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Abstract

The roots of palindromic and antipalindromic polynomiagsde grouped in pairéA,1/A). A polynomial
with such root pattern is palindromic/antipalindromiciif,addition, it has a root at 1 of an even/odd multiplicity.
The result has applications in system theory: 1) any keapbsentation of a discrete-time, time-reversible, scala
autonomous LTI system is either palindromic or antipalamdic. (Similar statement holds for systems with inputs.)
2) LTI systems with palindromic or antipalindromic kernepresentations have nontrivial conserved quantities.
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1 Introduction

Links between patterns of the roots and coefficients of gmiyials have been extensively studied in the context of
dynamical systems and control. A famous result of this tgghe Routh—Hurwitz stability test, which allows to check
the stability of a single input single output (SISO) lineiang-invariant system without computing its poles, i.e.aby
finite number of operations on the coefficients of a differentialagipn representation of the system.

We study the root location of palindromic and antipalindiomolynomials, i.e., polynomials whose coefficients
are respectively symmetric and antisymmetric with respetie middle coefficient. It turns out that an autonomous
discrete-time linear time-invariant (LTI) system defingdabdifference equation whose coefficients are palindromic
or antipalindromic is time-reversible in the sense thattaajgctory of that system reversed in time is also a trajgcto
of the system. The continuous-time analogue of the palmér@and antipalindromic polynomials are even and odd
polynomials.

Furthermore, we show that time-reversible systems posseserved quantities. These are quadratic functionals
of the system variables that remain constant in time aloggrajectory of the system. Time-reversible systems have
been studied by Fagnani and Willems [FW91]. In this paper,giwe more details (see, Theorems 13 and 14 in
Section 4) about the structure of scalar autonomous and 8Greversible systems.

For both palindromic and antipalindromic polynomials atrédias a corresponding roof A of the same multi-
plicity. The property that distinguishes palindromic fremtipalindromic polynomials is the multiplicity of the rbo
at 1. In the case of simple roots, a palindromic polynomia ha root at 1, while an antipalindromic polynomial
has a root at 1. The system theoretic implication of this f¢hat the multiplicity of the root at 1 determines the
coefficient pattern of a difference equation representatica time-reversible system.
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R real numbers, C — complex numbers, Z — integers

O(A) real part ofA, O(A) — imaginary part ofA

A complex conjugate ok, i :=+1/—1— the imaginary unit

R[&] ring of polynomials with real coefficients in the indetermaiaé

Rs[Z,N] space of symmetric two-variable polynomials in the indeieates andn

col(po, p1,---,pn)  the column vector with elemenfs, p1,..., pn
diag(ag,a,...,8,) the diagonal matrix with diagonal elemeisay, ..., a,
RZ the set of functions mappirig to R (i.e., scalar sequences)

Table 1:; Notation.

2 Palindromic and antipalindromic polynomials

In this section, we study the root location of palindromid amtipalindromic polynomials.

Definition 1 (Palindromic and antipalindromic polynomialsh polynomial p € R[] of degreen

P(&) = po+ pré +---+ pné", Pr#0O

is palindromic if its coefficientgg, p1, ..., pn form a palindrome, i.e.,
pi = Pn-i, fori=0,1,...,n.
A polynomial p is antipalintromic ifp; = —pn_i, fori=0,1,...,n.

Our main result is stated in the following theorem.

Theorem 2 (Root location of palindromic and antipalindromic polynias). The polynomial pc R[] is palin-
dromic/antipalindromic if and only if

1. every rootA € C of pis either on the unit circle or p has a robfA with the same multiplicity a&, and
2. 14i0is aroot of p of even/odd multiplicity (multiplicity O meathsit 14 i0 is not a root of p).
In addition, if p has an odd degree, therLl+i0is a root of p of an odd/even multiplicity.

LetA be the complex conjugate Af Theorem 2 shows that the complex roots of palindromic atigaimdromic
polynomials that are not on the unit circle can be divided iiaur-tuples(A,1/A,A,1/A). The complex roots that
are on the unit circle and the real roots mfexcept possibly roots atl, can be divided into tuple&,1/A), see
Figure 1. These properties are common for palindromic atigalimdromic polynomials. The distinguishing property
of antipalindromic polynomials is that they have a root-dtwith an odd multiplicity. Conversely, provided that any
root A, except possibly roots atl, has a corresponding rootA of the same multiplicity, the polynomial is either
palindromic or antipalindromic. The existence of a root-dtand its multiplicity determine whether the polynomial
is palindromic (even multiplicity of a root at1) or antipalindromic (odd multiplicity of a root at1).

