a data item was composed from
other data items, only that there exists a causal dependency between the data item
and its parts. Structural relationships allow for the expression of the nesting of
data. For example, a database is causally dependent on the entities it contains. If
one of the entities in the database changed then the database itself would change.
Relationships of this type can only be created between data items at the same
event.

2. Transformational. This type of relationship describes, at some level of abstraction,
a transformation and represents the internal causal connection from the receiving
to the sending of messages. See Figure 3.2 for the conceptual description of a
transformation. For example, a transformational relationship could represent the
PPMZ compression algorithm applied to some input data within a received mes-
sage (cause) to get compressed data within a sent message (effect).

Every relationship is described using a term from an appropriate vocabulary and the
same transformation or structuring of data can be described by multiple relationship
p-assertions using different vocabularies. However, in all cases, the relation described is
causal as defined by Part 1 of Definition 2.1 (O2 is functionally related to O1).

Relationship p-assertions document both the data flow and control flow within an actor
and thus are critical to understanding the process within an application.

3.3.2.3 Levels of Abstraction

The combination of interaction p-assertions and relationship p-assertions provide the
information necessary to document processes. Furthermore, they allow process docu-
mentation to be created at different levels of abstraction. In Section 2.4.1, we described
ways of describing parts of processes at multiple levels of abstraction: data nesting,
multiple vocabularies, and component (or actor) nesting.

Relationship p-assertions cater for data nesting. Specifically, structural relations allow
the nesting of data to be explicitly represented in process documentation. Thus, the
causal connection between a container and its parts can be used in the determination of
provenance. During the determination of a data item’s provenance, a user can choose
to include or exclude the provenance of the data item’s constituents.

Relationship p-assertions also cater for multiple vocabularies. The same transformation
in a process can be described using multiple relationship p-assertions each using its own

Chapter 3 A Model of Process Documentation 54

vocabulary. This enables the expression of what has occurred at both scientific and
computational levels. Multiple vocabularies are useful for describing a transformation
at different levels of abstraction within one actor. However, actors may implement the
functionality they describe in relationship p-assertions by interactions with other actors
and their transformations. This nesting of actors is common in software, therefore, we
now discuss how the data model handles actor nesting.

Figure 3.4 shows the documentation for the collation process of the simple example ap-
plication at two different levels of abstraction. Relationship p-assertions are shown by
dotted arrow-capped lines with labels, where arrows point from effect to cause. Interac-
tion p-assertions are shown with solid-arrow capped lines with labels, arrows point from
the sender to the receiver of the message.

The left side of the figure shows documentation of the collation process at high level of
abstraction. It states that the collate sample response was generated from the collate
sample request. The relationship p-assertion provides an abstract description of the
functionality the Collate Sample actor executed to achieve the response from the request.
This level of abstraction may be useful for some users of process documentation who
are interested in a “summary” of this activity. However, other users may need a more
detailed picture of the collation process. To provide such a view, the actors used by
the Collate Sample actor can be exposed. On the right hand side of the figure, process
documentation is shown that includes the Collate Sample actor using a Database actor.
This documentation states that on the receipt of a collate sample request, data items
are retrieved from a Database, which are then collated together in to the collate sample
response.

is caused by

collated from

retrieved by

generated from

Collate Sample

Database

Collate Sample

collate sample

response

collate sample

response

collate sample

request

collate sample

request

database

request data

Figure 3.4: An example of documenting process at different levels of abstraction

If even further detail is required, more actors can be exposed that model progressively
more detailed functional components within the application. No matter what level of

Chapter 3 A Model of Process Documentation 55

abstraction is required, process documentation for each level can coexist and complement
one another to facilitate analyses.

3.3.2.4 Internal Information P-assertions

We now discuss one final type of p-assertion that facilitates abstraction and is introduced
for convenience when using the model. It is often the case that a piece of data plays an
important role in a process but the manner of its generation is not of interest. Examples
of this include the time, the memory usage of an actor, and the configuration of an
actor. All of these data items can be represented using relationship p-assertions and
interaction p-assertions. However, using internal information p-assertions, the detail of
how these data items were obtained can be abstracted away and one is left with just
the data item and its basic causal connection to the process. We make the restriction
that the data item is obtained by the actor either just before the sending of a message
or just after the receipt of a message. This ties the data item explicitly to a particular
occurrence in the process. Essentially, it allows an actor to assert, for example, that it
sent a message at a particular time or that its memory usage was 20% after receiving
a message. Thus, an internal information p-assertion represents the receipt of data by
an actor from some other unidentified actor and is causally connected to the sending
or receiving of a message by the former actor. The causal connections represented by
internal information p-assertions are different for sending and receiving events and are
as follows:

1. Sending: The sending of a message is caused by the receipt of the data within the
internal information p-assertion, obtained just before the sending of the message.

2. Receiving: The receiving of a message causes the receipt of the data within the
internal information p-assertion, obtained just after the receipt of the message.

We note that because internal information p-assertions represent the receipt of mes-
sages they can be used as causes within relationship p-assertions. Also, an actor can
style the data during the creation of the internal information p-assertion. Thus, an in-
ternal information p-assertion consists of four parts: an asserter identity, the data, the
documentation style of the data, and the event identifier of the event to which the data
is causally connected. Internal information p-assertions allow data items to be made
explicit without, the sometimes unnecessary, overhead of creating documentation for
their generation.

3.3.2.5 The P-Structure

P-assertions contain the elements necessary to represent a process. However, without
some organisation it would be difficult to discover distinct processes within process

Chapter 3 A Model of Process Documentation 56

documentation. Therefore, we introduce the p-structure which is an organisation of p-
assertions that provides several elements to help isolate, find, and understand sets of
p-assertions.

The p-structure situates each p-assertion in a container termed a view, which is identified
by an event identifier. This means that p-asssertions are grouped together by the event
that they are most closely associated with. The associations for the three types of
p-assertions are as follows.

• Interaction p-assertions are associated with the event they document as given by
event identifier within the interaction p-assertion.

• Relationship p-assertions are associated with the event identified in the effect oc-
currence of the relationship p-assertion. This allows users of process documenta-
tion to find the causes of a particular occurrence; once the occurrence is known the
relationship p-assertion documenting its causes can be found in the same view.

• Internal information p-assertions are associated with the event that they are causally
related to. Again, this provides a way to easily find data that is fundamentally
about a given occurrence because the data is in the same view as the occurrence.

Each p-assertion within a view is given a local p-assertion id that, when combined with
the event identifier for the view, allows the p-assertion to be uniquely identified within
the p-structure. This combination is termed a global p-assertion key.

Because actors are only allowed to create p-assertions about events and data in their
scope, all the p-assertions in a given view will have been asserted by the same actor.
That is to say, the actor who participates in an event is the only actor that can make
p-assertions about the event (observation by participation) and thus those p-assertions
should be the only ones within a view. Therefore, to ease the identification of p-assertions
produced by an actor, the common asserter identity shared between a view’s p-assertions
is also placed within the view.

Views contain p-assertions identified by local p-assertion id and an asserter identity.
They also contain an element termed exposed interaction metadata. In Section 3.3.1, we
introduced the notion that interactions can have metadata associated with them. This
metadata is used to exchange interaction keys. It is also used to exchange information
that helps demarcate and isolate processes. When the metadata is embedded in a
message, it is documented using interaction p-assertions. Otherwise, it is documented
using internal information p-assertions. Because communication systems have different
message formats, metadata may be in different places within a message. To enable
queriers to easily find this metadata without having to be aware of the underlying
message format, an asserter can expose it within a view by placing a copy of it inside
an exposed interaction metadata element. Essentially, instead of traversing the content

Chapter 3 A Model of Process Documentation 57

of p-assertions to find a piece of metadata, queriers can look in a well defined location
that is independent of any particular message format.

We now look briefly at one mechanism, tracers, that is metadata used to demarcate
processes. See Figure 3.5 for an overview.

Figure 3.5: Concept map describing tracers

Tracers are tokens associated with interactions that identify the larger process that a
particular interaction belongs to. Tracers are similar to transaction contexts within
transaction processing systems. Just as a transaction context distinguishes a particular
transaction, tracers distinguish or demarcate processes from one another in process
documentation by identifying a set of interactions, typically involving several actors, that
belong to a particular process. Actors can inject, i.e. add, tracers into an interaction’s
metadata. When an actor receives a tracer metadata, it can propagate or not propagate
the tracer to subsequent messages that it sends. This is similar to the passing of a
transaction context through the operations involved within a transaction. Injection and
propagation are determined via tracer semantics, which are identified in the token. An
actor has a choice as to whether it chooses to make use of tracers. When exposed
interaction metadata contains a tracer, it is known that interaction documented was
part of the process identified by the tracer. Thus, tracers assist in identifying particular
processes within process documentation.

Given our interaction-centric perspective, the p-structure logically groups together the
two views that document an interaction into what we term an interaction record. The

Chapter 3 A Model of Process Documentation 58

Sender View

relationship pa (2)

 effect
 ik = Collate Sample -->

 Mathematical Function I3

 view = sender

 lpid = 1

 da = /collated sample

 relation = generated from

 cause
 ik = Mathematical Function

 --> Collate Sample I2

 view = receiver

 lpid = 1

 da = /sample size

 cause

 ik = Mathematical Function

 --> Collate Sample I2

 view = receiver

 lpid = 1

 da = /sources

Mathematical Function Collate Sample

interaction pa (1)

 documentation style =

 reference

 message

 tracer = mathTracer1

 collated sample =

 file://exp1/collate.sam

Receiver View

internal information pa (2)

 receive time = 9:05:82

interaction pa (1)

 documentation style =

 reference

 message

 tracer = mathTracer1

 collated sample =

 file://exp1/collate.sam

Receiver View

internal information pa (2)

 receive time = 9:05:82

interaction pa (1)

 documentation style =

 standard

 message

 tracer = mathTracer1

 sample size=

 100 kilobytes.

 sources =

 5 sources

 Collate

Sample

Mathematical

Function

...

exposed interaction

metadata

 tracer = mathTracer1

exposed interaction

metadata

 tracer = mathTracer1

assertor

 IAM Group / Peter Smith /

 Compute Entropy Actor

assertor

 IAM Group / Peter Smith /

 Encode Actor

I2

I3

Figure 3.6: An example of the contents of a p-structure that documents the interac-
tions I2 and I3 from Figure 3.1

grouping of views into interaction records has the added benefit of collating together
process documentation created by independent actors. The p-structure then contains a
set of these interaction records.

Figure 3.6 shows an example of a p-structure. The portions of the interaction records
shown contain the documentation for the collation of a sample. Each large square is
an interaction record labelled with the interaction key and label from Figure 3.1 of the
interaction it represents. The label is in the upper-right hand corner of the square. The
interaction key is shown by the name of the actor sending the message (acting as a
message source) followed by an arrow pointing to the name of the actor receiving the
message (acting as a message sink). Each p-assertion in Figure 3.6 is also followed by its
local p-assertion identifier in parenthesis. The following abbreviations are used in the
Figure: pa denotes p-assertion, ik denotes interaction key, lpid denotes local p-assertion
identifier, da denotes data accessor.

Again, we note that the p-structure is implemented as a data structure in XML [138],

Chapter 3 A Model of Process Documentation 59

Java [89] and OWL.

3.3.3 Actor Behaviour Required by the Model

P-assertions are created autonomously by actors that document the occurrences within
their scope. However, the p-structure does rely on actors following three rules that allow
p-assertions to be correctly collated. These rules revolve around the correct creation and
usage of interaction keys. They are as follows:

Behaviour Rule 1: Unique Interaction Key Rule A sender asserting actor (i.e.
a sender in the role of an asserting actor) must assign a globally unique interaction key
to an interaction.

There are many ways actors can obtain interaction keys. For example, an actor could
generate an interaction key itself or obtain an interaction key from a naming service. The
interaction key assigned to an interaction by a sender must be passed to the receiver in an
interaction so that the receiver may also create p-assertions about the same interaction.
For example, by passing the interaction key in a message header. To guarantee that this
takes place, we introduce the interaction key transmission rule.

Behaviour Rule 2: Interaction Key Transmission Rule A sender asserting actor
must transmit the interaction key it assigns to an interaction to the receiver in that
interaction.

In order for the provenance of a piece of data to be retrieved, p-assertions must be
associated with a particular interaction. The appropriate interaction rule governs how
p-assertions should be associated with a particular interaction.

Behaviour Rule 3: Appropriate Interaction Rule An asserting actor must use
the interaction key associated with an interaction, I, when asserting p-assertions about
I.

These rules are simple and have been kept to a minimum so that actors can create
process documentation as independently as possible. If these rules are not adhered to,
the p-assertions created by various actors will not be able to be collated together to
form a complete picture of a process. Specifically, the sender and receiver views of an
interaction will not be placed within the same interaction record and will appear to be
disconnected.

3.3.4 Extracting Provenance from the P-Structure

The concepts discussed in this section are summarised by Figure 3.7. The p-structure
organises p-assertions so that the provenance of occurrences can be found. Specifically,

Chapter 3 A Model of Process Documentation 60

a causality graph, which represents the provenance of a particular occurrence can be
extracted from the p-structure. Different forms of causality graphs (i.e. where the
vertices and edges of the graph represent different entities) can be extracted from the
p-structure depending upon usage. For example, one form of causality graph could have
all edges representing a causal connection and all vertices being either a cause or effect,
which could be useful in studying the purely causal relationship between occurrences
whereas another form maybe useful when looking at the transformations applied. Here,
we use a simple form for illustration purposes.

Figure 3.7: Concept map describing provenance

Figure 3.8 shows the provenance of a numerical result. The nodes in the graph are
occurrences, in the role of causes, effects or both. The edges in the graph are hyperedges3

and represent the causal connections extracted from relationship p-assertions. All arrows
on the edges point from effect to cause. The external causal connections represented by
interaction p-assertions are collapsed into the numbers shown to the bottom right of each
node. These numbers map to the interactions shown in Figure 3.1. Internal information
p-assertions are shown as annotations connected to the interactions by double-arrow
headed lines. To save space, not all of these p-assertions are shown. The relationship
p-assertions shown in Figure 3.6 are found in this figure.

Figure 3.8 evinces the claim that the provenance of an occurrence can be explained at
different levels of abstraction. For example, the edge labelled as is result of mathematical

3A hyperedge is an edge that can have any number of vertices.

Chapter 3 A Model of Process Documentation 61

numerical

result

collated

sample

calculated from

sources

generated from

initiator

request

is caused by

I4

I3

I2

is result of mathematical
function caused by

I1

Institution 2

Institution 1

Institution 2

Institution 3

sample

size

I2

is caused by

Figure 3.8: Causal graph describing the provenance of a numerical result

function caused by between numerical result and initiator request abstracts the three
nodes and four hyper edges to its left.

3.4 High-Quality Characteristics Revisited

We now revisit each high-quality characteristic and discuss how each is addressed by the
data model.

Characteristic 1: Factual

This characteristic is the basis of our notion of actors and thus is at the core of our data
model. If application developers follow the data model specification, actors will only
assert what is in their scope and thus process documentation will be factual. Essentially,
the data model is a contract between the creator and the querier. In the case of factuality,
it places an obligation on a creator that it only records data about what it knows to have
occurred. Therefore, queriers can assume that process documentation will be factual and
take action if they find that the contract is broken. The data model helps to enforce
this contract by ensuring that effect of a relationship p-assertion is in the view with the
relationship p-assertion, hence, the occurrence that is the effect must be documented as
being part of the actor’s scope. If the effect is not found within the same view, then it
is a sign that factuality was not adhered to. Furthermore, a querier can check to see
if the causes in a relationship p-assertion share the same assertor as the relationship

Chapter 3 A Model of Process Documentation 62

p-assertion, if they differ then it shows that factuality was not maintained. If routing
information is available within messages, queriers can check to see whether a sender
or receiver correctly identified themselves as such again helping to ensure factuality.
Finally, we can detect when actors have conflicting views of the messages they exchange
in interactions. This encourages actors to create factual documentation.

Characteristic 2: Attributable

The characteristic of attribution is supported through each p-assertion containing an
asserter identity. Therefore, users of process documentation can identify who is respon-
sible for a particular p-assertion and hold them to account for any information contained
within the p-assertion. Cryptographic techniques such as digital signatures can be used
to ensure that asserter identities are accurate and correctly associated with p-assertions.
A more detailed discussion of the use of such security primitives is outside the scope of
this dissertation, but can be found in Tan et al. [179].

Characteristic 3: Autonomously Creatable

Actors can create p-assertions in an autonomous manner through the use of sender
generated interaction keys. Because the interaction key is a tuple based on information
the sender has, the sender can guarantee its uniqueness without external dependencies.
Thus, once an actor has either created or received an interaction key (via metadata
which typically can be passed in message headers), it can then create p-assertions about
that interaction without contacting an outside entity and at the time of its choosing.
Thus, the decision to introduce the interaction key supports the collation of process
documentation created by independent actors.

Characteristic 4: Process Oriented

The data model supports the creation of process oriented documentation. Two of its
fundamental data structures, interaction and relationship p-assertions are about causally
connecting occurrences. In Section 3.3.4, we illustrated how a graph describing the
provenance of a particular data item could be extracted from process documentation.
In the next chapter, we will further show that if applications correctly follow the data
model, process documentation will be created such that the provenance of results can be
determined. Finally, in Chapter 6, we will show that process documentation following
the p-structure enables six practical use cases to be solved.

Characteristics 5 and 6: Immutable and Finalizable

These two characteristics can only be guaranteed by the correct storage and mainte-
nance of process documentation. In this chapter, we have discussed the creation and
organisation of process documentation and not how it is stored or maintained. In the
next chapter, we will show how the recording of p-assertions in an appropriate reposi-
tory can be used to guarantee these characteristics. We note that the organisation of

Chapter 3 A Model of Process Documentation 63

p-assertions into Views is helpful for supporting finalizable process documentation.

From this analysis, it is evident that documentation of process following the p-structure
is high-quality. If actors create process documentation according to the p-structure, it
will possess a majority of the aforementioned characteristics. This means that users of
the process documentation can be confident that it is an accurate representation of a
system’s process. Hence, the provenance of results generated by queries over p-structure
compatible process documentation will also be accurate. Being able to accurately de-
termine the provenance of digital objects is vital for the practice of science using multi-
institutional scientific systems.

3.5 Analysis Conclusions Revisited

As we have shown, many of our design decisions support high-quality characteristics.
Likewise, other design decisions are in response to the analysis conclusions given in
Chapter 2. We now revisit each analysis conclusion and show how each led to particular
design decisions.

1. The Service Oriented Architecture style is the primary software engineering approach
to designing multi-institutional applications.

The interaction-centric model we adopt reflects the SOA style. Just as the SOA style
breaks down applications into services that communicate via message passing, the p-
structure relies on applications being viewed as actors communicating via message pass-
ing where actors, like services, take inputs and produce outputs. Essentially, actors are
services that can also call other services. Once adopting this view of applications, the
concepts of capturing interactions and the internal functionality of actors follows, which
leads to the interaction and relationship p-assertions concepts.

Ideas from Web Services, the primary implementation of the SOA style, have also in-
fluenced our design decisions. The concept of metadata associated with interactions is
based on the header area within a SOAP message. This header area allows messages to
be extended with additional information to cater for features such as security, routing,
and message correlation [94]. Likewise, tracers, a form of metadata, allow for process
demarcation by correlating messages. Web Services also led to the instantiation of the
p-structure in XML.

2. Provenance systems should take into account the important distinction between past
processes and prospective processes.

Process documentation is specifically about being evidence that a process has occurred.
The data model assists asserters in creating process documentation about processes that
have already occurred by providing a set of well defined concepts about the data that

Chapter 3 A Model of Process Documentation 64

needs to be provided when in process documentation. Furthermore, the p-structure
organises process documentation so that questions pertaining to past processes, such as
determining the provenance of data item, can be answered easily.

3. A data model for provenance should be well-defined and independent from any one
domain or technology to cater for multiple platforms and programs.

The p-structure is defined at a precise conceptual level supported by Concept Maps
designed for effective human consumption. We do not define the p-structure in terms of
any one platform or technology and the conceptual model has been instantiated using
three different technologies. Finally, the conceptual model is not tied to any particular
scientific or business domain.

4. Multiple levels of abstraction must be supported to satisfy a range of queries.

The p-structure was specifically designed to cater for multiple levels of abstraction as dis-
cussed in Section 3.3.2.3. One of the purposes of introducing the mapping of applications
into actors is to allow for the nesting of components to be expressed. When defining
relationship p-assertions, structural relations were introduced specifically to cater for
the nesting of data. Likewise, the decision to allow multiple relationship p-assertions to
be created between the same occurrences was introduced so that multiple vocabularies
could be used when describing a transformation that occurred within an actor. Finally,
internal information p-assertions allow details of how internal information was produced
to be abstracted away when it is convenient to do so.

5. The storage of provenance-related information should be separated from its collection
point to ease management and query processing.

The next chapter focusses on the storage of process documentation. However, the def-
inition of the p-structure is key to supporting the separation of the creation of process
documentation and the querying of it. It provides a shared understanding between
asserters of process documentation and queriers of it. Because of the p-structure, a
querier can understand process documentation without having direct knowledge of the
actors who created it. The p-structure’s organisation of p-assertions into views, the pair-
ing of views into interaction records, the introduction of exposed interaction metadata,
the ability to identify each p-assertion uniquely, and the independent representation of
transformations in relationship p-assertions were all designed to allow users of process
documentation to traverse and understand it independently from its creators.

6. Causal dependency tracking is critical for understanding the provenance of data.

Causal dependencies or causal connections are at the heart of the p-structure. Two
types of p-assertions, relationship p-assertions and interaction p-assertions are designed
to capture causal connections. They follow directly from the definition of causality we
defined in Chapter 2. Relationship p-assertions allow the functional relationships from

Chapter 3 A Model of Process Documentation 65

Part 1 of Definition 2.1 to be represented. Likewise, interaction p-assertions allow the
causality of sending a message and another party receiving the message from Part 2 of
Definition 2.1 to be represented. Thus, two of the core components of our data model
are designed to express causality.

From this review, we have shown that the design decisions leading to the p-structure
can be traced back to either the conclusions we obtained from our analysis of related
work or the high-quality characteristics enumerated in Section 3.2.

3.6 Related Work

In Chapter 2, we reviewed a number of provenance systems. Here, we briefly revisit
some of those systems’ data models and distinguish them from the p-structure. A major
difference between the p-structure and other models is that it is defined in terms of a
conceptual model designed for human consumption instead of relying on a computer
parsable syntax or formalism. This allows the model to be instantiated in a variety of
languages and enables both syntactic and conceptual compatibility. For example, process
documentation from two institutions could both be represented by the p-structure in
XML and thus be conceptually and syntactically compatible. However, two institutions
could adopt the p-structure but use different languages (i.e. one uses XML, the other uses
serialized Java objects) and then their process documentation would only be conceptually
compatible.

Unlike the workflow centric models from MyGrid [200], Kepler [29], REDUX[15], and
Szomszor [178], the p-structure is specifically designed to handle both the workflow
enactment engine’s and service’s view of an interaction. Furthermore, even workflow-
based systems that support the modelling of both views of an interaction, such as Karma
[165], still require the centralised coordination of the workflow enactment engine to
properly demarcate process documentation from different workflow runs. In essence, the
p-structure supports a peer-to-peer topology whereas these other models are designed
for a centralised layout.

Additionally, these workflow-centric models often rely on the workflow definition to
provide the causal connections between service inputs and outputs. Relying on the
workflow definition is not always possible because services are implemented using a
variety of implementation languages. The p-structure, on the other hand, provides
a generic way to express causal connections independent of any particular workflow
definition.

As discussed in Section 2.4.1, support for multiple levels of abstraction is key for scientist
to easily use the process documentation. Many of the provenance systems discussed do
not innately support multiple abstraction levels. The p-structure, however, is designed

Chapter 3 A Model of Process Documentation 66

from the ground up to support different levels of abstraction through an approach that
enables both high level and low level descriptions of actor functionality to be expressed
at the same time through the decomposition of actors and multiple vocabularies for
relationship p-assertions. While ZOOM [44] supports abstraction of actor functionality,
it does not support the documentation of causal connections in a robust manner because
it relies on time stamps. Furthermore, it does support a direct mechanism like tracers
to distinguish between processes nor does it support attribution inherently.

The p-structure strikes a balance between being open enough to support a variety of
applications while being structured enough such that generic tools can be reliably built
upon it. This is in contrast to Myers et al.’s approach [140], which advocates a completely
open model with the only structure coming from the underlying syntax of RDF. Because
of this totally open approach, different institutions could have completely different ways
of organising process documentation. We believe that this approach prevents generic
provenance specific tools from operating over a range of process documentation generated
by different institutions. Likewise, process documentation tailored too specifically to one
platform like PASS [156], S [18], CODESH [28] or Trio [188], prevents provenance from
being determined across multiple institutions that use a variety of platforms.

Therefore, the p-structure is a novel data model for use in determining the provenance
of results produced by systems that span multiple institutions.

3.7 Summary

In this chapter, we discussed how a generic, shared data model of process documentation
facilitates the sharing of process documentation between institutions; it allows for the
development of tools that work across domains and applications and for the creation of
future-proof process documentation by independent application components running on
a variety of platforms. We presented a detailed conceptual definition of just such a data
model, the p-structure. The presentation was facilitated by the use of concept maps.

The specification of the p-structure began with a definition of process that embraces the
Service-Oriented Architectural style. Using a simple example, we showed how the p-
structure enables multiple levels of abstraction to be supported and how the provenance
of a data item could be extracted from process documentation following our data model.
After fully specifying the p-structure, we demonstrated that it supports the creation
of high-quality documentation of process as well as the analysis conclusions drawn in
Section 2.5.

The contributions of this chapter were two fold: a detailed description of high-quality
characteristics and the precise conceptual definition of a data model that supports these
characteristics. While other systems may allow the provenance of digital objects to

Chapter 3 A Model of Process Documentation 67

be determined, they do not directly consider the quality of the information on which
they make that determination. Through an analysis of various use cases, we discovered
that process documentation is used as evidence that a process occurred. Using this link
between evidence and process documentation, we enumerated six characteristics of high-
quality process documentation. By making these characteristics explicit, users are aware
of the accuracy of the information they are relying on when trying to understand the
provenance of their data. Furthermore, the p-structure is specifically designed to support
these characteristics, which helps to ensure users’ confidence in process documentation.
This direct support for certain high-quality characteristics is novel.

The p-structure not only supports the creation of high-quality process documentation,
it also provides a shared understanding between creators and queriers of process doc-
umentation. This separation of concerns allows queriers and creators to specialise on
their particular activitives. The p-structure is specifically designed to allow for this
clean separation. Finally, the adoption of a common data model such as the p-structure
is critical for the origin of data to be tracked across applications that engage multiple
institutions. Without such a technology and domain independent representation, it is
difficult for the provenance of data produced by such applications to be determined.

The creation of process documentation compatible with the p-structure is the first part
of our solution to the provenance problem. In the next chapter, we will see how correctly
recording process documentation in specialised repositories creates a comprehensive so-
lution.

Chapter 4

Recording Process

Documentation

Chapter 3 presented a data model that enables process documentation to be created by
separate, distributed application components and for that documentation to be organised
in such a manner that the provenance of data items can be determined. Given the
distributed nature of process documentation, this chapter presents a solution to aggregate
and store it persistently over the long term while guaranteeing its immutability and
conformance to the p-structure. We do not consider the storage layer itself. Instead,
we consider the recording of data into the storage layer in a manner that preserves high
quality characteristics.

The solution presented consists of four main contributions:

1. An architectural element for the storage of process documentation known as the
provenance store.

2. Patterns for the appropriate deployment of provenance stores within applications.

3. A technique for connecting process documentation stored in a distributed manner.

4. A formally defined protocol that actors use in order to record process documen-
tation into provenance stores. The protocol is asynchronous, stateless, and helps
ensure that high quality process documentation is recorded.

The rest of the chapter is organised as follows. It begins by describing the notion of a
provenance store and motivating its introduction. Next, the deployment of provenance
stores within applications is described using patterns. Because documentation of pro-
cess can be created by multiple actors, at multiple locations, in multiple institutions,
we present a technique for the connection of process documentation stored in a dis-
tributed fashion. The chapter then proceeds to detail the protocol for recording process

68

Chapter 4 Recording Process Documentation 69

documentation. A formal model of the protocol is given along with an analysis of its
properties. Finally, the chapter is summarised.

4.1 The Provenance Store

Any architecture consists of sets of basic elements that are structured and connected
to form a complete design for a system. In this section, we introduce one such basic
architectural element that answers the question of where process documentation should
be stored. The architectural element introduced is the provenance store which is defined
as a specialised actor obligated to persistently store p-assertions. Furthermore, the
actor must provide consistent and well-defined interfaces for the recording and querying
of process documentation. The introduction of two separate interfaces for recording and
querying reflects the important distinction between the documentation of process and
determining the provenance of results from that documentation. The protocol defined
later in this chapter specifies the recording interface, the query interface is beyond the
scope of this dissertation and is defined elsewhere [125]. Thus, the provenance store
functions as a server that actors contact to record their p-assertions and query for the
provenance of digital objects.

Before further detailing the use of provenance stores within application architectures, we
now justify their introduction by analysing several possibilities for the storage of process
documentation.

One option is to store process documentation with the result itself. This solution has
the benefit that once a result is found, its provenance is also immediately available.
However, this solution suffers from several drawbacks. First, when a multi-institutional
scientific system (or any system) executes, the final result may not yet be known, but
process documentation needs to be simultaneously generated with the execution. Hence,
process documentation cannot be stored with the result because it does not exist until
the execution’s end. Second, the result of a system may not be a digital object but may
instead be a physical one (i.e. not contained in a computer system); thus, it becomes
difficult to store process documentation with the result itself. Last, large amounts of
process documentation can potentially be generated, perhaps related to the provenance
of multiple results. In such cases, storing process documentation with each individual
result is inefficient and, in many cases, may be impossible from a storage viewpoint. For
example, in the bioinformatics application presented in the next chapter the quantity of
process documentation for each result is larger than its size by a factor of 40.

Alternatively, asserters could keep process documentation locally. The benefit of this
approach is that asserters have complete control of the p-assertions they create. However,
this solution also has its own drawbacks. In a distributed system, it is often the case
that actors are transient. Therefore, if an actor disappears, the process documentation

Chapter 4 Recording Process Documentation 70

it has stored may also disappear. Furthermore, actors may not have persistent storage
and thus may not be able to store p-assertions in a permanent manner. Even if an actor
has access to some persistent storage, it may not have enough capacity to keep all the
process documentation for every process that it contributed to.

Finally, if each actor maintains its own p-assertions, then enforcement of access control
across an application’s process documentation becomes challenging since it would require
each actor to track the access control privileges of a myriad of queriers.

Given these difficulties, the approach we adopt utilises provenance stores, which allow
process documentation to be stored during execution for multiple physical or digital
objects; second, because they are specialised for the storage of p-assertions, provenance
stores can be built to persistently store large amounts of process documentation and
to deal appropriately with problems of security and access control. We note that a
provenance store is a role. Any actor, as long as it supports the provenance store
interface and designated qualities of service, can be a provenance store. Therefore, in
actual deployments a provenance store can be integrated with other actors.

We now discuss how developers can deploy provenance stores within their application
architectures such that process documentation can be recorded effectively.

4.2 Deployment Patterns

To be able to cope with documentation from a multi-institutional application, prove-
nance stores may need to be distributed since there can be a large quantity of data, in
a large number of p-assertions, recorded by a large number of actors, each with their
own security domain, privacy requirements, etc. The requirement for creating process
documentation in distributed applications, such that all documentation related to their
execution can be retrieved again, presents a developer with several deployment prob-
lems. These include in what computer the provenance store should be located, how many
provenance stores to deploy, and where in the network topology to deploy provenance
stores. To address these problems, a set of deployment patterns are now introduced.

A pattern [7, 6, 80] describes a solution to a common design problem; the solution
described must strike a balance between being concrete enough to be applicable and
abstract enough so that it can be applied to a range of similar problem situations. The
patterns presented here provide reusable solutions that developers can use to integrate
p-assertion recording into their application architectures. The format of these patterns
is as follows:

Chapter 4 Recording Process Documentation 71

Name Each section title is a short name for the pattern that reflects the solution.

