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Abstract

The roots of palindromic and antipalindromic polynomials can be grouped in pairs(λ ,1/λ ). A polynomial

with such root pattern is palindromic/antipalindromic if,in addition, it has a root at 1 of an even/odd multiplicity.

The result has applications in system theory: 1) any kernel representation of a discrete-time, time-reversible, scalar,

autonomous LTI system is either palindromic or antipalindromic. (Similar statement holds for systems with inputs.)

2) LTI systems with palindromic or antipalindromic kernel representations have nontrivial conserved quantities.
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1 Introduction

Links between patterns of the roots and coefficients of polynomials have been extensively studied in the context of

dynamical systems and control. A famous result of this type is the Routh–Hurwitz stability test, which allows to check

the stability of a single input single output (SISO) linear time-invariant system without computing its poles, i.e., bya

finite number of operations on the coefficients of a differential equation representation of the system.

We study the root location of palindromic and antipalindromic polynomials, i.e., polynomials whose coefficients

are respectively symmetric and antisymmetric with respectto the middle coefficient. It turns out that an autonomous

discrete-time linear time-invariant (LTI) system defined by a difference equation whose coefficients are palindromic

or antipalindromic is time-reversible in the sense that anytrajectory of that system reversed in time is also a trajectory

of the system. The continuous-time analogue of the palindromic and antipalindromic polynomials are even and odd

polynomials.

Furthermore, we show that time-reversible systems possessconserved quantities. These are quadratic functionals

of the system variables that remain constant in time along any trajectory of the system. Time-reversible systems have

been studied by Fagnani and Willems [FW91]. In this paper, wegive more details (see, Theorems 13 and 14 in

Section 4) about the structure of scalar autonomous and SISOtime-reversible systems.

For both palindromic and antipalindromic polynomials a root λ has a corresponding root 1/λ of the same multi-

plicity. The property that distinguishes palindromic fromantipalindromic polynomials is the multiplicity of the root

at 1. In the case of simple roots, a palindromic polynomial has no root at 1, while an antipalindromic polynomial

has a root at 1. The system theoretic implication of this factis that the multiplicity of the root at 1 determines the

coefficient pattern of a difference equation representation of a time-reversible system.
∗Techincal report 14650, ECS, University of Southampton.http://eprints.ecs.soton.ac.uk/
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R real numbers, C — complex numbers, Z — integers

ℜ(λ ) real part ofλ , ℑ(λ ) — imaginary part ofλ
λ complex conjugate ofλ , i :=

√
−1 — the imaginary unit

R[ξ ] ring of polynomials with real coefficients in the indeterminateξ
Rs[ζ ,η ] space of symmetric two-variable polynomials in the indeterminatesζ andη
col(p0, p1, . . . , pn) the column vector with elementsp0, p1, . . . , pn

diag(a0,a1, . . . ,an) the diagonal matrix with diagonal elementsa0,a1, . . . ,an

R
Z the set of functions mappingZ to R (i.e., scalar sequences)

Table 1: Notation.

2 Palindromic and antipalindromic polynomials

In this section, we study the root location of palindromic and antipalindromic polynomials.

Definition 1 (Palindromic and antipalindromic polynomials). A polynomial p∈ R[ξ ] of degreen

p(ξ ) = p0 + p1ξ + · · ·+ pnξ n, pn 6= 0

is palindromic if its coefficientsp0, p1, . . . , pn form a palindrome, i.e.,

pi = pn−i , for i = 0,1, . . . ,n.

A polynomial p is antipalintromic ifpi = −pn−i, for i = 0,1, . . . ,n.

Our main result is stated in the following theorem.

Theorem 2 (Root location of palindromic and antipalindromic polynomials). The polynomial p∈ R[ξ ] is palin-

dromic/antipalindromic if and only if

1. every rootλ ∈ C of p is either on the unit circle or p has a root1/λ with the same multiplicity asλ , and

2. 1+ i0 is a root of p of even/odd multiplicity (multiplicity 0 meansthat 1+ i0 is not a root of p).

In addition, if p has an odd degree, then−1+ i0 is a root of p of an odd/even multiplicity.

Let λ be the complex conjugate ofλ . Theorem 2 shows that the complex roots of palindromic and antipalindromic

polynomials that are not on the unit circle can be divided into four-tuples(λ ,1/λ ,λ ,1/λ ). The complex roots that

are on the unit circle and the real roots ofp, except possibly roots at±1, can be divided into tuples(λ ,1/λ ), see

Figure 1. These properties are common for palindromic and antipalindromic polynomials. The distinguishing property

of antipalindromic polynomials is that they have a root at+1 with an odd multiplicity. Conversely, provided that any

root λ , except possibly roots at±1, has a corresponding root 1/λ of the same multiplicity, the polynomial is either

palindromic or antipalindromic. The existence of a root at+1 and its multiplicity determine whether the polynomial

is palindromic (even multiplicity of a root at+1) or antipalindromic (odd multiplicity of a root at+1).

Let rev(p) denote the “reversed” polynomial ofp, i.e.,

rev(p)(ξ ) := pnξ 0+ pn−1ξ 1+ · · ·+ p0ξ n, wherep(ξ ) = p0ξ 0 + p1ξ 1 + · · ·+ pnξ n. (1)
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Figure 1: The roots ofp(ξ ) = ξ 0− 1.05ξ 1 + 1.45ξ 2− 3.63ξ 3 + 3.98ξ 4− 3.63ξ 55+ 1.45ξ 6 − 1.05ξ 7 + ξ 8 can be

grouped in the four-tuple(λ1,1/λ1,λ 1,1/λ 1), λ1 = −0.32+ i0.6, the tuple(λ2,1/λ2), λ2 = 0.5+ i0.866, and the

tuple(λ3,1/λ3), λ3 = 0.8.