Let rev(p) denote the “reversed” polynomial of i.e.,

rev(p) (&) == pné°+ pn1&t+---+ po€",  wherep(&) = po&°+ pr&t+ -+ pné". (1)
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Figure 1: The roots op(&) = &9 — 1.056* + 1.4562 — 3.6383 + 3.9854 — 3.63855 4 1.4586 — 1.0567 + &8 can be
grouped in the four-tupléA1,1/A1,A1,1/A1), A1 = —0.32+i0.6, the tuple(A2,1/A,), A, = 0.5+10.866, and the
tuple (A3,1/A3), A3 =0.8.

Then, obviouslyp is palindromic/antipalindromic if and only {p = +rev(p) (+ refers to the palindromic case ard
refers to the antipalindromic case). Note that the rev dperdbeys the following property

§"p(1/§), for& #0,
rev(p)(¢) = )
pn> fOI' E = 07
which gives an algebraic characterisation of palindromid antipalindromic polynomials
_ _ _ o _ p(é)F&"p(1/&) =0, foralléeC, &+#0, and
p is palindromic/antipalindromic <= 3
PoF Pn=0.

Next we state three corollaries of Theorem 2.

Corollary 3 (Elementary palindromic and antipalindromic polynomjal&ny palindromic or antipalindromic poly-
nomial p can be represented as a product of the following fismentary polynomials:

e e(f)=¢—-1, o e3(a,&) = &2 12g 11 wherea € R,

o &5(&):=¢&+1, o e4(w, &) :=&2-2codw)é + 1, wherew € R, and

o &5(A,8) =& - 20N e3¢ (2+\/\\2+W) &2 - 20(A) A€ + 1, where) € C i neither

purely real nor purely imaginary.

i.e., there exist unique scalar&€R and parametersyi e R fori=1,... k3, g € Rfori =1,...,ks, A € C for

i=1,...,ks, such that
k3 ks ks

PE) = e () (&) [ ea(en &) [ (e, &) [ es(, ) (@)
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(ki = 0 means that there is no elementary polynomial of the ith typiep is palindromic k is even and if p an-
tipalindromic k is odd. Conversely, any product (4) of elementary polyntarigpalindromic if k is even and
antipalindromic if k is odd.

Proof. Observe that

e the root ofe; (&) is +1, e the roots ofes(a, &) area and Ya,

e the root ofey(€) is —1, e the roots ofey(w, &) aree® ande ', and
e the roots ofes(A, &) areA, 1/A, A, and VA,

so that the factorisation (4) corresponds to the groupintbefoots ofp into roots att:-1, tuples on the real axis, tuples
on the unit circle, and four-tuples in the complex plane, @sedn the proof of Theorem 2. Therefore, Corollary 3 is
a restatement of Theorem 2 in terms of factor polynomialeats of groups of roots. O

Corollary 4 (Algebraic properties of the palindromic and antipalindro polynomials) The following hold:
e “palindromic” x “palindromic” s palindromic,
e “palindromic” x “antipalindromic” is antipalindromic,
e “antipalindromic” x “antipalindromic” is palindromic.

Proof. Consider the factorisations of palindromic or antipalormdic polynomialsp andq into elementary polyno-
mials. Obviously, the polynomigbqis also a product of elementary polynomials, so that it isegipalindromic or
antipalindromic. Lek p, k1 q, andky pq be the powers oy in the factorisations (4) of respectivepy g, andpg. We
have thatky  +ky q = kq pg. According to Corollary 3 the power @& is even if and only if the corresponding poly-
nomial is palindromic and odd if and only if the polynomialastipalindromic. For the three cases in the statement
of Corollary 4, we have

e evenky p + evenky q = evenky pq, SO thatpgis palindromic,
e evenkyp + 0ddkyq = oddky pq, SO thatpgis antipalindromic,
e oddkyp + oddk;q = evenk, pq, SO thatpgis palindromic. O

Corollary 5. If a polynomial with real coefficients @ R[] has all its roots on the unit circle, then it is either
palindromic or antipalintromic. The antipalintromic caserresponds to the polynomials with a rootlat i0 of an
odd multiplicity.

Proof. A polynomial p whose roots are on the unit circle satisfies item 1 in Theoregso ghatp is either palindromic
or antipalindromic. If, in additionp satisfies item 2, then it is palindromic. Otherwigds antipalindromic. O



3 Even and odd polynomials

In this section, we study the root location of even or odd poiwials, i.e., polynomials of the type

P(&) = Po+ P2&2+ -+ pané2 =: p/(€2),
P(&) = p1& + pa&3+ -+ ponp1 &ML = EP(E2).