Diagram A diagram that shows the pattern visually. Diagrams have a common visual
appearance. Provenance Stores are labelled and denoted by a 3D cylinder. Actors
are denoted by boxes. A single message exchange is denoted by a line with an arrow
head. The arrow denotes the direction of the message flow. Dotted lines follow the
same convention but denote multiple message exchanges. A circle above a line denotes
information inside the message.

Context The situation in which the pattern applies and why this pattern exists.

Problem Describes the problem that the pattern solves providing more detail as to
when the pattern should be applied.

Solution A description of how to apply the pattern including the interactions between
actors and any properties an actor is expected to have in order to function in the pattern.

We now present three patterns: SeparateStore, ContextPassing, and SharedStore for the
deployment of provenance stores within applications.

4.2.1 SeparateStore Pattern

Diagram See Figure 4.1.

Actor

Provenance

Store

Record

P-assertions

Figure 4.1: SeparateStore pattern diagram

Context Application actors want to make available information about their interactions
and associated state. This pattern exists because querying actors want to know how
application actors have interacted in the past in order to produce a result To know how
application actors performed, these application actors must make information about
their actions available.

Chapter 4 Recording Process Documentation 72

Problem An application actor, A, may be involved in a large number of interactions over
its lifetime and cannot retain all the process documentation itself. Likewise, querying
actors would like to access information about A’s previous message exchanges and states,
even when A is not available. For example, A may have been shut down, moved or be
under repair.

Solution A separately deployed provenance store is introduced to retain process docu-
mentation. An actor records p-assertions in a provenance store so that it does not have
to retain this information itself. A provenance store should have the following properties:

1. It should be available in a long-term manner in comparison to the application
actors that submit p-assertions to it. This property allows p-assertions recorded
by an application actor to be accessed after the application actor has become
unavailable.

2. It should provide a well-defined interface for the recording of p-assertions by an
application actor.

3. It should provide a query capability to retrieve p-assertions, which makes the p-
assertions available to querying actors.

4.2.2 ContextPassing Pattern

Diagram See Figure 4.2.

Actor

(Sender)

Provenance

Store

Record

P-assertions

Actor

(Receiver)

Provenance

Store

Record

P-assertions

Context

Figure 4.2: ContextPassing pattern diagram

Context Two application actors, A and B, exchange a message. A and B record p-
assertions about this interaction in two provenance stores (see the pattern Separate-
Store). Both actors record these interaction p-assertions because they want their view
of that interaction to be documented. This allows other actors to determine if A’s

Chapter 4 Recording Process Documentation 73

and B’s views of the interaction concur. Likewise, A and B may want to record inter-
nal information p-assertions and relationship p-assertions with respect to a particular
interaction.

Problem The p-assertions that A and B record need to be identified as being the
documentation for the same interaction. Otherwise, the actors’ views of the interaction
cannot be associated with one another; it then becomes difficult to determine if the
recorded p-assertions are documenting the same interaction. Furthermore, it is not
acceptable to exchange extra messages to establish a common identifier (i.e. interaction
key) because the burden on actors should be limited to recording p-assertions.

Solution As discussed in the previous chapter, the sender in the interaction must obtain
the appropriate interaction key to identify the interaction. It must then pass a context
containing this interaction key to the receiving actor. Both actors use this interaction
key to record their p-assertions in their respective provenance stores. The p-assertions
for the interaction can then be matched using the interaction key. A method of passing
this context is by attaching it to the application message exchanged by the sending and
receiving actors. Beyond passing interaction keys, application actors may use a context
to pass other information relevant to provenance including tracers.

Context information is metadata to the interaction (see page 49) and thus should be
exposed to queriers in a more easily accessible fashion through the use of exposed inter-
action metadata (see page 56).

4.2.3 SharedStore Pattern

Diagram See Figure 4.3.

Actor

(Sender)

Provenance

Store

Record

P-assertions

Actor

(Receiver)

Record

P-assertions

Figure 4.3: SharedStore pattern diagram

Chapter 4 Recording Process Documentation 74

Context Actors record p-assertions in provenance stores following the SeparateStore
and ContextPassing patterns.

Problem The SeparateStore and ContextPassing patterns may lead developers to be-
lieve that for every application actor, there is a corresponding provenance store. How-
ever, developers may not want to deploy a provenance store for every application actor,
especially when the number of application actors is large. Also, in order to retrieve
the provenance of a result, each provenance store must be contacted resulting in slower
query performance.

Solution Application actors are allowed to record p-assertions into a shared prove-
nance store. The SharedStore pattern clarifies the way in which SeparateStore and
ContextPassing can be applied. Both SeparateStore and ContextPassing are agnostic
as to what provenance store an actor may use to record its p-assertions. SharedStore
emphasises that actors can record their p-assertions in any store they choose and prove-
nance stores may hold p-assertions from multiple actors. It does not prescribe how
many stores there should be and which provenance stores should be shared. It is left
to the developer applying the pattern. SharedStore allows developers to determine the
distribution of provenance stores that fits their application.

4.2.4 Pattern Application

The patterns that we have introduced show how p-assertions can be recorded in prove-
nance stores by actors. The documentation of process can be recorded for an entire
system by applying a selection of these patterns to every actor and every interaction in
a system. We now show how these patterns can be applied using the simple example
introduced on page 43 and shown again in Figure 4.4.

First, the SeparateStore pattern is applied so that each actor can record p-assertions
into a provenance store. The application of this pattern is depicted in Figure 4.5.

Second, the SharedStore pattern is applied. Using this pattern, it is decided that the
best deployment of provenance stores, in this case, is to have the Mathematical Function
and Collate Sample actors share a common provenance store. Figure 4.6 shows the
application of the SharedStore pattern to our simple example application.

Finally, to ensure that interaction keys are passed between actors and process documen-
tation is connected, the ContextPassing pattern is applied as shown in Figure 4.7. Thus,
all three patterns have been applied in order to appropriately record p-assertions.

These recording patterns allow for the flexible deployment of provenance stores. We
also conjecture but do not show that these patterns aid scalability by allowing multi-
ple provenance stores to be deployed for an application. The patterns can be applied
to any number of interacting actors using any number of provenance stores to record

Chapter 4 Recording Process Documentation 75

Client

Initiator

Mathematical

Function

Collate

Sample

I2 I3

I1

I4

I1: initiator request

I2: collate sample request

I3: collate sample response

I4: numerical result

Figure 4.4: A simple example application

Client

Initiator

Mathematical

Function

Collate

Sample

Provenance

Store 1

Provenance

Store 2

Provenance

Store 3

Provenance

Store 4

Figure 4.5: The SeparateStore pattern applied

Chapter 4 Recording Process Documentation 76

Client

Initiator

Mathematical

Function

Collate

Sample

Provenance

Store 1

Provenance

Store 2

Provenance

Store 3

Figure 4.6: The SharedStore pattern applied

Client

Initiator

Mathematical

Function

Collate

Sample

Provenance

Store 1

Provenance

Store 2

Provenance

Store 3

3
2

1

4

Figure 4.7: The ContextPassing pattern applied

Chapter 4 Recording Process Documentation 77

p-assertions. These distribution patterns however do not mandate the number of prove-
nance stores that must be used in a given application, nor the way they must be shared;
it is left to the application developer to make those decisions.

4.3 Connecting Distributed Documentation

One of the consequences of applications that span multiple institutions and the use
of the above deployment patterns is that process documentation need not be centrally
located and can reside across various locations. There are several benefits to this: the
elimination of a central point of failure, the spreading of demand across multiple services
and the ability for provenance stores to exist in different network areas (for example,
one provenance store may be behind a firewall whereas another is not). In general,
allowing p-assertions to be recorded across multiple locations increases the flexibility
and scalability of systems recording p-assertions.

However, to retrieve the provenance of a result, distributed process documentation must
be connected so that the provenance of results can be found. The technique of linking,
discussed below, enables this distribution.

Given that the p-assertions documenting a given execution may be spread across multiple
stores, there must be some mechanism to retrieve these p-assertions in order to validate,
visualise or replay the represented process. To facilitate such a retrieval mechanism, we
introduce the notion of a link defined as follows.

Definition 4.1. A link is a pointer to a provenance store.

We note that links are necessarily unidirectional : a link always points to a remote
provenance store location. Links are used in two instances, which we now describe.

4.3.1 View Links

The first use of a link deals with the situation where a sender’s view of an interaction
and a receiver’s view of the same interaction as identified by a shared interaction key
are stored in two different provenance stores. It is necessary for each actor to record a
link, which we refer to as a View Link , that points to the provenance store where the
opposite party recorded their p-assertions. Thus, the sender in an interaction records a
link to the provenance store that the receiver used to record p-assertions for the given
interaction, and vice-versa. This allows querying actors to navigate from one provenance
store to the other in order to retrieve both views of an interaction. We note that View
Links point to provenance stores only, not to particular pieces of data in a provenance
store; the actual data of interest can be found by a local search of the provenance store.

Chapter 4 Recording Process Documentation 78

If an actor, A, interacting with actor B has to assert, in provenance store PA, that B is
recording its view of the interaction in another provenance store, then actor A has to
become aware that the store used by B is PB. Either such knowledge is built into A, or
it is communicated to A in the course of application execution. If it is built into A, then
such knowledge is already part of A’s scope, and can be asserted by A as an internal
information p-assertion. Alternatively, if it is to be communicated to A, then such
knowledge can be passed as part of a context, as shown by the ContextPassing pattern
(for instance, when B returns a result to A). Hence, A can assert the link as part of
an interaction p-assertion. When A and B do not have a request-response interaction,
B can communicate to A the link to PB by an out of band mechanism. One concern
with View Links is the possible performance overhead of passing the provenance store
location back to the sender. We have tried to minimize this impact by allowing the
information to be sent in response messages. However, in a very dynamic system where
an actor uses a different provenance store for every interaction there may be significant
overhead. Developers should be aware of this limitation when using View Links.

View Links are stored in the provenance through p-assertions. If they are passed by
in the context of a message, then they are stored in interaction p-assertions. If they
are provided by some other mechanism, they can be stored as internal information p-
assertions. To enable queriers to more readily discover and traverse provenance stores,
View Links should be made accessible via exposed interaction metadata. Recall from
Section 3.3.2.5, that exposed interaction metadata places metadata in a well defined
location in the p-structure such that queriers know where to look for the information,
without having to traverse application-specific p-assertion content.

4.3.2 Cause Links

Chapter 3 defined relationship p-assertions as internal causal connections between oc-
currences, where an occurrence is identified within process documentation by locating
the p-assertion that represents it (See Section 3.3.2.2). Furthermore, the p-assertion
containing the occurrence that is the effect of a relationship p-assertion must be located
in the same View as the relationship p-assertion (See Section 3.3.2.5) itself. However, the
p-assertions the represent the causes in the relationship p-assertion may be in various
other Views and therefore located in different provenance stores.

To assist in finding these p-assertions, we introduce a second usage of links. For each
relationship p-assertion it creates, an actor needs to identify which provenance stores
the p-assertions representing causes are stored in; such a link is named a Cause Link . A
Cause Link extends the relationship p-assertion data structure by adding the provenance
store where each cause is stored. Like the View Link, a Cause Link only points to the
provenance store and not to a particular piece of data in the store.

Chapter 4 Recording Process Documentation 79

4.3.3 Linking Summary

Figure 4.8 shows an example of how both Cause and View Links are recorded. Actor
A sends a message M2 to actor B as a consequence of message M1. The interaction
exchanging message M2 is identified by interaction key 2. In the context (shown by the
circle) of the message, A puts a link to the provenance store, PA, that it uses for the
interaction with B. Actor B then extracts the link from the context and records it as an
interaction p-assertion in the provenance store PB. As a result, a View Link from PB to
PA is created (shown by the arc VL 1). We assume that A knows from its configuration
that B always stores its p-assertions in PB. Hence, A records a link to PB as an internal
information p-assertion in PA, which creates a corresponding View Link shown by the
arc VL 2. All View Links are made available by actors recording exposed interaction
metadata. Finally, A makes a relationship p-assertion between its interaction with B and
the previous interaction containing M1. As part of the relationship p-assertion, it adds
a Cause Link to the provenance store, PR, where the p-assertion related to the other
interaction is stored. It then records the relationship p-assertion in PA, thus connecting
PA to PR shown by the arc CL. Figure 4.9 shows the contents of the provenance stores
PA and PB after all p-assertions have been recorded.

A

P
A

B

P
B

M2

PA

Internal information

p-assertion containing

a View Link to P
B

Relationship

p-assertion relating

M2 and M1 with a

Cause Link to P
R

Interaction p-assertion

containing M2 and a

View Link to P
A

P
R

M1

VL 1

VL 2

CL

Figure 4.8: An example of linking

Both View Links and Cause Links allow data and p-assertions stored across provenance
stores in multiple institutions to be retrieved by querying actors. View and Cause Links
can be contrasted as follows.

• A View Link points to another store that contains a piece of data written by
another actor (which is providing a different view on a same interaction).

• A Cause Link points to another store containing a piece of data asserted by the
same actor (which is making assertions about another interaction).

Chapter 4 Recording Process Documentation 80

Contents of PA

interaction key p-assertion type p-assertion content
1 interaction M1
2 interaction M2
2 internal information View Link to PB

2 relationship 2 is related to 1, Cause Link to PR

Contents of PB

interaction key p-assertion type p-assertion content
2 interaction M2, with View Link to PA

Figure 4.9: Contents of provenance stores

Links provide a solution to the problem of connecting distributed process documentation.
Similar to the Web, the unidirectional nature of links avoids the problem of having to
synchronise between provenance stores when recording a link. Instead, each actor is
responsible for recording a link just as each web page author is responsible for adding
links to other pages as appropriate. Creating links is lightweight; the information needed
to establish a link is minimal. Furthermore, the link structure provides a structured and
simple mechanism for querying actors to traverse provenance stores hosted by multiple
institutions.

So far, we have discussed the high level concept of recording process documentation
into provenance stores and how this documentation can be connected so that it can be
queried in a distributed environment. We now present a protocol by which actors can
record their p-assertions into provenance stores.

4.4 PReP: The P-assertion Recording Protocol

The P-assertion Recording Protocol (PReP) defines the communication between actors
and the expected behaviour of those actors when recording p-assertions. In this case,
PReP has the following benefits:

1. It ensures that the data residing in the provenance store is compatible with the
p-structure.

2. It provides a well-defined interface for actors to record p-assertions.

3. It guarantees certain beneficial properties in terms of both the data being recorded
and its operation.

In the previous chapter, we enumerated the following characteristics that high quality
process documentation should possess: factual, attributable, autonomously creatable,
process oriented, immutable, finalizable. PReP supports these characteristics by enforc-
ing several associated properties, which are discussed below.

Chapter 4 Recording Process Documentation 81

4.4.1 Properties of PReP

Below are a six properties, which PReP enforces to help ensure that the process docu-
mentation within provenance stores is high quality. Essentially, each characteristic maps
to a property, which can then be enforced.

1. As discussed in Chapter 3, a p-assertion’s semantics dictates that it is always
interpreted as being factual (i.e. about an occurrence within the scope of the actor
creating the p-assertion). To ensure factual process documentation is contained
within the provenance store, the datatype safety property is introduced, which
guarantees that the protocol only allows p-assertions to be recorded. This property
prevents untyped information from entering the provenance store, hence, factual
process documentation can be more readily enforced.

2. Support for attribution is a fundamental part of the p-structure data model; an
asserter identity is included in each p-assertion. It can also be used for access
control on the provenance store. Thus, it is important to ensure that this identity
is preserved during the recording of the p-assertion into the provenance store.
To provide this assurance, PReP enforces the identity preserving property, which
states that the asserter identity will not be changed during or after recording the
p-assertion.

3. Within the p-structure, interaction keys are vital for supporting the autonomous
creation of process documentation. To ensure that interaction keys are created and
passed between actors correctly, Section 3.3.3 introduced three actor behaviour
rules. Here, we show that the protocol has the property of being actor behaviour
compliant i.e. that that the protocol enforces these three rules.

4. We introduce the property of process reflection that supports the characteristic of
process orientation. It is defined as: eventually an application’s execution will be
described by process documentation recorded in provenance stores. This means
that after the application has completely recorded the documentation of its execu-
tion in a set of provenance stores, a querier will be able to retrieve the provenance
of any result produced by the distributed system.

5. In distributed systems, a safety property is one that states something will not
happen [110]. In the context of PReP, we introduce the following safety property:
no p-assertion is erased, overwritten or modified once recorded in a provenance
store. This particular property is important because it supports the immutable
characteristic, which as discussed earlier, is vital for queriers to have confidence in
process documentation.

6. To support finalizable process documentation, we introduce the concept of com-
pleteness, which is that an object has all its constituents. In the case of PReP, we

Chapter 4 Recording Process Documentation 82

define a View as the object that must have all its constituents. Thus, by inspect-
ing a View, queriers can determine whether an actor has finished recording all the
p-assertions for it.

Beyond these six properties, we introduce the scalability property of statelessness. A
protocol is stateless when an actor can understand a message without relying on any
previous or subsequent messages. This property is particularly useful in distributed
systems where messages may be lost or received in any order.

We now present the protocol and corresponding definitions of actor behaviour that
together satisfy these properties. We begin with a specification of the protocol.

4.4.2 Protocol Definition

PReP is an asynchronous protocol for an actor to record p-assertions into a provenance
store. An asynchronous protocol allows actors to send their messages at any time,
which means that actors can choose when to record p-assertions and thus not delay
their execution. We define PReP in terms of both its messages as well as the expected
behaviour of the actors exchanging the protocol messages.

With the previously listed properties in mind, we now proceed to define the protocol
itself. As we defined earlier, an application can be described as actors communicating
via message passing. In such a system, communication between actors gives a context
to the individual execution of actors. Therefore, reflecting the p-structure, we base the
protocol around the notion of an interaction. Actors record p-assertions in the context
of a given interaction where they are either a sender or receiver. These roles were
elaborated on earlier in Section 3.3.1.

With these general notions, we now present the protocol’s messages and those assumed
by it. After describing the messages, we then present the dependencies between them.

Let us consider the example of a distributed application that is not provenance-aware,
i.e. one in which there are no provenance stores and p-assertions are not recorded.
In such a case, application actors communicate via application messages that contain
some application specific data. Figure 4.10 shows a basic application message that has
one parameter that consists of an element from the set Data. The parameter refers
to the data typically transmitted by senders and receivers irrespective of p-assertion
recording. Each message named in Figure 4.10 is given a notation that is used later in a
formalisation. Likewise, the parameters of each message, which are defined by sets, are
used in the same formalisation.

To transform such an application into a provenance-aware application, one or more
provenance stores are introduced and actors record p-assertions into them. Additionally,

Chapter 4 Recording Process Documentation 83

Name Notation Parameters
basic application message Data
application message app IK, Data
record p-assertion rec IK, RI, A, LPID, P-Assertion
submission finished sf IK, RI, A, LPID, N+

acknowledgement ack IK, RI, LPID

Figure 4.10: The messages of PReP

basic application messages are extended with an identifier to be exchanged between
actors, which is shown in Figure 4.10 as an application message. We label the identifier
an interaction key.

As previously defined in Chapter 3, an interaction key identifies an interaction uniquely
from all other interactions. The sender in an interaction is required to generate this
key and send it to the interaction receiver. We have noted that it may not always be
possible to extend application messages to add an interaction key. Instead, out of band
mechanisms would be required to propagate similar information. During the following
discussion, we assume that an interaction key can be added to basic application messages.
The generation of interaction keys by senders supports a decentralised design where no
centralised entity is necessary for senders or receivers to create or record p-assertions.
The set of interaction keys is denoted by IK.

Application messages define the messages exchanged by application actors in a provenance-
aware application. The rest of the messages defined in Figure 4.10 are exchanged between
recorders and provenance stores.

The record p-assertion message is sent by a recording actor to a provenance store in
order to record a p-assertion (the set of p-assertions is P-Assertion) about an interac-
tion. The p-assertions we consider are those defined in Chapter 3, namely, interaction,
relationship, and internal information p-assertions as well as exposed interaction meta-
data. The global p-assertion key is used by the recording protocol, hence we make its
components explicit in the record p-assertion message. These include the interaction
key the p-assertion is associated with, the role identifier (element of set RI), and the
local p-assertion id (element of set LPID). The interaction key combined with the view
kind and local p-assertion id ensures that every p-assertion can be referenced uniquely.

The record p-assertion message also includes an actor identity (element of set A) that
is the asserter identity of the p-assertion (as defined in Section 3.3.2). Having a specific
field for the asserter identity within the message simplifies the protocol definition as
the structure of the p-assertions do not have to be modelled. Essentially, the messages
define all the information necessary for the protocol to execute. We note that the
protocol assumes that the creator of the p-assertion is also the recorder of the p-assertion.
The asserter identity is essential for recording attributable process documentation. It
connects the p-assertion in the message to the identity of the actor that creates, records,

Chapter 4 Recording Process Documentation 84

and is responsible for it.

The submission finished message is similar to the record p-assertion message, except
that the p-assertion parameter is replaced with an integer representing how many p-
assertions a provenance store should receive in total from an actor for an interaction.
By knowing how many p-assertions should be recorded, a provenance store can determine
when an actor has finished recording p-assertions in the context of a particular View,
which is used to determine when it is complete. Because of the asynchronous nature of
the protocol, the submission finished message, like any other message, can be sent at any
time. We note that in most cases an actor will send this message after it has recorded
all its p-assertions. Thus, the submission finished does not imply that an actor guesses
how many p-assertions it will create and record for a particular interaction. Instead,
the ability to send the message at any time preserves the asynchronicity of the protocol.
For example, consider an actor that has already created all its p-assertions, because of
PReP’s design, the actor can record all the p-assertions and declare that its submission
is finished in parallel.

The last kind of message exchanged by recorders and provenance stores is the acknowl-
edgement message. Each message received by a provenance store is acknowledged by
an acknowledgement message, which contains the global p-assertion key contained in
the message being acknowledged. There is some computation time in processing record
messages and storing their contents. Therefore, acknowledgement messages allow actors
to track whether their p-assertions have been stored within the provenance store. This
is useful when the actor wishes to notify other actors that it has completed recording.
Furthermore, the provenance store can use the acknowledgement message to return er-
ror messages or other implementation specific information. Thus, the acknowledgement
message is not used for guaranteeing message delivery or flow control but, instead for
the recorder to track the state of the provenance store.

We now describe the dependencies between the messages defined above. Due to the
asynchronous nature of the protocol, the dependencies are minimal. They are as follows:

• For any application message in a given interaction, a record p-assertion or submis-
sion finished message about that interaction must contain the same interaction
key as the application message.

• Acknowledgement messages must be sent after the receipt of the message that is
being acknowledged.

4.4.3 PReP’s Behavioural Constraints

The set of messages and their dependencies impose some behavioural constraints on the
roles of sender, receiver, recorder, and provenance store. We now make such behaviour

Chapter 4 Recording Process Documentation 85

explicit. Our intent here is to give an intuitive description of the required behaviour of
these actors and then use the formalisation that follows to give a precise definition of
that behaviour. We enumerate these behaviour rules below. The first three of these
rules are the behaviour rules defined in Section 3.3.3.

1. (Unique Interaction Key Rule) A sender must generate a globally unique interac-
tion key for every new interaction and assign it to that interaction.

2. (Interaction Key Transmission Rule) A sender must send the interaction key to
the receiver by including it within the application message being sent.

3. (Appropriate Interaction Rule) Both receiver and senders must use the interaction
key associated with an interaction, I, when asserting p-assertions about I.

4. A recorder must keep track of the messages it has sent to a provenance store for a
particular interaction until the acknowledgements are received for them.

5. The provenance store must be waiting to receive messages and when it receives
a message, it must process its content, store it and return the appropriate ac-
knowledgement message. It is necessary that the provenance store determines how
many p-assertions it has received from a particular actor for a given interaction
and compare that to the number of p-assertions the recorder has declared so that
it can determine if process documentation in a given View is complete. If doc-
umentation is marked as complete for an interaction, the provenance store must
prevent any additional p-assertions from being recorded. Likewise, it has to detect
attempts to overwrite previously stored p-assertions and respond with an acknowl-
edgement message. If a p-assertion is received by a provenance store and its LPID
has already been used, then the provenance store discards the p-assertion and the
same acknowledgement message is returned. This means that once an actor has
recorded a p-assertion, it cannot override that assertion.

We now present a formal model of PReP.

4.4.4 A Formal Model

To show that PReP satisfies the properties listed in Section 4.4.1, we now present a
formalisation of PReP in terms of the behaviour of the actors involved in the protocol
and the messages used. We have chosen to model PReP as an abstract state machine
(ASM) because it provides a precise, implementation-independent means of describing
the protocol. The ASM notation we adopt has been used previously to describe a dis-
tributed reference counting algorithm [133] and a fault-tolerant directory service for
mobile agents [131]. The abstract machine characterizes the behaviour of actors with

Chapter 4 Recording Process Documentation 86

respect to the messages they send and receive. This behaviour is specified by the per-
missible transitions that the ASM is allowed to perform. We begin by describing the
state space of the ASM, we then proceed to discuss its transitions.

4.4.4.1 State Space

The state space of the ASM is shown in Figure 4.11. We model a distributed system
as a set of actors, A, communicating via asynchronous message passing over a set of
communication channels, K. We identify specific subsets of actors in the system, namely,
senders, receivers and provenance stores. An actor may be a member of all these subsets.
These subsets map to roles defined previously.

Communication channels are assumed to be reliable and secure, and not to duplicate
messages. No assumption is made about message order in the channel (i.e. sending mes-
sage A before sending message B does not guarantee that A will arrive at its destination
before B). Because of this assumption, channels are represented as bags of messages
between pairs of actors. The messages listed in Figure 4.10 are sent over these com-
munication channels and are formally defined as an inductive type producing set M in
Figure 4.11.

Having defined the state space for communication between actors, we now model it for
the internal functionality of each actor role.

Provenance Store State Space Informally, we can see a provenance store as an
actor containing a table that maps interaction keys and a role identifier to a set of identi-
fied messages. This models the Views within a provenance store (V). An interaction key
(κ) together with a role identifier (v) and set of identified messages is labelled a View.
In Figure 4.11, the table (store T) is defined as a function that takes an interaction key
and role identifier and returns a triple containing a submission finished message, several
record messages and some local p-assertion ids. We use the power set notation (P) to
denote that there can be more than one of a given element. We define the set of prove-
nance stores, PSS, as a mapping from an actor identity to a set of Views. Since each
set of Views can be located at a different actor, our model allows for multiple prove-
nance stores; practically, this allows process documentation to be located in multiple
institutions.

Sender and Receiver State Space Now, we define the state space of sending and
receiving actors in Figure 4.11. This state space describes the various tables that these
actors use to keep track of the messages they need to send to the provenance store
(TO SEND), the messages they have sent to it (SENT) and the acknowledgements
received from it (ACK). Furthermore, the state space describes the p-assertions that a

Chapter 4 Recording Process Documentation 87

A = {a1, a2, . . . , an} (Set of Actor Identities)
Senders ⊆ A (Set of Sender Identities)

Receivers ⊆ A (Set of Receivers Identities)
PS ⊆ A (Set of Provenance Store Identities)

REL = {r1, r2, . . . , rn} (Set of Business Logic Descriptions)

P-Assertion = {α1, α2, . . .} (Set of P-Assertions)

M = app : IK×Data →M (Set of Messages)
| rec : IK×RI×A× LPID× P-Assertion →M
| sf : IK×RI×A× LPID× N+ →M
| ack : IK×RI× LPID →M

SF = {m ∈M | m = sf(κ, v, ι, na)} (Set of Submission Finished Messages)
R = {m ∈M | m = rec(κ, v, ι, lpid, α)} (Set of Record Messages)

IK = Senders×Receivers× N (Set of Interaction Keys)
RI = {S, R} (Set of Role Identifiers)

V = IK×RI → SF⊥ × P(R)× P(LPID) (Set of Views)
PSS = A → V (Set of Provenance Stores)

TO SEND = A → IK → Bag(M) (Set of Messages To Send Tables)
SENT = A → IK → Bag(M) (Set of Sent Messages Tables)
ACK = A → IK → Bag(M) (Set of Acknowledged Messages Tables)

ASSERT = A → IK×RI → Bag(P-Assertions) (Set of p-assertions to be recorded)
LPID MAP = A → IK×RI → P(LPID) (Map from actor to

local p-assertion ids)
LC = Senders → N (Set of Local Counters)

K = A×A → Bag(M) (Set of Channels)

C = PSS×K× TO SEND× SENT×
ACK×ASSERT× LPID MAP× LC (Set of Configurations)

Characteristic Variables:

a ∈ A
as ∈ Sender
ar ∈ Receiver

aps ∈ PS
r ∈ REL

m ∈ M
d ∈ Data
α ∈ P-Assertion
κ ∈ IK
v ∈ RI

na ∈ N+

lpid ∈ LPID

k ∈ K
lpids ∈ P(LPID)
recs ∈ P(R)

store T ∈ PSS
to send T ∈ TO SEND

sent T ∈ SENT
ack T ∈ ACK

assert T ∈ ASSERT
lpid T ∈ LPID MAP

lc ∈ LC
c ∈ C

Initial State / Configuration:

ci = 〈store Ti, ki, to send Ti, sent Ti, ack Ti, assert Ti, lpid Ti, lci〉
where:

store Ti = λaλκv · 〈⊥, ∅, ∅〉, ki = λaiaj · ∅,
to send Ti = λaiκi · ∅, sent Ti = λaiiki · ∅,

ack Ti = λaiiki · ∅, assert Ti = λaiκivi · ∅,
lpid Ti = λaiκivi · ∅, lci = λai · 0

Figure 4.11: State Space

Chapter 4 Recording Process Documentation 88

sender or receiver need to record in a provenance store (ASSERT) and how an actor
keeps track of the local p-assertion ids it has already used (LPID MAP). Finally, each
sending actor has a local counter (LC) used to create interaction keys.

The state space that we have described may appear to be global in Figure 4.11. However,
each table for a sender or receiver is indexed by an actor identity (A) and can be
implemented with updates that are local to actors. Hence, the protocol does not require
any global knowledge by actors of other actors’ state.

For convenience, we define two accessor functions. The accessor function to access the
state of the View is defined as follows:

If store T (a)(κ, v) = 〈sf, recs, lpids〉 then
store T (a)(κ, v).sf = sf,
store T (a)(κ, v).recs = recs,
store T (a)(κ, v).lpids = lpids

The function takes an actor identity, interaction key, and role identifier as input and
returns a View. From the View, its contents such as record messages, local p-assertion
ids and submission finished message can be retrieved. The inputs of the function act as
a key to an index of Views within provenance stores.

We also define a function for accessing the state of a submission finished message. The
function is defined as follows:

If sf = sf(κ, v, a, `, na) then
sf.κ = κ,
sf.v = v,
sf.a = a,
sf.` = `,
sf.na = na

This function just provides an easier notation for addressing the various contents of the
submission finished message. This is helpful in the rules where the completeness of a
View is checked.

Having described the state space of our ASM, a state (or configuration) of the machine
is described in Figure 4.11. The machine’s initial state can be summarised as

• empty interaction record stores,

• empty communication channels,

• all sending and receiving actors having empty p-assertion and message tables,

• and local counters being initialized to zero.

Chapter 4 Recording Process Documentation 89

The machine proceeds from this initial state through its execution by going through
transitions that lead to new states. These transitions are defined by the rules of the
state machine discussed in the next section.

When describing the execution of a state machine, we use the following notation and
definitions.

• A transition is the application of a rule to one configuration to achieve another
configuration.

• A reachable configuration is a configuration of the ASM that can be reached by
transitions from the initial configuration.

• 7−→ denotes a transition.

• c 7−→∗ c′ denotes any number of transitions from a configuration c to another
configuration c′.

We now discuss the specific rules of the ASM.

4.4.4.2 State Machine Rules

The permissible transitions in the ASM are described through rules, which are repre-
sented using the following notation.

rule name(v1, v2, · · ·) :
condition1(v1, v2, · · ·)
∧ condition2(v1, v2, · · ·) ∧ · · ·

→ {
pseudo statement1;
· · ·
pseudo statementn;

}

Rules are identified by their name and a number of parameters that the rule operates
over. Any number of conditions must be met for a rule to fire. Once a rule’s conditions
are met, the rule can fire. The execution of a rule is a transition of the state machine
and is atomic in order to maintain its consistency. A new state is achieved after applying
all the rule’s pseudo-statements to the state that met the rule’s conditions.