Then, obviouslyp is palindromic/antipalindromic if and only ifp= ±rev(p) (+ refers to the palindromic case and−
refers to the antipalindromic case). Note that the rev operator obeys the following property

rev(p)(ξ ) =







ξ np(1/ξ ), for ξ 6= 0,

pn, for ξ = 0,
(2)

which gives an algebraic characterisation of palindromic and antipalindromic polynomials

p is palindromic/antipalindromic ⇐⇒







p(ξ )∓ξ np(1/ξ ) = 0, for all ξ ∈ C, ξ 6= 0, and

p0∓ pn = 0.
(3)

Next we state three corollaries of Theorem 2.

Corollary 3 (Elementary palindromic and antipalindromic polynomials). Any palindromic or antipalindromic poly-

nomial p can be represented as a product of the following five elementary polynomials:

• e1(ξ ) := ξ −1,

• e2(ξ ) := ξ +1,

• e3(α ,ξ ) := ξ 2− 1+α2

α ξ +1, whereα ∈ R,

• e4(ω ,ξ ) := ξ 2−2cos(ω)ξ +1, whereω ∈ R, and

• e5(λ ,ξ ) := ξ 4− 2ℜ(λ )1+|λ |2
|λ |2 ξ 3 +

(

2+ |λ |2+ 2ℜ(λ)2−ℑ(λ)2

|λ |2
)

ξ 2− 2ℜ(λ )1+|λ |2
|λ |2 ξ + 1, whereλ ∈ C is neither

purely real nor purely imaginary.

i.e., there exist unique scalar c∈ R and parametersαi ∈ R for i = 1, . . . ,k3, ωi ∈ R for i = 1, . . . ,k4, λi ∈ C for

i = 1, . . . ,k5, such that

p(ξ ) = cek1
1 (ξ )ek2

2 (ξ )
k3

∏
i=1

e3(αi ,ξ )
k4

∏
i=1

e4(ωi ,ξ )
k5

∏
i=1

e5(λi ,ξ ) (4)
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(ki = 0 means that there is no elementary polynomial of the ith type). If p is palindromic k1 is even and if p an-

tipalindromic k1 is odd. Conversely, any product (4) of elementary polynomials is palindromic if k1 is even and

antipalindromic if k1 is odd.

Proof. Observe that

• the root ofe1(ξ ) is +1,

• the root ofe2(ξ ) is−1,

• the roots ofe3(α ,ξ ) areα and 1/α ,

• the roots ofe4(ω ,ξ ) areeiω ande−iω , and

• the roots ofe5(λ ,ξ ) areλ , 1/λ , λ , and 1/λ ,

so that the factorisation (4) corresponds to the grouping ofthe roots ofp into roots at±1, tuples on the real axis, tuples

on the unit circle, and four-tuples in the complex plane, as done in the proof of Theorem 2. Therefore, Corollary 3 is

a restatement of Theorem 2 in terms of factor polynomials instead of groups of roots.

Corollary 4 (Algebraic properties of the palindromic and antipalindromic polynomials). The following hold:

• “palindromic” × “palindromic” is palindromic,

• “palindromic” × “antipalindromic” is antipalindromic,

• “antipalindromic” × “antipalindromic” is palindromic.

Proof. Consider the factorisations of palindromic or antipalindromic polynomialsp andq into elementary polyno-

mials. Obviously, the polynomialpq is also a product of elementary polynomials, so that it is either palindromic or

antipalindromic. Letk1,p, k1,q, andk1,pq be the powers ofe1 in the factorisations (4) of respectivelyp, q, andpq. We

have thatk1,p + k1,q = k1,pq. According to Corollary 3 the power ofe1 is even if and only if the corresponding poly-

nomial is palindromic and odd if and only if the polynomial isantipalindromic. For the three cases in the statement

of Corollary 4, we have

• evenk1,p + evenk1,q = evenk1,pq, so thatpq is palindromic,

• evenk1,p + oddk1,q = oddk1,pq, so thatpq is antipalindromic,

• oddk1,p + oddk1,q = evenk1,pq, so thatpq is palindromic.

Corollary 5. If a polynomial with real coefficients p∈ R[ξ ] has all its roots on the unit circle, then it is either

palindromic or antipalintromic. The antipalintromic casecorresponds to the polynomials with a root at1+ i0 of an

odd multiplicity.

Proof. A polynomial p whose roots are on the unit circle satisfies item 1 in Theorem 2, so thatp is either palindromic

or antipalindromic. If, in addition,p satisfies item 2, then it is palindromic. Otherwise,p is antipalindromic.
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3 Even and odd polynomials

In this section, we study the root location of even or odd polynomials, i.e., polynomials of the type

p(ξ ) = p0 + p2ξ 2+ · · ·+ p2nξ 2n =: p′(ξ 2),

p(ξ ) = p1ξ + p3ξ 3+ · · ·+ p2n+1ξ 2n+1 =: ξ p′(ξ 2).

Note6 (Continuous-time systems). Palindromic/antipalindromic polynomials are related to discrete-time LTI systems,

see Section 4. Even/odd polynomials are the “continuous-time equivalent” to palindromic/antipalindromic polyno-

mials, i.e., they are related to continuous-time LTI systems. The results for the continuous-time case can be deduced

from the corresponding results for the discrete-time case,so in Section 4 we consider only the discrete-time case.

