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Abstract We present a method for model reduction based on ideas from the behav-
ioral theory of dissipative systems, in which the reduced order model is required to
reproduce a subset of the set of trajectories of minimal dissipation of the original
system. The passivity-preserving model reduction method of Antoulas (Syst Control
Lett 54:361–374, 2005) and Sorensen (Syst Control Lett 54:347–360, 2005) is shown
to be a particular case of this more general class of model reduction procedures.

Keywords Model reduction · Strictly dissipative systems · Behaviors · Minimal
dissipation · Driving variable representation · Output nulling representations ·
Nevanlinna interpolation problem

1 Introduction

Model reduction aims at finding a system that approximates a given one and has lower
complexity than the original, with the complexity being measured by its McMillan
degree, i.e. the minimal dimension of the state space of the model. In the linear setting,
classical model reduction methods are balancing (see [13]), Padé approximation (see
[4]), moment-matching (see [24,10]), and H∞-approximation (see [8]). An up-to-date
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172 H. L. Trentelman et al.

and exhaustive source on the problem of model reduction and approximation is given
in [1].

Usually, besides the reduction in complexity of the original model, preservation of
certain properties of the original model is required. An example of this is preservation
of stability. However, often it is also demanded that the reduced model retains other
characteristics of the original system, passivity being one of them. Several methods
for model reduction with stability and passivity preservation have been introduced in
the past, see for example [5–7,14,15,25].

Recently, Antoulas [2] and Sorensen [19] have presented a new technique and effi-
cient numerical algorithms to perform model reduction with passivity and stability
preservation. The novel approach pioneered by Antoulas in [2] is based on the idea
of combining Krylov projection methods with positive-real interpolation techniques;
the reduced order model is obtained by interpolating at a subset of the spectral zeros
of the original system. In the closely related paper [19], Sorensen shows that for all
practical purposes there is no need for explicit interpolation in the implementation:
rather, the reduced order model can be found by computing a suitable basis for the
stable invariant subspace of a Hamiltonian matrix associated with the system. This
idea renders Antoulas’ model reduction method applicable also to systems with large
McMillan degree.

The purpose of the present paper is to present a different point of view on the
method of [19] using ideas from the behavioral theory of dissipative systems. We
show that the model reduction approach of Sorensen can be interpreted as special case
of a general method for model reduction applicable to dissipative systems. For a given
dissipative behavior we introduce the subbehavior of trajectories that are in a sense
local minima of dissipation. Next, for the reduced order approximation we require
that a particular part of its subbehavior of minimal dissipation is contained in the sub-
behavior of minimal dissipation of the original system: the approximating behavior
‘inherits’ this part of the subbehavior of minimal dissipation from the original system.
We will call this technique model reduction by retention of trajectories of minimal
dissipation.

In our setting, the original system will be given as the behavior of a linear, time-
invariant differential system. We assume that the behavior is dissipative with respect
to a given supply rate. The complexity of the behavior is measured by its McMillan
degree. The problem that we will study in this paper is to find, for a given positive
integer k less than the McMillan degree of the original behavior, a (approximating)
behavior: (1) whose McMillan degree is less than or equal to k, (2) that has the same
number of inputs as the original behavior, (3) that is again dissipative with respect to the
given supply rate, and (4) that retains (or inherits) a maximal number of a priori given
antistable trajectories of minimal dissipation of the original behavior. Interpreted in
this sense, the method of passivity preserving model reduction as initiated by Antoulas
and Sorensen has the same heuristic flavor as the method of positive real balancing
(see [5]), where it can be argued that the reduced order model is obtained by deleting
typically that part of the system along which a relatively large amount of dissipation
takes place.