We use send, receive and table update pseudo-statements. Informally, send(a1, a2,m)
inserts a message m into the channel from actor a1 to actor a2, and receive(a1, a2,m)
removes the message. Likewise, the table update operation puts a message into a table.
The notation table T is used to refer to any table in the state space. Formally, these
pseudo-statements act as state transformers and are defined as follows.

Chapter 4 Recording Process Documentation 90

• We use the operators ⊕ and 	 to denote union and difference on bags. If k is the
set of message channels of a state 〈. . . , k, . . .〉, then the expression send(a1, a2,m)
and receive(a1, a2,m) respectively denote the state 〈. . . , k′, . . .〉, where k′(a1, a2) =
k(a1, a2) ⊕{m} and k(a1, a2)	{m}, and k′(ai, aj) = k(ai, aj), ∀(ai, aj) 6= (a1, a2).

• If table T is a component of state 〈. . . , table T, . . .〉, then the expression table T (. . .).y
:= V denotes the state 〈. . . , table T ′, . . .〉, where table T (. . .).x = table T ′(. . .).x if
x 6= y, and table T ′(. . .).y = V .

To ease the readability of the rules, we also define the following pseudo functions.

The function below determines if a View is complete:

Definition
complete : A× IK×RI → {true, false}
complete(a, κ, v) :=

If store T (a)(κ, v).sf 6= ⊥,
then return store T (a)(κ, v).sf.na = |store T (a)(κ, v).recs|
else return false.

The complete function takes as input an actor identity, an interaction key and a role
identifier, which together identify a particular View within a provenance store. Once the
View is found, the function tests to see if it contains a submission finished message. If
the View does, the function tests whether the number of p-assertions within the View is
the same as the number of expected p-assertions as specified in the submission finished
message. If the numbers are equal, the function returns true. In all other cases, the
function returns false.

The following pseudo function creates new interactions keys, updating an actor’s local
counter table.

Definition
newIdentifier : Senders×Receivers → IK
newIdentifier(as, ar) :=

lc(as) := lc(as) + 1
return 〈as, ar, lc(as)〉.

The function ensures that interaction keys are uniquely created. It takes two actor iden-
tities as inputs: one for the sender and one for the receiver. It then obtains the local
counter of the sender and increments it by one. It then constructs a new interaction
key using the two actor identities and the local counter. This interaction key is then re-
turned by the function. This models the notion that senders are responsible for creating
interaction keys.

Chapter 4 Recording Process Documentation 91

receive record passertion(a, aps, κ, v, `, α) :
rec(κ, v, a, `, α) ∈ K(a, aps)

→ {
receive(rec(κ, v, a, `, α), a, aps); -6
if (` /∈ store T (aps)(κ, v).lpids ∧ ¬complete(aps, κ, v)), then

store T (aps)(κ, v).lpids := store T (aps)(κ, v).lpids ∪ {`}; +1 or +0
store T (aps)(κ, v).recs := store T (aps)(κ, v).recs ∪ {rec(κ, v, a, `, α)}; +1 or +0

send(ack(κ, v, `), aps, a); +2
} overall: -2 or -4

receive submission finished(a, aps, κ, v, `, na) :
sf(κ, v, a, `, na) ∈ K(a, aps)

→ {
receive(sf(κ, v, a, `, na), a, aps); -5
if (` /∈ store T (aps)(κ, v).lpids ∧ store T (aps)(κ, v).sf = ⊥), then

store T (aps)(κ, v).lpids := store T (aps)(κ, v).lpids ∪ {`}; +1 or +0
store T (aps)(κ, v).sf := sf(κ, v, a, `, na); +1 or +0

send(ack(κ, v, `), aps, a); +2
} overall: -1 or -3

Figure 4.12: Provenance Store rules

Figures 4.12 and 4.13 show the ASM’s transition rules, which formally define the be-
haviour described in Section 4.4.3. The annotations to the right of each rule are used
in our termination proof and will be discussed later. We now discuss the two rules that
govern the provenance store’s behaviour shown in Figure 4.12.

Provenance Store Rules The receive record passertion rule takes an incoming
record message from a particular actor and places it in the correct View in the provenance
store as defined by store T , and thereby also stores the p-assertion enclosed in the
message. The View is looked up via the interaction key and role identifier located in
the rec message. An acknowledgement message (ack) is then sent to the actor who sent
the rec message. During its execution, the rule checks to see whether or not the local
p-assertion id (`) of the p-assertion contained within the message has already been used
in the interaction record. If ` has not been used, the message is stored, otherwise it is
not. Likewise, if the View is complete (i.e. it already contains the requisite number of
p-assertions) the message is not stored. In all cases, the same acknowledgement is sent.
This rule satisfies part of Behaviour Rule 5 (See Section 4.4.3.

The receive submission finished rule operates in a similar manner and satisfies the
rest of behaviour rule 5. However, only one submission finished message (sf) is allowed
to be recorded. If subsequent sf messages are received by the provenance store, the
message is discarded and an ack message is sent to the actor.

We note that all local p-assertion ids made available in the provenance store correspond
to a message stored in the provenance store. This correspondence is made in order to

Chapter 4 Recording Process Documentation 92

simplify the rules. To show this, we establish the following lemma.

Lemma 4.2 (Local P-Assertion Id Correspondence). For any configuration c, for
all `, κ, v, a, α, na, ` ∈ store T (κ, v).lpids if and only if there exists a rec(κ, v, a, `, α)
∈ store T (κ, v).recs or a sf(κ, v, a, `, na) = store T (κ, v).sf .

Proof. We prove this lemma by induction on the length of the transition sequence from
the intitial configuration ci to a configuration c. In the base case, where the length is 0,
all sets are empty and the lemma trivially holds.

In the inductive case, for transition lengths greater than zero, we assume that the lemma
holds for ci 7−→∗ cn and we consider all possible transition sequences from cn 7−→ c.
The only two rules that modify the provenance store are receive record passertion and
receive submission finished.

In the case of the receive record passertion, if a local p-assertion id is added to the
provenance store then a corresponding record message is also added. Likewise, if a
record message is added then a corresponding local p-assertion id is added. This is
shown in the third and fourth pseudo-statements of the rule. There is only one local
p-assertion used in the rule as shown by the rules guard, thus, the local p-assertion
id that is stored to the set store T (κ, v).lpids is the same as the one inside the stored
record message.

The same reasoning also holds true of receive submission finished, however, with sub-
mission finished messages not record messages.

In both rules nothing is deleted, therefore, the correspondence is always maintained.

Sender and Receiver rules The rules shown in Figure 4.12 define the behaviour
of a provenance store in the ASM. However, in order to prove the properties of safety,
liveness and attributability, we need to prescribe some behaviour of the actors that use
provenance stores. Our aim is to show that if an actor behaves in the manner defined
then certain guarantees can be given. This behaviour is formalised in Figure 4.13.

The functionality of these rules can be summarised as follows. When involved in an in-
teraction (i.e. either sending or receiving a message), an actor makes p-assertions related
to that interaction. This behaviour is shown in the send app msg and receive app msg
rules. We highlight the makeAssertions function which takes an actor identity (a), an
interaction key (κ), some data (d), and a business logic description (r) and produces a
set of p-assertions, {α1, . . . , αn}. The business logic description is equivalent to the type
of relationship p-assertion that should be produced by the makeAssertions function.
An instantiation of makeAssertions is crucial in the proof of liveness.

Once the set has been created, a rec message for each p-assertion is then constructed
and added to the table of messages to be sent to the provenance store (to send T).

Chapter 4 Recording Process Documentation 93

send app msg(as, ar, d, r) :
// triggered when d, produced by a function described by r, is to be sent by as to ar

→ {
let κ = newIdentifier(as, ar)
in {α1, . . . , αn} = makeAssertions(as, κ, d, r);

send(app(κ, d), as, ar);
assert T (as, κ,S) := assert T (as, κ,S) ∪ {α1, . . . , αn};

} annotations not applicable

receive app msg(as, ar, κ, d) :
app(κ, d) ∈ K(as, ar)

→ {
receive(app(κ, d), as, ar);
// receive business logic
{α1, . . . , αn} = makeAssertions(ar, κ, d,⊥);
assert T (ar, κ,R) := assert T (ar, κ,R) ∪ {α1, . . . , αn};

} annotations not applicable

make passertion msg(a, α, v, κ) :
α ∈ assert T (a, κ, v)

→ {
let ` /∈ lpid T (a, κ, v)
in to send T (a, κ) := to send T (a, κ) ∪ {rec(κ, v, a, `, α)}; +9

assert T (a, κ, v) := assert T (a, κ, v)	 α; -30
lpid T (a, κ, v) := lpid T (a, κ, v)⊕ `; + 1

let `2 /∈ lpid T (a, κ, v) ∪ {`}
in if (assert T (a, κ, v) = ∅), then

to send T (a, κ) := to send T (a, κ) ∪ {sf(κ, v, a, `2, |lpid T (a, κ, v)|)}; +0 or +9
lpid T (a, κ, v) := lpid T (a, κ, v)⊕ `2; +0 or +1

} overall: -10 or -20

record message(a, aps,m) :
m ∈ to send T (a, κ)

→ {
to send T (a, κ) := to send T (a, κ)	m; -9
sent T (a, κ) := sent T (a, κ)⊕m; +1
send(m,a, aps); +5 or +6

} overall: -2 or -3

receive ack(a, aps, κ, v, `) :
ack(κ, v, `) ∈ K(aps, a)

→ {
receive(ack(κ, v, `), aps, a); -2
ack T (a, κ) := ack T (a, κ)⊕ ack(κ, v, `); +1

} overall: -1

Figure 4.13: The rules of the ASM used by sending and receiving actors

Chapter 4 Recording Process Documentation 94

Furthermore, a sf message is constructed when all the rec messages have been added to
to send T . The sf message could be constructed at any time, but we have chosen to
do so at this stage to make the rules simpler. Creating sf messages in this manner is
an eager strategy, they could also be generated using a lazy strategy. These steps are
formalised in make passertion msg, which also obtains the asserter identity and keeps
track of the local p-assertion ids that the actor has used.

Once a message has been sent, it is added to a table of messages that have been sent to
the provenance store, sent T , and removed from to send T . Finally, when an acknowl-
edgement has been received, it is stored in the table ack T . This models how an actor
keeps track of its communication with a provenance store for a particular interaction
identified by κ. The rules that correspond to this tracking functionality are record msg
and receive ack and satisfy Behaviour Rule 4. Behaviour Rules 1 through 3 are discussed
during the analysis of the protocol, which we now introduce.

4.4.5 Protocol Analysis

Based on the ASM above, we now analyse PReP according to the identified properties
in Section 4.4.1. The analysis shows how PReP’s properties support the recording of
process documentation with high-quality characteristics. These protocol properties are
one element that ensures high-quality characteristics are achieved in recorded process
documentation. We first analyse the communication protocol property of statelessness;
we then analyse the properties that support the characteristics of process documentation.

We establish these properties as invariants i.e. as the state machine proceeds these
properties always stay the same. We rely on case analysis either on its own or in the
context of a proof by induction to establish these invariants. Essentially, the rules of the
ASM are analysed to show that after any number of transitions the particular property
still holds for the resulting configuration of the state machine.

Induction is performed upon the length of the transition sequence from one configura-
tion to another. In the base case, we establish that the invariant holds in some initial
configuration. In the inductive case, the invariant is assumed to hold after a series of
transitions from the initial configuration to another configuration. We then prove, using
case analysis, that the property holds after an additional transition.

In places, we establish characteristics as theorems whereas in others we provide con-
clusions, which show how the various lemmas and invariants help support a specific
characteristic.

We now begin the analysis.

Chapter 4 Recording Process Documentation 95

4.4.5.1 Statelessness

A protocol is stateless when an actor can understand a message without relying on
other messages. Stateless protocols tend to be simpler to implement and have greater
scalability [158] because actors do not need logic to maintain knowledge from other
messages in order to understand any other messages; the actor can accept a message,
process it, and then discard its content. Alternatively, if an actor needs to maintain
state in order to implement a protocol, that state can become corrupted or out-of-sync,
which could cause messages produced by the actor to be incorrect. For these reasons,
we have developed PReP as a stateless protocol.

A stateful alternative to PReP would be if each message did not have an interaction key.
Instead, a start submission message could be introduced that contained the interaction
key and all messages after that message would be assumed to have that interaction key
until the submission finished message is received. Thus, the provenance store would
need to keep state from the start submission message in order to process the other
messages, which could lead to a situation where messages could not be processed if the
state was somehow lost or the start submission message was never received. It would also
make the parallel submission of p-assertions about different interactions difficult because
additional mechanisms to distinguish between p-assertions about different interactions
would be needed.

To show that PReP is indeed a stateless protocol, we define understanding a message in
terms of the ability of the state machine to process the message:

Definition 4.3 (Message Processing). Processing a message is the storing of its
content in the correct location independently of any other message. Practically, this is
the storage of a message contents in the provenance store or the storage of an acknowl-
edgements contents by a recording actor.

Because we are interested in the understanding of a particular message by a receiver,
we only consider transitions that deal with the receipt of messages. We term such
transitions message m consuming transitions, which we define as follows:

Definition 4.4 (Message m Consuming Transition). A message m consuming tran-
sition is defined as a transition that receives a message m and processes it. Concretely,
there are 3 such transitions.

1. receive ack(a, aps, κ, v, `) is an ack(κ, v, `)-consuming transition.

2. receive record passertion(a, aps, κ, v, `, α) is a rec(κ, v, a, `, α)-consuming transi-
tion.

3. receive submission finished(a, aps, κ, v, `, na) is a sf(κ, v, a, `, na)-consuming tran-
sition.

Chapter 4 Recording Process Documentation 96

We see that some of these messages are received by provenance stores and others are
received by recording actors. Using this definition, we establish the following invariant.

Lemma 4.5 (Message Consumption). For any configurations c, c′, for any message
m and for any message m-consuming transition, t, such that t leads from c to c′ the
following holds: If m ∈ k(a1, a2) in c then m /∈ k(a1, a2) in c′ and the arguments of m

and the identities of the actors communicating that message are necessary and sufficient
to cause t to process the message.

Proof. We proceed by an analysis of the message based transitions that lead from c to
c′. Each rule only uses the information provided in a message and the communication
channel to fire as demonstrated by the rule’s conditions. Furthermore, the information
is necessary and sufficient to process the data (as defined in Definition 4.3). Analysing
each transition individually:

• For receive ack(a, aps, κ, v, `), the message ack(κ, v, `) contains three of the pa-
rameters and the remaining parameters are used to define the channel K(aps, a).
The parameters a, κ are necessary and sufficient to reference the acknowledgement
table, ack T (a, κ), and thus store the message.

• For receive record passertion(a, aps, κ, v, `, α), the message rec(κ, v, a, `, α) con-
tains five of the parameters and the remaining parameters are used to define the
channel K(a, aps). The parameters aps, κ, v are necessary and sufficient to reference
a View, store T (aps)(κ, v), and thus store the message, if appropriate.

• For receive submission finished(a, aps, κ, v, `, na), the message sf(κ, v, a, `, na)
contains five of the parameters and the remaining parameters are used to de-
fine the channel K(a, aps). The parameters aps, κ, v are necessary and sufficient to
reference a View, store T (aps)(κ, v), and thus store the message, if appropriate.

While the rules provide for consistency checks, all the information provided in the mes-
sage is necessary and sufficient to properly store the messages in the correct location.
Therefore, we have shown that, if a message is on a channel, it can cause the firing of
a message based transition and the execution of the transition will store the message, if
appropriate. To finish the proof, we note that when each rule fires, the receive pseudo-
statement is executed removing the message from the communication channel and thus
removing it from the channel in the next configuration, c′. Consequently, the invariant
holds.

Conclusion 4.6 (Statelessness). All messages in PReP can be understood without
relying on any other messages.

Chapter 4 Recording Process Documentation 97

From Definition 4.3, we have a precise definition of understanding a message. Invariant
4.5 shows that the parameters of messages along with the communication channel defi-
nition are necessary and sufficient for the ASM to proceed for all message m-consuming
transitions. Thus, messages in PReP can be understood without relying on any other
messages.

We now proceed to analyse, how PReP supports high-quality characteristics of process
documentation. The first is the factual characteristic.

4.4.5.2 Factual

The key to factuality is to preserve the data types used within and for messages. This
is particularly important with respect to p-assertions, which have a particular meaning
based on their type. To show that the ASM does preserve this characteristic, we establish
the following theorem based on the property of datatype safety.

Lemma 4.7 (Data Type Safety). PReP preserves data types.

Proof. Figure 4.11 defines types for all sets, messages, and tables. Thus, the state space
of PReP is typed. Furthermore, the transition rules of the ASM as defined in Figures
4.12 and 4.13 preserve the typing structure defined in the state space. Therefore, PReP
preserves typing information.

Conclusion 4.8 (Factual). Data type safety helps ensure factuality.

Because PReP preserves typing information, queriers can assume that the process doc-
umentation within a provenance store has the semantics of the p-structure as defined
in Section 3.3.2. Essentially, queriers are guaranteed to retrieve p-assertions that are
typed according to the p-structure. Thus, both queriers and recorders share a common
semantics of the data within a provenance store and therefore do not have to be aware
of each other in order to function.

4.4.5.3 Autonomously Creatable

In dynamic multi-institutional systems, process documentation must be able to be cre-
ated by actors in a flexible and autonomous fashion. To support this, we defined three
behaviour rules pertaining for actors creating and using interaction keys. Interaction
keys connect the two views of an interaction as well as index the p-structure. To demon-
strate support for autonomous creation, we define the property of actor behaviour com-
pliant.

Chapter 4 Recording Process Documentation 98

Definition 4.9 (Actor Behaviour Compliant). Two actors passing a single message
are actor behaviour compliant when they follow the Unique Interaction Key Rule, the
Interaction Key Transmission Rule, and the Appropriate Interaction Rule.

Because the correct creation and use of interaction keys is of considerable importance to
allowing process documentation to be autonomously creatable, we establish the following
theorem in terms of Definition 4.9.

Theorem 4.10 (Follows Behaviour Rules). Actors following PReP are actor be-
haviour compliant.

Proof. To establish this theorem, we perform a case analysis. Rules send app msg and
receive app msg govern the interactions between senders and receivers. send app msg

sends the application message to a receiver. In the first pseudo-statement, the rule
creates a new interaction key using the newIdentifier(as, ar) pseudo-function, which
guarantees the creation of a unique interaction key (under the assumption that actor
identities are unique). Furthermore, the third and fourth pseudo-statements of the rule
assign the interaction key to the application message and send the application message
to the receiver. Therefore, the ASM, through the send app msg, rule complies to the
Unique Interaction Key Rule and the Interaction Key Transmission Rule.

In the second pseudo-statement of the send app msg rule, the makeAssertions(as, κ, d, r)
function uses the generated interaction key to create p-assertions about the interaction.
Likewise, in the second pseudo-statement of the receive app msg rule, the makeAssertions

(ar, κ, d,⊥) function uses the interaction key in the application message, app(κ, d), to
create p-assertions about the interaction. Therefore, the ASM, through these rules,
complies with the Appropriate Interaction Rule.

Because the ASM complies to the Unique Interaction Key Rule, the Interaction Key
Transmission Rule, and the Appropriate Interaction Rule, actors following PReP are
actor behaviour compliant as defined by Definition 4.9.

Conclusion 4.11 (Autonomously Creatable). Actor behaviour compliance caters
for the autonomous creation of process documentation.

Establishing Theorem 4.10 has shown that an important factor in catering for au-
tonomously creatable process documentation is satisfied for actors following the PReP
protocol. Allowing process documentation to be created when appropriate in an au-
tonomous fashion is important for distributed systems that have various quality of ser-
vice constraints.

Chapter 4 Recording Process Documentation 99

4.4.5.4 Immutable

We now show that p-assertions that have been previously recorded will not be overwrit-
ten or modified. We begin by defining a function that retrieves the record messages from
a View at a particular configuration.

Definition 4.12 (View Function). For all c, aps, κ, v, V iew(c, aps, κ, v) is defined as
store T (aps)(κ, v).recs where store T is in the configuration c.

Using this function, we define the following invariant, stating that a view’s contents are
monotonically increasing.

Invariant 4.13 (Safety). For any configurations c1 and c2, where c1 7−→∗ c2,

V iew(c1, aps, κ, v) ⊆ V iew(c2, aps, κ, v)

for any aps, κ, v.

Proof. We show this invariant by induction on the length of the transition sequence
c1 7−→∗ c2. In the base case, where the length is zero, c1 equals c2 and the invariant
holds.

In the inductive case, we assume that for c1 7−→∗ cn the invariant holds: therefore,
V iew(c1, aps, κ, v) ⊆ V iew(cn, aps, κ, v). We then consider the possible transitions from
cn 7−→ c2. There are only two rules of the state machine that govern the actions of the
provenance store: receive record passertion and receive submission finished.

In the case of the receive record passertion, store T is only added to as shown by
the third and fourth pseudo-statements of the rule. Moreover, if the same local p-
assertion id is used by a record message, the message is discarded and an acknowledge-
ment is sent. This test is shown in the second pseudo-statement of the rule. Hence,
V iew(cn, aps, κ, v) ⊆ V iew(c2, aps, κ, v).

Likewise, in the case of the receive submission finished rule, if a sf message has already
been recorded for a given View, then no other sf message is allowed to be recorded as
seen in the second pseudo-statement. Furthermore, there are no rules that operate on
store T that delete or modify already recorded p-assertions. Hence,

V iew(cn, aps, κ, v) ⊆ V iew(c2, aps, κ, v).

By transitivity, we conclude that

V iew(c1, aps, κ, v) ⊆ V iew(c2, aps, κ, v).

For all other rules, the provenance store is not updated; hence, cn = c2, which completes
the proof.

Chapter 4 Recording Process Documentation 100

Conclusion 4.14 (Immutable). Process documentation recorded using PReP is im-
mutable.

Lemma 4.13 establish that recorded process documentation is immutable. Immutable
process documentation is an important characteristic because it ensures that the evi-
dence of a process will not be deleted or tampered with after its recorded, which gives
confidence to both users and creators of process documentation. Users know that process
documentation is the same as it was when it was originally recorded by the source. Like-
wise, creators know that process documentation they have entrusted to the provenance
store will not disappear or be corrupted. Finally, immutable process documentation en-
sures that users will not be caught off-guard by its accidental or non-malicious deletion.

4.4.5.5 Attribution

We now show that for every p-assertion in a provenance store, there is an actor identity
for that p-assertion that identifies p-assertion’s asserter, which means that every p-
assertion can be “tracked back” to its creator. Hence, actors can be held accountable
for the p-assertions they create, by a means outside PReP. Again, we note that, within
PReP, the creator and recorder of a p-assertion are the same actor. We begin by defining
the following invariant.

Invariant 4.15 (Identity Preserving). For all configurations, c1, c2, where c1 7−→∗

c2, for any message m in c1 and in c2, the actor identity in m is the same, for all
m ∈ R ∪ SF .

Proof. We prove this invariant by induction on the length of the transition sequence
c1 7−→∗ c2.

In the base case, where the transition length is zero, c1 is equal to c2 and thus the
invariant holds trivially.

In the inductive case, for transition lengths greater than zero, we assume that the invari-
ant holds for c1 7−→∗ cn and we consider all the possible transitions from cn 7−→ c2. There
are four rules that deal with messages from the set R ∪ SF : receive record passertion,
receive submission finished, record message and make passertion msg. None of the first
three rules create record or submission finished messages neither do the rules modify
them. Thus, the actor identity in c2 remains the same as in cn and the lemma holds.
In the case where cn 7−→ c2 using make passertion msg, the newly created message does
not belong to cn and the lemma holds.

We now must show that a maps to the asserter of the p-assertion (α) within m.

Chapter 4 Recording Process Documentation 101

Lemma 4.16. An actor identity contained within a given rec message is always the
identity of the actor that caused the generation of the rec message.

Proof. In Figure 4.13, once a p-assertion is in the assert T table, the make passertion msg
rule can fire. In the first pseudo-statement in the rule, a is used to generate the rec mes-
sage. Furthermore, the rule can only fire if α belongs to assert T by a. Therefore, a in
the rec message is the identity of the actor that caused the rec message to be generated.
A similar argument also applies to the creation of sf messages. Finally, from Invariant
4.15, we know that these identities remain the same.

Theorem 4.17 (Attribution). For every p-assertion in a provenance store, there is an
asserter identity for that p-assertion and that identity refers to the actor that generated
the record message containing the p-assertion.

Proof. Based on Lemma 4.15, Lemma 4.16 and Theorem 4.14, we conclude that indeed
if a p-assertion is in a provenance store then the identity of the actor who created and
recorded the p-assertion can be determined. Note, that p-assertions only appear within
rec messages inside the provenance store.

Ensuring that attribution information is correctly generated and maintained is crucial
because it allows users of process documentation to hold asserters accountable for their
process documentation, which helps to ensure that accurate process documentation is
produced.

4.4.5.6 Finalizable

We now show that process documentation recorded by PReP is finalizable. We begin
by defining an invariant.

Invariant 4.18 (Complete View). Consider a configuration, c1, where a View is
complete. For any configuration c2, such that c1 7−→∗ c2, then

V iew(c1, aps, κ, v) = V iew(c2, aps, κ, v),

for all aps, κ, v.

Proof. We prove this lemma by induction on the length of transition sequence c1 7−→∗ c2.
In the base case, where the length is 0, c2 is the same as c1 and the lemma trivially holds.

In the inductive case, a length greater than zero is considered. We assume that the
invariant holds for c1 7−→∗ cn and show that the property holds for all possible transitions
from cn 7−→ c2.

Chapter 4 Recording Process Documentation 102

An inspection of the ASM rules shows that only two rules modify views. They are
receive submission finished and receive record passertion. By hypothesis, the view
is complete. Hence, by definition of complete, sf is not null. From Theorem 4.14, if sf is
not⊥, sf cannot be modified. Likewise, the rules prevent messages from being recorded if
sf is not ⊥ (see the rules’ second pseudo-statement and the complete function definition).
Therefore, V iew(c2, aps, κ, v) = V iew(cn, aps, κ, v) and the invariant holds.

Conclusion 4.19 (Finalizable). Documentation of a View recorded using PReP is
finalizable.

From Lemma 4.18, a View can be marked as complete and is then immutable. Thus,
documentation of a particular View can be marked as complete and is finalizable.

Finalizable seals a View preventing future information from being added, which gives
users a firm basis for making a judgement about the interaction the View documents;
they know that no new information will suddenly arise. Furthermore, it allows a dynamic
system to know when an actor is finished recording process documentation so that the
actor can be removed from the system if necessary.

We now establish that documentation recorded using PReP describes a process. This
characteristic of process documentation is shown in Theorem 4.38, which relies on the
following termination proof.

4.4.5.7 Termination

In the case of PReP, we define the following termination property.

Definition 4.20 (Termination Property). Termination is defined as the execution
of a finite number of ASM transitions excluding send app msg and receive app msg

transitions.

First, only communication between actors and provenance stores (i.e. the recording of
p-assertions) is considered. Thus, we show that there can only be a finite number of
transitions that do not involve the send app msg and receive app msg rules. To prove
termination, a system measure that indicates how far the ASM is from finishing its
transitions related to the recording of p-assertions is introduced. The system measure
is defined as follows:

Definition 4.21 (System Measure). Given any configuration, c, the system measure(c)
is the sum of the measures of each message and table in the system. Figure 4.14 lists
these measures.

We now analyse how this system measure changes after an application message is either
received or sent by an actor.

Chapter 4 Recording Process Documentation 103

Table/Message Measure
rec 6
sf 5
ack 2
assert T (a, κ, v) (1 + sizeOf(assert T (a, κ, v))) ∗ 30
to send T (a, κ) (1 + sizeOf(to send T (a, κ))) ∗ 9
sent T (a, κ) (1 + sizeOf(sent T (a, κ)))
ack T (a, κ) sizeOf(ack T (a, κ))
lpid T (a, κ, v) sizeOf(lpid T (a, κ, v))
store T (aps)(κ, v).recs sizeOf(store T (aps)(κ, v).recs)
store T (aps)(κ, v)).lpids sizeOf(store T (aps)(κ, v).lpids)
store T (aps)(κ, v)).sf 0 if store T (aps)(κ, v)).sf = ⊥, 1 otherwise.
K(a, a1) sumOf (measures of messages in the channel)

Figure 4.14: Measures for tables and messages defined in the ASM

Invariant 4.22 (Decreasing Measure). For any reachable configurations c, c′ and
for any transition t, such that t leads from c to c′, and t is not send app msg or
receive app msg, then the following inequality holds:

0 ≤ system measure(c′) < system measure(c)

.

Proof. We proceed by an analysis of the transitions that lead from c to c′, and we
establish that the system measure decreases. The annotations in Figures 4.12 and
4.13 show the number deducted from the system measure for each transition excluding
send app msg and receive app msg. The annotations also show how these measures
were calculated. This demonstrates that the measure of the system is strictly decreas-
ing.

Lemma 4.23. For any configuration, all transition paths that do not use send app msg

or receive app msg transitions terminate.

Proof. Because the system measure is strictly decreasing (Lemma 4.22) and always
greater than or equal to 0 (Definition 4.21), from any configuration of the system a
configuration without successor can be reached.

Theorem 4.24 (Termination). PReP satisfies the termination property.

Proof. Lemma 4.23 establishes that PReP satisfies the termination property (Definition
4.20). This means that it takes a finite number of transitions to record a p-assertion
in the provenance store and for the recording actor to receive acknowledgements of
recording.

Chapter 4 Recording Process Documentation 104

We now show that all p-assertions created by an actor will be recorded and acknowledged.

4.4.5.8 Guaranteed Recording

Once p-assertions have been created, we show that they will be recorded in the prove-
nance store and acknowledged. Before establishing this formally, we first define two
invariants. The first invariant shows that every message sent to the provenance store
will be recorded by it. The second invariant shows that once a message has been recorded
the recorder will have a corresponding acknowledgement message. We make the follow-
ing two assumptions:

1. Local p-assertion ids are not reused.

2. There is implicit conversion from sets to bags.

We also define a mechanism to select a group of messages from a table that contain
a particular interaction key and view kind combination. This mechanism is defined as
follows:

Definition 4.25 (Messages Selector). For all κ, v,

Bag(M) ↓ (κ, v) =
{

rec(κ, v,−,−,−) ∈ Bag(M),

sf(κ, v,−,−,−) ∈ Bag(M)
}

Invariant 4.26 (Always Recorded). For any configuration c1 reachable from ci, for
all κ, a, aps,

sent T (a, κ) ↓ (κ, v) = k(a, aps) ↓ (κ, v)⊕store T (aps)(κ, v).recs⊕store T (aps)(κ, v).sf

where v is the role identifier of a.

Proof. We prove this invariant by induction on the length of the transition sequence,
ci 7−→∗ c1, where ci is the initial configuration of the state machine.

In the base case, where the length is zero, c1 equals ci. In ci all tables and channels are
empty and thus the invariant holds.

In the inductive case, we assume that for ci 7−→∗ cn the invariant holds. We then
consider the possible transitions from cn 7−→ c1. There are three rules that deal with
the tables identified in the invariant. We address each individually.

Chapter 4 Recording Process Documentation 105

• In the record message rule, a message is added to the sent T table and is also
placed on the channel between a and aps through the send pseudo-statement.
Hence, sent T (a, κ) in c1 = sent T (a, κ)⊕m in cn and k(a, aps) in c1 = k(a, aps)⊕m

in cn. Thus, the invariant holds for c1 since it holds in cn under the assumption
that local p-assertions are not reused.

• In the receive record passertion rule, a message on the channel from a to aps is
received and is therefore removed from the channel. The same message is then
added to store T in the fourth statement of the rule. Hence, k(a, aps) in c1 =
k(a, aps) 	 m in cn and store T (aps)(κ, v).recs in c1 = store T (aps)(κ, v).recs ∪
{m} in cn. Therefore, the invariant holds in c1 because it holds in cn under the
assumption that local p-assertions are not reused.

• In the receive submission finished rule, a message on the channel from a to aps

is received and is therefore removed from the channel. The same message is then
added to store T in the fourth statement of the rule. Hence, k(a, aps) in c1 =
k(a, aps)	m in cn and store T (aps)(κ, v).sf in c1 = store T (aps)(κ, v).sf ∪ {m}
in cn. Therefore, the invariant holds in c1 because it holds in cn.