Note6 (Continuous-time systemspalindromic/antipalindromic polynomials are relatedisrcete-time LTI systems,
see Section 4. Even/odd polynomials are the “continuous-gquivalent” to palindromic/antipalindromic polyno-
mials, i.e., they are related to continuous-time LTI systeifhe results for the continuous-time case can be deduced
from the corresponding results for the discrete-time css@ Section 4 we consider only the discrete-time case.

An algebraic characterisation of even/odd polynomialaj@gous to the characterisation (2) of palindromic/anti-
palindromic polynomials is

piseven/odd <= p(&)Fp(—¢&)=0, forall £ € C.
Theorem 7 (Root location of even and odd polynomialg) polynomial pc R[&] is even/odd if and only if

1. for every rootA € C of p, there is another root A of p with the same multiplicity as and

2. Ois aroot of p of even/odd multiplicity.

Since we consider only polynomials with real coefficientspf Theorem 7, it can be inferred that the set of roots
of an even/odd polynomial is a union of the following sets:

e set of roots at 0

e set of pairs of root$iw, —iw ), wherew € R, on the imaginary axis,

e set of pairs of root$ai, —a;), wherea; € R, on the real axis, and

e set of four-tuples{)\i,)Ti,—)\i, —)Ti), whereA € C is neither purely real nor purely imaginary.
This is illustrated through an example in Figure 2. The felltg corollary formalises this property.

Corollary 8 (Elementary even and odd polynomialg)ny even or odd polynomial ¢ R[&] can be represented as a
product of the following four elementary polynomials:

o f1(¢) =, o fa(A,&):=&*+2(07(A) —02(0)) &2+ (TP(A) +

Dz()\))z, whereA € C is neither purely real nor

o fo(w,&):=E&2+ w? wherew e R, o
purely imaginary,

o f3(a,&):=&%—a? wherea c R,
i.e., there exist a unique scalarccR and parameters; c Rfori=1,... ks, (g e Rfori=1,...,ks, Aj € C for
i=1,...,ks, such that
(&) = cH9 (&) [] fale. &) [] folar. &) [ ] fa(A& (5)
p(¢)=¢C W, ai, i S
) 1()i|12( )il:l3l)i|:l4(l)

(k = 0 means that there is no elementary polynomial of the ith tyipg) is even, kis even and if p is odd;ks odd.
Conversely, any product (5) of elementary polynomials énef/k, is even and odd ifkis odd.

Proof. Observe that
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Figure 2: The roots ofp(&) = 380 + 262 + 0.8125* — 0.1258°% — 0.0625 8 can be grouped in the four-tuple
()\1, —Al,Xl, —Xl), A1 =0.3493+i10.6748, the tUplQ)\z,)\_z), A =10.5, and the tuple{)\g, —)\3), A3 =0.5.

e the root off; (&) is O, e the roots offs(a,&) area and—a, and

o the roots off,(w, &) areiw and—iw, e the roots off4(A,&) areA, —A, A, and—A,

so that the factorisation (5) corresponds to the groupinth®froots ofp into roots at 0, pairs on the real axis,
pairs on the imaginary axis, and four-tuples in the compler, as discussed earlier. O

Corollary 9. If a polynomial pc R[¢] has all its roots on the imaginary axis, then it is either eeerodd. The odd
case corresponds to the polynomials with a rooD af an odd multiplicity.

Proof. A polynomial p whose roots are on the imaginary axis satisfies item 1 in Hmeaf, so thap is either even
or odd. If, in addition,p satisfies item 2, then it is even. Otherwise, it is odd. O

4 Palindromic/antipalindromic polynomials in system theay

In the remaining part of the paper, we study the relevancalirigromic and antipalindromic polynomials in system
theory. In Section 4.1, we show that difference equatiomesgntations of LTI time-reversible systems are related
to palindromic/antipalindromic polynomials. In Sectior2 Awe show that palindromic/antipalindromic polynomials
also have a link with representations of LTI systems thaehspecial quadratic functionals associated with them,
known as conserved quantities, i.e., functionals that rermenstant along the trajectories of the system. We begin
with a short description of LTI systems and quadratic défere forms. For thorough exposition of these concepts (in
the continuous-time case), we refer the reader respectivéPW98] and [WT98].
Define byo the shift operator
(ow)(t) :=w(t+1).

An LTI system can always be represented in, what is calleddgtdorm, as
% =ker(R(0)) :=={we (R")* | R(o)w=0}, (6)

whereR € R**¥[g]. The representation (6) is called minimalRfhas the minimum number of rows among all the
kernel representations &#.