An algebraic characterisation of even/odd polynomials, analogous to the characterisation (2) of palindromic/anti-

palindromic polynomials is

p is even/odd ⇐⇒ p(ξ )∓ p(−ξ ) = 0, for all ξ ∈ C.

Theorem 7(Root location of even and odd polynomials). A polynomial p∈ R[ξ ] is even/odd if and only if

1. for every rootλ ∈ C of p, there is another root−λ of p with the same multiplicity asλ and

2. 0 is a root of p of even/odd multiplicity.

Since we consider only polynomials with real coefficients, from Theorem 7, it can be inferred that the set of roots

of an even/odd polynomial is a union of the following sets:

• set of roots at 0

• set of pairs of roots(iωi ,−iωi), whereωi ∈ R+, on the imaginary axis,

• set of pairs of roots(αi ,−αi), whereαi ∈ R+, on the real axis, and

• set of four-tuples(λi , λ̄i ,−λi,−λ̄i), whereλ ∈ C is neither purely real nor purely imaginary.

This is illustrated through an example in Figure 2. The following corollary formalises this property.

Corollary 8 (Elementary even and odd polynomials). Any even or odd polynomial p∈ R[ξ ] can be represented as a

product of the following four elementary polynomials:

• f1(ξ ) := ξ ,

• f2(ω ,ξ ) := ξ 2+ ω2, whereω ∈ R+,

• f3(α ,ξ ) := ξ 2−α2, whereα ∈ R+,

• f4(λ ,ξ ) := ξ 4+2
(

ℑ2(λ )−ℜ2(λ )
)

ξ 2+
(

ℑ2(λ )+

ℜ2(λ )
)2

, whereλ ∈ C is neither purely real nor

purely imaginary,

i.e., there exist a unique scalar c∈ R and parametersαi ∈ R for i = 1, . . . ,k2, ωi ∈ R for i = 1, . . . ,k3, λi ∈ C for

i = 1, . . . ,k4, such that

p(ξ ) = c fk1
1 (ξ )

k2

∏
i=1

f2(ωi ,ξ )
k3

∏
i=1

f3(αi ,ξ )
k4

∏
i=1

f4(λi ,ξ ) (5)

(ki = 0 means that there is no elementary polynomial of the ith type). If p is even, k1 is even and if p is odd k1 is odd.

Conversely, any product (5) of elementary polynomials is even if k1 is even and odd if k1 is odd.

Proof. Observe that
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Figure 2: The roots ofp(ξ ) = 3ξ 0 + 2ξ 2 + 0.8125ξ 4 − 0.125ξ 6 − 0.0625ξ 8 can be grouped in the four-tuple

(λ1,−λ1,λ 1,−λ 1), λ1 = 0.3493+ i0.6748, the tuple(λ2,λ2), λ2 = i0.5, and the tuple(λ3,−λ3), λ3 = 0.5.

• the root of f1(ξ ) is 0,

• the roots off2(ω ,ξ ) areiω and−iω ,

• the roots off3(α ,ξ ) areα and−α , and

• the roots off4(λ ,ξ ) areλ , −λ , λ , and−λ ,

so that the factorisation (5) corresponds to the grouping ofthe roots ofp into roots at 0, pairs on the real axis,

pairs on the imaginary axis, and four-tuples in the complex plane, as discussed earlier.

Corollary 9. If a polynomial p∈ R[ξ ] has all its roots on the imaginary axis, then it is either evenor odd. The odd

case corresponds to the polynomials with a root at0 of an odd multiplicity.

Proof. A polynomial p whose roots are on the imaginary axis satisfies item 1 in Theorem 7, so thatp is either even

or odd. If, in addition,p satisfies item 2, then it is even. Otherwise, it is odd.

4 Palindromic/antipalindromic polynomials in system theory

In the remaining part of the paper, we study the relevance of palindromic and antipalindromic polynomials in system

theory. In Section 4.1, we show that difference equation representations of LTI time-reversible systems are related

to palindromic/antipalindromic polynomials. In Section 4.2, we show that palindromic/antipalindromic polynomials

also have a link with representations of LTI systems that have special quadratic functionals associated with them,

known as conserved quantities, i.e., functionals that remain constant along the trajectories of the system. We begin

with a short description of LTI systems and quadratic difference forms. For thorough exposition of these concepts (in

the continuous-time case), we refer the reader respectively to [PW98] and [WT98].

Define byσ the shift operator

(σw)(t) := w(t +1).

An LTI system can always be represented in, what is called kernel form, as

B = ker
(

R(σ)
)

:= {w∈ (Rw)Z | R(σ)w = 0}, (6)

whereR∈ R
•×w[σ ]. The representation (6) is called minimal ifR has the minimum number of rows among all the

kernel representations ofB.
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A quadratic difference form [Kan05] is the discrete-time analogue of quadratic differential form for continuous-

time systems introduced by Willems and Trentelman [WT98]. Let Φ ∈ R
w×w[ζ ,η ], i.e., Φ(ζ ,η) = ∑n

i, j=0 Φi, jζ iη j ,

whereΦi, j ∈ R
w×w for all i, j ∈ {0,1, . . . ,n} andn is a natural number. Such a polynomialΦ induces aquadratic

difference form(QDF) on(Rw)Z as

QΦ : (Rw)Z 7→ R
Z, QΦ(w)(t) :=

n

∑
i, j=0

w(t + i)⊤Φi, jw(t + j).