We will establish an algorithmic procedure to compute, for a given behavior rep-
resented in driving variable representation, a reduced order behavior that solves the
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Dissipativity preserving model reduction 173

problem stated above. Subsequently, we will show that a certain transfer matrix asso-
ciated with our reduced order behavior is in fact a solution of a Nevanlinna-type
tangential interpolation problem (see also [11]). In fact, the transfer matrix of the
reduced order behavior will turn out to interpolate the transfer matrix of the original
behavior in certain directions, with interpolation points at some of the spectral zeros
and their mirror images in the imaginary axis of the original behavior.

The outline of this paper is as follows. In Sect. 2, we review the basic material
on behaviors that we need in this paper. Section 3 reviews the concepts of dissip-
ativity, storage function, and dissipation function. Also, in this section the notion of
subbehavior of minimal dissipation is introduced and elaborated. In Sect. 4, we state
the exact problem that this paper deals with: the problem of dissipativity preserving
model reduction by retention of trajectories of minimal dissipation. In Sect. 5, we turn
to behaviors in driving variable representation, and characterize strict dissipativity in
terms of the representation. We also establish a representation of the subbehavior of
minimal dissipation in terms of the matrices of the driving variable representation.
Using these results, in Sect. 6 we give an algorithm to solve our main problem (the
problem introduced in Sect. 4) for the case that the behavior to be reduced is in driv-
ing variable representation. We also show that our reduced order behavior solves a
Nevanlinna tangential interpolation problem. In Sect. 7, we give concluding remarks.
Finally, in Appendix we review the necessary material on driving variable and output
nulling representations and the way they interact.

In this paper, we will use the following notation: the space of n-dimensional real,
respectively complex, vectors is denoted by R

n, respectively C
n, and the space ofm×n

real, respectively complex, matrices, by R
m×n, respectively C

m×n. Given two column
vectors x and y, we denote with col(x, y) the vector obtained by stacking x over y;
a similar convention holds for the stacking of matrices with the same number of col-
umns. Given a Hermitian matrix S ∈ C

w×w, we define its inertia as the triple σ(S) :=
(σ−, σ0, σ+) where σ+ is the number of positive eigenvalues of S, σ− is the number
of negative eigenvalues of S, and σ0 is the multiplicity of 0 as an eigenvalue of S.

The ring of polynomials with real coefficients in the indeterminate ξ is denoted by
R[ξ ]; the ring of two-variable polynomials with real coefficients in the indeterminates
ζ and η is denoted by R[ζ, η]. The space of all m × n polynomial matrices in the
indeterminate ξ is denoted by R

m×n[ξ ], and that consisting of all m × n polynomial
matrices in the indeterminates ζ and η by R

m×n[ζ, η]. Given a matrix R ∈ R
m×n[ξ ],

we define R∼(ξ) := R(−ξ)T ∈ R
n×m[ξ ].

We denote with C∞(R, R
w) the set of infinitely often differentiable functions from

R to R
w, and with D(R, R

w) the subspace of C∞(R, R
w) consisting of all compactly

supported functions. We also denote with L2(R, R
w) the set of all Lebesgue measur-

able functions w from R to R
w for which the integral

∫∞
−∞ ‖w‖2dt is finite, and with

Lloc
2 (R, R

w) the set of all Lebesgue measurable functions w from R to R
w for which

the integral
∫
�

‖w‖2dt is finite for all compact sets � ⊂ R. Sometimes, when the
domain and co-domain are obvious from the context, we simply write C∞, D, L2,
and Lloc

2 . Finally, if F(t) is a real p× m matrix valued function, then the space of all
functions formed as real linear combinations of the columns of F(t) is denoted by
span{F(t)} := {F(t)x0 | x0 ∈ R

m}.
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2 Behaviors and quadratic differential forms

A subset B ⊂ C∞(R, R
w) is called a linear time-invariant differential system (briefly,

a behavior ) if there exists a polynomial matrix R ∈ R
•×w[ξ ] such that B = {w ∈