A quadratic difference form [Kan05] is the discrete-timalague of quadratic differential form for continuous-
time systems introduced by Willems and Trentelman [WT98t @ € R"*¥[{,n], i.e.,®({,n) = z{jj:OCDi,jZir;j,
where®; j € R™¥ for all i,j € {0,1,...,n} andn is a natural number. Such a polynomfalinduces aquadratic
difference form(QDF) on(R¥)Z as

Qo : (R")Z — RZ, Qo (W)(t) := i w(t+i)" & jwit+j).
i,]=0

We call® symmetric if®({,n) = ®(n,{)". In this paper, we consider only the set of symmetric QDFsoti by
R¥*¥[{,n], because every nonsymmetric QDF is equivalent to a symeraate.

We describe the notion of the rate of change of a QDF, which belused to obtain results about conserved
guantities later on in the paper. Trae of changeélQq of a QDFQq is defined as

Qo (W) (1) i= Qo) (t + 1) — Qo(w)(t).

Let W({,n) be the two-variable polynomial matrix associated with tH2RQ1Qq. Then, it is easy to see that

W(,n)=(n—-1)®(,n).

A QDF Qq is said to be zero along a behavia#r(denoted byQoe Z 0) if Qo(w)(t) =0, for allw e # andt € Z. The
next proposition which is an analogue of Proposition 3.2/61TP8] gives the condition on a two-variable polynomial
under which the QDF associated with it is zero along a givates@utonomous behaviour.

Proposition 10. Let® € Rg[{,n] and let# = ker(r(o0)), where re R[o]. Then @ Z0if and only if there exists
f € R[{,n], such that

®(¢,n) = f(n,Or(n)+r(Q) (. n).

Proof. The proof can be deduced from Lemma A.1, page 1734, [WT98]. O

Equip the set of QDFs associated with a behaviguvith the equivalence relation defined by

QZQy <« Qo (W) = Qu(w), forallwe 4.

Itis easy to see that the set of equivalence classes dnigea linear vector space ovRr With every equivalence class
of QDFs associated with an autonomous behaviBuwe associate a certain representative known agtttanonical
representative. Below, we define the notiorzéfcanonicity of QDFs.

Definition 11. Let % be an autonomous behaviour given &= ker(r(o)), wherer € R[o]. Then a QDRQq is
%-canonical ifr()~1®(Z,n)r(n)~Lis strictly proper.

If r has degree, then from the definition, it follows that the two-variabl®lpnomials associated witl#-
canonical QDFs are spanned by monomdlg!, with i, j < n— 1. Itis easy to see that every QDF ha®eacanonical
representative.



4.1 Time-reversible systems

Next, we study kernel representations of discrete-timeiaversible scalar autonomous and SISO systems. We show
that there exists an inherent link between palindromigdatibdromic polynomials and the kernel representation of
time-reversible systems. Earlier, work on time-reveestjstems had been done by Fagnani and Willems [FW91].

In Section 2, we defined the reversed polynomial(ppvsee (1). By viewing the polynomig) as the vector
col(po, p1,-- -, Pn) Of its coefficients, we can naturally extend the “rev” operdbr vectors. Thus

rev(col(po, P1, .-, Pn)) = col(Pn, Pn_1,-- -, Po)-
We define the “rev” operator for a sequenee (R¥)% as
(rev(w))(t) :=w(—t),  forallteZ.
Thus the “rev” operator acting on a sequence reverses tlee ofthe sequence. Itis easy to see tha(rr(w(w)) =W.
Definition 12 (Time-reversible system)A dynamical systens? is time-reversible ifv € 2 implies re{w) € 2.

We now give a necessary and sufficient condition in terms céraed representation for an autonomous scalar
system to be time-reversible.

Theorem 13. The LTI systen® = ker(p(o)), p € R[£], is time-reversible if and only if p is either palindromic or
antipalindromic.

Next we give a condition in terms of a kernel representat@mrafSISO system to be time-reversible.

Theorem 14. Let# = ker ( [q(o) - p(o’)} ), where ps R[o] is of degreep and ge R[o] is of degreey < p. Define
d ;= p —q. The systen® is time-reversible if and only if i) g hasroots at zero and ii) p and’¢o) := q(o)/o? are
either both palindromic or both antipalindromic. 4 is controllable, then both p and qre palindromic.

Using the steps followed in the proof of the above theoreng can also deduce the structure of the kernel
representation of a multi-input single-output time-reitele system. We now state the main result of [FW91] on
kernel representations of discrete-time time-reversiptems and compare it with ours.

Theorem 15([FW91]). An LTI systen#? is time-reversible if and only if it can be described by a miai difference
equation Ro, o~ 1)w = 0, where

Rz 12 =S2Rzz 1) and S2) =diag(l,,, ~lp ,1p,. 2 1y, 2)

with |, being the identity matrix of size, andp., p_, p-+, p.— being nonnegative integers (invariants.&f), such
that their sum equals the number of rows of R.