We callΦ symmetric ifΦ(ζ ,η) = Φ(η ,ζ )⊤. In this paper, we consider only the set of symmetric QDFs, denoted by

R
w×w
s [ζ ,η ], because every nonsymmetric QDF is equivalent to a symmetric one.

We describe the notion of the rate of change of a QDF, which will be used to obtain results about conserved

quantities later on in the paper. Therate of change∇QΦ of a QDFQΦ is defined as

∇QΦ(w)(t) := QΦ(w)(t +1)−QΦ(w)(t).

Let Ψ(ζ ,η) be the two-variable polynomial matrix associated with the QDF ∇QΦ. Then, it is easy to see that

Ψ(ζ ,η) = (ζη −1)Φ(ζ ,η).

A QDF QΦ is said to be zero along a behaviourB (denoted byQΦ
B
= 0) if QΦ(w)(t) = 0, for all w∈B andt ∈ Z. The

next proposition which is an analogue of Proposition 3.2 of [WT98] gives the condition on a two-variable polynomial

under which the QDF associated with it is zero along a given scalar autonomous behaviour.

Proposition 10. Let Φ ∈ Rs[ζ ,η ] and letB = ker
(

r(σ)
)

, where r∈ R[σ ]. Then QΦ
B
= 0 if and only if there exists

f ∈ R[ζ ,η ], such that

Φ(ζ ,η) = f (η ,ζ )r(η)+ r(ζ ) f (ζ ,η).

Proof. The proof can be deduced from Lemma A.1, page 1734, [WT98].

Equip the set of QDFs associated with a behaviourB with the equivalence relation defined by

QΦ
B∼ QΨ ⇐⇒ QΦ(w) = QΨ(w), for all w∈ B.

It is easy to see that the set of equivalence classes under
B∼ is a linear vector space overR. With every equivalence class

of QDFs associated with an autonomous behaviourB, we associate a certain representative known as theB-canonical

representative. Below, we define the notion ofB-canonicity of QDFs.

Definition 11. Let B be an autonomous behaviour given byB = ker
(

r(σ)
)

, wherer ∈ R[σ ]. Then a QDFQΦ is

B-canonical ifr(ζ )−1Φ(ζ ,η)r(η)−1 is strictly proper.

If r has degreen, then from the definition, it follows that the two-variable polynomials associated withB-

canonical QDFs are spanned by monomialsζ iη j , with i, j ≤ n−1. It is easy to see that every QDF has aB-canonical

representative.

7



4.1 Time-reversible systems

Next, we study kernel representations of discrete-time time-reversible scalar autonomous and SISO systems. We show

that there exists an inherent link between palindromic/antipalindromic polynomials and the kernel representation of

time-reversible systems. Earlier, work on time-reversible systems had been done by Fagnani and Willems [FW91].

In Section 2, we defined the reversed polynomial rev(p), see (1). By viewing the polynomialp as the vector

col(p0, p1, . . . , pn) of its coefficients, we can naturally extend the “rev” operator for vectors. Thus

rev
(

col(p0, p1, . . . , pn)
)

:= col(pn, pn−1, . . . , p0).

We define the “rev” operator for a sequencew∈ (Rw)Z as

(

rev(w)
)

(t) := w(−t), for all t ∈ Z.

Thus the “rev” operator acting on a sequence reverses the order of the sequence. It is easy to see that rev
(

rev(w)
)

= w.

Definition 12 (Time-reversible system). A dynamical systemB is time-reversible ifw∈ B implies rev(w) ∈ B.

We now give a necessary and sufficient condition in terms of a kernel representation for an autonomous scalar

system to be time-reversible.

Theorem 13. The LTI systemB = ker
(

p(σ)
)

, p∈ R[ξ ], is time-reversible if and only if p is either palindromic or

antipalindromic.

Next we give a condition in terms of a kernel representation for a SISO system to be time-reversible.

Theorem 14. LetB = ker
(

[

q(σ) −p(σ)
]

)

, where p∈R[σ ] is of degreep and q∈ R[σ ] is of degreeq≤ p. Define

d := p−q. The systemB is time-reversible if and only if i) q hasd roots at zero and ii) p and q′(σ) := q(σ)/σd are

either both palindromic or both antipalindromic. IfB is controllable, then both p and q′ are palindromic.

Using the steps followed in the proof of the above theorem, one can also deduce the structure of the kernel

representation of a multi-input single-output time-reversible system. We now state the main result of [FW91] on

kernel representations of discrete-time time-reversiblesystems and compare it with ours.

Theorem 15([FW91]). An LTI systemB is time-reversible if and only if it can be described by a minimal difference

equation R(σ ,σ−1)w = 0, where

R(z−1,z) = S(z)R(z,z−1) and S(z) = diag(Ip+ ,−Ip− , Ipz+z,−Ipz−z)

with Ip being the identity matrix of sizep, andp+, p−, pz+, pz− being nonnegative integers (invariants ofB), such

that their sum equals the number of rows of R.

For single output systems, the kernel representation is unique up to a multiplication with a nonzero scalar. This

type of nonuniqueness does not destroy the (anti)palindromic structure. Therefore, any representation of a scalar

autonomous and SISO time-reversible system has the properties stated in Theorems 13 and 14. In the multiple output

case, the nonuniqueness of the kernel representation can destroy the (anti)palindromic structure. As a result the

statement of Theorem 15 is existential.