Therefore,

sent T (a, κ) ↓ (κ, v) = k(a, aps) ↓ (κ, v)⊕store T (aps)(κ, v).recs⊕store T (aps)(κ, v).sf

holds in the inductive case and the invariant is established.

We now show that the actor sending a message to a provenance store will receive a
corresponding acknowledgement message. We begin by defining a function that converts
the messages in a View to a set of acknowledgement messages.

Definition 4.27 (Message to Acknowledgement Conversion Function). For all
a, κ, v, viewToAck(store T (a)(κ, v)) is defined as

Bag

(
ack(κ, v, `) | rec(κ, v, a, `, α) ∈ store T (a)(κ, v).recs

or sf(κ, v, a, `, na) ∈ store T (a)(κ, v).sf
)

By using this function, we show that the messages stored in the provenance store can be
converted to acknowledgement messages and thus can be matched to the acknowledge-
ment messages received by the recording actor. We establish this matching through the
following invariant.

Chapter 4 Recording Process Documentation 106

Invariant 4.28 (Always Acknowledged). For all configurations c1 reachable from
ci, for all κ, a, aps, v,

viewToAck(store T (a)(κ, v)) = k(aps, a) ↓ (κ, v)⊕ ack T (a, κ) ↓ (κ, v).

Proof. We prove this invariant by induction on the length of the transition sequence
ci 7−→∗ ci, where ci is the initial configuration of the state machine.

In the base case, where the length is zero, all tables and channels are empty and thus

viewToAck(store T (a)(κ, v)) = k(aps, a) = ack T (a, κ) = ∅

and the invariant holds.

In the inductive case, we assume that for ci 7−→∗ cn the invariant holds. We then
consider the possible transitions from cn 7−→ c1. There are three rules that deal with
the tables identified in the invariant; these are m-consuming transitions 4.4. We address
each individually.

• In the receive record passertion rule, a message is added to the store T table. A
corresponding acknowledgement message is also generated and added to the the
channel k(aps, a). Hence,

viewToAck(store T (a)(κ, v)) in c1 = viewToAck(store T (a)(κ, v))⊕m in cn

and k(aps, a) in c1 = k(aps, a) ⊕m in cn. Thus, the invariant holds in c1 since it
holds in cn under the assumption that local p-assertions are not reused.

• In the receive submission finished rule, a message is added to the store T table.
A corresponding acknowledgement message is also generated and added to the the
channel k(aps, a). Hence,

viewToAck(store T (a)(κ, v)) in c1 = viewToAck(store T (a)(κ, v))⊕ m in cn

and k(aps, a) in c1 = k(aps, a) ⊕m in cn. Thus, the invariant holds in c1 since it
holds in cn under the assumption that local p-assertions are not reused.

• In the receive ack rule, an acknowledgement message is removed from the chan-
nel k(aps, a) and then added to the ack T (a, κ) table. Hence, k(aps, a) in c1 =
k(aps, a)	m in cn and ack T (a, κ) in c2 = ack T (a, κ)⊕m in cn. Therefore, the
invariant holds in c1 because it holds in cn.

Therefore, viewToAck(store T (a)(κ, v)) = k(aps, a) ↓ (κ, v)⊕ ack T (a, κ) ↓ (κ, v) holds
in the inductive case and the invariant is established.

Chapter 4 Recording Process Documentation 107

Using Invariants 4.26 and 4.28, we now establish that the messages and thus the p-
assertions within those messages sent to the provenance store will be stored and an
acknowledgement will be received by the sender. Thus, the acknowledgements received
from the provenance store by the sender will be equal to what was originally sent by the
sender (after a simple conversion step).

Lemma 4.29 (Messages Always Recorded and Acknowledged). For all a, aps,
in any reachable configuration, cf where all channels between a and aps are empty, all
messages from the set R ∪ SF that have been sent by a to aps have been stored in aps

and a has received an acknowledgement.

Proof. From Invariant 4.26, if k(a, aps) = ∅ then for all κ, v,

sent T (a, κ) ↓ (κ, v) = store T (aps)(κ, v).recs ∪ store T (aps)(κ, v).sf.

By definition of store T (a)(κ, v), we can collapse this equation to be

sent T (a, κ) ↓ (κ, v) = store T (aps)(κ, v).

Furthermore, from Invariant 4.28, if k(aps, a) = ∅ then for all κ, v,

viewToAck(store T (a)(κ, v)) = ack T (a, κ) ↓ (κ, v).

Hence,
viewToAck(sent T (a, κ) ↓ (κ, v)) = ack T (a, κ) ↓ (κ, v).

Essentially, what an actor sent to a provenance store has been acknowledged. Given that
no rule removes messages from the acknowledgement table and from Theorem 4.14 the
provenance store is immutable, all record and submission finished messages that have
been sent to a provenance store are stored in the provenance store and acknowledgements
have been received by the recorder.

We now introduce two more invariants that state that after p-assertions are created,
they end up in the sent T . The proofs for these two invariants are similar to the above
invariants and are thus omitted for brevity.

Invariant 4.30 (Always Sent). For all configurations c1, c2, where c1 7−→∗ c2, for all
a, κ, v,

assert T (a, κ, v)⊕ to send T (κ, v)⊕ sent T (κ, v)

is constant for all transitions excluding send app msg and receive app msg.

Chapter 4 Recording Process Documentation 108

Invariant 4.31 (P-assertion Accumulation). For all configurations c1, c2, where
c1 7−→∗ c2, for all a, κ, v,

assert T (a, κ, v)⊕ to send T (κ, v)⊕ sent T (κ, v) at c1

⊆ assert T (a, κ, v)⊕ to send T (κ, v)⊕ sent T (κ, v) at c2

for send app msg and receive app msg transitions.

The above lemma and invariants show that once p-assertions are created, they will
end up in a provenance store and the creator of the p-assertions will have received
acknowledgements that they have been stored. Thus, the key to having correct evidence
within the provenance store is the creation of appropriate p-assertions. In the next
section, we address the creation of appropriate p-assertions that reflect or mirror the
process that has gone on within an application. Once created, PReP guarantees that
p-assertion will be recorded.

4.4.5.9 Process Reflection

We now show that a process (i.e. the execution of an application) can be reflected by
process documentation recorded in a provenance store.1 To do this, we extend the ASM
to consider the execution of actors. The actors execute in accordance with the following
definition of process, repeated from Definition 3.1:

A process is a causally connected set of interactions and transformations.

Thus, the execution of actors is described by the exchange of messages between actors
and the transformations they perform on received messages. We now describe this
execution formally. We begin by defining the state space for the execution of the set of
actors as follows:

Definition 4.32 (Extended ASM State Space).

AS = P(Data× IK) (Actor States)
AppS = A → AS (Application State)
APC = C×AppS (Provenance-aware Application State)

Characteristic Variables:
〈d, κ〉 ∈ AC,
as ∈ AppS,
apc ∈ APC,
〈c, as〉 = apc

1By reflection, we mean common sense reflection. We do not mean introspection as offered by some
programming language runtime environments.

Chapter 4 Recording Process Documentation 109

As all the data that an actor works upon is located in received messages, we model the
state of actor (AS) as data within received messages, where messages are identified by
interaction keys. We assume that a garbage collector will collect any unused data, but,
for simplicity, we do not model garbage collection here. We also define a table, AppS,
that maps from actor identities (A) to actor states. The same accessor notation that
we have used for other tables applies to AppS as well. So that as(a) will access the
state of the actor identified by a. The configuration of the application is defined by the
combination of the state of all the actors in the system combined with the configuration
of PReP. This is modelled by APC.

The execution of actors following Definition 3.1 can be modelled by rules that express
the transition of states when sending and receiving messages. We define these as follows:

Definition 4.33 (Application Rules).

consume msg(as, ar, κ, d) :
app(κ, d) ∈ K(as, ar)

→ {
as(ar) := as(ar) ∪ {〈d, κ〉};
// receive business logic

}

produce msg(as, ar, d, f) :
// triggered when d, produced by function f that is described by r,
// is to be sent by as to ar

→ {
}

Thus, after the receipt of a message, the state of the application is updated, whereas,
after sending a message, the state stays the same. Sending a message is triggered by the
execution of some business logic or a transformation on the actor state, which we define
as follows.

Definition 4.34 (Transformation). A transformation is the execution of a function
f on an actor state, as(a), to achieve a tuple 〈d, ar〉. This is represented as 〈d, ar〉 =
f(as(a)) where ar specifies the actor to which the data item should be sent.

The functions applied to actor states can be described by business logic definitions,
which are specified by the set REL defined in Figure 4.11.

From these definitions, the execution of some application is the transitions between actor
states denoted by as1 7−→∗

app as2, where the transitions are defined by Definition 4.33.
Following this definition, an application can execute independently of recording process

Chapter 4 Recording Process Documentation 110

documentation. We now show that when integrated with PReP, process documentation
representing the application’s process will eventually be in the provenance store. To do
this, we couple the application to PReP. First, we denote three different categories of
transitions and provide a notation for each:

1. Provenance Aware Application Transitions are all the transitions that occur in
both PReP and an application. These are denoted by 7−→paa.

2. Application Transitions are the transitions defined by Definition 4.33. These are
denoted by 7−→app.

3. PReP Transitions are the transitions defined in Figures 4.12 and 4.13. These are
denoted by 7−→prep.

We term an application that records process documentation, a provenance aware appli-
cation. The execution of such an application is denoted by apc1 7−→∗ apc2. In such an
execution, PReP Transitions and Application Transitions are coupled together following
Definition 4.35.

Definition 4.35 (System Coupling). For any application configurations, 〈c1, as1〉,
〈c2, as2〉, the following transition is allowed:

〈c1, as1〉 7−→paa 〈c2, as2〉

if one of the following conditions hold:

1. if as1 7−→app as2 with produce msg, then
c1 7−→prep c2 using the transition send app msg.

2. if as1 7−→app as2 with consume msg, then
c1 7−→prep c2 using the transition receive app msg.

3. if c1 7−→prep c2 then
a1 = a2 when transitions other than send app msg or receive app msg are per-
formed.

What is occurring is that when the produce msg or consume msg rules are fired in the
application, the corresponding send app msg or receive app msg rule is fired as well.
Essentially, the application and PReP rules are merged together. Therefore, we note
that the pseudo-statements shared by the rules only execute once.

Therefore, the execution of the application is coupled with the execution of PReP via
corresponding rules for sending and receiving messages. Using this system coupling def-
inition, we will show that process documentation reflecting the application’s execution

Chapter 4 Recording Process Documentation 111

will end up in the provenance store. First, we define the function that creates doc-
umentation when an application rule fires. The function is called with r = ⊥ when
receive app msg fires and with r 6= ⊥ when send app msg fires.

Definition 4.36.

makeAssertions(a, κ, d, r):
PA = ∅; // set of p-assertions
if r 6= ⊥

PA = { relationship p-assertion with the effect d, relation r, and causes as[a],
interaction p-assertion with content d and interaction key κ}

else
PA = {interaction p-assertion with content d and interaction key κ}

return PA;

This makeAssertions function creates interaction and relationship p-assertions. When
given a business logic description, r, the algorithm creates an interaction p-assertion to
document, d in the interaction identified by κ as well as a relationship p-assertion using
r to document the causal relationship between as[a] and d. When not provided r, the
algorithm creates an interaction p-assertion documenting the incoming data, d, within
the interaction identified by κ. Therefore, this algorithm uses the concepts defined by
the p-structure data model.

Using the above definitions, we now outline the proof of Lemma 4.37. To better illustrate
the lemma and the proof outline, we use three state transition diagrams shown in Figures
4.16, 4.17, and 4.18. These figures follow the legend shown in Figure 4.15.

paa-wa

denotes coupling between states

denotes paa transitions without app transitions

* denotes multiple transitions

denotes a single transition

as denotes an actor state

<c, as> denotes a provenance-aware application state

app denotes application transitions

paa denotes provenance-aware application transitions

Figure 4.15: Legend for Figures 4.16, 4.17, and 4.18

Lemma 4.37 is defined as follows and is depicted in Figure 4.16.

Chapter 4 Recording Process Documentation 112

Lemma 4.37 (Process Reflection). For any application state, as, reachable from asi,
where asi 7−→∗

app as; for all apc reachable from apci: apci = 〈ci, asi〉 7−→∗
paa apc with

apc = 〈c, as〉; there exists a final configuration apc2 = 〈c2, as〉 for some c2, where there
are no messages in transit and no messages to send, such that apc 7−→∗

paa apc2 without
application transitions, such that the provenance stores in apc2 contain the description
of asi 7−→∗

app as.

as
i

as

<c
i
, as

i
>

*

*

app

paa paa-wa *<c, as> <c
2

, as>

Figure 4.16: State transition diagram depicting Lemma 4.37

Intuitively, the application proceeds from an initial state asi to some final state as where
the application has finished executing. Because of system coupling (shown by the vertical
hash lines), the provenance-aware application also proceeds from an initial state 〈ci, asi〉
to some state 〈c, as〉. However, there may be p-assertions remaining to be recorded
that describe the application’s execution, thus the provenance-aware application finishes
recording those p-assertions without using application transitions (denoted by paa-wa

in the figures). We now outline a proof of this lemma.

Proof. Our proof outline proceeds by induction on the length of the transition sequence
from asi 7−→∗

app as.

In the base case, asi equals as, hence no execution has taken place and process docu-
mentation is empty and the lemma holds trivially.

In the inductive case, we assume if asi 7−→∗
app asn then apci 7−→∗

paa apcn and process
documentation describing asi 7−→∗

app asn will be recorded in a set of provenance stores
at some later configuration, 〈cx, asn〉. This is the inductive hypothesis and is shown in
Figure 4.17.

as
i

<c
i
, as

i
>

*

*

app

paa paa-wa *

as
n

<c
n

, as
n

> <c
x
, as

n
>

Figure 4.17: State transition diagram depicting the inductive hypothesis for proof of
Lemma 4.37

Chapter 4 Recording Process Documentation 113

We now show that for all possible transitions from asn 7−→app as that process documen-
tation describing that transition will be in a provenance store after apcn 7−→∗

paa−wa apc2,
where apc2 = 〈c2, as〉 and one application transition.

This inductive step is depicted in Figure 4.18. The figure shows the application pro-
ceeding from asi after any number of transitions to the state asn. We assume that
p-assertions describing this execution are recorded in the provenance store when the
provenance-aware application state space reaches 〈cx, asn〉. Once the application has
reached the state asn, one more application transition occurs to the state as. Through
system coupling, the provenance-aware application state will also proceed from 〈cx, asn〉
to 〈cx, as〉 by one application transition. We note that this application transition can
occur at any time after configuration 〈cn, asn〉. It does not have to wait for the recording
of p-assertions to finish.

as
i

<c
i
, as

i
>

*

*

app

paa paa-wa *

as
n

<c
n

, as
n

> <c
x
, as

n
>

app

app <c
x
, as> <c

2
, as>paa-wa

as

*

Figure 4.18: State transition diagram depicting the inductive step for proof of Lemma
4.37

We now consider the two possible application transitions from asn 7−→app as, produce msg

and consume msg. When one of these rules executes, from Definition 4.35, the corre-
sponding rule (send app msg and receive app msg) defined in Figure 4.13 will eventu-
ally execute. This eventual execution is based on our hypothesis that in the ASM any
number of other rules can fire between the execution of the application rule and the
corresponding PReP rule but that rule will fire.

Once the corresponding rule is fired, the makeAssertion function is called and a set
of p-assertions, α1, . . . , αn, is produced. These p-assertions are then placed in a table,
assert T , with a key for the particular interaction, κ. Once α is in the assert T table,
from Invariants 4.30 and 4.31, it will end up in a message in sent T . From Lemma 4.29,
the message will be recorded and acknowledged in a finite number transitions and the
system will reach a final configuration, apc2. Thus, in the inductive case the lemma
holds.

Conclusion 4.38 (Process Oriented). For a finite process, PReP can record docu-
mentation that reflects a process.

If actors in an application execute as described by Definition 3.1 and use Definition 4.36

Chapter 4 Recording Process Documentation 114

to create their p-assertions, then from Lemma 4.37 documentation reflecting applica-
tion’s process will eventually be found in provenance stores.

Through the above proofs, we have shown that PReP helps ensure that the process doc-
umentation recorded using it complies with the six characteristics necessary for accurate
process documentation. We follow a systematic proof procedure based on mathematical
induction. We believe that this systematic approach, while done by hand, is sufficient
to provide confidence that the protocol does conform to the properties specified in Sec-
tion 4.4.1. Furthermore, because of this systematic approach and the extensive use of
invariants, we hypothesise that the proofs are at a stage where they could be translated
into a format suitable for mechanical proof.

Beyond establishing these properties, the formalisation of PReP serves another equally
important purpose, namely, to provide an accurate, implementation independent means
of specifying the protocol. Because we consider multiple platforms, it is necessary to
have a specification that is independent of any given programming language or imple-
mentation. Furthermore, this specification should be rigorous and well-defined to ensure
that developers know exactly how to the protocol should perform. If we were to spec-
ify the protocol in a particular programming language, the protocol would very likely
become dependent on the underlying features of the language and its execution seman-
tics. In fact, it has been shown that problems arise from defining protocols using such
an approach [132]. The abstract state machine we have defined provides the rigorous,
independent, and well-defined specification that is required.

Finally, defining the protocol using an abstract state machine has helped us to better
understand the ramifications of our design choices. This improved understanding led to
extraneous messages and fields being removed from the protocol and clearer definitions
of the required behaviour of actors. Without using formal modelling the protocol would
be more complicated and its semantics would not have been as precise. In summary, the
use of a formal approach has significantly improved the design of PReP.

4.5 Summary

Once p-assertions are created by actors, they need to be aggregated and stored such
that queriers can access them to determine the provenance of results. In this chapter,
we introduced the provenance store, an architectural element that caters for the long
term storage of process documentation. It provides well defined interfaces for the record-
ing and querying of process documentation. We defined the recording interface of the
provenance store through the formal specification of the P-assertion Recording Protocol
(PReP). The protocol is formalised using an abstract state machine notation, which is
both code-like and rigorous enough for proof. Based on this formalisation, a number of
proofs were given that guarantee that process documentation recorded using the protocol

Chapter 4 Recording Process Documentation 115

will be high-quality. In addition to the protocol, we developed a series of patterns that
provide rules for the deployment of provenance stores within applications. Moreover,
we defined a solution, linking, for connecting process documentation distributed across
provenance stores.

We now revisit the four contributions of this chapter. First, the introduction of the
provenance store provides a mechanism to store and maintain process documentation
and is supported by analysis conclusion five (see Section 2.5), namely, that provenance
information should be separated from its collection point. This architectural approach
has been successfully used to store data similar to process documentation in large scale
Grid implementations. Second, the chapter detailed deployment patterns, which help to
cater for systems that have multiple distributed components under different institutional
authorities. Third, linking provides a way of connecting distributed process documenta-
tion by following an approach that has been successful for connecting information on the
World Wide Web. Finally, PReP provides a well-specified, implementation independent
protocol for recording process documentation in a manner that helps ensure that the
documentation recorded will make for high-quality evidence that a process occurred.

In Chapter 6, an implementation of the protocol is discussed in more detail. This imple-
mentation directly reflects PReP. Here, we note that the client side side portion of the
protocol has been implemented in the Java [89, 102] and Python [93] programming lan-
guages. Likewise, the server side of the protocol has been implemented by two different
development teams [100, 89]. Additionally, the patterns defined in this dissertation were
adopted verbatim by the EU Provenance project [92], a European Commission funded
six member consortium.

A common thread that runs throughout this chapter is that distribution is critical to
catering for multi-institutional applications and for scalability. Applications that span
multiple institutions fundamentally require repositories owned and operated by different
owners due to regulations, politics, and security concerns. Hence, our solution allows
process documentation to be both distributed and connected. Furthermore, as the size,
frequency, and number of p-assertions generated by applications grow, the mechanisms
we provide allow provenance stores to be added in order to divide the load and thus
scale. Distributed provenance stores are the final element of a blueprint for the cre-
ation, organisation and recording of process documentation so that the provenance of
results produced by multiple institutions can be determined. In the next two chapters,
we evaluate this blueprint from the perspective of a multi-institutional bioinformatics
experiment.

Chapter 5

Case Study: The Amino Acid

Compressibility Experiment

The previous chapters have presented a conceptual blueprint for the creation, organisa-
tion, and recording of process documentation. The question now arises as to how best
to evaluate this blueprint. This dissertation began by motivating the need for prove-
nance in multi-institutional scientific systems. Therefore, one possible form of evaluation
would show that an instantiation of this blueprint can be used to answer questions about
the provenance of data produced by such systems. However, we cannot feasibly test an
instantiation of the blueprint in every application. Thus, we take the approach of con-
ducting a range of provenance queries in an application that has the general properties
of multi-institutional scientific systems. Furthermore, we adopt an application that is
high performance and has fine grain parallelism, which implies that p-assertion recording
may be difficult. Hence, showing that our approach performs in this difficult application
provides support for the conclusion that the approach will work for a large set of appli-
cations with less demanding requirements. While we consider one case study within this
dissertation, our blueprint has been used by ourselves and others in a number of other
applications including organ transplant management [105], aerospace engineering [107],
RSS feeds [118], trust calculations [149], fault tolerance in distributed systems [183], and
biodiversity [193].

In this chapter, the Amino Acid Compressibility Experiment (ACE) is presented, which
has the properties of being multi-institutional scientific system. In the next chapter,
we evaluate whether an implementation of our blueprint can be used to answer the
provenance questions arising in ACE. The majority of the chapter is background infor-
mation necessary to understand the evaluation. Its main contribution comes in the form
of six provenance use cases from ACE that also reflect use cases from other scientific
applications.

It is important to note that ACE was designed by Dr. Klaus-Peter Zauner and Dr.

116

Chapter 5 Case Study: The Amino Acid Compressibility Experiment 117

Stefan Artmann. The description of it here is based on personal communication with
Dr. Zauner. Our implementation of the experiment for a Grid environment reflects his
original implementation in the Tool Command Language (TCL). The work presented
here follows on from a paper we co-authored with Dr. Zauner [88].

The rest of this chapter is organised as follows. We begin with two short introductions to
the biochemistry and information theory that underlie ACE. We then give a description
of its workflow. After which, we show how ACE has the properties of a multi-institutional
scientific system. With this understanding of the experiment, a set of use cases is
enumerated. Finally, we conclude.

5.1 A Short Introduction to Biochemistry and Information

Theory

ACE attempts to find possible new relationships between amino acids, the basic building
blocks of life, by investigating the information theoretic properties of their computational
representations. To understand the functioning of the experiment, a brief introduction to
both subjects is given. The aim with these brief introductions is to keep this dissertation
as self contained as possible.

5.1.1 Biochemistry

Proteins, like the one pictured in Figure 5.1, are the essential functional components of
all known forms of life and are linear chains of amino acids joined by peptide bonds.
There are 21 different standard amino acids found in proteins, which are listed in Figure
5.2. These amino acids are assembled into protein sequences following a code sequence
represented by a polymer (mature mRNA). During and following the assembly, the
protein will fold under the electrostatic interaction of its thousands of atoms into a
defined but flexible shape of typically 58 nanometres size. The resulting 3D-shape of
the protein determines its function [142].

How a protein folds, and thus the function it takes, is affected by the amino acids that it
is made up of. In many cases, amino acids can be substituted for one another in a protein
sequence and the protein will still fold. This substitution can have both beneficial and
adverse effects on protein function and thus impact the operation of the organism to
which it belongs. For example, the substitution of the amino acid glutamate with the
amino acid valine in haemoglobin proteins, which are part of red blood cells, causes
sickle cell anaemia. Because of these possible effects, it is helpful to categorise possible
substitutions of amino acids.

Chapter 5 Case Study: The Amino Acid Compressibility Experiment 118

01/25/2007 03:17 PMMyoglobin.png 656!670 pixels

Page 1 of 1http://upload.wikimedia.org/wikipedia/commons/6/60/Myoglobin.png

Figure 5.1: The 3D structure of the myoglobin protein.

Amino Acid 3-Letter Code 1-Letter Code
alanine ala A
arginine arg R
asparagine asn N
aspartic acid asp D
cysteine cys C
glutamic acid glu E
glutamine gln Q
glycine gly G
histidine his H
isoleucine ile I
leucine leu L
lysine lys K
methionine met M
phenylalanine phe F
proline pro P
selenocysteine sec U
serine ser S
threonine thr T
tryptophan trp W
tyrosine tyr Y
valine val V

Figure 5.2: The amino acids and their abbreviations

Chapter 5 Case Study: The Amino Acid Compressibility Experiment 119

12/25/2006 04:06 PMPAM250 Mutation Matrix

Page 1 of 1http://www.icp.ucl.ac.be/~opperd/private/pam250.html

PAM250 Mutation Matrix

250 PAM evolutionary distance

 ORIGINAL AMINO ACID

 Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

 A R N D C Q E G H I L K M F P S T W Y V

Ala A 13 6 9 9 5 8 9 12 6 8 6 7 7 4 11 11 11 2 4 9

Arg R 3 17 4 3 2 5 3 2 6 3 2 9 4 1 4 4 3 7 2 2

Asn N 4 4 6 7 2 5 6 4 6 3 2 5 3 2 4 5 4 2 3 3

Asp D 5 4 8 11 1 7 10 5 6 3 2 5 3 1 4 5 5 1 2 3

Cys C 2 1 1 1 52 1 1 2 2 2 1 1 1 1 2 3 2 1 4 2

Gln Q 3 5 5 6 1 10 7 3 7 2 3 5 3 1 4 3 3 1 2 3

Glu E 5 4 7 11 1 9 12 5 6 3 2 5 3 1 4 5 5 1 2 3

Gly G 12 5 10 10 4 7 9 27 5 5 4 6 5 3 8 11 9 2 3 7

His H 2 5 5 4 2 7 4 2 15 2 2 3 2 2 3 3 2 2 3 2

Ile I 3 2 2 2 2 2 2 2 2 10 6 2 6 5 2 3 4 1 3 9

Leu L 6 4 4 3 2 6 4 3 5 15 34 4 20 13 5 4 6 6 7 13

Lys K 6 18 10 8 2 10 8 5 8 5 4 24 9 2 6 8 8 4 3 5

Met M 1 1 1 1 0 1 1 1 1 2 3 2 6 2 1 1 1 1 1 2

Phe F 2 1 2 1 1 1 1 1 3 5 6 1 4 32 1 2 2 4 20 3

Pro P 7 5 5 4 3 5 4 5 5 3 3 4 3 2 20 6 5 1 2 4

Ser S 9 6 8 7 7 6 7 9 6 5 4 7 5 3 9 10 9 4 4 6

Thr T 8 5 6 6 4 5 5 6 4 6 4 6 5 3 6 8 11 2 3 6

Trp W 0 2 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 55 1 0

Tyr Y 1 1 2 1 3 1 1 1 3 2 2 1 2 15 1 2 2 3 31 2

Val V 7 4 4 4 4 4 4 4 5 4 15 10 4 10 5 5 5 72 4 17

[column on left represents the replacement amino acid]

Mutation probability matrix for the evolutionary distance of 250 PAMs. To simplify the appearance, the elements are shown
multiplied by 100. In comparing two sequences of average amino acid frequency at this evolutionary distance, there is a 13%
probability that a position containing Ala in the first sequence will contain Ala in the second. There is a 3% chance that it
will contain Arg, and so forth. The relationship of two sequences at a distance of 250 PAMs can be demonstrated by statistical
methods. (Adapted from Figure 83. Atlas of Protein Sequence and Structure, Suppl 3, 1978, M.O. Dayhoff, ed. National
Biomedical Research Foundation, 1979.)

Back to the main text.

Figure 5.3: An example mutation matrix

One method for categorising amino acid substitutions is by investigating what substi-
tutions have occurred in nature. If a substitution occurred often during the course of
evolution, then that substitution may be effective in a particular protein. Substitutions,
which occurred in nature, are represented in so-called mutation matrices that describe
the propensity for a particular substitution to occur [21]. Figure 5.3 shows an exam-
ple matrix. The higher the number in the matrix the more often the substitution has
happened in nature. For example, Figure 5.3, shows the substitution of phenylaline
(Phe F) with theronine (Tyr) appears often in nature. These mutation matrices are
built by computing how often a substitution occurs and comparing that to the random
probability that the substitution would occur.

Mutation matrices provide a reasonable starting point for knowing whether a particular
substitution is good overall. However, it does not give a precise description of how a
substituted amino acid would function within a protein (i.e. whether it is chemically
possible).

Therefore, another classification has been developed that is based on the various physical,
chemical and structural properties of amino acids. This classification is known as the
Taylor Categorisation and is shown as a Venn Diagram in Figure 5.41. The letters in
Figure 5.4 correspond to the 1-letter codes shown in Figure 5.2. The amino acids are
clustered according to the properties enumerated below [21].

1. Size - The number of nucleotides making up a particular amino acid has an effect
on possible substitution. Three categories are given in the diagram: tiny, small
and large.

2. Hydrophobicity - Whether an amino acid prefers a water based environment or
not.

1Used with the permission of the author, Robert Russell.

Chapter 5 Case Study: The Amino Acid Compressibility Experiment 120

Figure 5.4: The Taylor Categorisation of amino acids.

3. Polarity - Whether the amino acid has a positive, neutral, or negative charge has
an effect on substitution.

4. Aliphatic - Whether the “side chain” (a part of the molecule that does not belong
to the core structure) of the amino acid contains mostly carbon and hydrogen
atoms, which results in amino acids that tend to be non-reactive, and thus do not
often effect the function of the protein they are in but instead act as a structural
glue.

5. Aromatic - Whether the side chain of the amino acid contains a specific aromatic
configuration of electrons. This configuration has an effect on the binding of the
amino acid to other molecules.

The Taylor Categorisation shows what amino acids have similar properties. Those amino
acids that share the same properties are more likely to be substitutable for one another.
Thus, the Taylor classification provides another good starting point for determining
whether a particular substitution is functionally feasible.

Mutation matrices and the Taylor classifications provide a basis for substitution studies,
they do not and cannot provide definitive answers as to whether a substitution works.
In the spirit of these classifications, ACE aims to find other possible groups of amino
acids that make good candidates for substitution studies. However, instead of using the
physical, chemical, or structural properties of amino acids to find possible substitutions,
ACE measures the information content of proteins. This mechanism of classification is
based on information theory, whose pertinent points we now discuss.

Chapter 5 Case Study: The Amino Acid Compressibility Experiment 121

5.1.2 Information Theory

Information Theory is the mathematical study of information. It is also known as Com-
munication Theory because it began with the study of idealised communication systems.
In fact, the theory stems from the study of early telegraph and telephone networks. We
begin with a description of classical information theory by briefly summarising the work
of Claude Shannon [157, 41]. Figure 5.5 shows an idealised communication systems with
the following components:

Information

Source
Receiver DestinationTransmitter

signalmessage message

Figure 5.5: A basic communication system as defined by Shannon

1. An information source is an entity which produces messages to be communicated
to a recipient.

2. A transmitter takes messages from the information source and produces a signal,
which can be sent over a channel.

3. A channel is the medium over which signals are transmitted. The medium could
be fiber optic cables, radio frequencies, coaxial cable, etc..

4. A receiver takes a signal and reconstructs a message from it.

5. A destination is the entity for which the message is intended.

An information source may provide messages of any type, text, sound, pictures, etc..
These messages are then encoded by the transmitter before being sent over a channel.
Encoding takes one representation of a message and changes it into another representa-
tion. For a communication system builder, it is important to be able to determine an
encoding that generates the most efficient representation for communication. Informa-
tion Theory provides a precise mechanism for determining whether an encoding provides
an efficient representation through the measurement of the amount of information sent
in an encoded message.

By definition, an information source produces a message from a set of possible messages.
It exercises a choice between those messages. If the destination can predict the message
coming from a source, then there is no need to receive the message and thus the message
does not convey any new information from the destination’s point of view. However, the

Chapter 5 Case Study: The Amino Acid Compressibility Experiment 122

smaller the chance the destination has of predicting the message the more information
that message contains. Hence, the more uncertainty a destination has about an incoming
message the more information is conveyed by that message. The goal of communication
is then to resolve the uncertainty that a destination has about the knowledge of the
source. Shannon Entropy is the name given to this uncertainty and thus is one way in
which information quantity is measured. Mathematically, Shannon Entropy is a measure
of the amount of uncertainty a receiver has about some discrete random variable and
is measured in bits. Thus, classical information theory provides a statistical measure of
information content.