For single output systems, the kernel representation guenup to a multiplication with a nonzero scalar. This
type of nonuniqueness does not destroy the (anti)palindratnucture. Therefore, any representation of a scalar
autonomous and SISO time-reversible system has the piepstated in Theorems 13 and 14. In the multiple output
case, the nonuniqueness of the kernel representation chroydéhe (anti)palindromic structure. As a result the
statement of Theorem 15 is existential.

In the following examples, we determine the integers p—, pz+, andp,_, defined in Theorems 15 for partic-
ular systems. Then we make a general statement ofghgw _, pz., p.- depend on the behaviour and its kernel
representation.



ki(#) n(#) p degp) P+ P- Pz Pz
even  even palindromic even 1 0 0 0
odd even — antipalindromic  even — 0 1 0 0
even odd palindromic odd 0O O 1 0
odd odd antipalindromic  odd 0O O 0 1

Table 2:k1(#) — the multiplicity of a pole of# at 1,n(#) — order of .

Examplel6 (Autonomous time-reversible systenfjonsider a behaviou# = ker(p(a)), where
P(0) = Po+ P10 — pro®— poo?,  with po, p1 € R,
Sincep is antipalindromic, from Theorem 13, it follows thaf is time-reversible. According to Theorem 15, there

exists another representation fargiven by % = ker(R(a, a*l)), where

1

R(o,07Y) = poo 2+ p1o ' — p1o — poo?.

Observe thaR(g,07!) = —R(o~1,0), so thatp_ =1 andp, = pz; =pz_ = 0.
Examplel7 (SISO time-reversible systemonsider a behavious = ker(R’(o)), where
R(0) = |po+ p10+ p102+ poo® —quo — qloz} ,  with po, p1,q1 € R.
From Theorem 14, it follows tha® is time-reversible. According to Theorem 15, there existslaer representation
for % given byR(g, 0~ 1)w = 0, where
R(0,07%) = | poo 1+ pr+ pro+ poo? —0g — qlo] :

In this caseR(z 1,2) = S(z)R(z,z 1), whereS(z) = z, so thatp, =p, =p_ = 0andp,, = 1.

It is of interest to show how the invariangs, p_, pz:, p. depend on the behaviour and on the parameters of
particular representations of the behaviour. For the geémeultivariable case, Theorem 15 only asserts that their
sum is equal to the number of outputs of the system. Using rEne® 13 and 14, we can say more for the scalar
autonomous and SISO cases. The dependence of the invasiants , p,., p.— on the behaviourz and on a
minimal kernel representation for these cases are sunmegdarisTable 2.

4.2 Existence of conserved quantities

The notion of aconserved quantitys defined by Rapisarda and Willems [RWO05] for the case ofinantis-time
systems. Below, we give an analogous definition for the chdesorete-time systems.

Definition 18. Let % be a linear autonomous behaviour. A QDR @ a conserved quantity fa® if
0Qa (W) =0, forallw e #. (7)

In other words, a conserved quantity for a behavigtiis a QDF, which remains constant upon acting on any
sequence belonging to the behaviour. In this section, wenmethe conditions on the representation of a scalar
autonomous behaviour under which it has a conserved quag#iociated with it. We begin with the following

definition.



Definition 19. Themaximal palindromic factoof r € R[£] is its monic palindromic factor of maximal degree.

For any given polynomiat € R[], it is easy to see that there exists a unique maximal palnidrdactor. In
the next theorem, we examine the conditions under whicheatibehaviourZ has conserved quantities associated
with it.

Theorem 20. Consider a linear behaviou = ker(r (o)), where re R[o] has no root at zero. There exists a nonzero
conserved quantity fogg if and only if either r has a non-unity maximal palindromiccfar r’ or r(o) = o — 1.
Moreover if vi=r/r’ is such that ¥1) # 0, then the dimension of the space of conserved quantitiesdieg(r’) —

1) /2], otherwise it is| (degr’) + 1) /2|, where|m| is the greatest integer less than or equal to m.

From the above theorem and from the discussion on timegilesystems, it can be inferred that every reversible
scalar system has conserved quantities associated with it.

A Proofs

A.1 Theorem 2

First, note that item 1 in the statement of Theorem 2 is etprivdo:
1'. For every rootA € C of pthere exists a root/lA with the same multiplicity ad.

Indeed, ifA is complex and is on the unit circle, thefiXl= A and by the assumption thathas real coefficients, it
follows that 1/A is also a root op with the same multiplicity. Il = +1, then YA = A and 1’ is trivially satisfied.