In the following examples, we determine the integersp+, p−, pz+, andpz−, defined in Theorems 15 for partic-

ular systems. Then we make a general statement of howp+, p−, pz+, pz− depend on the behaviour and its kernel

representation.
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k1(B) n(B)

even even

odd even

even odd

odd odd

⇐⇒

p deg(p)

palindromic even

antipalindromic even

palindromic odd

antipalindromic odd

⇐⇒

p+ p− pz+ pz−

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Table 2:k1(B) — the multiplicity of a pole ofB at 1,n(B) — order ofB.

Example16 (Autonomous time-reversible system). Consider a behaviourB = ker
(

p(σ)
)

, where

p(σ) = p0 + p1σ − p1σ3− p0σ4, with p0, p1 ∈ R.

Sincep is antipalindromic, from Theorem 13, it follows thatB is time-reversible. According to Theorem 15, there

exists another representation forB given byB = ker
(

R(σ ,σ−1)
)

, where

R(σ ,σ−1) = p0σ−2+ p1σ−1− p1σ − p0σ2.

Observe thatR(σ ,σ−1) = −R(σ−1,σ), so thatp− = 1 andp+ = pz+ = pz− = 0.

Example17 (SISO time-reversible system). Consider a behaviourB = ker
(

R′(σ)
)

, where

R′(σ) =
[

p0 + p1σ + p1σ2+ p0σ3 −q1σ −q1σ2
]

, with p0, p1,q1 ∈ R.

From Theorem 14, it follows thatB is time-reversible. According to Theorem 15, there exists another representation

for B given byR(σ ,σ−1)w = 0, where

R(σ ,σ−1) =
[

p0σ−1+ p1 + p1σ + p0σ2 −q1−q1σ
]

.

In this case,R(z−1,z) = S(z)R(z,z−1), whereS(z) = z, so thatp+ = pz− = p− = 0 andpz+ = 1.

It is of interest to show how the invariantsp+, p−, pz+, pz− depend on the behaviour and on the parameters of

particular representations of the behaviour. For the general multivariable case, Theorem 15 only asserts that their

sum is equal to the number of outputs of the system. Using Theorems 13 and 14, we can say more for the scalar

autonomous and SISO cases. The dependence of the invariantsp+, p−, pz+, pz− on the behaviourB and on a

minimal kernel representation for these cases are summarised in Table 2.

4.2 Existence of conserved quantities

The notion of aconserved quantityis defined by Rapisarda and Willems [RW05] for the case of continuous-time

systems. Below, we give an analogous definition for the case of discrete-time systems.

Definition 18. LetB be a linear autonomous behaviour. A QDF QΦ is a conserved quantity forB if

∇QΦ(w) = 0, for all w ∈ B. (7)

In other words, a conserved quantity for a behaviourB is a QDF, which remains constant upon acting on any

sequence belonging to the behaviour. In this section, we examine the conditions on the representation of a scalar

autonomous behaviour under which it has a conserved quantity associated with it. We begin with the following

definition.
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Definition 19. Themaximal palindromic factorof r ∈ R[ξ ] is its monic palindromic factor of maximal degree.

For any given polynomialr ∈ R[ξ ], it is easy to see that there exists a unique maximal palindromic factor. In

the next theorem, we examine the conditions under which a linear behaviourB has conserved quantities associated

with it.

Theorem 20. Consider a linear behaviourB = ker
(

r(σ)
)

, where r∈R[σ ] has no root at zero. There exists a nonzero

conserved quantity forB if and only if either r has a non-unity maximal palindromic factor r′ or r(σ) = σ − 1.

Moreover if v:= r/r ′ is such that v(1) 6= 0, then the dimension of the space of conserved quantities is⌊
(

deg(r ′)−
1
)

/2⌋, otherwise it is⌊
(

deg(r ′)+1
)

/2⌋, where⌊m⌋ is the greatest integer less than or equal to m.

From the above theorem and from the discussion on time-reversible systems, it can be inferred that every reversible

scalar system has conserved quantities associated with it.

A Proofs

A.1 Theorem 2

First, note that item 1 in the statement of Theorem 2 is equivalent to:

1’. For every rootλ ∈ C of p there exists a root 1/λ with the same multiplicity asλ .

Indeed, ifλ is complex and is on the unit circle, then 1/λ = λ and by the assumption thatp has real coefficients, it

follows that 1/λ is also a root ofp with the same multiplicity. Ifλ = ±1, then 1/λ = λ and 1’ is trivially satisfied.

Let λ1, . . . ,λk be the distinct roots ofp and letn1, . . . ,nk be their respective multiplicities. Note that the assump-

tions pn 6= 0 and p palindromic or antipalindromic imply thatλi 6= 0 for all i. Denote thejth derivative ofp(ξ ),

evaluated atλ ∈ C by dj

dξ j p(ξ )|ξ=λ . The characterisation (3) of palindromic and antipalindromic polynomials, can be

written as

p is palindromic/antipalindromic

with distinct rootsλ1, . . . ,λk

of respective multiplicitiesn1, . . . ,nk

⇐⇒







dj

dξ j

(

p(ξ )∓ξ np(1/ξ )
)

|ξ=λi
= 0, for i = 1, . . . ,k, j = 0, . . . ,ni −1

p0∓ pn = 0.