In contrast to classical information theory, algorithmic information theory studies the
information content using an algorithmic approach. The common measure provided by
algorithmic information theory is Kolmogorov complexity [48], which is defined as the
length of the shortest description of a given string. Descriptions must be specified in a
fixed language such as a computer programming language. The longer the description
of a given string is, the more information that string contains. One of the problems with
Kolmogorov complexity is that in general it is non-computable [48, 162].2 However,
an estimate of it can be computed using a variety of mechanisms one of those being
compression.

Compressors are designed to achieve the smallest possible data size given some pre-
dictable input. In terms of Kolmogorov complexity, one can view a compressor as gener-
ating a description that describes a string in the shortest possible manner. Essentially,
one treats the loss-lessly compressed data as the description and the decompresser as
the language of that description. Thus, the size of the compressed data is an estimate
of the Kolmogorov complexity and hence can be used as an estimate for the informa-
tion content of the string. Broadly, the less a data item can be compressed the more
information it contains.

We now explain how both the statistical and algorithmic approaches are combined within
ACE to find interesting amino acid substitutions.

5.2 ACE: The Amino Acid Compressibility Experiment

ACE starts from a basic assumption that proteins are information efficient, i.e. they use
the least number of amino acids possible to obtain their function. The premise is that
evolution results in the best and hence most efficient use of information, which seems
reasonable given that, with just four nucleotides, DNA codes for incredibly complex

2Kolmogorov complexity is non-computable because of the halting problem. To find the shortest
program that generates a string, one needs to test all possible programs that could generate that string.
However, at any given time some of the programs may not have finished execution and there is no way
to tell when they will finish. Therefore, one cannot be certain that the shortest program has been found
and hence the Kolmogorov Complexity cannot be computed.

Chapter 5 Case Study: The Amino Acid Compressibility Experiment 123

organisms. Based on this assumption, ACE tests whether particular substitutions of
one amino acid for another result in high information efficiency. The intuition is that
high information efficiency means is key to creating functioning proteins.

The experiment begins with a set of codings that specify the substitutions to test. Each
coding consists of groups, which are analogous to the clusters shown in Figure 5.4. For
example, a group could specify that isoleucine, leucine, and valine can be substituted
for one another. Using a symbol assigned to each group, codings are specified using the
following format:

〈group symbol〉:〈amino acid 1-Letter code〉〈amino acid 1-letter code〉...,
〈group symbol〉〈amino acid 1-Letter code〉....

Therefore using the above format, a:GST,b:ILV is an example of a coding. Codings
contain multiple groups because the combination of different substitutions are more
likely to produce a functional protein whereas a substitution on its own may not be
effective. For example, substituting lecuine with valine may not work, however, substi-
tuting these along with glycine for alanine may result in a functional protein. Therefore,
it is important to test a variety of group combinations. Currently, the set of codings is
programatically produced in sequential order. However, future versions of the experi-
ment will use genetic algorithms to generate efficient codings and thus reduce the search
space of possible codings.

These codings are treated as input to the workflow shown in Figure 5.6. Steps in the
workflow appear in parenthesis in the text. The first step of the workflow is to generate
several samples to which the codings can be applied (Collate Sample). The samples must
be of sufficient size so that the statistical methods used by the compression algorithms in
the later portion of the workflow work appropriately. Therefore, a sample is generated
from collating multiple randomly selected protein sequences from a protein sequence
database such as UniProtKB and RefSeq [195]. To ensure an absence of repetition in
a sample, sequences are selected that are highly dissimilar from each other. Dissimi-
larity is determined using sequence identities obtained by applying sequence alignment
algorithms such as BLAST or PSI-BLAST [187]. The identification of sequences can
either be performed during the run of the experiment or by acquiring a precomputed se-
quence list from an external culling services such as PISCES [185].3 Thus, there are two
mechanisms for building samples, either randomly selecting from a predetermined set of
dissimilar sequences or randomly selecting a sequence from a database and checking for
dissimilarity with sequences already in the sample.

After several samples are generated, the efficiency of the substitutions, enumerated in
the list of codings, can be tested (Calculate Efficiency). The first step in the calculation
of a coding’s efficiency is its application to the samples (Encode). The encoding proceeds
by substituting the group symbol specified in the coding for each amino acid that is part

3A culling service obtains subsets of proteins based on some fixed criteria.

Chapter 5 Case Study: The Amino Acid Compressibility Experiment 124

Compute EntropyCompress

Calculate

Efficiency
Collate Sample

Sequence

Database

Workflow

Enactment

Engine

Encode

I1

I4

I2 I3

I5

I6
I7

I8 I9
I10

I11

I12

I1: collate sample request

I2: database request

I3: sequences

I4: collated sample response

I5: calculate efficiency request

I6: sample

I7: encoded sample

I8: encoded sample

I9: compressed sample

I10: encoded sample

I11: entropy

I12: information efficiency value

Figure 5.6: The ACE workflow

of that group. For instance, after the application of the coding, a:GST,b:ILV, the
sequence GSTILTVVSI would be aaabbabbab.

Once a sample has been encoded, it is then compressed using a common loss-less com-
pression algorithm such as GZIP, BZIP or PPM* (Compress). Typically, a high order
PPM compression algorithm is used to significantly compress the encoded sample. The
size of this compressed sequence is taken as an approximation of Kolmogorov complexity.
The better the compression algorithm is, the better the approximation.

After the encoded sample is compressed, its Shannon Entropy is then computed using
Equation 5.1 (Compute Entropy). The encoded sample is treated as a random variable
S that has an alphabet A. The function p(xi) determines the probability that a symbol,
xi, within A occurs in S. For example, given the string aab, p(a) would be 2/3, where
the alphabet used by the string is a and b.

H(S) = −
∑
xi∈A

p(xi) log2 p(xi) (5.1)

The Shannon Entropy provides a standard of comparison for the encoded sample. It
removes the influence of two factors from the compression: the particular data encoding
used to represent the sample, and the non-uniform frequency of groups. Once the
Shannon Entropy and estimated Kolmogorov Complexity are computed, the information
efficiency is calculated using Equation 5.2 (Calculate Efficiency). In this equation, ηC(s)
is the information efficiency of a string, s, calculated using the compression algorithm C.
The length in bits of a given string is computed by the function `() and the Kolmogorov

Chapter 5 Case Study: The Amino Acid Compressibility Experiment 125

complexity approximated by compression is represented as KC(). The encoded sample
is treated as the input to ηC() (i.e. s).

ηC(s) =
KC(s)

`(s)H(s)
(5.2)

Information efficiency values can be compared because their calculation takes into ac-
count both the compression method and group coding employed as well as the size of the
sequence used. Once the information efficiency values for different groups are calculated
they can then be plotted to find those codings that maximise efficiency and thus are
good candidates for further substitution investigation.

5.3 ACE as a Multi-Institutional Scientific System

ACE relies on multiple institutions to be effective. First, the data necessary to run
the experiment is held by another institution, namely, the European Bioinformatics
Institute, which collates protein sequence information from hundreds of other institutions
throughout the world. Second, the workflow’s performance is improved when using a
culling service provided by another institution. Third, the computational resources of
multiple institutions are necessary in order to generate interesting results.

This need for other institution’s computational resources is necessitated by the vast
number of possible codings (roughly 474 trillion4) that could be investigated. Even with
the introduction of genetic algorithms to prune the search space, for the experiment to
investigate a sufficiently sized sample, large scale computational resources are necessary.

To obtain the resources necessary to run this single experiment at the scientist’s site
would be difficult as well as wasteful. Just to test one billion codings would require,
roughly, the use of 32 computers non-stop for a year.5 Already, this type of computing
power requires a computer cluster to be built and maintained which is outside the
bioinformatician’s remit. Furthermore, during the analysis of results and modification
of the experiment, the cluster would lay idle, wasting processor cycles.

The University of Southampton already recognises these difficulties and runs several
shared computational resources for use by its child institutions. There is a separate in-
stitution, Information System Services6, that is responsible for running these resources,
which include clusters, high speed servers, and a desktop-based Grid. However, because

4The exact number of possible codings is 474,869,816,156,751, which is the Bell number for 21: this is
the number of partitions of the set of 21 amino acids. If only 20 the standard amino acids are considered,
the number of codings falls to a still impressive 51,724,158,235,372.

5It takes just over 1 second to process a coding on a 2.2 Ghz AMD Opteron Processor. Thus, it
would take 31.7 years for one computer to process a billion codings.

6http://www.soton.ac.uk/iss/

Chapter 5 Case Study: The Amino Acid Compressibility Experiment 126

these resources are shared by multiple departments (physics, computer science, chem-
istry, etc.), they cannot all be applied only to ACE. Therefore, to obtain even more
computing power, ACE has been implemented, as described in the next chapter, to
take advantage of resources made available by other institutions (i.e. other Universities,
research labs and corporations) using the Grid. An example of the computational re-
sources made available through the Grid is the Enabling Grids for E-Science (EGEE)
Grid, which has 20,000 CPUs from 90 institutions available for shared use. This is 100
times larger than the largest cluster provided by the University of Southampton.

From the preceding discussion, we make the case that ACE fulfils the properties of a
multi-institutional scientific system described in Section 2.1.

1. It requires the sharing of both data (protein sequences, dissimilarity information)
and processing power.

2. It executes in a heterogeneous environment where information is provided from
different sources and the software is executed on a range of machines with different
software and hardware environments.

3. Both the resources and algorithms used by ACE are dynamic. For example, the
resources available to the experiment changes as the shared facilities it requires
have more or less demand.

In this context, we now enumerate the particular provenance use cases ACE presents.

5.4 Six Provenance Use Cases

The provenance use cases below are derived from discussions with the bioinformatician
who developed ACE as well as use cases taken from a requirements gathering process
[126]. Requirements gathering consisted of discussions with scientists conducting seven
different projects ranging from high energy physics to computer security. During inter-
views with the scientists, a broad description of provenance and the goal of computa-
tional support for provenance was given. To aid understanding, some example use cases
were presented to the scientist. The scientists then discussed their various needs (func-
tional requirements) and the criteria with which any resulting software would be judged
(non-functional requirements). After the interviews, the requirements were written in a
consistent format and presented to the scientist for approval. In total 23 different use
cases were gathered.

The following use cases cover the questions who, what, when, where, why, and how. We
label each question with the interrogative word that it covers in parenthesis. Also after
an explanation of each use case in terms of ACE, we add a use case from Miles et al.

Chapter 5 Case Study: The Amino Acid Compressibility Experiment 127

that reflects a similar requirement [126]. These additional use cases are taken verbatim7

from the paper and are formatted as quotations. Our aim is to show that the use cases
from ACE case study are representative of a variety of use cases from different projects.

1. What were the sequences used in the production of a particular information efficiency
value? (What)

When a coding is found that is of interest because of its information efficiency value,
the bioinformatician would like to determine the causes of the particular result. A
noteworthy piece of information is the list of sequences that were randomly chosen
and then collated together to form the original sample. With this information, the
bioinformatician can decide whether the sequences had any adverse or abnormal impact
on the outcome of the experiment.

USE CASE 3. (Intron Compressibility Experiment) A bioinformatician,
B, performs an experiment on a set of chromosome data, from which the
exon and intron sequences have been extracted. As a result of that experi-
ment, B identifies a highly compressable intron sequence. B identifies which
chromosome the intron originally came from.

2. What were the input figures used in the efficiency calculation that produced a particular
information efficiency value? (How)

During the execution of ACE several intermediate values are produced in the generation
of the final information efficiency figure. Of particular importance, are the values for
H(s), KC(s), and `(s). These values can be reused in different equations for the calcu-
lation of information efficiency as well as in other related experiments. Keeping access
to these values can save significant computation time.

USE CASE 6. (Protein Identification Experiment) A biologist, B, sets
the voltage of a mass spectrometer before performing an experiment to deter-
mine the mass-to-charge ratio of peptides. Later another biologist, R, judges
the experiment results and considers them to be particularly accurate. R
determines the voltage used in the experiment so that it can be set the same
for measuring peptides of the same protein in future experiments.

3. Were there any conflicting views of an interaction in the production of a particular
information efficiency value? (Who)

Because ACE is executed across multiple institutions, it is important to be able to
determine if communicating parties are in agreement and have the same view of the

7Abbreviations for the experiments are expanded.

Chapter 5 Case Study: The Amino Acid Compressibility Experiment 128

data they send and receive. If conflicting views are detected, it is important that the
bioinformatician knows who is involved so that appropriate action can be taken.

USE CASE 15. (Second Harmonic Generation Experiment) A chemist,
C, performs an experiment finishing at a particular time. D later performs
the same experiment and submits a patent for the result and the process
that led to it to patent officer R. C claims to R that they performed the
experiment before D. R determines whether C is correct.

4. Were references used in the process documentation created for a particular informa-
tion efficiency value? (Where)

One method, previously described, for reducing the size of process documentation is
the use of references (file paths or URLs) instead of storing data within the provenance
store. Hence, when ACE creates process documentation, the bioinformatician often
wants to know if it contains the actual application data or just references to those
data items. If the documentation of the experimental run contains the actual data,
less work is necessary to analyse the data because it is in one place. Furthermore, the
bioinformatician might have moved, deleted or modified his original data mistakenly
or on purpose. Thus, the knowledge, as to whether the documentation of a particular
experiment contains original data, can inform the bioinformatician about the types of
analysis that can be performed.

USE CASE 21. (Particle Detection Experiment) A physicist, P, performs
an experiment using detector data as input. The size of the detector data is
in the order of petabytes. The process documentation of the experiment is
recorded for later use without copying the data set.

5. What interactions are common for all information efficiency values produced by a
particular job? (Why)

In Grid computing environments, it is often the case that a collection of computations
are assembled together in what is referred to as a job. These jobs can then be executed
on different computers in the Grid. In the case of ACE, multiple information efficiency
calculations are put together in one job. In this use case, the bioinformatician wants
to know if there were any interactions that were shared between jobs. This is used,
for example, to determine if the same sequence database was used in the production of
the sample that the job’s computations operate on. Also, if the bioinformatician knows
that a particular computation is producing incorrect output, he can determine whether
the other computations in the same job are also producing incorrect output helping to
explain why a particular error occurred.

Chapter 5 Case Study: The Amino Acid Compressibility Experiment 129

USE CASE 9. (Second Harmonic Generation Experiment) A batch of
chemicals is received by a laboratory, and samples are distributed to chemists
in that laboratory. A chemist, C, performs an experiment but then examines
the results and finds them doubtful. C determines the source material used in
the experiment and then which other recent experiments used material from
the same batch. C examines the results of those experiments to determine
whether the batch may have been contaminated and so should be discarded.

6. How long does it take to produce an information efficiency value from a particular
sample? (When)

Some samples may take more or less time to encode and thus process. In this use case,
the bioinformatician wishes to know the impact that using a particular sample has on
performance. This can be used for comparisons between the computational resources
provided by different institutions within a Grid. Moreover, this data can be used to
determine the impact that different codings have on performance.

USE CASE 12. (Security Testing Experiment) A service, X, is accessed by
an intruder, I, that should not have rights to do so. Later, an administrator
becomes aware of the intrusion and determines the time and the credentials
used by the intruder to gain access.

USE CASE 18. (Candidate Gene Experiment) Several bioinformati-
cians perform experiments using service X. Another bioinformatician, B,
constructs a workflow that uses X. B can estimate the duration that the ex-
periment might take on the basis of the average time X has taken to complete
its tasks before.

These use case questions give examples of the who, what, when, where, why and how
questions that can be asked about an application’s process. Others have identified these
as vital questions that a provenance system should address [150]. However, there are
other questions beyond these six questions that our approach can address because of
its process focus. Furthermore, ACE use cases represent a range of provenance ques-
tions that arise in applications from a variety of domains. In the next chapter, we
demonstrate how these questions can be answered using queries performed over process
documentation.

5.5 Summary

In this chapter, we presented the Amino Acid Compressibility Experiment, a multi-
institutional scientific system that combines notions from the fields of information the-
ory and biochemistry to help find possible amino acid substitutions for proteins. ACE

Chapter 5 Case Study: The Amino Acid Compressibility Experiment 130

is an interesting application not only from a scientific perspective but also from the
requirements it has in terms of computational resources. These requirements make it
necessary that the experiment be implemented in a multi-institutional setting. Thus,
ACE provides a basis for our evaluation of the conceptual blueprint described in preced-
ing chapters. In the next chapter, we describe an implementation of both the provenance
architecture and ACE and show that our approach is successful in terms of scalability,
application performance impact, and functionality.

Chapter 6

Evaluation

In the previous chapter, we presented the Amino Acid Compressibility Experiment and
six provenance use cases related to the experiment. Using these representative use cases,
we now evaluate an implementation of the approach outlined in Chapters 3 and 4, P-
assertion Recording for Services (PReServ). By evaluating a concrete implementation,
we show that our conceptual blueprint can be realised and is effective under real world
conditions.

Our evaluation is conducted at several levels. First, we analyse the scalability of PReServ
in a controlled environment and demonstrate that it can handle up to 560 simultaneous
connections recording p-assertions without reaching a plateau in throughput. Second,
we analyse the performance impact on the execution time of ACE and find that their
is a 13% overhead for p-assertion recording. Third, we demonstrate that the six prove-
nance use cases can be answered practically by queries over process documentation.
This multi-level analysis provides a characterisation of the use of process documenta-
tion in a practical application to answer provenance questions. Additionally, it provides
a characterisation of the impact recording has on application performance. From the
evaluation, we also learned a number of lessons on the use of PReServ and integration
with applications. These lessons are summarised as recommendations.

From this evaluation, there are four key contributions:

1. Process documentation allows for provenance to be determined as demonstrated
by answering the use case questions posed in Chapter 5.

2. The recording of process documentation is shown to be scalable both in controlled
and real world experiments.

3. Recording process documentation has an acceptable overhead.

4. A set of recommendations for developers when creating and deploying provenance-
aware applications.

131

Chapter 6 Evaluation 132

The rest of this chapter is organised as follows. First, an implementation of the prove-
nance store is detailed. Next, the environment in which the experiments were performed
is described. Then, a series of performance tests that provide figures for p-assertion
record time, throughput, and contention are presented. Then, an investigation of the
overhead of p-assertion recording for ACE is described. After which, we demonstrate
that the use case questions can be concretely answered. Finally, we discuss recom-
mendations for the deployment of provenance stores and the integration of p-assertion
recording with applications.

6.1 Implementation

In this section, we discuss the design and implementation of PReServ. First, we enu-
merate the non-functional requirements that are addressed by PReServ. Second, we
describe the software design. Lastly, a justification and presentation of the technologies
used in the implementation is given.

6.1.1 Non-functional requirements

PReServ is designed to address several non-functional requirements. Those we consider
are enumerated below:

1. Scalability: The provenance store should be scalable in terms of data size and
number of connections. One of the consequences of creating and recording process
documentation is that a large amount of data must be stored. Therefore, any
implementation needs to cope with large data sizes. Furthermore, the provenance
store should degrade gracefully as more clients record p-assertions, which ensures
that even if performance suffers, p-assertion recording still continues.

2. Client Independence: The provenance store should not prefer any client technology
or implementation. The goal is to encourage the development of clients for a range
of runtime environments. For example, the provenance store should be agnostic as
to whether the client was implemented in C++, Java or Awk. This requirement
impacts the choice of the underlying technology used for the instantiation of PReP.

3. Ease of Installation: The provenance store should be easy to install to facilitate
adoption and integration into applications. The quicker that a provenance store
can be installed, the more likely application developers and scientists will test the
implementation and see if provenance concepts and the architecture can be used
with their systems.

Chapter 6 Evaluation 133

4. Feature Integration: The implementation should allow for the simplified integration
of new features. The implementation should facilitate the testing of new function-
ality and research ideas without having to reengineer or recode large portions of
the software.

These non-functional requirements influenced both the design and underlying technolo-
gies used in the implementation of PReServ.

6.1.2 Design

We now discuss the design of PReServ. PReServ consists of two components: a Prove-
nance Service and a Provenance Store Client (PSC).

6.1.2.1 The Provenance Service

The Provenance Service is a wrapper for multiple provenance stores, which allows one
host to support multiple institutions or applications each with their own provenance
stores. The component diagram of the Provenance Service is shown in Figure 6.1. Input
messages are received by the Communication Mediator, which is responsible for con-
verting the communication medium’s format into the internal format of the Provenance
Service. The Communication Mediator is also responsible for extracting the operation
specified in the input message and routing the converted message to the correct Prove-
nance Store as well as the appropriate internal component to handle the message type.
The benefit of a specific component for dealing with the communication medium is that
it allows the Provenance Service to be ported to different communication mediums with-
out effecting any other component. Furthermore, the Mediator could be implemented to
support multiple communication mediums, which supports the non-functional require-
ment of Client Independence.

Depending on the operation specified, the input message will be sent either to an ap-
propriate Provenance Store or to the Provenance Store Manager. The Communication
Mediator uses the Provenance Store Manager to lookup the Provenance Store. If the
message is intended to create, delete or manage Provenance Stores, the Manager handles
the message directly. The Provenance Store Manager, supports the Ease of Installation
requirement through the dynamic creation of Provenance Stores via a client interface
(for example, a web page) without having to install software for each store.

Each Provenance Store has a Dispatcher that takes an input message and routes it to
an appropriate PlugIn that implements the operation specified by the Communication
Mediator. Each PlugIn registers the operation it supports with the Dispatcher. The
Feature Integration requirement is supported by allowing multiple PlugIns. If a new
feature needs to be added, a new PlugIn can be created for it.

Chapter 6 Evaluation 134

Depending on the operation, the Dispatcher may choose to cache a message and at a later
point, for example when the Provenance Store is less busy, the Dispatcher then retrieves
the cached message and provides it to a PlugIn for processing. For example, when
recording p-assertions there is processing overhead to create indexes for searching as well
as data consistency checks. By delaying processing, greater throughput can be achieved.
This caching mechanism supports the requirement for connection scalability by allowing
a large number of messages to be accepted without the overhead of message processing.
An important difference between the Provenance Service’s approach to caching and other
data stores is that it is done on a per operation basis and not for all operations. Thus,
depending on the operation, caching can be enabled and disabled and thus a spectrum
of qualities of service can be catered for.

A Provenance Store can be seen as a thin layer of provenance-specific operations over a
data store (i.e. a relational database, an object database, a file system, etc.). To allow
for various types of data stores, the Provenance Service provides a storage abstraction
layer in the Storage System component. The Dispatcher, Provenance Store Manager, and
PlugIns access data stores through the various provenance specific storage and retrieval
functions provided by the Storage System. Different types of data stores are fitted into
the Storage System through a Backend Connector, which maps a set of common storage
functions (a Service Provider Interface) to the data stores native functions. For example,
in the case of a relational database, the Backend Connector would convert a particular
retrieval function to an SQL statement. The Storage System allows for storage and
retrieval functions that may or may not be supported by the underlying data store.
The Storage System abstraction allows for a choice of data stores that have different
capabilities. For instance, a store may offer support for large data sizes or automatic
inference. Multiple types of backend data stores helps fulfil the Feature Integration
requirement, because new stores with different feature sets can be added. Also, the
Storage System may implement features not directly supported by the underlying data
store. This means that new provenance specific storage functions can be added without
changing data stores and without impacting previously stored process documentation.

The design of the Provenance Service matches the non-functional requirements enumer-
ated in Section 6.1.1.

6.1.2.2 The Provenance Store Client

The PSC provides an Application Programming Interface (API) to application develop-
ers to create and record p-assertions as well as query a Provenance Store. We focus on
the creation and recording functionality. The PSC provides a set of classes that reflect
the p-structure and PReP’s messages. Applications then instantiate the appropriate
classes for the p-assertions they need to create. The classes guarantee that the created
p-assertions will be syntactically compatible with the p-structure. The application then

Chapter 6 Evaluation 135

Provenance Store

Communication Mediator

Storage System

Record PlugIn Query PlugIn

Provenance

Store

Manager

Dispatcher

....

Data

Store

Data

Store

Data

Store

Backend Connector

........

input output

Figure 6.1: The Provenance Service Architecture

puts the p-assertions into a corresponding record message object, which can then be sent
to the Provenance Store through the record function available in the API. A variant of
the record function takes a list of record message objects and sends these in bulk to the
Provenance Service. Applications can use bulk submission to delay recording until the
network is less congested, to wait until the application is finished processing or to save
on the overhead of establishing a network connection

The PSC also enables the concurrent recording of p-assertions while an application
continues to execute. The API provides a PSProxy component, that acts as proxy
to a particular Provenance Store. Instead of generating record message objects, an
application enqueues its p-assertions into the PSProxy, which has a thread that handles
the recording of the p-assertions. Therefore, once a p-assertion has been created and
enqueued the application can continue execution without waiting for a response from
the Provenance Store.

The PSProxy also provides several functions for the simplified generation of p-assertions.
We list these functions below.

Chapter 6 Evaluation 136

• Automatic generation of local p-assertions ids.

• Generation of interaction keys.

• Tracking of previously recorded p-assertions for the creation of relationship p-
assertions.

• Generation of relationship p-assertions from p-assertion references.

• Functions for creating interaction and internal information p-assertions from string
content.

The PSC provides a foundation for the integration of creation and recording into appli-
cations.

6.1.3 Technologies Used by PReServ

We now discuss the technologies used by PReServ and the rationale behind their selec-
tion. Web Services are one of the main ways of implementing SOAs. Furthermore, Web
Services and its underlying document format, eXtended Markup Language (XML), are
the focus of a number of standardisation efforts for SOAs. To integrate with this fabric
of standards, we chose to instantiate PReP using these technologies. This choice sup-
ports Client Independence. XML is a platform independent textual format with a typing
system, XML Schema. Furthermore, most platforms support the Hypertext Transport
Protocol (HTTP), which is the common transport layer used by Web Services. For
security, encrypted communication over secure HTTP (HTTPS) is also available.

PReServ is implemented in the Java programming language. Java allows for the soft-
ware to run on multiple platforms without recompilation. PReServ has been successfully
run on Mac OS X, Windows XP, and multiple versions of Linux both on the x86 and
PowerPC architectures. The selection of Java supports the Ease of Installation require-
ment because the user does not need to compile the code for their specific platform and
PReServ can be used on any platform that has a Java Virtual Machine. This selection
also supports Feature Integration through the addition of classes with the Java Archive
(JAR) mechanism. A developer can add a set of features by adding a JAR file to PRe-
Serv. Therefore, PReServ can be distributed with different feature sets depending on
the included JAR files. For instance, different types of data stores can be supported by
adding a JAR file that contains the appropriate Backend Connector.

Currently, PReServ integrates with three types of data stores: a Java specific embedded
database (Oracle’s Berkeley DB Java Edition), an in-memory data store, and a relational
database (mySQL) [104].

The tests here were conducted with the Berkeley DB Java Edition database (BDB).
The selection was made for a number of reasons. First, the in-memory store was not a

Chapter 6 Evaluation 137

viable option because it could not handle the data sizes we consider nor could it persist
data. Second, because of its embedded nature, BDB must not be installed as a separate
service or application. The only requirement is that BDB must be provided with a
directory where it can write its files to. This reduces the complexity of installation thus
supporting the Ease of Installation requirement. Furthermore, BDB is an append-only
database and thus is optimised for write performance. This work focuses on recording
performance and thus BDB is a good fit. Finally, the BDB Backend Connector was
the most mature of the three available. The BDB Connector has several optimisations
designed to improve performance and scalability as enumerated below.

1. Updates are kept to a minimum when recording a p-assertion.

2. The keys used to identify a p-assertion are translated from their external XML
format to an internal format that minimises the number of bytes used.

3. Data is automatically compressed by the BDB Connector using GZIP [58] before
storage to disk, which increases the amount of data that can be stored. By its
nature, XML repeats format elements and thus compresses well [40].

The PReServ Service is implemented as a Java Servlet [99] and deployed in the Apache
Tomcat Servlet container [34]. The servlet supports both compressed and uncompressed
communication using GZIP. Likewise, the Java PCS used in the experiments also sup-
ports both modes of communication. Therefore, applications using the Java PCS can
make use of compression when recording large amounts of data; again, this supports the
Scalability non-functional requirement.

Both the design and implementation of PReServ support the non-functional require-
ments enumerated in Section 6.1.1. We now evaluate PReServ.

6.2 Evaluation Environment

The experiments used in this evaluation were run on the Iridis Computing Cluster at
the University of Southampton. Iridis contains several sets of nodes (i.e. computers).
The set used in the experiments consisted of 237 nodes each with two AMD Opteron
processors running at 2.2 GHz and 2 GB of RAM. A local storage of 25 GB is made
available as scratch disk space for running jobs. Each node has access to a shared file
system where results and executables can be stored. The Provenance Service runs on a
node with 4 Dual Core AMD Opteron processors running at 2.4 Ghz and 2 GB of RAM.
The database stores its files on a shared filesystem with 1.4 TB of space available for
the storage of process documentation. All nodes are connected by Gigabit Ethernet.

Chapter 6 Evaluation 138

Iridis is a job-based cluster. Shell scripts are written that call various executables,
which are already available on the nodes or located on the shared file system. These
shell scripts can then be submitted to the cluster as jobs and scheduled on nodes by
a scheduler. Once a job controls a node no other job can use the node until the job
finishes or is taken off the node by the scheduler because it has run beyond its requested
time slot. On Iridis, jobs are submitted using PBS/Torque [1] or through a Globus [68]
interface and scheduled using the Maui scheduler. Because the Iridis cluster is shared
by the entirety of the University of Southampton’s scientific community, there is a limit
to the number of nodes that can be in simultaneous use by any one user’s jobs. The
policy on Iridis is that a user has a limit of 40 jobs running simultaneously. If enough
resources are available, this limit may expand to around 60 jobs.

All applications used in the evaluation were written in Java and were run using the
Java 1.5.0 05 64-bit Server Virtual Machine with HotSpot Just-In-Time compilation
enabled. The Provenance Store in all experiments had caching enabled as this is the
default deployment option for PReServ and the option that is designed for recording
performance. We now evaluate provenance store performance in the Iridis environment.

6.3 Provenance Store Performance

The objective of this section is to characterise the performance of the provenance store
from the perspective of a client in a controlled environment. First, we show how both
data size and number of clients affect performance. We begin with data size.

6.3.1 Storage Size Impact

Figures 6.2(a) and 6.2(b) show the impact of store size on p-assertion record time for
different recording scenarios and different payload sizes. The tests were run with one
client recording internal information p-assertions into a provenance store. The prove-
nance store’s caching mechanism was disabled. Each test recorded 10000 p-assertions.
The number of p-assertions is indicative of the amount of data held within a store, thus,
it is used as the measure of store size on the x-axis of each graph. The y-axis of each
graph shows the time it took to record the p-assertions measured in milliseconds. Mea-
surements were taken after recording 100 p-assertions. The graphs display an average
from ten trials.

Two p-assertion payload sizes, 10K and 100K, were considered. For each payload size,
tests were performed using the following scenarios.

• (M Scenario) P-assertions are recorded without compression on communication
channels and with a new interaction record created for each p-assertion (i.e each

Chapter 6 Evaluation 139

p-assertion is recorded as if it is a part of a new interaction).

• (O Scenario) P-assertions are recorded without compression on communication
channels and all p-assertions are recorded in the same interaction record (i.e. each
p-assertion is part of the same view).

• (M & C Scenario) P-assertions are recorded with compression on communication
channels and with a new interaction record created for each p-assertion.

• (O & C Scenario) P-assertions are recorded with compression on communication
channels and all p-assertions are recorded in the same interaction record.

The M and O Scenarios are the two extremes when recording p-assertions. Most ap-
plications would have a combination of creating new interaction records and updating
previously created interaction records. When a p-assertion is recorded in a new inter-
action record the Backend Connector must also record a new asserter identity in the
database slightly hindering performance compared to the creation of a new interaction
record.

To give some more intuition as to the performance of PReServ, the following table gives
the time to record one p-assertion with 10K and 100K payloads for the four different
scenarios. These times take into account the variance across store sizes. Given the speed
of the network, the majority of the time taken in these tests is the result of client and
service processing.