Let Ay,..., Ak be the distinct roots op and letny, ..., ng be their respective multiplicities. Note that the assump-
tions p, # 0 and p palindromic or antipalindromic imply that; # O for all i. Denote thejth derivative ofp(&),
evaluated ah € C by dd—;, P(&)|s=x. The characterisation (3) of palindromic and antipalimdi®polynomials, can be

written as
p is palindromic/antipalindromic gl n . .
with distinct rootsA A {d—‘fl(p(g):FE P(L/8))le=p=0, fori=1....k j=0,....n~1
1,---5k
of respective multiplicitiesy, ..., ng PoF pn =0.

Foreach € {1,...,k}, the first condition gives the system of equations

)\in 0 ... 0
n—1 n—2 r
n)\i _)\i 0 ... 0 p(l/)h)
n(n—1)A"2 —2(n—A"-3 An-4 . : Lp(1/A)

nn—1)(n—2)A"3 —3(n—1)(n—2A"* 3(n—-2)A"> —A"°

nj—1
0 _% P(1/Ai)

The coefficient matrix in the left hand side is lower-trialguvith nonzero diagonal elements (sineZ 0). There-
fore,

d dni—t
P(1/Ai) = Jp(l/)\i) == Wp(l/)\i) =0,

10



which proves that AA; is a root ofp with multiplicity n;. We showed that

: _ _ o _ item 1’ holds and
p is palindromic/antipalindromic <= (8)

Po+ Pn = 07
i.e., any polynomial satisfying item 1’ is either palindrisnor antipalindromic and, vice verse, any palindromic or

antipalindromic polynomial satisfies item 1’. The conditipg F p, = O distinguishes between the palindromic and
the antipalindromic case. In order to complete the proofhasge to show that

item 1’ holds andpg F prh =0 — items 1’ and 2 hold

This equivalence follows from recursive application of thkowing lemmas.

Lemma 21. The polynomial pE R[£] is antipalindromic if and only if there is a palindromic polgmial g, such that

p(&) = (& —1)a(&). (9)

Lemma 22. The polynomial ge R[] is palindromic and has a root at 1 if and only if there is an antipalindromic
polynomial g, such that (9) holds.

Let p be palindromic. Ifp has no root at-1, we are done (the multiplicity of1 is 0). If p has a root at+1,
then, according to Lemma 22, it can be factored if§o- 1) pY, where p(l)(é) is antipalindromic. According to
Lemma 21,p can be factored a& — 1)pl? (&), were p'? is palindromic. At this stagep = (¢ —1)?p® and we
repeat the argument above replacimgith p@. In general, the procedure terminates atktreiteration by finding
that the palindromic polynomigh®) has no root at-1. Thenp = (§ — 1)%p), which proves thap has a root
at +1 of an even multiplicity. It follows by Lemma 21 that an amdipdromic p must have a root at-1 of an odd
multiplicity.

Proof of Lemma 21

The polynomial equation (9) can be written in a matrix-vedtom as

11

o -1 0 - 0] _ )
Po 1 1 Jo
P1 (o]
. 0 0 . (10)
| Pn ] -1 | On-1
0 1]



wherepg, p1,.. ., pn are the coefficients gb andqp,qs, . ..,0n_1 are the coefficients af. The restriction of the linear
mappingqg — p, defined by (10), to the subspace of palindromis

1 0 -~ O r 7
Qo
-11 Qo — O
(o] [0 0 o] :
P1 B 0O -1 1 a1 | Om-1—0m
: 0 1 -1 ~Om-1-+0m ’
| Pn | o . . o] L9m] :
1 1 —0o+ 01
-1 0 0| | %]
whenn is even (i =: 2m) and
(1 0 0| _ -
Jo
-1 1
Go— O
o 0 R 0 - .
Po . Jdo ’
: o =1 1 _
p1 ' o Om—1—0m
= : 0 0 . = 0 )
. A _ . —0Om-1-+0m
| Pn | B ! ! | Om | )
0 S0
—0o+ 01
1 -1
I
-1 0 - 0]

whennis odd f=: 2m+ 1). This shows that the restriction of (10) to the subspageabhdromic arguments, auto-
matically restricts the image to the subspace of antipaedimic vectorsp. Moreover, there is a one-to-one mapping
betweerp,qs, - ..,qm andpo, p1, - . ., Pm given by the equation

] |1 0 - O] [q]
Pl -1 1 " e
. ol |

| Pm| 0O 0 -1 1| |9m]

This proves that given an antipalindronpichere is a unique solutioqof (10), which is palindromic.