For eachi ∈ {1, . . . ,k}, the first condition gives the system of equations

±





























λ n
i 0 · · · · · · · · · 0

nλ n−1
i −λ n−2

i 0 · · · · · · 0

n(n−1)λ n−2
i −2(n−1)λ n−3

i λ n−4
i

. . .
...

n(n−1)(n−2)λ n−3
i −3(n−1)(n−2)λ n−4

i 3(n−2)λ n−5
i −λ n−6

i
. . .

...
...

...
...

...
. . . 0

∗ ∗ ∗ ∗ · · · λ 0
i











































p(1/λi)
d

dλ p(1/λi)
...

dni−1

dλni−1 p(1/λi)















= 0.

The coefficient matrix in the left hand side is lower-triangular with nonzero diagonal elements (sinceλi 6= 0). There-

fore,

p(1/λi) =
d

dλ
p(1/λi) = · · · = dni−1

dλ ni−1 p(1/λi) = 0,
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which proves that 1/λi is a root ofp with multiplicity ni . We showed that

p is palindromic/antipalindromic ⇐⇒







item 1’ holds and

p0∓ pn = 0,
(8)

i.e., any polynomial satisfying item 1’ is either palindromic or antipalindromic and, vice verse, any palindromic or

antipalindromic polynomial satisfies item 1’. The condition p0∓ pn = 0 distinguishes between the palindromic and

the antipalindromic case. In order to complete the proof, wehave to show that

item 1’ holds andp0∓ pn = 0 ⇐⇒ items 1’ and 2 hold.

This equivalence follows from recursive application of thefollowing lemmas.

Lemma 21. The polynomial p∈ R[ξ ] is antipalindromic if and only if there is a palindromic polynomial q, such that

p(ξ ) = (ξ −1)q(ξ ). (9)

Lemma 22. The polynomial p∈ R[ξ ] is palindromic and has a root at+1 if and only if there is an antipalindromic

polynomial q, such that (9) holds.

Let p be palindromic. Ifp has no root at+1, we are done (the multiplicity of+1 is 0). If p has a root at+1,

then, according to Lemma 22, it can be factored into(ξ − 1)p(1), wherep(1)(ξ ) is antipalindromic. According to

Lemma 21,p(1) can be factored as(ξ −1)p(2)(ξ ), werep(2) is palindromic. At this stage,p = (ξ −1)2p(2) and we

repeat the argument above replacingp with p(2). In general, the procedure terminates at thekth iteration by finding

that the palindromic polynomialp(2k) has no root at+1. Thenp = (ξ − 1)2kp(2k), which proves thatp has a root

at +1 of an even multiplicity. It follows by Lemma 21 that an antipalindromic p must have a root at+1 of an odd

multiplicity.

Proof of Lemma 21

The polynomial equation (9) can be written in a matrix-vector form as















p0

p1

...

pn















=























−1 0 · · · 0

1 −1
. . .

...

0
. . .

. . . 0
...

. . . 1 −1

0 · · · 0 1





































q0

q1

...

qn−1















, (10)
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wherep0, p1, . . . , pn are the coefficients ofp andq0,q1, . . . ,qn−1 are the coefficients ofq. The restriction of the linear

mappingq 7→ p, defined by (10), to the subspace of palindromicq is















p0

p1

...

pn















=











































1 0 · · · 0

−1 1
. . .

...

0
. . .

. . . 0
... 0 −1 1
... 0 1 −1

0 . .
.

. .
.

0

1 −1 . .
. ...

−1 0 · · · 0

























































q0

q1

...

qm















=







































q0

q0−q1

...

qm−1−qm

−qm−1 +qm

...

−q0 +q1

−q0







































,

whenn is even (n =: 2m) and















p0

p1

...

pn















=

















































1 0 · · · 0

−1 1
. . .

...

0
. . .

. . . 0
...

. . . −1 1
... 0 0
... . .

.
1 −1

0 . .
.

. .
.

0

1 −1 . .
. ...

−1 0 · · · 0































































q0

q1

...

qm















=











































q0

q0−q1

...

qm−1−qm

0

−qm−1 +qm

...

−q0 +q1

−q0











































,

whenn is odd (n =: 2m+1). This shows that the restriction of (10) to the subspace ofpalindromic arguments, auto-

matically restricts the image to the subspace of antipalindromic vectorsp. Moreover, there is a one-to-one mapping

betweenq0,q1, . . . ,qm andp0, p1, . . . , pm given by the equation















p0

p1

...

pm















=

















1 0 · · · 0

−1 1
. . .

...

0
. . .

. . . 0

0 0 −1 1































q0

q1

...

qm















.

This proves that given an antipalindromicp there is a unique solutionq of (10), which is palindromic.

Proof of Lemma 22

Consider (9) withp palindromic. The “only if” implication in (8) and the assumption thatp is palindromic imply that

the roots ofp satisfy item 1’. The roots ofq are a subset of the roots ofp so that they also satisfy item 1’. By the “if”

implication of (8), we conclude thatq is either palindromic or palindromic. Assume that it is antipalindromic. Then

by Lemma 21,p is antipalindromic, which is a contradiction. Therefore,q is antipalindromic.
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A.2 Theorem 7

Let λ1, . . . ,λk be the distinct roots ofp and letn1, . . . ,nk be their respective multiplicities. Note thatpn 6= 0 because

degree of the polynomial is assumed to ben. Then the following holds:
{

p is even/odd with distinct rootsλ1, . . . ,λk

of respective multiplicitiesn1, . . . ,nk

}

⇐⇒
{

dj

dξ j

(

p(ξ )∓ p(−ξ )
)

|ξ=λi
= 0,

for i = 1, . . . ,k, j = 0, . . . ,ni −1

}

This implies that

{

p is even/odd with distinct rootsλ1, . . . ,λk

of respective multiplicitiesn1, . . . ,nk

}

⇐⇒







(

dj

dλ j
i

p(λi)∓ (−1) j dj

dλ j
i

p(−λi)
)

= 0,

for i = 1, . . . ,k, j = 0, . . . ,ni −1







It follows that

p(−λi) =
d

dλ
p(−λi) = · · · = dni−1

dλ ni−1 p(−λi) = 0,

for i = 1, . . . ,k. Hence−λi is a root of multiplicityni . This proves item 1 of the theorem.