Scenario 10K p-assertion 100K p-assertion
M 14.4 ms (±3.2 ms 95% confidence) 34.3 (±7.7 ms 95% confidence)
O 12.7 ms (±2.9 ms 95% confidence) 31.7 (±7.1 ms 95% confidence)
M & C 16.7 ms (±3.8 ms 95% confidence) 126.9 (±28.6 ms 95% confidence)
O & C 16.5 ms (±3.7 ms 95% confidence) 126.7 (±28.5 ms 95% confidence)

Overall, the effect of store size on recording times is flat. The curve at the beginning
of each graph is explained by Java’s just-in-time compilation. Compression has a clear
impact on record times. In an environment with a slower network, compression may
have resulted in better results. However, due to the speed of the test network, the time
to compress and decompress a p-assertion adds significantly to p-assertion record time.
The increase in compression record times between the 10K and 100K case is explained
by the computational complexity of the Deflate algorithm [58] GZIP relies upon.

6.3.2 Multiple Client Connections Impact

The impact on provenance store performance as the number of client connections in-
creases is now presented. In each experiment the number of nodes used in parallel is
increased by powers of 2 up to a maximum of 32 nodes. Given the Iridis environment,

Chapter 6 Evaluation 140

(a) Time to record 100, 10 kilobyte p-assertions as the Provenance Store size increases with compression enabled
and disabled

(b) Time to record 100, 100 kilobyte p-assertions as the Provenance Store size increases with compression enabled
and disabled

Figure 6.2: Provenance store size impact on p-assertion record times.

Chapter 6 Evaluation 141

experiments using more than 32 nodes could not be performed. An MPI based test har-
ness was used in the experiments to guarantee that all jobs were run in parallel. Each
client in the experiments used the M Scenario with a 10K payload.

Figure 6.3 shows the impact of contention for the provenance store on record time for
a single client. The figure was computed by taking the average record time from all
participating clients. The graph shows that as the number of clients accessing a single
provenance store increases, the time it takes for a single client to receive a response also
increases.

Figure 6.3: Contention

However, an increase in the number of clients improves the overall throughput of the
provenance store (i.e. how many p-assertions can be recorded in a period of time). We
come back to this trade-off between total throughput and record time performance later
in the chapter.

In Figure 6.4, we see that as the number of clients increases the throughput also increases.
Typically, a systems throughput will increase until a maxima and then throughput levels
off and may slightly decrease. We attempted to find such a maxima for the provenance
store by increasing the number of threads per node. However, throughput continued to
increase up to the point where 32 nodes each had 16 threads recording p-assertions at
the same time. At this point, 234025 p-assertions were recorded in a 10 minute period,
which means that on average a 10K p-assertion was recorded every 2.6 milliseconds.
Figure 6.5 provides a colour map representation of throughput as the number of nodes

Chapter 6 Evaluation 142

and threads per nodes increases. The figure clearly shows an upward trend. Warmer
colours represent higher throughput. In black and white, the lighter the shade the higher
the throughput.

Figure 6.4: Throughput as the number of jobs and threads per jobs increases

Figure 6.5: Colour map of throughput

These performance figures show that the provenance store is scalable with respect to data
size and client connections. More importantly, this information can be used by applica-

Chapter 6 Evaluation 143

tion developers to ascertain the impact p-assertion recording will have when integrated
with their application. They can also use the figures to determine the deployment strat-
egy that bests suits their performance requirements. We come back to this trade-off
between total throughput and record time performance later in the chapter.

6.4 Case Study Performance

Having looked at the performance of the Provenance Store in a controlled environment,
we now investigate the the impact of p-assertion recording on the example application
ACE. Recall from Chapter 5 that ACE is a combination of multiple distributed compo-
nents running across multiple institutions. Our implementation of ACE was designed
to run in a Grid environment. Figure 6.6 shows the deployment workflow for the imple-
mentation of the ACE application. The different organisations involved are identified by
grey boxes with dotted lines. Sequences are obtained from an external provider through
either a Web Service or via FTP. These are then collated locally (i.e. on the bioinfor-
matician’s computer) into several sample sequences. The Jobs Creator then generates a
series of jobs to be submitted to a Grid and executed. The executables used by the jobs
are pre-staged on the Grid (i.e. they are already available on the Iridis cluster).

Provided by

a Web Service

Executed Locally

Executed on the Grid

Sequences

Collate Sample

collated

sample

sample

size

Job

Encode by

Groups

Compress
Compute

Entropy

Calculate

Efficiencey

recoded

sample

recoded

sample

compressed

size
shannon

entropy

group

coding

information

efficiency value

Job

Encode by

Groups

Compress
Compute

Entropy

Calculate

Efficiencey

recoded

sample

recoded

sample

compressed

size
shannon

entropy

group

coding

information

efficiency value

Job

Encode by

Groups

Compress
Compute

Entropy

Calculate

Efficiencey

recoded

sample

recoded

sample

compressed

size
shannon

entropy

group

coding

information

efficiency value

Jobs

Creator

Collate Sample

collated

sample

sample

size

Figure 6.6: ACE deployment workflow

Our implementation generates Condor [181] compatible job descriptions, which are then

Chapter 6 Evaluation 144

submitted to Iridis via a Globus interface using Condor-G [76]. Globus provides an
abstraction over a wider variety of schedulers and jobs submission interfaces. Therefore,
the jobs created by the Jobs Creator can run on any Globus enabled Grid that can
run Java executables. This portability is important because it allows ACE to be run
wherever computational resources can be procured. For example, ACE could be run
on the United Kingdom’s National Grid Service (http://www.grid-support.ac.uk/) or
the Open Science Grid (http://www.opensciencegrid.org/). In fact, the certificates used
by our implementation to access Iridis using Globus are issued by the National Grid
Service.

The collate sample portion of the ACE workflow is typically run once and a number of
jobs are generated to process these samples with different groups. In the experimental
setup for these performance measurements, one run of ACE consists of 80 jobs. Each job
analysed 900 unique groups on 5 different 100K collated samples, thus, a job generates
4500 information efficiency values. A set of 900 groups is a 50K file. Process documenta-
tion that represents the provenance of each information efficiency value is stored across
two provenance stores. One store is deployed on the Grid infrastructure, the other is
deployed on the same network where the local portion of ACE executes. The provenance
store hosted locally contains documentation of the generation of the 80 jobs, which is 5
MB in size on disk.

The process documentation created by ACE is extremely detailed; the steps used to
compute each information efficiency value are recorded. To prevent duplication of data
and the creation of a larger than necessary provenance store, we make use of documen-
tation styles to enable references to input data. Therefore, a collated sample is only
documented once and not for every information efficiency value computation that takes
it as input. Furthermore, intermediate data is not stored in the provenance store if it can
be generated by a well-known and documented algorithm. For example, the output of
the PPMZ compression algorithm is not stored because it can be regenerated accurately.
After processing one run of ACE, the provenance store deployed on the Grid contains
14GB of data. In Section 6.6, we discuss the trade-offs between process documentation
detail and performance. For ACE, our choice of documentation detail is a good compro-
mise as it allows all our use case questions to be effectively answered while still achieving
acceptable performance. We now calculate the effect of p-assertion recording on ACE.
To provide an average, the data used was collected from three runs of ACE where the
same jobs were submitted for each run.

The most pertinent measure of application performance for the scientist is the duration
of an application run measured in wall clock time. Therefore, we calculate the slowdown
of ACE when recording p-assertions in terms of wall clock time. Because we run ACE
in an uncontrolled environment, we now show that the average difference in duration
between recording and non-recording jobs provides a reasonable approximation for the
impact of p-assertion recording on application performance.

Chapter 6 Evaluation 145

We start by noting that the time to collate samples is constant and is small when
compared to the time necessary to run jobs. Discounting sample collation time, we
can approximate the time to perform one run of the ACE application by summing the
runtimes of all the application’s jobs and dividing that by the average number of jobs
run in parallel. When jobs actually get scheduled and run is beyond our control and is
representive of the load on Iridis and not our experiment.

This approximation is reasonable because all jobs run on a standard computational
environment and there are no dependencies between jobs. Furthermore, we observe that
in ACE, parameter variation in terms of groups has very little effect on job duration, as
we have 95% confidence that a job will last 22 minutes ± 30 seconds. Figure 6.7 shows
that job times follow a normal distribution and the majority of job times fall within
the stated confidence interval. Thus, from Figure 6.7 and our reasoning, we conclude
that the average job runtime is representative of overall application runtime. Thus, a
slowdown in job runtime is a good predictor of the slowdown in application runtime.

Histogram of Job Runtime frequency

0

10

20

30

40

50

60

70

80

90

0:20:30 0:21:00 0:21:30 0:22:00 0:22:30 0:23:00 0:23:30 0:24:00

Job Runtimes (hours:minutes:seconds)

fr
e
q

u
e
n

c
y

Job Runtime frequency

Figure 6.7: Frequency distribution of job times

We now consider the scenario in which jobs record p-assertions. In this scenario, the
runtime is affected by two additional factors: the p-assertion creation time and the p-
assertion record time. We note that the record time for p-assertions can be influenced
by contention for the provenance store from other jobs as shown in Figure 6.3. How-
ever, the influence of contention is negligible because, although the distribution of job
parallelism is broad ranging from 0 to 60 jobs in parallel (see Figure 6.8), a majority of
p-assertion recording job times fall within two standard deviations of the average (i.e.
either plus/minus a minute away from the average job run time). This clustering of job
times is shown in Figure 6.9 and mirrors the result from Figure 6.7. Thus, contention is

Chapter 6 Evaluation 146

not a factor influencing p-assertion record time within ACE.

Figure 6.8: Distribution of job parallelism

Having discounted both contention as an influence on p-assertion record time and pa-
rameter variation as influence on job runtime, we conclude that the difference between
the runtime of ACE and the runtime of ACE with p-assertion recording is the time it
takes to create and record p-assertions. Figure 6.10 shows the maximum, minimum and
average job record times over all application runs and the difference between times with
and without p-assertion recording. Taking the average, there is a 13% overhead on job
runtime for p-assertion recording. From our previous reasoning, we conclude that there
is 13% overhead for recording on application runtime.

We believe this value is acceptable in light of the functionality gained from having an
accurate representation of the process by which the results of ACE are produced. We now
analyse how the process documentation recorded can be used to satisfy the provenance
questions posed in Chapter 5.

6.5 Use Case Satisfaction

The process documentation recorded when running ACE was detailed enough to answer
the six use case questions presented in Section 5.4. We now discuss the query algorithms
used to answer the questions and give examples of the results produced. The common

Chapter 6 Evaluation 147

Histogram of Job Runtime with P-assertion Recording Frequency

0

10

20

30

40

50

60

70

80

90

0:23:00 0:23:30 0:24:00 0:24:30 0:25:00 0:25:30 0:26:00 0:26:30 0:27:00

Job Runtime (hours:minutes:seconds)

F
r
e
q

u
e
n

c
y

Job Runtime Frequency

Figure 6.9: Frequency distribution of p-assertion recording job times

Job Runtime Job Runtime with Recording Difference
Maximum 23:20 26:24 3:04
Average 22:24 25:17 2:53
Minimum 20:39 23:09 2:30

Figure 6.10: Maximum, Minimum and Average job record times both with and with-
out p-assertion recording

thread that runs through all the algorithms is that they all relate to the provenance of the
results produced by the ACE. Figure 6.11 shows a plot of the results produced by one run
of the ACE. The x-axis shows the number of the group coding and the y-axis shows the
information efficiency value. The bioinformatician generally wants information related
to the provenance of the largest information efficiency values as they identify possible
groups of interest.

The determination of the provenance of a particular information efficiency value is deter-
mined by using the provenance query functionality provided by PReServ. A simplified
version of the provenance query algorithm [125] implemented by the provenance query
functionality is shown as Provenance(x)1. The algorithm determines the provenance
of a data item x. In this case, x would be a particular information efficiency value.
Provenance(x) determines the relationship p-assertions describing the provenance of
x and returns them as a set G.

1We adopt the pseudocode style from the second edition of the book Introduction to Algorithms by
Cormen, Leiserson, Rivest, and Stein [46]

Chapter 6 Evaluation 148

Figure 6.11: Graph of groupings sorted by their ACE information efficiency values

Provenance(x)

1 G = ∅
2 find relationship p-assertions, R, where x is an effect
3 for each r ∈ R

4 do

5 G := G ∪ {r}
6 find causes, C, of r

7 for each c ∈ C

8 do G := G ∪Provenance(c)
9 return G

Each of the algorithms used to answer the use case questions makes use of the Provenance(x)
algorithm. PReServ also offers process documentation query functionality. The p-
structure is presented as an XML Document Object Model (DOM) whose hierarchy
can be traversed using XQuery [22] and various portions of the structure can be ex-
tracted. Furthermore, a client can traverse the results returned by PReServ to extract
particular information using XPath [43]. Results are provided as an XML DOM. To im-
prove pseudocode readability, we introduce extra syntax that mirrors the functionality
provided by PReServ’s XQuery interface as well as the client’s XPath functionality.

Chapter 6 Evaluation 149

• retrieve This command describes the acquisition of an entity from the provenance
store. This models querying PReServ through the XQuery interface.

• extract This command describes the extraction of an entity from another lo-
cal entity. This models performing an XPath operation over a local XML DOM
document.

When Provenance(x) is shown in pseudocode it can be interpreted as being a call
to the provenance store to perform a provenance query. We now proceed through each
use case, in turn, presenting the query algorithm used and an example of the output
produced.

6.5.1 Use Case 1

What were the sequences used in the production of a particular information efficiency
value?

In this use case, the bioinformatician wants to find the original sequences that were
collated together and then used to produce a given information efficiency value, x. The
file paths of these sequences have been recorded as internal information p-assertions
during the execution of ACE. There exists a structural relation between these sequences
and the collated sequence, namely, the collated sequence is a concatenation of the various
randomly selected original sequences. This structural relationship is documented as
a relationship p-assertion where each sequence is a cause with a parameter name of
“sequence path”. Figure 6.12 depicts this relationship; the contents of two sequence files
identified by their file paths have been collated together to form a larger sequence.

The relationship p-assertion in question is also part of the annotated causality graph that
represents the provenance of x. Therefore, the original sequences used in the production
of x can be found through the determination of the provenance of x as shown in line 1
of OriginalSequences(x).

OriginalSequences(x)

1 G := Provenance(x)
2 extract causes, C, from G, where parameter name = “sequencePath”
3 for each c ∈ C

4 do extract gpak from c

5 retrieve p-assertion, α, with gpak

6 extract sequence, s, from α

7 print s

Chapter 6 Evaluation 150

Collated Sequence:
MVPVLLSLPLLLGPAVFQETGSYSLTFLYT

GLSRPSKGFPRFQATAFLNDQAFFHYNSN

SGKAEPVGPWSQVEGMEDWEKESQLQR

AREEIFLVTLKDIMDYYKDTTGSHTFQGMF

GCEITNNRSSGAVWRYAYDGEDFIEFNKEI

PAWIPLDPAAANTKLKWEAEKVYVQRAKA

YLEEECPEMLKRYLNYSRSHLDRIDPPTVT

ITSRVIPGGNRIFKCLAYGFYPQRISLHWN

KANKKLAFEPERGVFPNGNGTYLSWAEV

EVSPQDIDPFFCLIDHRGFSQSLSVQWDR

TRKVKDENNVVAQPQMADDDVAALVVDN

GSGMCKAGFAGDDAPRAVFPSIVGRPRH

QGVMVGMGQKDSYVGDEAQSKRGILTKY

PIEHGIVTNWDDMEKIWHHTFYNELRVAP

EEHPVLLTEAPLNPKANREKMTQIMFETFN

SPAMYVAIQAVLSLYASGRTTGIVLDSGDG

VSHTVPIYEGYALPHAIIRLDLAGRDLTDYM

MKILTERGYSFTTTAEREIVRDIKEKLAYVA

LDFEQEMQTAASSSSLEKSYELPDGQVITI

GNERFRDPEALFQPAFLGMESAGIHETTY

NSIMKCDVDIRKDLYANTVLSGGTTMFPGI

ADRMQKEISSLAPPTMKIKIIAPPERKYSV

WIGGSILASLSTFQQMWISKQEYDESGPSI

VHRKCF

Sequence Path:

~/Develop/ace/experiments/splitseqs/187000/

ZA2G_MOUSE

Sequence Path:

~/Develop/ace/experiments/splitseqs/2000/

ACT1_PODCA

is caused by

is caused by

Figure 6.12: A collated sequence as the product of two sequences identified by their
file paths

/Users/pgroth/Develop/ace/experiments/splitseqs/58000/H2B_TRYCR
/Users/pgroth/Develop/ace/experiments/splitseqs/104000/PEX2_HUMAN
/Users/pgroth/Develop/ace/experiments/splitseqs/89000/MURE_XYLFA
/Users/pgroth/Develop/ace/experiments/splitseqs/77000/LGRC_BREPA
/Users/pgroth/Develop/ace/experiments/splitseqs/88000/MTLD_STRPN
/Users/pgroth/Develop/ace/experiments/splitseqs/24000/COAT_MUMIM
/Users/pgroth/Develop/ace/experiments/splitseqs/95000/NRAM_IAHSO
/Users/pgroth/Develop/ace/experiments/splitseqs/180000/YCF3_PORPU
/Users/pgroth/Develop/ace/experiments/splitseqs/139000/SLYD_HELPY
/Users/pgroth/Develop/ace/experiments/splitseqs/63000/HISX_METCA

Figure 6.13: Example of the results produced for Use Case 1

After retrieving the provenance of x, the OriginalSequences(x) algorithm finds the
global p-assertion key that identifies the internal information p-assertions containing
the paths to the original sequences. The algorithm then prints the sequence paths to
standard output. An example of the results produced is shown in Figure 6.13.

6.5.2 Use Case 2

What were the input figures used in the efficiency calculation that produced a particular
information efficiency value?

In this use case, the bioinformatician wants to obtain values that were computed during

Chapter 6 Evaluation 151

the calculation of an information efficiency value, x. These values can then be used as
part of different experiments or used to recalculate the information efficiency value using
a different algorithm. In the case of the ACE, the bioinformation wants to obtain the
input values for Equation 5.2, which is the last step in the production of x.

For x, the precise input values can be found using the algorithm
EfficiencyCalculationInputs(x), which first determines the causality graph, G,
that represents the provenance of x. From this graph, it extracts the interaction key
identifying the request made to the EfficiencyCalculation actor, which performs a pro-
grammatic version of Equation 5.2. Using this interaction key, the interaction p-assertion
containing a representation of the specific request to the EfficiencyCalculation actor can
be obtained. Once the interaction p-assertion has been retrieved, the input figures
(KC(s), `(s), H(s)) can be printed to standard output.

EfficiencyCalculationInputs(x)

1 G := Provenance(x)
2 extract the interaction key, ik, from G, where ik contains

a messageSource = “EfficiencyComputer” and
a messageSink = “EfficiencyCalculation”

3 retrieve the interaction p-assertion, α, from
the sender view of the interaction record with ik

4 extract input figures, F , from α

5 for each f ∈ F

6 do print f

The correct input figures are obtained because of the causal connection between the
input figures and x. An example set of results for this use case is shown in Figure 6.14.

compressed recoded sequence length: 4570.0 bytes
original recoded sequence length: 8704.0 bytes
recoded sequence entropy: 4.082372081011276

Figure 6.14: Example of the results produced for Use Case 2

6.5.3 Use Case 3

Were there any conflicting views of an interaction in the production of a particular
information efficiency value?

In multi-institutional scientific systems, it is important to be able to detect disagreements
about the data transmitted between parties. In this use case, the bioinformatician
wants to see if there are any such disagreements in the production of an information

Chapter 6 Evaluation 152

efficiency value, x. The algorithm ConflictingViews(x) determines if there were any
interactions in which the two participating actors created documentation that differed.
First, the algorithm retrieves the provenance of x from which it extracts the interaction
keys for all the interactions involved in the production x. Using these interaction keys,
the algorithm retrieves and compares corresponding interaction p-assertions. If the
interaction p-assertions from two corresponding views (i.e. a sender and receiver view
in the same interaction record) disagree, the interaction key identifying the interaction
is printed to standard output.

ConflictingViews(x)

1 G := Provenance(x, G)
2 extract interaction keys, K, from G

3 for each ik ∈ K

4 do retrieve the interaction p-assertion, αs, from
the sender view of the interaction record with ik

5 retrieve the interaction p-assertion, αr, from
the receiver view of the interaction record with ik

6 extract p-assertion content, ds, from αs

7 extract p-assertion content, dr, from αr

8 if ds 6= dr

9 then print ik

A set of example results produced by ConflictingViews(x) is shown in Figure 6.15.
Two interactions are identified as having conflicting views. Using this information, we
found that, in the case of the first interaction, the CondorJobsCreator actor fails to
record provenance specific information it provides via an argument list to the Driver
actor, thus, causing the conflict. In the case of the second interaction, the views differ
because the actors use slightly different Java to XML serialisation processes when creat-
ing p-assertions. In this instance, the conflicting views are not of any concern, however,
it does show that disagreements can be detected and subsequent action can be taken to
find the source of conflict.

InteractionId: acc89d74-1925-4161-b975-b4eeadffc1f32
Message Source:

http://pasoa-vmware1.ecs.soton.ac.uk/experiments/ace/CondorJobsCreator
Message Sink:

http://pasoa-vmware1.ecs.soton.ac.uk/experiments/ace/Driver
InteractionId: c2fdea59-face-43e8-aba1-a8355c6affb01

Message Source:
http://pasoa-vmware1.ecs.soton.ac.uk/experiments/ace/RandomSequenceBuilder

Message Sink:
http://pasoa-vmware1.ecs.soton.ac.uk/experiments/ace/AceEnactor

Figure 6.15: Example of the results produced for Use Case 3

Chapter 6 Evaluation 153

6.5.4 Use Case 4

Were references used in the process documentation created for a particular information
efficiency value?

One mechanism to reduce the size of process documentation in a provenance store is to
use references to data items instead of recording actual data items themselves. However,
as we will later discuss, the data store that is referred to must be as permanent as the
provenance store itself. Furthermore, this data store must guarantee that the data
items referred to will not change. Because of these issues, it is important to be able to
determine whether references were used when creating documentation for the process
that led to a result. In this use case, the result in question is, again, an information
efficiency value, x.

ReferencesUsed(x)

1 D := ∅ � Set of Documentation Style URLs
2 G := Provenance(x)
3 extract global p-assertion keys, I, from G

4 for each gpak ∈ I

5 do retrieve p-assertion, α, identified by gpak

6 extract documentation style, d, from α

7 D := D ∪ {d}
8 for each d ∈ D

9 do print d

The ReferencesUsed(x) algorithm determines whether references were used by re-
trieving the documentation styles present in the process documentation pertaining to
x. As with the previous algorithms, the provenance of x is determined. All of the
global p-assertion keys in relationship p-asssertions returned by Provenance(x) are
extracted. Using these keys, the documentation style for each identified p-assertion can
be obtained from the provenance store. Instances of the same documentation style are
collapsed. The URL of each documentation style is then printed to standard output.
An example of the output is given in Figure 6.16

http://www.pasoa.org/docstyle/AceVerbatim
http://www.pasoa.org/docstyle/AceSequenceRef

Figure 6.16: Example of the results produced for Use Case 4

Documentation styles explicitly define how process documentation was created. ACE
uses the http://www.pasoa.org/docstyle/AceSequenceRef documentation style to iden-
tify where sequences have been replaced by references to those sequences. The output
contains this URL, therefore, references have been explicitly used in the documentation

Chapter 6 Evaluation 154

of the process that led to the information efficiency value used as input. Such an explicit
definition is preferable to an approach where the use of references must be inferred from
the underlying representation. For example, one may infer the use of references by the
presence of URLs in the documentation of an interaction, however, those URLs may
have been the actual data transmitted between actors.

6.5.5 Use Case 5

What interactions are common for all information efficiency values produced by a par-
ticular job?

Often scientists want to know what is in common between different experiments. This
use case is an example of such a situation. The bioinformatician needs to determine
what steps were in common for the information efficiency values produced by the same
job. The bioinformatician provides an information efficiency value, x from the job under
consideration to the CommonInteractions(x) algorithm. In ACE, tracers are used
to demarcate both a particular job and a particular experimental run. The algorithm
makes use of these tracers to find the set of information efficiency values produced by a
job. It proceeds as follows.

CommonInteractions(x)

1 T := ∅ � Set of Tracers
2 S := ∅ � Set of common interaction keys
3 G := Provenance(x)
4 retrieve tracers, T , where the tracers are in p-assertions identified in G

5 retrieve efficiency values, E, where
the parent interaction p-assertion contains T

6 for each e ∈ E

7 do Ge := Provenance(e)
8 extract interaction keys, K, from Ge

9 for each k ∈ K

10 do if k ∈ S

11 then tally(k) := tally(k) + 1
12 else S := S ∪ {k}
13 tally(k) := 1
14 for each k ∈ S

15 do if tally(k) = |E|
16 then print k

First, the algorithm retrieves the tracers used in the production of information efficiency
value x. Then all the information efficiency values are retrieved where both the value

Chapter 6 Evaluation 155

InteractionId: c2fdea59-face-43e8-aba1-a8355c6affb04
Message Source:
http://pasoa-vmware1.ecs.soton.ac.uk/experiments/ace/AceEnactor

Message Sink:
http://pasoa-vmware1.ecs.soton.ac.uk/experiments/ace/CondorJobsCreator

InteractionId: c2fdea59-face-43e8-aba1-a8355c6affb03
Message Source:
http://pasoa-vmware1.ecs.soton.ac.uk/experiments/ace/GroupFileDivider

Message Sink:
http://pasoa-vmware1.ecs.soton.ac.uk/experiments/ace/AceEnactor

InteractionId: acc89d74-1925-4161-b975-b4eeadffc1f32
Message Source:

http://pasoa-vmware1.ecs.soton.ac.uk/experiments/ace/CondorJobsCreator
Message Sink:

http://pasoa-vmware1.ecs.soton.ac.uk/experiments/ace/Driver
InteractionId: c2fdea59-face-43e8-aba1-a8355c6affb01
Message Source:
http://pasoa-vmware1.ecs.soton.ac.uk/experiments/ace/RandomSequenceBuilder

Message Sink:
http://pasoa-vmware1.ecs.soton.ac.uk/experiments/ace/AceEnactor

InteractionId: c2fdea59-face-43e8-aba1-a8355c6affb02
Message Source:
http://pasoa-vmware1.ecs.soton.ac.uk/experiments/ace/AceEnactor

Message Sink:
http://pasoa-vmware1.ecs.soton.ac.uk/experiments/ace/GroupFileDivider

Figure 6.17: Example of the results produced for Use Case 5

and the tracers are contained within the same interaction p-assertion. Here, we make use
of the fact that ACE transmits tracers along with the contents of messages and thus are
documented in the same p-assertion. Once the information efficiency values produced by
a job have been retrieved, the provenance of each value is then found. From the returned
causality graphs, interaction keys are extracted. A tally is kept of whether an interaction
key occurs for an information efficiency value. If an interaction key occurs in the causality
graphs of every value, then the interaction key is printed to standard output. Figure
6.17 shows an example set of results. It lists formatted interaction keys that specify
the interactions that were in common for the all the information efficiency produced by
the job that also produced the information efficiency value 0.12861295968697928. These
results are in line with what is expected given the ACE workflow.

6.5.6 Use Case 6

How long does it take to produce an information efficiency value from a particular col-
lated sequence?

In this use case, the bioinformatician wants to determine the time it takes to calculate
information efficiency for a particular collated sequence. The start time of an efficiency
calculation is recorded as an internal information p-assertion in the context of the request

Chapter 6 Evaluation 156

interaction from the Driver actor to the EfficiencyComputer. In the response interaction,
the corresponding end time is recorded, again, as an internal information p-assertion.
The ProcessingDuration(s) algorithm makes use the notion that the request and
response interactions are causally connected in order to associate the start and end
times. The algorithm takes a sequence, s as input. It then finds the interaction keys
of the interaction records where s was documented. After this step, the provenance of
each information efficiency value is found. If the returned causality graph contains any
of the previously found interaction keys, then the start time and end time as well as the
grouping are retrieved. The grouping along with the difference between start and end
time are printed to standard output. An example set of results is shown in Figure 6.18.

ProcessingDuration(s)

1 retrieve interaction keys, K, where
the interaction records contain s

2 retrieve efficiency values, E

3 for each e ∈ E

4 do G := Provenance(e)
5 for each k ∈ K

6 do

7 if G contains k

8 then retrieve the internal information p-assertion, αs, where
αs is in the sender view
of the interaction record identified by k

9 extract start time, st, from αs

10 extract the interaction key, ike, from G where
message source = “EfficiencyComputer” and
message sink = “Driver”

11 retrieve the internal information p-assertion, αe, where
αe is in the receiver view
of the interaction record identified by ike

12 extract end time, et, from αe

13 retrieve the interaction p-assertion, pag, where
pag is in the the sender view
of the interaction record identified by k

14 extract grouping, grp, from pag

15 print grp

16 print (et− st)

This use case shows that process documentation can be created at multiple levels of ab-
straction. Furthermore, we can connect, through a causal chain, documentation created
at different times and by different components within a job.

Chapter 6 Evaluation 157

for group: b:A,c:R,d:N,e:D,f:C,g:Q,h:E,i:G,j:H,
k:I,l:L,m:K,n:M,o:F,p:P,q:S,r:T,s:W,t:Y,u:V

duration is 804
for group: b:A,c:R,d:N,e:D,f:C,g:Q,h:E,i:G,j:H,

k:I,l:L,m:K,n:M,o:F,p:P,q:S,r:T,s:WY,t:V
duration is 547

Figure 6.18: Example of the results produced for Use Case 6

In this section, we have shown how the use cases presented in Chapter 5 can be solved,
practically, through provenance queries performed over recorded process documentation.
In the next section, we analyse the results of our evaluation and make a number of
recommendations for provenance store deployment and the creation of provenance-aware
applications.

6.6 Analysis

Section 6.5 provides clear evidence that it was worthwhile to record process documen-
tation for the ACE. Similar questions to those answered in Section 6.5 arise in a wide
variety of applications [126]. Thus, our approach to solving the provenance problem
should be considered for such applications. When considering a process documentation
based solution, developers face two major decisions:

1. How detailed should the process documentation created by the application be?

2. What is the provenance store infrastructure required to provide the quality of
service expected for an application?

The answers to these questions are clearly application dependent. However, based on
our evaluation, we offer a series of recommendations for developers to use when making
their applications provenance-aware. These recommendations are presented in terms of
trade-offs. A developer can then decide what costs to bare for what benefits.

6.6.1 More detail vs. more time

Detailed process documentation is useful because it allows more questions to be asked
about the execution of an application. Furthermore, queries can be answered in a more
comprehensive fashion while allowing users to drill down to find out what exactly hap-
pened during an application run. With enough detail, process documentation could be
used to rerun a process without the original programs or executables. However, the
more detailed process documentation is, the greater the impact recording it will have
on application performance. Therefore, developers face a trade-off between recording

Chapter 6 Evaluation 158

detailed process documentation and overall application performance. From our evalua-
tion, one way to determine how detailed process documentation should be is to define a
set of example use cases for the process documentation created by an application. The
application should, at a minimum, record process documentation at a level of detail
great enough to answer these questions.

Recommendation: Design the application so that it records enough process documen-
tation to answer a set of example use cases.

This recommendation is part of a methodology for designing provenance-aware applica-
tions specified in Munroe et al. [139]. It is, however, beyond the scope of this dissertation
to define a such a methodology specifying what needs to be recorded by applications.

6.6.2 Confidence and longevity vs. space and time

A provenance store has a number of attributes to enable the data it maintains to be held
over a long period of time and with confidence by its users. First, a provenance store
follows a Write-Once-Read-Many (WORM) policy. Once data is written to the store, it
should not be deleted or changed, such that a user can be confident that the p-assertions
in the store will be the same as when they were recorded. Furthermore, provenance stores
cater for longevity through an explicit fixed data structure. Because of these attributes,
it is beneficial to record all the elements that make up the documentation of a process
in a provenance store.