C∞(R, R
w) | R( d

dt )w = 0}. By Lw we denote the set of all linear time-invariant
differential systems with w variables. We note that while we define B ∈ Lw as the
kernel of a differential operator, B is often not specified in this way. We speak about
a kernel representation when B ∈ Lw is represented by R( d

dt )w = 0, i.e., B = {w ∈
C∞(R, R

w) | R( d
dt )w = 0}. Another representation is a latent variable represen-

tation, defined through polynomial matrices R and M by R( d
dt )w = M( d

dt )�, with
B = {w ∈ C∞(R, R

w) | ∃ � ∈ C∞(R, R
l) such that R( d

dt )w = M( d
dt )�}. This type

of model is the kind of model that usually results from first principles modeling, with
the w’s the vector of variables that the model aims at, and the �’s the vector of aux-
iliary variables introduced in the modeling process (for example state variables). The
behavior B is then called the external behavior, and Bfull = {(w, �) ∈ C∞(R, R

w×l) |
R( d

dt )w = M( d
dt )�}, the full behavior. If B is the external behavior of Bfull, then we

often write B = (Bfull)ext.
We also need the notion of state for a behavior. We refer to [17] for a detailed

exposition, with only a brief review here. A latent variable representation of B ∈ Lw

is called a state representation if the latent variable (denoted here by x ) has the
property of state, i.e.: if (w1, x1), (w2, x2) ∈ Bfull are such that x1(0) = x2(0) then
(w1, x1) ∧ (w2, x2), the concatenation (at t = 0, here), belongs to the Lloc

2 -closure
of Bfull. We call such an x a state for B. A given B ∈ Lw in general has many state
representations. It turns out however that the minimal dimension of the state variable
x over all state representations only depends on the given behavior B. This number
is called the McMillan degree of B, and is denoted by n(B). If B is represented by
R( d

dt )w = 0, with R a full row rank p × w polynomial matrix, then n(B) is equal
to the maximal degree over all polynomials det(R1), where R1 ranges over all p× p
minors of R, see [16].

A latent variable representation is a state representation of its manifest behav-
ior if and only if its full behavior can be represented by a differential equation
that is 0th order in w and first order in x , i.e., by R0w = M0x + M1

d
dt x , with

R0, M0, M1 constant matrices. There are many, more structured, state representations
as, for instance, a driving variable representation d

dt x = Ax + Bv, w = Cx + Dv,

with v an, obviously free, additional latent variable; an output nulling representa-
tion d

dt x = Ax + Bw, 0 = Cx + Dw; or an input/state/output representations
d
dt x = Ax + Bu, y = Cx + Du, w = (u, y), the most popular of them all. Every
system B ∈ Lw admits such a representation after a suitable permutation of the
components of w and a suitable choice of the state. In this paper, an important role
is played by driving variable representations and output nulling representations. We
have collected the basic material on these representations in Appendix.

In this paper, we restrict ourselves to controllable behaviors. In general, controlla-
ble behaviors are defined as behaviors in which for any two of its elements there exists
a third element which coincides with the first one on the past and the second one on
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Dissipativity preserving model reduction 175

the future (for details, see [16]). Lw
cont (a subset of Lw) denotes the set of controllable

behaviors.
Given a behavior B ∈ Lw, it is in general possible to choose some components of

w as any function in C∞(R, R). The maximal number of such components that can be
chosen arbitrarily is called the input cardinality of B and is denoted as m(B). If none
of the components of w can be chosen arbitrarily, then B is called autonomous, and
we write m(B) = 0. The number m(B) is exactly equal to the dimension of the input u
in any input/state/output representation of B. The complementary number w− m(B)

is called the output cardinality of B.
This paper also uses the formalism of quadratic differential form (QDF) developed

in [30]. We now review the basic elements of the theory of QDF’s. A two-variable
polynomial matrix � ∈ R

w×w[ζ, η] can be written as �(ζ, η) = ∑N
h,k=0 �h,kζ

hηk,

where �h,k ∈ R
w×w for all h, k, and N is a nonnegative integer. The two-variable

polynomial matrix �(ζ, η) induces a quadratic functional acting on w-dimensional

infinitely differentiable trajectories, defined as Q�(w) = ∑N
h,k=0(

dhw
dth )T �h,k

dkw
dtk .