By the definition of odd polynomials, any odd polynomialp can be factorised asp(ξ ) = ξ p′(ξ ), wherep′ is an

even polynomial. Assume thatp′ has a root at zero, i.e.,p′(ξ ) = ξ p′′(ξ ). Sincep′ is even,

p′(ξ ) = −ξ p′′(−ξ ) = ξ p′′(ξ ).

This implies thatp′′ is odd.

Now assume thatp has exactly 2m roots at zero, wherem∈ N. Let p(ξ ) = ξ 2mp(2m)(ξ ). From the previous

argument, it follows thatp(2m) is odd and has no root at zero, which is a contradiction. Henceany odd polynomial has

odd number of roots at zero.

Consider an even polynomialp1. Sincep2 given by p2(ξ ) = ξ p1(ξ ) is odd and we have already proved that an

odd polynomial has odd number of roots at zero, it follows that p1 has even number of roots at zero. This concludes

the proof.

A.3 Theorem 13

(=⇒) Let B = ker
(

p(σ)
)

andp(σ) = ∑n
i=0 piσ i. Assume that rev(w) ∈ B. Then

(

p(σ)rev(w)
)

(t) =
n

∑
i=0

(

piσ irev(w)
)

(t) =
n

∑
i=0

piw(−t − i) = 0, for everyt ∈ Z.

Puttingi = n− j andt = −t1−n in the above equation, we get

n

∑
j=0

pn− jw(t1 + j) = 0, for everyt1 ∈ Z. (11)

SinceB is time-reversible,w∈ B, i.e.,

n

∑
j=0

p jw(t1 + j) = 0, for everyt1 ∈ Z. (12)

From equations (11) and (12),

n

∑
j=0

pn− jw(t1 + j) = k
n

∑
j=0

p jw(t1 + j), for everyt1 ∈ Z.

13



wherek ∈ R. SinceB is linear, it follows thatkp = rev(p), wherep = col(p0, p1, . . . , pn). Therefore,k2 = 1 or

k = ±1 and hencep(σ) is either palindromic or antipalindromic.

(⇐=) Assume thatp(σ) = ∑n
i=0 piσ i is palindromic/antipalindromic. Thenpi = ±pn−i for i = 0,1, . . . ,n. Let

B = ker
(

p(σ)
)

. For anyw∈ B, we have∑n
i=0 piσiw = 0. The left hand side can be written as

n

∑
i=0

piw(t + i) = ±
n

∑
i=0

pn−iw(t + i).

Puttingi = n− j andt = −t1−n, we get

±
n

∑
j=0

p jw(−t1− j) = ±
n

∑
j=0

(

p jσ jrev(w)
)

(t1) = 0, for everyt1 ∈ Z.

Thus if p is palindromic/antipalindromic,w∈ B implies rev(w) ∈ B, or B is reversible.

A.4 Theorem 14

Let p(σ) = ∑p

i=0 piσ i andq(σ) = ∑q

i=0qiσ i . For any col(y,u) ∈ B := ker(
[

p(σ) −q(σ)
]

), we have

p

∑
i=0

piy(t + i) =
q

∑
i=0

qiu(t + i), for everyt ∈ Z. (13)

(If ) Assume thatq is divisible byσd and thatp andq1 are palindromic, whereq1(σ) := q(σ)/σd. Thenpi = pn−i

for i = 0,1, . . . ,p, qi = 0 for i = 0, . . . ,d−1, andqi = qp−i for i = d, . . . ,q. From (13),

p

∑
i=0

pp−iy(t + i) =
q

∑
i=d

qp−iu(t + i), for everyt ∈ Z.

Puttingi = p− j, andt = −t1−p in the above equation, we get

p

∑
j=0

p jy(−t1− j) =
q

∑
j=d

q ju(−t1− j), for everyt1 ∈ Z

or
p

∑
j=0

(

p jσ j rev(y)
)

=
q

∑
j=d

(

q jσ j rev(u)
)

,

so that
[

p(σ) −q(σ)
]

rev
(

col(y,u)
)

= 0.

This implies that rev
(

col(y,u)
)

∈ B. HenceB is reversible. The proof for the case whenp andq are both antipalin-

dromic is similar.

(Only If) Assume thatB is time-reversible and rev
(

col(y,u)
)

∈ B. We have

p

∑
i=0

piσ irev(y) =
q

∑
i=0

qiσ irev(u) =⇒
p

∑
i=0

piy(−t − i) =
q

∑
i=0

qiu(−t − i), for everyt ∈ Z.