However, in many cases data is large enough to make this approach unfeasible. For
example, in the case of CERN, the data transferred between actors is on the order of
terabytes [79], which would be expensive and time consuming to duplicate. Therefore,
the p-structure supports the use of references to data stored outside the provenance store.
In ACE, references were used when recording sequence data, which led to a decrease
in record time and storage overhead. Unfortunately, data stored outside a provenance
store may not have the same longevity and confidence guarantees that provenance store.
To address this trade-off between the provenance store’s guarantees and the storage of
large data, we make the following recommendation based on our evaluation:

Recommendation: Store referenced data items on storage infrastructure that has the
same qualities of service as the infrastructure used by provenance stores.

6.6.3 Throughput vs. contention

As shown in Figure 6.4, the greater the number of clients accessing the provenance store
the more throughput the provenance store achieves. Therefore, to maximise the use
of computational resources, a single provenance store should be employed. However,

Chapter 6 Evaluation 159

from Figure 6.3, as the number of clients to the provenance store increases the response
time as perceived by individual clients also increases. Thus, to maximise client response
time there should be a provenance store per client, which is prohibitive in terms of
computational and system administration resources. There exists, then, a trade-off
between maximising the usage of computational resources and minimising the response
time for clients. Based on our evaluation of ACE, contention has little perceived impact
on application performance because application components do not typically access the
provenance store at exactly the same time. Therefore, our recommendation is as follows:

Recommendation: Initially, deploy a provenance store per application and increase
the number of provenance stores deployed if application performance is not acceptable.

6.6.4 Space vs. time

Process documentation takes up storage space. However, because PReServ’s implemen-
tation of PReP and the p-structure make use of XML, significant space can be saved
by using compression. However, as shown in Figures 6.2(a) and 6.2(b), compression on
communication channels can increase record time substantially. However, if p-assertions
are bundled together in large chunks, compression may have a positive impact on p-
assertion recording time, especially on slower speed networks. This bundling approach
is taken in ACE, which had a runtime overhead of 13%. Based on this, we make the
following recommendation:

Recommendation: For applications which can bundle p-assertions together in large
record messages, use compression.

These four recommendations provide a guide to developers on how their applications
should generate process documentation and how that documentation can be most effec-
tively recorded into provenance stores. Together they provide reasonable initial config-
urations and suggest alternatives to improve specific performance factors.

6.7 Confidence Revisited

In the introduction to this dissertation, we discussed the problem of confidence in multi-
institutional scientific systems. One reason for this lack of confidence is the inability
to reproduce results produced by these systems. Using our approach, the results of
experiments can be reproduced given enough information is stored in the provenance
store. In the case of ACE, the experiment could be reproduced based on the information
stored in the provenance store, which includes the algorithms used, the ordering of algo-
rithms, pointers to original data, and important intermediate data items. However, this

Chapter 6 Evaluation 160

reproduction would have to be programmed but such a program to perform automatic
reproduction is beyond the scope of this thesis.

Reproduction is one important factor in scientists’ confidence in experimental results.
However, as listed in Section 1.1, there are several other factors that contribute. We now
revisit these factors and discuss how our approach to the provenance problem addresses
them.

• The ability to interpret and understand a result.

To interpret and understand a result one needs to know the process that led to
it (i.e. its provenance). We have shown that for results produced by ACE, their
provenance can be determined using a query over process documentation. An
example of this is Use Case 2, where intermediate data that led to the produc-
tion of an information efficiency value was extracted by performing a provenance
query. This intermediate data helps the scientist to understand why the efficiency
calculation was performed in a particular way.

• The ability to understand the experiment and chain of reasoning that was used in
the production of a result.

Again, the core element in understanding the chain of reasoning that led to a
result is understanding the provenance of that result. Each use case that has been
discussed relies on being able to determine the provenance of a result. Thus, our
approach to the provenance problem provides confidence to scientists and users
because they can understand the causal chain that was followed in an experiment.

• The ability to verify that the experiment responsible for a result was performed
according to acceptable procedures.

While not discussed here, process documentation stored in PReServ has been used
to verify that an experiment was performed according to an acceptable plan [129].

• The ability to identify what the inputs to an experiment were and where they came
from.

In Use Case 1, a query was performed that determined the sequences that were
inputs to ACE and the paths to them on the file system demonstrating that process
documentation can be used to address this confidence factor.

• The ability to know who performed an experiment and who is responsible for its
results.

It was shown in Use Case 3 that discrepancies between the sender and receiver
views of an interaction can be detected. Once such a discrepancy is found, the
p-structure contains the identity of the party responsible for creating the docu-
mentation (the asserter identity). By the notion of observation by participation,

Chapter 6 Evaluation 161

as codified in the factual characteristic, a party is responsible for the portion of
the experiment they documented. Hence, using process documentation organised
via the p-structure, a scientist can know who is responsible for an experiment.

Because these factors are addressed by our conceptual blueprint, scientists who have
integrated PReServ with their multi-institutional scientific systems will have greater
confidence in those systems’ results.

6.8 Related Work and Other Applications

This evaluation follows on from previous evaluations of PReServ. We previously de-
scribed the integration of provenance in an experiment, the Protein Compressibility Ex-
periment, similar to the Amino Acid compressibility Experiment (ACE) and evaluates
the performance impact of p-assertion recording on that experiment [88]. The impact of
recording p-assertions in this setting was found to be 15% of application runtime, which
is comparable to the overhead measurement presented here. The evaluation here differs
in that overhead is studied across a Grid-enabled cluster environment. Previously, it was
conducted using a small number networked personal computers running virtual machine
software.

PReServ’s performance was also compared with the provenance collection system Karma
[165]. In terms of recording process documentation, the performance of PReServ was
similar to, or outperformed, Karma. The version of PReServ studied in this evaluation
addresses several deficiencies noted in the comparison study with Karma. First, PReServ
no longer demonstrates a super-linear trend as the size of the provenance store increases.
Second, through the use of compression, PReServ has reduced the amount of disk space
it requires for the storage of process documentation. Lastly, while not in the scope of
this dissertation, PReServ has increased its query scalability dramatically through the
use of lazy loading techniques.

Additionally, a PReP compatible Provenance Store has been implemented by IBM [100].
PReServ differs with the IBM implementation in its underlying design philosophy and
goals. The IBM Provenance Store was designed to consider security and standards con-
formance. Thus, they adopted the Globus Toolkit 4 [66] container for development.
While this container enables certificate based authentication and security, it also results
in a significantly more difficult installation procedure than PReServ. Furthermore, PRe-
Serv was designed to achieve optimal recording performance by adopting Berkeley DB
JE and append-only database. While IBM’s approach was to use an XML database to
ease the development of query support. A benefit to using the common PReP interface
is that applications have been able to move between the two implementations depending
on their requirements.

Chapter 6 Evaluation 162

As noted on page 116 a variety of applications have used our approach and in particular
the PReServ software. This gives us confidence that our approach is generally applicable
to a variety of applications that use different technologies and design approaches. For
example, Townend et al. used our approach in the context of a web service environment
where the goal was to find services that were responsible for common faults [183]. In
this case, the application was modelled at a much less detailed level than ACE. Kloss et
al. shows how an aerospace engineering example can be mapped to our view of process
and what process documentation can be generated. While this example is in a Grid
environment, it uses completely different underlying technologies, namely, CORBA and
WebDav [107]. In another completely different context, organ transplant management,
our approach of using process documentation to answer provenance questions, again,
proved effective [105]. The management application was designed using an agent-based
approach and was implemented using Web Services [105]. Finally, in our own work we
were able to capture process documentation for an earlier version of ACE, which was
entirely based on shell scripts and UNIX utilities [88].

6.9 Summary

In this chapter, we presented a design for a Provenance Service, PReServ, that meets
the non-functional requirements of scalability, ease of installation, feature integration,
and client independence. The implementation was shown to be scalable in two con-
trolled performance tests. Specifically, PReServ achieved a throughput of 234,025 10k
p-assertions in 10 minutes or, from a different perspective, 2.2 GB of p-assertions were
created and recorded in a 10 minute period. Thus, every 2.3 milliseconds a p-assertion
was recorded.

PReServ was also used as the provenance store in an evaluation of the effect of p-
assertion recording in a real world multi-institutional experiment, the ACE. This evalu-
ation showed that p-assertion recording has a 13% overhead in terms of ACE application
runtime. We believe this performance is acceptable given that the process documenta-
tion recorded by the application was used to answer six different use case questions,
which would otherwise be unanswerable. The algorithms used for answering these ques-
tions were also presented in this chapter. Finally, four recommendations were given as
to how developers could best create and deploy provenance-aware applications.

In this chapter, we have shown that recording process documentation can be done with
reasonable overhead and that this recorded process documentation enables a variety of
provenance questions to be answered. Because process documentation is organised using
the p-structure and recorded using PReP, users can be confident that it is high-quality,
accurate evidence of a system’s processes. Furthermore, questions that were not con-
ceived of at the time of execution can be posed by querying over process documentation

Chapter 6 Evaluation 163

stored within PReServ. This querying is enabled by the p-structure, which explicitly
represents the causal connections between occurrences. These explicit causal connec-
tions allow causal graphs describing the provenance of multiple results to be extracted
from process documentation. Overall, our conceptual blueprint, as realised by PReServ,
enables the provenance problem to be addressed in a principled manner.

Chapter 7

Conclusion

A bioinformatician downloads the sequences for hundreds of thousands of proteins from
databases created by a worldwide community of biologists. Using these sequences, he
harnesses the power of billions of computer cycles made available by institutions and
individuals to run a novel algorithm to better study the relationships between those pro-
teins. These results are then used by another group of scientists to create new and better
pharmaceuticals. While this is an example from bioinformatics, similar methodologies
are being applied in a variety of domains including physics and economics. This is the
new face of science: experiments that span multiple locations, multiple institutions, and
multiple domains. By combining resources (computers, software, equipment, people,
etc.), such multi-institutional scientific systems have already had a powerful impact in
fields ranging from astronomy to earthquake engineering.

However, because of their complexity, it is difficult to repeat, reproduce, understand,
interpret, and verify the results produced by these multi-institutional scientific systems.
Hence, the confidence which scientists, policy makers, and the public have in these
results is decreased. On the other hand, if these stake-holders understood how these
results were produced, their history, their origins, their provenance, they would have
greater confidence in them.

This lack of the provenance of results produced by such systems is the fundamental
problem addressed by this dissertation. We have shown that through the autonomous
creation, scalable recording, and principled organisation of documentation of multi-
institutional scientific systems’ processes, this provenance problem can be solved.

We now revisit the core contributions of this dissertation.

164

Chapter 7 Conclusion 165

7.1 Contributions

7.1.1 Process Documentation and Provenance

In this dissertation, we have made an explicit distinction between documentation and
provenance. From a brief review of the use of provenance in art, we ascertained that
evidence of the provenance of a physical or digital object is shown through documenta-
tion. Thus, a representation of the provenance of an object can be obtained by querying
over a set of documentation. Specifically, such a query is attempting to find the set of
documentation that represents the particular process by which the object came to be.

Hence, by providing comprehensive documentation of a system’s processes, the prove-
nance of the results produced by that system can be determined. This was shown in
Section 6.5 where six provenance use cases for the Amino Acid Compressibility Exper-
iment were solved using a query over process documentation. These use cases were
not only important for this particular bioinformatics experiment, but they also exem-
plify a range of provenance questions that arise from various domains including physics,
chemistry, and computer security.

The distinction between process documentation and provenance also results in better
system design. Concretely, it enables the separation of concerns between functionality
for creating, recording querying process documentation. For example, developers can
design software that specialises in analysing, querying and making use of process docu-
mentation without ever having to worry about how it ended up in a provenance store.
Likewise, other developers can design tools to assist with the integration of recording in
applications without concerning themselves with how queries will be catered for.

To enable this clear distinction to be manifested in systems, we specified a common data
model shared between creators of process documentation and queriers of it. This data
model is called the p-structure.

7.1.2 The P-Structure

The p-structure is the shared understanding between those who create process docu-
mentation and those who use it to answer provenance queries. A shared model that
is also generic has a number of benefits, which include future proofing, easier sharing
of documentation between institutions, empowering the development of common tools,
and platform independence. These are powerful reasons to adopt such a shared model.

However, these benefits are subsidiary to the primary objective of a data model for pro-
cess documentation, namely, the support for the accurate determination of provenance.
To achieve this objective, the p-structure is based on two fundamental principles: causal-
ity and accuracy.

Chapter 7 Conclusion 166

Understanding the origins of scientific results is fundamentally about letting users un-
derstand what caused these results to be as they are. Thus, a core part of our model
of process documentation is the explicit representation of causal connections between
data. The causal connections or relationships present in the data model are based on
a well-defined notion of causality as defined in Section 2.4.3. Without these explicit
causal relationships, the determination of the provenance of results would be signifi-
cantly harder.

To ensure that the results of provenance queries conducted over process documentation
are accurate, the p-structure as well as the P-assertion Recording Protocol support
and when possible enforce process documentation to have the characteristics of being
factual, attributable, autonomously creatable, process oriented, immutable and finalizable.
Taken together these characteristics define high-quality process documentation. Each
characteristic provides a different and important assurance to the user that the answers
they receive from a provenance system are accurate and something which they can be
confident in.

7.1.3 Recording process documentation

To cater for the recording and storage of high-quality process documentation, we in-
troduce the notion of a specialised architectural element called the provenance store.
Once an actor has created process documentation, it records the documentation into a
provenance store so that other users can query it. The provenance store frees actors
from the burden of individually maintaining process documentation.

Because there are many different institutions and sites within a multi-institutional sci-
entific system, provenance stores can be distributed. Distribution helps to ensure scal-
ability by spreading load over multiple repositories. Furthermore, it lets institutions
preserve control over their process documentation. To help developers correctly use
distributed provenance stores, we have developed patterns that show how provenance
stores can be deployed for use in their applications. In addition to these deployment
patterns, we introduced a mechanism to connect process documentation stored across
multiple provenance stores, which is modelled after World Wide Web hyperlinks. These
links allow process documentation to be queried across multiple, distributed provenance
stores.

To ensure that the process documentation recorded in provenance stores has high-quality
characteristics, we have specified the P-assertion Recording Protocol (PReP). The pro-
tocol is designed to cater for scalable implementations by being asynchronous and state-
less. Using an abstract state machine formalisation, we established, through a series
of proofs, that each high-quality characteristic was addressed by the protocol. The
formalisation also provides an implementation independent specification, which devel-

Chapter 7 Conclusion 167

opers can then use to correctly implement PReP on the various platforms that exist in
multi-institutional systems.

7.1.4 Performance Impact

Through an evaluation of an implementation of our approach, we demonstrated that
recording process documentation is an effective solution to the provenance problem.
The implementation, PReServ, is Web Services based and designed to address four non-
functional requirements: scalability, client independence, ease of installation, and feature
integration. Using PReServ, the evaluation performed consisted of both controlled and
real world experiments.

In the controlled experiments, we considered the impact on performance of increas-
ing provenance store size and an increasing number of clients using the provenance
store concurrently. We showed that store size had some impact on performance but
when compression was enabled storage size impact was not detectable. Additionally,
we demonstrated that the provenance store was capable of handling up to 512 concur-
rent clients without having a plateau in throughput. These performance results led
to a recommendation that applications record process documentation in bundles using
compression.

In the real world experiment, we analysed the impact on of p-assertion recording on the
Amino Acid Compressibility Experiment presented in Chapter 5. This bioinformatics
experiment was executed on the University of Southampton’s Iridis Cluster computer
and produced 14 gigabytes of process documentation for each run of the experiment.
Over 360,000 unique results were produced during a run. Using statistical reasoning,
we found that the overhead of the p-assertion recording on experiment runtime was an
acceptable 13%.

For this 13% overhead, six provenance use cases were answered that had previously been
unanswerable. Each algorithm used to answer the use cases was dependent on being able
to find the provenance of some data item. These algorithms along with example results
were presented in Section 6.5. The use cases selected are representive of various other
use cases from domains ranging from high energy physics to chemistry. Additionally,
they cover the questions of who, what, when, where, why, and how. We have shown that
in a particular multi-institutional scientific system the approach of creating, recording
and querying process documentation orgranised using a shared model is effective for
solving highly relavent provenance questions. Furthermore, the use of our approach in
a number of other applications [105, 107, 118, 149, 183, 193] including organ transplant
management and fault tolerance in distributed systems shows that it is applicable to a
hetereogenous mix of applications.

Chapter 7 Conclusion 168

7.2 Support for High-Quality Documentation

In general, users want to be able to have an accurate representation of the provenance
of their digital objects. Using the approach described here, this representation is ob-
tained via a query over process documentation. Thus, the accuracy of provenance is
directly associated with the accuracy of process documentation. Therefore, throughout
this dissertation, we have discussed characteristics that help to ensure that process docu-
mentation is accurate. We termed process documentation that has these characteristics,
high-quality.

These characteristics are based on an analogy between process documentation and ev-
idence. We have argued that process documentation can be seen as evidence that a
process occurred in a particular fashion. This view is supported by our review of various
use cases [126] where documentation is often used as evidence. This analogy is at the
heart of our notion of what makes high-quality process documentation. We now review
these high-quality characteristics and discuss briefly how our protocol and data model
support them.

Characteristic 1: Factual

It is important for evidence and thus process documentation to be factual. It should
reflect what has actually occurred. The data model supports this characteristic by
adopting and enforcing, where possible, the notion of observation by participation that
is only actors who participate in a process should provide process documentation about
it. PReP supports this characteristic by ensuring that only correctly typed p-assertions
end up in the provenance store, which means that queriers can interpret documentation
within the provenance store as being factual (i.e. from actors who directly participated
in the process).

Characteristic 2: Attributable

Just as evidence in a court of law is often judged by its provider, process documentation
is also judged by the actor, person, or institution responsible for it. Furthermore, if
evidence or process documentation is false, knowing who created it allows remedial
action to be taken against the responsible party. The p-structure supports attribution
through the asserter identity associated with each p-assertion. Likewise, PReP ensures
that the asserter identity is the identity of the actor who creates the p-assertion and
that the identity is not modified in transit to or within the provenance store.

Characteristic 3: Autonomously Creatable

Gathering evidence or creating and recording process documentation should be con-
ducted by the appropriate person, institution, or actor at the most appropriate time.
The p-structure supports this characteristic through the interaction key, which enables

Chapter 7 Conclusion 169

process documentation created and recorded by independent actors to be collated to-
gether. The interaction key is also designed so that it can be generated without external
dependencies. To ensure that interaction keys are generated and used correctly, PReP
enforces three actor behaviour rules. Additionally, to allow process documentation to
be recorded when most appropriate or convenient, the protocol is asynchronous.

Characteristic 4: Process Oriented

Process documentation, like evidence, is only useful if it can be put together to show
that a process occurred in a particular fashion. Understanding processes is inherently
about understanding the causal connections between occurrences. The interaction and
relationship p-assertions of the p-structure are specifically designed to capture just such
causal connections. Furthermore, the p-structure is based on a view of process derived
from the service-oriented architectural style. We have also shown that, using PReP,
process documentation reflecting a process will eventually be stored in the provenance
store after the process has completed.

Characteristic 5: Immutable

Just as it is important not to tamper or delete evidence, it is important not to mod-
ify or delete process documentation. We have shown, via formal proof, that process
documentation stored within the provenance store is immutable.

Characteristic 6: Finalizable

To make a judgement about how a process, experiment, or crime has occurred, it is
helpful to have all the evidence available. To ensure that users know when all the
process documentation from a particular party is available, we introduced the notion of
a complete view of an interaction. Using PReP’s submission finished message, an actor
can tell the provenance store when they have finished recording all the p-assertions about
a particular interaction. PReP, then, prevents any additional p-assertions from being
recorded about that view.

By analogy to evidence, these characteristics are crucial for having accurate process doc-
umentation. This dissertation has specifically described mechanisms for supporting the
creation and recording of process documentation with these high-quality characteristics.

7.3 Future Work

The approach we have outlined centered around a common model for process documen-
tation provides a foundation for the comprehensive support of provenance in both virtual
and physical systems. Based on the ideas and concepts presented in this dissertation,
a complete middleware architecture for provenance systems has been developed, which

Chapter 7 Conclusion 170

extends the concepts here to deal with issues of security, querying, and the management
of process documentation [92]. This architecture is partially implemented by both the
PReServ provenance store and an IBM produced implementation [100]. This provides
a basis for users of the software to integrate our approach with more applications, to
improve the software’s performance and scalability and most importantly start building
applications based on provenance.

We see two directions for future work based on this foundation: integration and usage.

7.3.1 Integration

One of the significant hurdles for any provenance system is how to integrate with ap-
plications. While other systems advocate capturing data by modifying the operating
system, this does not deal with distributed applications nor does it capture the high level
meaning of application execution. In other work, we have proposed the use of generic
wrappers designed for specific execution environments [89]. However, these wrappers
may not be able to capture some application specific data. Therefore, it is still an
open question as to the appropriate mechanisms necessary to automatically integrate
with applications. Particularly, the question as to what is necessary to not only capture
application execution but also the high level meaning of the process in an automatic
fashion. Furthermore, work needs to be done to integrate with the variety of desktop
and web-based applications that people use for their every day information processing
activities.

Beyond specific application integration tasks, the methodology [139] used in making sys-
tems provenance-aware needs to be improved through integration with common develop-
ment methods such as those based on the Unified Modelling Language like the Rational
Unified Process [109]. To assist in the usage of the methodology, tools for integrated
development environments need to be developed. Taken together both improvements
could engender an environment where making applications provenance-aware is a central
part of any application development effort.

Outside of the digital world, work is necessary in understanding how to integrate with
physical systems. There are many technologies such as RFID and bar codes that allow
physical objects to be tracked. However, the key is to be able to create documentation
for all the processes that effect physical objects across multiple zones of control. For
example, it would be useful to determine the provenance of a physical object in a home
where the provenance included what has happened to it in the home, at the retailer
where it was sold, in the ship where it was transported, and at the factory where it was
manufactured.

In this dissertation, work has focused primarily on the ability to capture the information
necessary to determine provenance. In the future, we would like to exploit this new

Chapter 7 Conclusion 171

source of data.

7.3.2 Usage

As we have already seen in Chapter 5, an assortment of questions can be answered by
the determining the provenance of results. However, there are still numerous research
questions as to how best to make use of this new source of information. One question
that arises is how do we make provenance accessible for user analysis. While a number
of systems provide for the visualisation and navigation of provenance [200, 13, 57], we
believe there is a significant amount of research that remains to be done in the area of
visualisation for analysis. This includes questions such as how to display provenance
graphs that have thousands of relationships, are there novel mechanisms to display the
provenance of a result, and are there novel user interfaces to cater for the navigation of
process documentation at multiple levels of abstraction.

Another area of interest is how to effectively use the provenance of results as input to new
experiments. Can understanding the history of results change experimental processes?
Can provenance be used to automatically improve experiments or even generate new
derivative experiments? How can we most effectively reason about past processes and
validate them against current plans? We imagine that future experiments will rely not
only on input data but also on the provenance of that data. To assist in the usage
of provenance for experiments, published papers deposited in institutional repositories
will provide direct access to the process documentation that describes the provenance
of the paper. This process documentation will including information ranging from the
experimental process used to generate the paper’s result to the programs used to edit
the paper.

Finally, as the public demand increases for greater transparency by corporations and
governments, the ability to determine the provenance of all products whether digital
or physical will need to be provided. This raises interesting research issues in terms of
security, privacy, and trust. Additionally, research needs to be done in how to manage
and analysis all this data in scalable fashion, hopefully, by making use of some of the
intrinsic qualities of process documentation like causal connections. The key is to obtain
transparency while not being overwhelmed with extraneous or superfluous information.

7.4 Concluding Remarks

This dissertation has shown that the problem of determining the provenance of re-
sults produced by complex multi-institutional scientific systems can be solved through
the autonomous creation, scalable recording, and principled organisation of documen-
tation of these systems’ processes. While we have emphasised the application of this

Chapter 7 Conclusion 172

approach to scientific systems, we believe that same ideas can be applied to any system
whether consumer, business, or scientific. Globalisation, out-sourcing, and the rise of
loosely coupled organisations emphasise the need to be able to track and understand the
provenance of objects (both physical and digital) produced by systems composed from
multiple, independent institutions and organisations. Additionally, the trend towards
ever greater transparency will require that the provenance of documents and products
be made available. In the future, we will not only be able to understand how the report
we received in our email was produced but also how, where, and by whom our t-shirt
was made and the exact chain of events that led to us sitting in Starbucks drinking a
coffee. By understanding the provenance of all the things that we deal with in our daily
lives, we will have greater confidence and knowledge about our world. This dissertation
is a small building block towards the grand vision of being able to know the provenance
of everything.

Bibliography

[1] Portable Batch System, May 2007. http://www.openpbs.org.

[2] A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Grsel, S. Kawamura, F. J.
Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss,
S. E. Whitcomb, and M. E. Zucker. LIGO: The laser interferometer gravitational-
wave observatory. Science, 256(5055):325–333, April 1992.

[3] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. Nabar, T. Sugihara, and
J. Widom. Trio: A System for Data, Uncertainty, and Lineage. In Proceedings of
the 32nd International Conference on Very Large Data Bases, pages 1151–1154,
Seoul, Korea, September 2006.

[4] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthitacharoen.
Performance debugging for distributed systems of black boxes. In Proceedings of
19th ACM Symposium on Operating Systems Principles, October 2003.

[5] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison Wesley, second edition, 2006.

[6] C. Alexander. The Timeless Way of Building. Oxford University Press, 1979.

[7] C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language. Oxford
University Press, 1977.

[8] G. Alonso and A. E. Abbadi. GOOSE: Geographic object oriented support envi-
ronment. In Proc. of the ACM workshop on Advances in Geographic Information
Systems, pages 38–49, Arlington, Virginia, November 1993.

[9] G. Alonso and C. Hagen. Geo-Opera: Workflow Concepts for Spatial Processes.
In Proc. 5th Intl. Symposium on Spatial Databases (SSD ’97), Berlin, Germany,
June 1997.

[10] I. Altintas, O. Barney, and E. Jaeger-Frank. Provenance Collection Support in the
Kepler Scientific Workflow System. In Moreau and Foster [135], pages 118–132.

[11] M. G. Anja Ebersbach and and R. Heigl. Wiki: Web Collaboration. Springer,
2005.

173

BIBLIOGRAPHY 174

[12] K. Arnold and J. Gosling. The Java Programming Language. ACM Press/Addison-
Wesley Publishing Co., second edition, 1998.

[13] T. Assandri. An Investigation into Provenance Visualisation (Summer Project
Report). Technical report, University of Southampton, 2006.

[14] M. Atkinson, D. DeRoure, A. Dunlop, G. Fox, P. Henderson, T. Hey, N. Paton,
S. Newhouse, S. Parastatidis, A. Trefethen, P. Watson, and J. Webber. Web
Services Grids: An Evolutionary Approach. Technical report, Open Middleware
Infrastructure Institute UK, July 2004.

[15] R. S. Barga and L. A. Digiampietri. Automatic Generation of Workflow Prove-
nance. In Moreau and Foster [135], pages 1–9.

[16] R. S. Barga and L. A. Digiampietri. Automatic Capture and Efficient Storage of
eScience Experiment Provenance. Concurrency and Computation: Practice and
Experience, 2007.

[17] P. C. Bates. Debugging heterogeneous distributed systems using event-based mod-
els of behavior. ACM Transactions on Computer Systems, 13(1):1–31, 1995.

[18] R. A. Becker and J. M. J. M. Chambers. Auditing of data analyses. SIAM Journal
of Scientific and Statistical Computing, 9(4):747–760, 1988.

[19] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource Locators (URL).
Technical report, The Internet Engineering Task Force, December 1994. RFC 1738.

[20] D. Bernholdt, S. Bharathi, D. Brown, K. Chancio, M. Chen, A. Chervenak, L. Cin-
quini, B. Drach, I. Foster, P. Fox, J. Garcia, C. Kesselman, R. Markel, D. Middle-
ton, V. Nefedova, L. Pouchard, A. Shoshani, A. Sim, G. Strand, and D. Williams.
The Earth System Grid: Supporting the Next Generation of Climate Modeling
Research. Proceedings of the IEEE, 93(3):485–495, March 2005.

[21] M. J. Betts and R. B. Russell. Bioinformatics for Geneticists, chapter 14, pages
289–314. John Wiley & Sons, 2003. Amino acid properties and consequences of
subsitutions.

[22] S. Boag, D. Chamberlin, M. F. Fernndez, D. Florescu, J. Robie, and J. Simon.
XQuery 1.0: An XML Query Language. Technical report, World Wide Web Con-
sortium, 2006.

[23] G. Booch. UML in action. Communications of the ACM, 42(10):26–28, 1999.

[24] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and
D. Orchard. Web Services Architecture. Working group note, World Wide Web
Consortium, 2004. http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

BIBLIOGRAPHY 175

[25] R. Bose. A Conceptual Framework for Composing and Managing Scientific Data
Lineage. In Proceedings of the 14th International Conference on Scientific and
Statistical Database Management, pages 15–19, Edinburgh, Scotland, July 2002.

[26] R. Bose and J. Frew. Composing lineage metadata with XML for custom satellite-
derived data products. In 16th International Conference on Scientific and Sta-
tistical Database Management, pages 275 – 284, Santorini Island, Greece, June
2004.

[27] R. Bose and J. Frew. Lineage retrieval for scientific data processing: a survey.
ACM Computing Surveys, 37(1):1–28, 2005.

[28] D. Bourilkov, V. Khandelwal, A. Kulkarni, and S. Totala. Virtual Logbooks and
Collaboration in Science and Software Development. In Moreau and Foster [135],
pages 19–27.

[29] S. Bowers, T. McPhillips, and B. Ludaescher. A Provenance Model for Collection-
Oriented Scientific Workflows. Concurrency and Computation: Practice and Ex-
perience, 2007.

[30] S. Bowers, T. M. McPhillips, B. Ludäscher, S. Cohen, and S. B. Davidson. A
Model for User-Oriented Data Provenance in Pipelined Scientific Workflows. In
Moreau and Foster [135], pages 133–147.

[31] D. Box and D. Shukla. WinFX Workflow: Simplify Development With The Declar-
ative Model Of Windows Workflow Foundation. MSDN Magazine, 21(1), January
2006.

[32] U. Braun, S. L. Garfinkel, D. A. Holland, K.-K. Muniswamy-Reddy, and M. I.
Seltzer. Issues in Automatic Provenance Collection. In Moreau and Foster [135],
pages 171–183.

[33] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, and J. Cowan.
Extensible Markup Language (XML) 1.1. W3C Recommendation, World Wide
Web Consortium, August 2006. http://www.w3.org/TR/xml11.

[34] J. Brittain and I. F. Darwin. Tomcat: The Definitive Guide. O’Reilly, 2003.

[35] P. Buneman, A. Chapman, J. Cheney, and S. Vansummeren. A Provenance Model
for Manually Curated Data. In Moreau and Foster [135], pages 162–170.

[36] P. Buneman, S. Khanna, K.Tajima, and W. Tan. Archiving scientific data. In
Proc. of the 2002 ACM SIGMOD International Conference on Management of
Data, pages 1–12. ACM Press, 2002.

[37] P. Buneman, S. Khanna, and W. Tan. Why and Where: A Characterization
of Data Provenance. In International Conference on Databases Theory (ICDT),

BIBLIOGRAPHY 176

volume 1973 of Lecture Notes in Computer Science, page 316. Springer-Verlag,
2001.

[38] J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, provenance and
trust. In WWW ’05: Proceedings of the 14th international conference on World
Wide Web, pages 613–622, New York, NY, USA, 2005. ACM Press.

[39] K. M. Chandy and L. Lamport. Distributed snapshots: determining global states
of distributed systems. ACM Transactions on Computer Systems, 3(1):63–75,
1985.

[40] J. Cheney. Tradeoffs in XML Database Compression. In Data Compression Con-
ference (DCC’06), pages 392–401, 2006.

[41] C. Cherry. On Human Communication: a review, a survey, and a criticism. The
M.I.T. Press, 1966.

[42] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, March 2001.

[43] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3c recom-
mendation, World Wide Web Consortium, 1999. http://www.w3.org/TR/xpath.

[44] S. Cohen-Boulakia, O. Biton, S. Cohen, and S. Davidson. Addressing the prove-
nance challenge using ZOOM. Concurrency and Computation: Practice and Ex-
perience, 2007.

[45] R. Conradi and B. Westfechtel. Version models for software configuration man-
agement. ACM Computer Suveys, 30(2):232–282, 1998.