Proof of Lemma 22

Consider (9) withp palindromic. The “only if” implication in (8) and the assutign thatp is palindromic imply that

the roots ofp satisfy item 1'. The roots afj are a subset of the roots pfso that they also satisfy item 1’. By the “if”
implication of (8), we conclude thatis either palindromic or palindromic. Assume that it is patindromic. Then

by Lemma 21 pis antipalindromic, which is a contradiction. Therefagdés antipalindromic.

12



A.2 Theorem 7

Let Aq,..., Ak be the distinct roots op and letny, ..., ng be their respective multiplicities. Note thpt = 0 because
degree of the polynomial is assumed torb& hen the following holds:

pis even/odd with distinct roota,. . .., A %(p(é )F ) en =0,
=
of respective multiplicitiesy, ..., ng fori=1,. k j=0,. -1

This implies that
pis even/odd with distinct rootay. ... Ay (L p(h) ¥ (~1)1 & p(-A))) = 0,
= i i
of respective multiplicitiesy, ..., ng fori=1,....k, j=0,...,ni—1
It follows that
(A= Tpay == L pay—0
p 1) — d)\ p dA ni— I ni—1 p )
fori=1,...,k. Hence—A; is a root of multiplicityn;. This proves item 1 of the theorem.

By the definition of odd polynomials, any odd polynomjatan be factorised g3(§) = £p/(£), wherep' is an
even polynomial. Assume that has a root at zero, i.ep/(§) = &p”(&). Sincep' is even,

p(&)=—-&p" (&) =&p"(&).

This implies thatp” is odd.

Now assume thap has exactly h roots at zero, wherene N. Let p(§) = Ezmp(zm)(é). From the previous
argument, it follows thap®™ is odd and has no root at zero, which is a contradiction. Hangeodd polynomial has
odd number of roots at zero.

Consider an even polynomigh. Sincep; given by pz(&) = £p1(€) is odd and we have already proved that an
odd polynomial has odd number of roots at zero, it followd fhahas even number of roots at zero. This concludes
the proof.

A.3 Theorem 13

(=) Let Z =ker(p(0)) andp(0) = 3o pic’. Assume that refw) € %. Then

n

(p(o)rev(w))(t) = % (pio'rev(w % pw(—t—i)=0,  foreveryt € Z.
i=
Puttingi = n— j andt = —t; — niin the above equation, we get
n
Z) Pn—jW(t1+j) =0, for everyt; € Z. (11)
J:
Since# is time-reversiblew € %, i.e.,
n
Z) pjw(ti+ j) =0, for everyt; € Z. (12)
From equations (11) and (12),

n n
PojW(te+j) =k 'y pjw(ts+ j), for everyt; € Z.
% %

13



wherek € R. Since 4 is linear, it follows thatkp = rev(p), wherep = col(po, p1,...,pn). Therefore,k? =1 or
k= +1 and hence(0) is either palindromic or antipalindromic.

(«<=) Assume thaip(g) = S o pi o' is palindromic/antipalindromic. Thep; = +pn_; fori =0,1,...,n. Let
% = ker(p(0)). For anyw € %, we havey ., pioiw = 0. The left hand side can be written as

n n
piw(t+1) ==+ proiw(t+
2P 2
Puttingi = n— j andt = —t; — n, we get
n n
+ Z}pj —t1—j) Z pjo’rev(iw ) (t1) =0, for everyt; € Z.
Thus if p is palindromic/antipalindromioy € 2 implies re{w) € 4, or # is reversible.

A.4 Theorem 14
Let p(o) = 3P ,pio’ andq(o) = 3 ,q0'. For any coly,u) € 2 :=ker(|p(a) —q(o)|), we have
P . d .
i;) piy(t+i) = i;qiu(t +i), for everyt € Z. (13)

(If) Assume thaty is divisible byo? and thatp andq; are palindromic, where; (o) := q(0)/09. Thenp = pn_i
fori=0,1,...,p,0 =0fori=0,...,d—1,andg = qy_i fori =d,...,q. From (13),

ijp iy(t qu ut+i),  foreveryt e Z.
Puttingi = p — j, andt = —t; — p in the above equation, we get
P
%ij(—tl— j z qu(—ti—j),  foreveryt; € Z
=
or
: (pj0 S (0 0]
pjo’lrev(y gjo'rev(u
2, Peret) = 2
so that

[IO(G) —q(a)} rev( col(y,u)) =0.

This implies that re(/col(y, u)) € A. HenceZ is reversible. The proof for the case whe@andq are both antipalin-
dromic is similar.

(Only If) Assume thatZ is time-reversible and re{vcol(y, u)) € #. We have

_ipiairev(y):iqia‘rev(u) = ‘ipiy(—t—i):iqiu(—t—i), for everyt € Z.