Puttingi = p− j andt = −t1−p in the above equation, we get

p

∑
j=0

pp− jy(t1 + j)−
p

∑
j=d

qp− ju(t1 + j) = 0, for everyt1 ∈ Z

14



Let

W(t1) := col
(

y(t1),y(t1 +1), . . . ,y(t1 + p),u(t1), . . . ,u(t1 +d−1),u(t1+d),u(t1 +d+1), . . . ,u(t1 +p)
)

then
[

pp pp−1 · · · p0 0 · · · 0 −qq · · · q0

]

W(t1) = 0, for everyt1 ∈ Z. (14)

SinceB is time-reversible, col(y,u) ∈ B, i.e.,

p

∑
j=0

p jy(t1 + j)−
q

∑
j=0

q ju(t1 + j) = 0, for everyt1 ∈ Z

or
[

p0 p1 · · · pp −q0 · · · −qq 0 · · · 0
]

W(t1) = 0, for everyt1 ∈ Z. (15)

SinceB is linear, from equations (14) and (15), it follows that
[

pp pp−1 · · · p0 0 · · · 0 −qq · · · q0

]

= k
[

p0 p1 · · · pp −q0 · · · −qq 0 · · · 0
]

wherek∈ R. It is easy to see thatk = ±1. Whenk = 1, p is palindromic,qi = 0 for i = 0, . . . ,d−1, andqi = qp−i for

i = d, . . . ,q, i.e.,q(σ) is divisible byσd andq′(σ) = q(σ)/σd is palindromic. Whenk = −1, p is antipalindromic,

qi = 0 for i = 0, . . . ,d− 1, andqi = −qp−i for i = d, . . . ,q, i.e., q(σ) is divisible by σd and q′(σ) = q(σ)/σd is

antipalindromic.

If in addition, B is controllable, thenp and q are co-prime. If bothp and q′ are antipalindromic, then from

Lemma 21, bothp andq′ have at least one root at 1. Sinceq is divisible byq′, this implies thatp andq are not

co-prime which is a contradiction. Hence ifB is controllable and time-reversible, thenp andq′ are both palindromic.

A.5 Theorem 20

Let the degree ofr be equal ton. Let r = r ′q, wherer ′ the maximal palindromic factor ofr, and letn′ denote the

degree ofr ′. Assume thatB has a conserved quantity whose two-variable polynomial representation isφ(ζ ,η). Then

φ(ζ ,η) =
r(ζ ) f ′(ζ ,η)+ r(η) f ′(η ,ζ )

ζη −1
,

for some f ′ ∈ R[ζ ,η ]. It is easy to see that sinceφ is B-canonical,f ′ is independent ofζ and is of degree less than

or equal ton−1 in η . Hence

φ(ζ ,η) =
r(ζ ) f (η)+ r(η) f (ζ )

ζη −1
, (16)

where f (η) = f ′(ζ ,η). Sinceφ exists, the numerator is divisible byζη −1. Consequently by factor theorem,

ξ n(r(ξ ) f (ξ−1)+ r(ξ−1) f (ξ )
)

= 0.

This implies that

ξ n f (ξ−1)q(ξ ) = −ξ n−n′q(ξ−1) f (ξ ).

Defines(ξ ) := ξ n−n′ f (ξ )q(ξ−1) and observe that

s(ξ )+ ξ 2n−n′s(ξ−1) = 0. (17)

Two cases arise.
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• Case 1:v does not have a root at 1. In this case, for equation (17) to hold, it is easy to see thatf should be of

the form f (ξ ) = v(ξ ) fa(ξ ), where fa is an antipalindromic polynomial such that

ξ n′ fa(ξ−1)+ fa(ξ ) = 0.

Since the degree off is less thann, the degree offa is less thann′. This implies thatfa has at least one root at

zero. Ifn′ is even, then the general expression forfa can be written as

fa(ξ ) =
n′/2−1

∑
i=1

pi(ξ i −ξ n′−i)

whereby the dimension of the space of all possible polynomials fa is n′/2− 1. If n′ is odd, then the general

expression forfa can be written as

fa(ξ ) =

n′−1
2

∑
i=1

pi(ξ i −ξ n′−i)

whereby the dimension of the space of all possible polynomials fa is (n′ − 1)/2. From (16), it can be seen

that there is a one-one correspondence betweenφ and anyf of degree less than or equal ton−1. Hence the

dimension of conserved quantities for the two subcases ofn′ being even and odd is the same as the dimension

of all possible polynomialsfa for the respective subcases, which is equal to⌊(n′−1)/2⌋.

• Case 2:v has a root at 1. Letv(ξ ) = (ξ −1)v′(ξ ). In this case, for (17) to hold, it is easy to see thatf should

be of the formf (ξ ) = v′(ξ ) f ′(ξ ), where f ′ is a palindromic polynomial, such that

ξ n′+1 f ′(ξ−1)− f ′(ξ ) = 0

Since the degree off is less thann, the degree off ′ is less than or equal ton′. This implies thatf ′ has at least

one root at zero. Ifn′ is even, the general expression forf ′ can be written as

f ′(ξ ) =
n′/2

∑
i=1

pi(ξ i + ξ n′+1−i)

whereby the dimension of the space of all possible polynomials f ′ is n′/2. If n′ is odd, the general expression

for f ′ can be written as

f ′(ξ ) =

n′−1
2

∑
i=1

pi(ξ i + ξ n′+1−i)+ pni+1
2

ξ
ni+1

2

whereby the dimension of the space of all possible polynomials f ′ is (n′ + 1)/2. From (16), it can be seen

that there is a one-one correspondence betweenφ and anyf of degree less than or equal ton−1. Hence the

dimension of conserved quantities for the two subcases ofn′ being even and odd is the same as the dimension

of all possible polynomialsf ′ for the respective subcases, which is equal to⌊(n′ +1)/2⌋.
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