[46] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. The MIT Press and McGraw-Hill, second edition, 2001.

[47] B. Cornell, P. A. Dinda, and F. Bustamante. Wayback: A user-level versioning
file system for linux. In In Proceedings of USENIX 2004, 2004.

[48] T. M. Cover and J. A. Thomas. Elements of Information Theory, chapter 7, pages
144–162. John Wiley & Sons, Inc., 1991.

[49] J. Crowcroft, T. Moreton, I. Pratt, and A. Twigg. The Grid 2: Blueprint for
a New Computing Infrastructure - Peer-to-Peer Technologies, chapter 29, pages
593–622. Morgan-Kaufmann, second edition, 2004.

[50] Y. Cui. Lineage Tracing in Data Warehouses. PhD thesis, Stanford University,
December 2001.

[51] Y. Cui and J. Widom. Practical lineage tracing in data warehouses. In Proceedings
of the 16th International Conference on Data Engineering (ICDE’00), San Diego,
California, February 2000.

BIBLIOGRAPHY 177

[52] Y. Cui and J. Widom. Lineage tracing for general data warehouse transformations.
The VLDB Journal, 12(1):41–58, 2003.

[53] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a
warehousing environment. ACM Trans. Database Syst., 25(2):179–227, 2000.

[54] T. Dean. Automated planning. ACM Computing Surveys, 28(1):85–87, 1996.

[55] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. Su, K. Cahi,
and M. Livny. Pegasus: Mapping Scientific Workflows onto the Grid. In Across
Grids Conference, 2004.

[56] E. Deelman and Y. Gil, editors. Workshop on the Challenges of Scientfic Work-
flows. National Science Foundation, May 2006.

[57] V. Deora, A. Contes, O. F. Rana, S. Rajbhandari, I. Wootten, K. Tamas, and
L. Z.Varga. Navigating Provenance Information for Distributed Healthcare Man-
agement. In IEEE/WIC/ACM Web Intelligence Conference, pages 859–865, 2006.

[58] P. Deutsch. GZIP file format specification version 4.3. Technical report, Internet
Engineering Task Force, 1996. RFC 1952.

[59] L. Ding and T. Finin. Characterizing the Semantic Web on the Web. In Proceedings
of the 5th International Semantic Web Conference, 2006.

[60] F. Dvorák, D. Kouril, A. Krenek, L. Matyska, M. Mulac, J. Posṕısil, M. Ruda,
Z. Salvet, J. Sitera, and M. Vocu. gLite job provenance. In Moreau and Foster
[135], pages 246–253.

[61] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of
rollback-recovery protocols in message-passing systems. ACM Computing Surveys,
34(3):375–408, 2002.

[62] H. Fan and A. Poulovassilis. Tracing data lineage using schema transformation
pathways. In B. Omelayenko and M. Klein, editors, Knowledge Transformation
for the Semantic Web, pages 64–79. IOS Press, 2003.

[63] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. J. Leach,
and T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. Technical report,
Internet Engineering Task Force, June 1999. RFC 2616.

[64] I. Foster. What is the Grid? A Three Point Checklist. GridToday, July 2002.

[65] I. Foster. Service-oriented science. Science, 308(5723):814–817, May 2005.

[66] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. In
IFIP International Conference on Network and Parallel Computing, number 3779
in LNCS, pages 2–13, 2006.

BIBLIOGRAPHY 178

[67] I. Foster, J. Gieraltowski, S. Gose, N. Maltsev, E. May, A. Rodriguez, D. Sulakhe,
A. Vaniachine, J. Shank, S. Youssef, D. Adams, R. Baker, W. Deng, J. Smith,
D. Yu, I. Legrand, S. Singh, C. Steenberg, Y. Xia, A. Afaq, E. Berman, J. Annis,
L. A. T. Bauerdick, M. Ernst, I. Fisk, L. Giacchetti, G. Graham, A. Heavey,
J. Kaiser, N. Kuropatkin, R. Pordes, V. Sekhri, J. Weigand, Y. Wu, K. Baker,
L. Sorrillo, J. Huth, M. Allen, L. Grundhoefer, J. Hicks, F. Luehring, S. Peck,
R. Quick, S. Simms, G. Fekete, J. vandenBerg, K. Cho, K. Kwon, D. Son, H. Park,
S. Canon, K. Jackson, D. E. Konerding, J. Lee, D. Olson, I. Sakrejda, B. Tierney,
M. Green, R. Miller, J. Letts, T. Martin, D. Bury, C. Dumitrescu, D. Engh,
R. Gardner, M. Mambelli, Y. Smirnov, J. Voeckler, M. Wilde, Y. Zhao, X. Zhao,
P. Avery, R. Cavanaugh, B. Kim, C. Prescott, J. Rodriguez, A. Zahn, S. McKee,
C. Jordan, J. Prewett, T. Thomas, H. Severini, B. Clifford, E. Deelman, L. Flon,
C. Kesselman, G. Mehta, N. Olomu, K. Vahi, K. De, P. McGuigan, M. Sosebee,
D. Bradley, P. Couvares, A. D. Smet, C. Kireyev, E. Paulson, A. Roy, S. Koranda,
B. Moe, B. Brown, and P. Sheldon. The Grid2003 Production Grid: Principles
and Practice. In Proceedings of the 13th IEEE International Symposium on High
Performance Distributed Computing (HPDC-13’04), pages 236–245, Los Alamitos,
CA, USA, 2004. IEEE Computer Society.

[68] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.
International Journal of Supercomputer Applications, 11(2):115–128, 1997.

[69] I. Foster and C. Kesselman. Scaling system-level science: Scientific exploration
and it implications. Computer, 39(11):31–39, November 2006.

[70] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. In International Journal of Supercomputer Appli-
cations, pages 15–18, 2001.

[71] I. Foster, J. Vckler, M. Wilde, and Y. Zhao. Chimera: A Virtual Data System for
Representing, Querying, and Automating Data Derivation. In 14th International
Conference on Scientific and Statistical Database Management (SSDBM’02), 2002.

[72] J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger, and H. T. Vo.
Managing rapidly-evolving scientific workflows. In Moreau and Foster [135], pages
10–18.

[73] J. Frew and R. Bose. Earth System Science Workbench: A Data Management
Infrastructure for Earth Science Products. In Proceedings of the 13th International
Conference on Scientific and Statistical Database Management, pages 180–189,
Fairfax, VA, July 2001.

[74] J. Frew, D. Metzger, and P. Slaughter. Automatic capture and reconstruction of
computational provenance. Concurrency and Computation: Practice and Experi-
ence, 2007.

BIBLIOGRAPHY 179

[75] J. Frey, M. Bradley, J. Essex, M. Hursthouse, S. Lewis, M. Luck, L. Moreau,
D. D. Roure, M. Surridge, and A. Welsh. Grid Computing - Making the Global
Infrastructure a Reality - Combinatorial Chemistry and the Grid, chapter 42, pages
945–962. John Wiley and Sons, 2003.

[76] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-G: A com-
putation management agent for multi-institutional grids. In Proc. of the Tenth
International Symposium on High Performance Distributed Computing (HPDC-
10). IEEE Press, 2001.

[77] J. Futrelle. Harvesting RDF Triples. In Moreau and Foster [135], pages 64–72.

[78] J. Futrelle and J. Myers. Tracking Provenance Semantics in Heterogeneous Exe-
cution Systems. Concurrency and Computation: Practice and Experience, 2007.

[79] F. Gagliardi, B. Jones, F. Grey, M.-E. Bgin, and M. Heikkurinen. Building an
infrastructure for scientific Grid computing: status and goals of the EGEE project.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 363(1833):1729–1742, August 2005.

[80] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley Professional, 1995.

[81] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Du-
doit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber,
S. Iacus, R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki,
C. Smith, G. Smyth, L. Tierney, J. Y. Yang, and J. Zhang. Bioconductor: open
software development for computational biology and bioinformatics. Genome Bi-
ology, 5(10):R80, August 2004.

[82] Y. Gil, E. Deelman, J. Blythe, C. Kesselman, and H. Tangmunarunkit. Artificial
Intelligence and Grids: Workflow Planning and Beyond. IEEE Intelligent Systems,
19(1):26–33, Jan-Feb 2004.

[83] C. Goble. Position Statement: Musings on provenance, workflow and (seman-
tic web) annotations for bioinformatics. In Workshop on Data Provenance and
Derivation, October 2002.

[84] J. Golbeck and J. Hendler. A semantic web approach to tracking provenance
in scientific workflows. Concurrency and Computation: Practice and Experience,
2007.

[85] G. Graham, R. Cavanaugh, P. Couvares, A. D. Smet, and M. Livny. The Grid
2: Blueprint for a New Computing Infrastructure - Distributed Data Analysis:
Federated Computing for High-Energy Physics, chapter 10, pages 135–146. Morgan
Kaufmann, 2004.

BIBLIOGRAPHY 180

[86] P. Groth, M. Luck, and L. Moreau. A Protocol for Recording Provenance in
Service-Oriented Grids. In T. Higashino, editor, Proceedings of the 8th Inter-
national Conference on Principles of Distributed Systems (OPODIS’04), volume
3544 of Lecture Notes in Computer Science, pages 124–139, Grenoble, France,
December 2004. Springer-Verlag.

[87] P. Groth, M. Luck, and L. Moreau. Formalising A Protocol for Recording Prove-
nance in Grids. In Proceedings of the UK OST e-Science Second All Hands Meeting
2004 (AHM’04), Nottingham, UK, September 2004.

[88] P. Groth, S. Miles, W. Fang, S. C. Wong, K.-P. Zauner, and L. Moreau. Recording
and Using Provenance in a Protein Compressibility Experiment. In Proceedings of
the 14th IEEE International Symposium on High Performance Distributed Com-
puting (HPDC-14), pages 201–208, July 2005.

[89] P. Groth, S. Miles, and L. Moreau. PReServ: Provenance Recording for Services.
In Proceedings of the UK OST e-Science Fourth All Hands Meeting (AHM05),
September 2005.

[90] P. Groth, S. Miles, and L. Moreau. A Shared Model for Documentation of Pro-
cesses Enabling the Determination of Provenance. ACM Transactions on Internet
Technology, 2007. Under Review.

[91] P. Groth, S. Miles, and S. Munroe. Principles of High Quality Documentation
for Provenance: A Philosophical Discussion. In Moreau and Foster [135], pages
278–286.

[92] P. Groth, S. Miles, V. Tan, and L. Moreau. An Architecture for Prove-
nance Systems. Technical report, University of Southampton, October 2006.
http://eprints.ecs.soton.ac.uk/11310/.

[93] R. Gude and M. Oster. Provenance-CSL: A provenance client side library. Tech-
nical report, Fachhochschule Bonn-Rhein-Sieg, Fachbereich Informatik, 2007.

[94] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A. Kar-
markar, and Y. Lafon. Soap version 1.2 part 1: Messaging framework
(second edition). Technical report, World Wide Web Consortium, 2007.
http://www.w3.org/TR/2007/REC-soap12-part1-20070427.

[95] D. Gunter, B. Tierney, K. Jackson, J. Lee, and M. Stoufer. Dynamic Monitoring
of High-Performance Distributed Applications. In Proceedings of the 11th IEEE
Symposium on High Performance Distributed Computing (HPDC-11) , July 2002.

[96] J. Hollingsworth and B. Tierney. The Grid 2: Blueprint for a New Computing
Infrastructure - Instrumentation and Monitoring, chapter 20, pages 319–351. Mor-
gan Kaufmann, 2004.

BIBLIOGRAPHY 181

[97] http://www.cvshome.org. Concurrent versions system.

[98] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, and T. Oinn.
Taverna: a tool for building and running workflows of services. Nucleic Acids
Research, 34:729–732, April 2006.

[99] J. Hunter. Java Servlet Programming. O’Reilly, 2nd edition edition, 2001.

[100] J. Ibbotson, N. Hardman, and A. Biller. Provenance Store (Server) Implementation
Design. Technical report, IBM, Feb 2006. D9.3.2: Functional Prototype (Public
Release).

[101] M. Jaffe. Provenance. Groove Art Online (The Dictionary of Art), 1996. Accessed
Online (March 27, 2007).

[102] S. Jiang, L. Moreau, P. Groth, S. Miles, S. Munroe, and V. Tan. Client Side
Library Design and Implementation. Technical report, University of Southampton,
November 2006.

[103] J. Joyce, G. Lomow, K. Slind, and B. Unger. Monitoring distributed systems.
ACM Transactions on Computer Systems, 5(2):121–150, 1987.

[104] A. Kazakov. An investigation on the performance of storing process documentation
in a relational database. Technical report, University of Southampton, 2006.

[105] T. Kifor, L. Z. Varga, J. Vzquez-Salceda, S. lvarez, S. Willmott, S. Miles, and
L. Moreau. Provenance in Agent-Mediated Healthcare Systems. IEEE Intelligent
Systems, 21(6):38–46, Nov.-Dec. 2006.

[106] R. Kimball. The Data Warehouse Toolkit. John Wiley & Sons, Inc., second edition,
2002.

[107] G. K. Kloss and A. Schreiber. Provenance Implementation in a Scientific Simula-
tion Environment. In L. Moreau and I. Foster, editors, International Provenance
and Annotation Workshop (IPAW), volume 4145 of Lecture Notes in Computer
Science, pages 37–46. Springer-Verlag, 2006.

[108] D. Kranzlmuller. Dewiz - event-based debugging on the grid. In 10th Euromicro
Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-
PDP 2002), pages 162–169, 2002.

[109] P. Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley
Professional, third edition, 2003.

[110] L. Lamport. Proving the Correctness of Multiprocess Programs. IEEE Transac-
tions on Software Enginnering, 3(2):125–143, 1977.

[111] L. Lamport. Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

BIBLIOGRAPHY 182

[112] D. Lanter. Design of a lineage-based meta-data base for GIS. Cartography and
Geographic Information Systems, 18(4):255–261, 1991.

[113] D. Lanter. Lineage in GIS: The problem and a solution. Technical Report 90-6,
National Center for Geographic Information and Analysis (NCGIA), UCSB, Santa
Barbara, CA, 1991.

[114] D. Lanter and R. Essinger. User-centered graphical user interface design for GIS.
Technical Report 91-6, National Center for Geographic Information and Analysis
(NCGIA). UCSB, 1991.

[115] H. Lavana, A. Khetawat, F. Brglez, and K. Kozminski. Executable workflows: a
paradigm for collaborative design on the internet. In DAC ’97: Proceedings of
the 34th annual conference on Design automation, pages 553–558, New York, NY,
USA, 1997. ACM Press.

[116] D. Lewis. Causation. Journal of Philosophy, 70:556–67, 1973.

[117] B. Ludscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,
J. Tao, and Y. Zhao. Scientific Workflow Management and the Kepler System.
Concurrency and Computation: Practice & Experience, 18(10):1039–1065, 2005.
Special Issue on Scientific Workflows.

[118] D. Luna. Creation of a Provenance-Aware RSS System. Part III project. Technical
report, University of Southampton, May 2007.

[119] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[120] A. P. Marathe. Tracing Lineage of Array Data. Journal of Intelligent Information
Systems, 17(2-3):193–214, 2001.

[121] T. Margaria and B. Steffen. Service Engineering: Linking Business and IT. Com-
puter, 39(10):45–55, October 2006.

[122] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed monitoring
system: design, implementation, and experience. Parallel Computing, 30:817–840,
2004.

[123] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Lan-
guage Overview. W3c recommendation, World Wide Web Consortium, 2004.
http://www.w3.org/TR/owl-features/.

[124] R. Menday. The Web Services Architecture and the UNICORE Gateway. In
Proceedings of International Conference on Internet and Web Applications and
Services (ICIW 2006), 2006.

[125] S. Miles. Electronically Querying for the Provenance of Entities. In Moreau and
Foster [135], pages 37–46.

BIBLIOGRAPHY 183

[126] S. Miles, P. Groth, M. Branco, and L. Moreau. The Requirements of Using Prove-
nance in e-Science Experiments. In Journal of Grid Computing, 2006.

[127] S. Miles, P. Groth, S. Munroe, S. Jiang, T. Assandri, and L. Moreau. Extracting
Causal Graphs from an Open Provenance Data Model. Concurrency and Compu-
tation: Practice and Experience, 2007.

[128] S. Miles, P. Groth, S. Munroe, M. Luck, and L. Moreau. AgentPrIMe: Adapting
MAS designs to build confidence. In Proceedings of 8th Internation Workshop on
Agent Oriented Software Engineering, 2007.

[129] S. Miles, S. C. Wong, W. Feng, P. Groth, K.-P. Zauner, and L. Moreau.
Provenance-based Validation of e-Science Experiments. Journal of Web Semantics,
5(1):28–38, 2007.

[130] N. Mitra. Soap version 1.2 part 0: Primer. http://www.w3.org/TR/soap12-part0/,
2007.

[131] L. Moreau. Distributed directory service and message router for mobile agents.
Science of Computer Programming, 39(2-3):249–272, 2001.

[132] L. Moreau, P. Dickman, and R. Jones. Birrell’s Distributed Reference Listing Re-
visited. ACM Transactions on Programming Languages and Systems (TOPLAS),
27(6):1344–1395, November 2005.

[133] L. Moreau and J. Duprat. A construction of distributed reference counting. Acta
Informatica, 37:563–595, 2001.

[134] L. Moreau and I. Foster, editors. Provenance and Annotation of Data — Interna-
tional Provenance and Annotation Workshop, IPAW 2006, volume 4145 of Lecture
Notes in Computer Science. Springer-Verlag, May 2006.

[135] L. Moreau and I. T. Foster, editors. Provenance and Annotation of Data, Inter-
national Provenance and Annotation Workshop, IPAW 2006, Chicago, IL, USA,
May 3-5, 2006, Revised Selected Papers, volume 4145 of Lecture Notes in Computer
Science. Springer, 2006.

[136] L. Moreau, B. Ludäscher, I. Altintas, R. S. Barga, S. Bowers, S. Callahan, G. Chin
Jr., B. Clifford, S. Cohen, S. Cohen-Boulakia, S. Davidson, E. Deelman, L. Di-
giampietri, I. Foster, J. Freire, J. Frew, J. Futrelle, T. Gibson, Y. Gil, C. Goble,
J. Golbeck, P. Groth, D. A. Holland, S. Jiang, J. Kim, D. Koop, A. Krenek,
T. McPhillips, G. Mehta, S. Miles, D. Metzger, S. Munroe, J. Myers, B. Plale,
N. Podhorszki, V. Ratnakar, E. Santos, C. Scheidegger, K. Schuchardt, M. Seltzer,
Y. L. Simmhan, C. Silva, P. Slaughter, E. Stephan, R. Stevens, D. Turi, H. Vo,
M. Wilde, J. Zhao, and Y. Zhao. The First Provenance Challenge. Concurrency
and Computation: Practice and Experience, 2007.

BIBLIOGRAPHY 184

[137] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer. Provenance-
Aware Storage Systems. In Proceedings of the 2006 USENIX Annual Technical
Conference, June 2006.

[138] S. Munroe, P. Groth, S. Jiang, S. Miles, V. Tan, and L. Moreau. Data Model for
Process Documentation. Technical report, University of Southampton, 2006.

[139] S. Munroe, S. Miles, L. Moreau, and J. Vazquez-Salceda. PrIMe: A software engi-
neering methodology for developing provenanceaware applications. In ACM Digi-
tal Proceedings of the Software Engineering and Middleware Workshop (SEM’06),
2006.

[140] J. D. Myers, C. Pancerella, C. Lansing, K. L. Schuchardt, and B. Didier. Multi-
scale science: supporting emerging practice with semantically derived provenance.
In ISWC 2003 Workshop: Semantic Web Technologies for Searching and Retriev-
ing Scientific Data, Sanibel Island, Florida, USA, October 2003.

[141] National Gallery of Art Website. Woman Holding a Balance - Provenance. World
Wide Web, March 2007. http://www.nga.gov/collection/gallery/gg51/gg51-
1239.0-prov.html.

[142] D. L. Nelson and M. M. Cox. Lehninger Principles of Biochemistry. W.H. Freeman,
fourth edition edition, 2004.

[143] J. D. Novak. Learning, Creating, and Using Knowledge: Concept Maps As Facil-
itative Tools in Schools and Corporations. LEA, Inc, 1998.

[144] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

[145] J. Pearl. Causality: models, reasoning and inference. Cambridge University Press,
2001.

[146] L. Pearlman, C. Kesselman, S. Gullapalli, B. S. Jr., J. Futrelle, K. Ricker, I. Fos-
ter, P. Hubbard, and C. Severance. Distributed Hybrid Earthquake Engineering
Experiments: Experiences with a Ground-Shaking Grid Application. In Proceed-
ings of the 13th IEEE Symposium on High Performance Distributed Computing
(HPDC-13), 2004.

[147] C. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick. Version Control with Sub-
version. O’Reilly Media, 2004.

[148] B. Plale, D. Gannon, J. Brotzge, K. Droegemeier, J. Kurose, D. McLaughlin,
R. Wilhelmson, S. Graves, M. Ramamurthy, R. D. Clark, S. Yalda, D. A. Reed,
E. Joseph, and V. Chandrasekar. CASA and LEAD: Adaptive cyberinfrastructure
for real-time multiscale weather forecasting. Computer, 39(11):56–64, November
2006.

BIBLIOGRAPHY 185

[149] S. Rajbhandari, A. Contes, O. F.Rana, V. Deora, and I. Wootten. Establishing
Workflow Trust Using Provenance Information. In 1st IEEE International Work-
shop on Modelling Autonomic Communications Environments (MACE 2006), Oc-
tober 2006.

[150] S. Ram and J. Liu. Understanding the Semantics of Data Provenance to Support
Active Conceptual Modeling. In ACM-L Workshop, ER 2006, 2006.

[151] C. F. Reilly and J. F. Naughton. Exploring Provenance in a Distributed Job
Execution System. In Moreau and Foster [135], pages 237–245.

[152] J. C. Sancho, F. Petrini, G. Johnson, J. Fernandez, and E. Frachtenberg. On
the Feasibility of Incremental Checkpointing for Scientific Computing. In 18th
International Parallel and Distributed Processing Symposium (IPDPS’04), page
58b, 2004.

[153] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W. Carton, and
J. Ofir. Deciding when to forget in the Elephant file system. In SOSP ’99: Pro-
ceedings of the Seventeenth ACM Symposium on Operating Systems Principles,
pages 110–123, New York, NY, USA, 1999. ACM Press.

[154] C. Scheidegger, D. Koop, E. Santos, H. Vo, S. Callahan, J. Freire, and C. Silva.
Tackling the provenance challenge one layer at a time. Concurrency and Compu-
tation: Practice and Experience, 2007.

[155] C. Scheidegger, D. Koop, H. Vo, J. Freire, and C. Silva. Querying and creating
visualizations by analogy. IEEE Transactions on Visualization and Computer
Graphics, 2007. To appear.

[156] M. Seltzer, D. A. Holland, U. Braun, and K.-K. Muniswamy-Reddy. PASS-ing the
provenance challenge. Concurrency and Computation: Practice and Experience,
2007.

[157] C. E. Shannon. A Mathematical Theory of Communication. The Bell System
Technical Journal, 27:379–423, 623–656, October 1948.

[158] A. Shieh, A. C. Myers, and E. G. Sirer. Trickles: A Stateless Network Stack
for Improved Scalability, Resilience, and Flexibility. In Second Symposium on
Networked Systems Design and Implementation (NSDI’05), May 2005.

[159] C. Silva, J. Freire, and S. P. Callahan. Provenance for visualizations: Repro-
ducibility and beyond. IEEE Computing in Science & Engineering, 2007. To
appear.

[160] C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable Techniques for Mining
Causal Structures. In Procceedings of the 24th VLDB Conference, pages 594–606,
1998.

BIBLIOGRAPHY 186

[161] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science.
SIGMOD Record, 34(3):31–36, 2005.

[162] Y. L. Simmhan, B. Plale, and D. Gannon. A Framework for Collecting Provenance
in Data-Centric Scientific Workflows. In International Conference on Web Service
(ICWS’06), 2006.

[163] Y. L. Simmhan, B. Plale, and D. Gannon. Towards a quality model for effective
data selection in collaboratories. In Proceedings of the 22nd International Data
Engineering Workshops, 2006.

[164] Y. L. Simmhan, B. Plale, and D. Gannon. Querying Capabilities of the Karma
Provenance Framework. Concurrency and Computation: Practice and Experience,
2007.

[165] Y. L. Simmhan, B. Plale, D. Gannon, and S. Marru. Performance Evaluation of
the Karma Provenance Framework for Scientific Workflows. In Moreau and Foster
[135].

[166] P. M. Sloot, A. Tirado-Ramos, I. Altintas, M. Bubak, and C. Boucher. From
Molecule to Man: Decision Support in Individualized E-Health. Computer,
39(11):40–46, November 2006.

[167] C. D. Snow, H. Ngyen, V. S. Pande, and M. Gruebele. Absolute comparison of
simulated and experimental protein-folding dynamics. Nature, 420:102–106, 2002.

[168] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. The
MIT Press, second edition, 2000.

[169] L. Stein. Creating a bioinformatics nation. Nature, 417:119–120, May 2002.

[170] L. Stein. Integrating biological databases. Nature Reviews Genetics, 4(5):337–345,
May 2003.

[171] R. D. Stevens, H. J. Tipney, C. J. Wroe, T. M. Oinn, M. Senger, P. W. Lord,
C. A. Goble, A. Brass, and M. Tassabehji. Exploring williams-beuren syndrome
using myGrid. Bioinformatics, 20(1):303–310, March 2004.

[172] T. J. Strader, F.-R. Lin, and M. J. Shaw. Information infrastructure for electronic
virtual organization management. Decision Support Systems, 23(1):75–94, 1998.

[173] A. Streit, D. Erwin, T. Lippert, D. Mallmann, R. Menday, M. Rambadt, M. Riedel,
M. Romberg, B. Schuller, and P. Wieder. UNICORE - From Project Results to
Production Grids, pages 357–376. Elsevier, 2005.

[174] R. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM Trans-
actions on Computer Systems, 3(3):204–226, 1985.

BIBLIOGRAPHY 187

[175] N. Suri, J. Bradshaw, M. R. Breedy, P. T. Groth, G. A. Hill, and R. Jeffers. Strong
Mobility and Fine-Grained Resource Control in NOMADS. In F. M. David Kotz,
editor, Proceedings of the Second International Symposium on Agent Systems and
Applications and Fourth International Symposium on Mobile Agents, ASA/MA
2000, volume 1882 / 2004 of Lecture Notes in Computer Science, pages 2–15,
Zurich, Switzerland, 2000. Springer-Verlag.

[176] A. S. Szalay. The Sloan Digital Sky Survey. Computing in Science & Engineering,
1(2):54–62, 1999.

[177] A. S. Szalay and J. Gray. The Grid 2: Blueprint for a New Computing Infrastruc-
ture - Scientific Data Federation: The World-Wide Telescope, chapter 7, pages
95–108. Morgan Kaufmann, 2004.

[178] M. Szomszor and L. Moreau. Recording and Reasoning over Data Provenance in
Web and Grid Services. In International Conference on Ontologies, Databases and
Applications of Semantics, volume 2888 of LNCS, 2003.

[179] V. Tan, P. Groth, S. Miles, S. Jiang, S. Munroe, S. Tsasakou, and L. Moreau.
Security Issues in a SOA-Based Provenance System. In Moreau and Foster [135],
pages 203–211.

[180] V. H. K. Tan. Interaction tracing for mobile agent security. PhD thesis, University
of Southampton, 2004.

[181] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice:
The Condor experience. Concurrency - Practice and Experience, 17(2-4):323–356,
2005.

[182] The Message Passing Interface Forum (MPIF). MPI: A Message-Passing Interface
Standard. Technical report, June 1995. http://www.mpi-forum.org/docs/mpi-11-
html/mpi-report.html.

[183] P. Townend, P. Groth, and J. Xu. A Provenance-Aware Weighted Fault Tolerance
Scheme for Service-Based Applications. In Proceedings of the 8th IEEE Inter-
national Symposium on Object-oriented Real-time distributed Computing (ISORC
2005), pages 258–266. IEEE Computer Society, May 2005.

[184] A. Vahdat and T. Anderson. Transparent Result Caching. In Proceedings of the
1998 USENIX Technical Conference, New Orleans, Louisiana, June 1998.

[185] G. Wang and R. L. Dunbrack. PISCES: a protein sequence culling server. Bioin-
formatics, 19(12):1589–1591, 2003.

[186] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. Web
Services Platform Architecture. Prentice Hall, 2005.

BIBLIOGRAPHY 188

[187] D. L. Wheeler, C. Chappey, A. E. Lash, D. D. Leipe, T. L. Madden, G. D. Schuler,
T. A. Tatusova, and B. A. Rapp. Database resources of the National Center for
Biotechnology Information. Nucleic Acids Research, 28(1):10–14, 2000.

[188] J. Widom. Trio: a system for integrated management of data, accuracy, and
lineage. In Second Biennial Conference on Innovative Data Systems Research
(CIDR 2005), Asilomar, Calif., January 2005.

[189] M. Wilkinson, H. Schoof, R. Ernst, and D. Haase. BioMOBY successfully inte-
grates distributed heterogeneous bioinformatics web services.the planet exemplar
case. Plant Physiology, 138:5–17, May 2005.

[190] J. Woodfill and M. Stonembraker. An implementation of hypothetical relations.
Proceedings of the 9th Internationl Conference on Very Large Databases, pages
157–166, October 1983.

[191] A. Woodruff and M. Stonebraker. Supporting Fine-grained Data Lineage in a
Database Visualization Environment. In Proceedings of the 13th International
Conference on Data Engineering, pages 91–102, Birmingham, England, April 1997.

[192] A. G. Woodruff. Data Lineage and Information Density in Database Visualization.
PhD thesis, University of California at Berkeley, 1998.

[193] I. Wootten, S. Rajbhandari, O. Rana, and J. Pahwa. Actor Provenance Capture
with Ganglia. In Proceedings of the 6th IEEE Internation Symposium on Cluster
Computing and the Grid (CCGrid’06), 2006.

[194] C. Wroe, C. Goble, M. Greenwood, P. Lord, S. Miles, J. Papay, T. Payne, and
L. Moreau. Automating Experiments Using Semantic Data on a Bioinformatics
Grid. IEEE Intelligent Systems, 19(1):48–55, Jan-Feb 2004.

[195] C. H. Wu, R. Apweiler, A. Bairoch, D. A. Natale, W. C. Barker, B. Boeck-
mann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin,
R. Mazumder, C. O’Donovan, N. Redaschi, and B. Suzek. The Universal Protein
Resource (UniProt): an expanding universe of protein information. Nucleic Acids
Research, 34:187–191, January 2006.

[196] J. Yang and M. P. Papazoglou. Web Component: A Substrate for Web Service
Reuse and Composition. In Advanced Information Systems Engineering: 14th
International Conference, CAiSE 2002, volume 2348 of LNCS, pages 21–36, 2002.

[197] J. Yu and R. Buyya. A Taxonomy of Workflow Management Systems for Grid
Computing. Journal of Grid Computing, 3(3-4):171–200, September 2005.

[198] J. Zhao, C. Goble, M. Greenwood, C. Wroe, and R. Stevens. Annotating, linking
and browsing provenance logs for e-Science. In Proceedings of the Workshop on

BIBLIOGRAPHY 189

Semantic Web Technologies for Searching and Retrieving Scientific Data, October
2003.

[199] J. Zhao, C. Goble, R. Stevens, and D. Turi. Mining Taverna’s Semantic Web of
Provenance. Concurrency and Computation: Practice and Experience, 2007.

[200] J. Zhao, C. Wroe, C. Goble, R. Stevens, D. Quan, and M. Greenwood. Using
Semantic Web Technologies for Representing e-Science Provenance. In Proceedings
of the 3rd International Semantic Web Conference, volume 3298, pages 92–106,
Hiroshima, Japan, 2004.

[201] Y. Zhao, M. Wilde, and I. Foster. A Virtual Data Provenance Model. In Moreau
and Foster [135].

[202] Y. Zhao, M. Wilde, I. Foster, J. Voeckler, J. Dobson, E. Gilbert, T. Jordan, and
E. Quigg. Virtual data Grid middleware services for data-intensive science. Con-
currency and Computation: Practice and Experience, 18(6):595–608, May 2006.