Puttingi = p— j andt = —t; — p in the above equation, we get

p p
Z)pp,jy(tlJrj)—zqp,,-u(t1+j):o, for everyt; € Z
i= j=a

14



Let
W(ty) := col (y(t2),y(t1+1),...,y(t1 + p),u(tz),...,u(ts +d —1),u(ty +d),u(ty +d+1),...,u(t1 +p))

then
[pp Po-1 - Po O -+ 0 —qq -+ Go|W(t1) =0, for everyt; € Z. (14)
SinceZ is time-reversible, cdy,u) € 4, i.e.,
p ) 9 ) ‘
J;)p,y(tlJr ) J;q,u(tlJr j)=0, or everyt; € Z
or
{po PL o Pp —Go - Gy O - o} W(t) =0, foreveryt; € Z. (15)

Since4 is linear, from equations (14) and (15), it follows that

B ot o o O < O Gy - o[ =K[po P - P G -+ G O -~ O

wherek € R. It is easy to see th&t= +1. Whenk = 1, pis palindromic,gi =0 fori =0,...,d — 1, andg; = ¢, for
i=d,...,q, i.e.q(o) is divisible byo! andq' (o) = q(o)/c is palindromic. Wherk = —1, p is antipalindromic,
g=0fori=0,...,d—1, andg = —qg,_ fori =d,...,q, i.e., q(0) is divisible by 0% and¢ (o) = q(0)/0% is
antipalindromic.

If in addition, % is controllable, therp and q are co-prime. If bothp andq are antipalindromic, then from
Lemma 21, bothp anddg have at least one root at 1. Singeds divisible by d/, this implies thatp andq are not
co-prime which is a contradiction. Hence# is controllable and time-reversible, therandq' are both palindromic.

A.5 Theorem 20

Let the degree of be equal tan. Letr = r’g, wherer’ the maximal palindromic factor af, and letn’ denote the
degree of’. Assume thatZ has a conserved quantity whose two-variable polynomiakssmtation igp({,n). Then

r()f'(¢,n)+r(m)f'(n,Q)
{n-1 ’

for somef’ € R[{,n]. Itis easy to see that singeis #-canonical,f’ is independent of and is of degree less than

o,n)=

or equal ton—1inn. Hence

e(¢n) = r(of(?rf_r(ln)f(o, (16)

wheref(n) = f/({,n). Sinceg exists, the numerator is divisible I§y7 — 1. Consequently by factor theorem,

EN(r(EF(EH+r(EHE(E)) =0.

This implies that
EMF(ENAE) = —&E"Ta(E T F(8).
Defines(&) := E™" (&)q(é 1) and observe that

S(&)+ & "s(E ) =0. (17)
Two cases arise.

15



e Case 1.vdoes not have aroot at 1. In this case, for equation (17) t, litdk easy to see thédt should be of
the form (&) = v(&) fa(&), wheref, is an antipalindromic polynomial such that

E"fa(E7Y) + fa(8) =0

Since the degree df is less tham, the degree of; is less tham'. This implies thatf, has at least one root at
zero. Ifr is even, then the general expression fipcan be written as

n/2-1
21 (& —&"T)

whereby the dimension of the space of all possible polyntsnfiais /2 —1. If n’ is odd, then the general
expression foif, can be written as

Zln —&"

whereby the dimension of the space of all possible polyntanfiais (W —1)/2. From (16), it can be seen
that there is a one-one correspondence betweand anyf of degree less than or equalne- 1. Hence the
dimension of conserved quantities for the two subcaseé loéing even and odd is the same as the dimension
of all possible polynomiald, for the respective subcases, which is equaltd— 1)/2].

e Case 2vhasarootatl. Let(§) = (& —1)V(&). Inthis case, for (17) to hold, it is easy to see thahould
be of the formf (&) = V(&) f'(&), wheref’ is a palindromic polynomial, such that

§UIET - (&) =0

Since the degree dfis less tham, the degree of’ is less than or equal t@. This implies thatf’ has at least
one root at zero. IfY is even, the general expression fdican be written as

n/2 _ ) _
f’ E) — Zl pi(El _|_En+1—|)

whereby the dimension of the space of all possible polyntsnfiais ' /2. If n" is odd, the general expression
for f’ can be written as

n’l

le (€ 4+ €T 4 p 2 E

whereby the dimension of the space of all possible polyntsrfiais (n"+1)/2. From (16), it can be seen
that there is a one-one correspondence betweand anyf of degree less than or equalne- 1. Hence the
dimension of conserved quantities for the two subcaseé loéing even and odd is the same as the dimension
of all possible polynomialg’ for the respective subcases, which is equal(tv+1)/2].
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