Such a functional is called a quadratic differential form (QDF). It is easy to see that
without loss of generality we may restrict our attention to symmetric two-variable poly-
nomial matrices �(ζ, η), i.e. �(ζ, η) = �(η, ζ )�. In this paper we always assume
that this is the case. By R

w×w
s [ζ, η] we will denote the subset of R

w×w[ζ, η] of all
symmetric two-variable polynomial matrices.

3 Dissipativity and the subbehavior of minimal dissipation

For an extensive treatment of dissipative systems in a behavioral context we refer
to [21,27,30,31]. Here, we review the basic material. Let � = �� ∈ R

w×w and
B ∈ Lw

cont. Write Q�(w) := wT �w. B is said to be dissipative with respect to Q�

(or briefly, �-dissipative) if
∫ +∞
−∞ Q�(w)dt ≥ 0 for all w ∈ B ∩ D. Further, it is

said to be dissipative on R− with respect to Q� (or briefly, �-dissipative on R−)
if
∫ 0
−∞ Q�(w)dt ≥ 0 for all w ∈ B ∩ D. We also use the analogous definition of

dissipativity on R+. It is easily seen that if B is �-dissipative on R− or R+, then it is
�-dissipative. Identifying Q�(w)(t) with the rate of energy delivered to the system at
time t , �-dissipativity states that the system absorbs energy when it is taken through
any trajectory in B that starts and ends with the system at rest. �-dissipativity on R−
is a stronger property which states (due to time invariance) that at any time the net
flow of energy up to that time has already been into the system. Likewise, an inter-
pretation can be given for �-dissipativity on R+. A controllable behavior B is said
to be strictly dissipative with respect to Q� (or briefly, strictly �-dissipative) if there
exists an ε > 0 such that B is dissipative with respect to Q�−ε I . We have the obvious
definitions for strict dissipativity on R− and on R+. If B is strictly �-dissipative on
R− or R+, then it is strictly �-dissipative.

Remark 3.1 Note that these definitions of dissipativity are completely in terms of tra-
jectories of the behavior B, and not in terms of any of its particular representations.
For any particular type of representation the question can then be posed how to char-
acterize dissipativity in terms of this representation. For example, if B is given in
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image representation, w = M( d
dt )�, then it is �-dissipative if and only if M�(−iω)

�M(iω) ≥ 0 for all ω ∈ R (see [30]). From this, a signature condition for �-dis-
sipativity can be derived for the case that B is given in kernel representation. This is
however beyond the scope of this paper. For systems represented in DV-representation
conditions for (strict) �-dissipativity on R− and R+ are given Propositions 5.2.

The QDF Q� induced by � ∈ R
w×w
s [ζ, η] is called a storage function for (B, Q�)

if

d
dt Q�(w) ≤ Q�(w) for all w ∈ B ∩ C∞. (1)

The QDF Q� induced by � ∈ R
w×w
s [ζ, η] is called a dissipation function for (B, Q�)

if Q�(w) ≥ 0 for all w ∈ B ∩ C∞ and

∞∫

−∞
Q�(w)dt =

∞∫

−∞
Q�(w)dt for all w ∈ B ∩ D.

If the supply rate Q� , the dissipation function Q�, and the storage function Q� satisfy

d
dt Q�(w) = Q�(w) − Q�(w) for all w ∈ B ∩ C∞ (2)

then we call the triple (Q�, Q�, Q�) matched on B. Equation (2) expresses that,
along w ∈ B, the increase in internal storage is equal to the rate at which supply is
delivered minus the rate at which supply is dissipated. The following is well known,
see e.g. [21].

Proposition 3.2 The following conditions are equivalent

1. (B, Q�) is dissipative,
2. (B, Q�) admits a storage function,
3. (B, Q�) admits a dissipation function.

Furthermore, for any dissipation function Q� there exists a unique storage function
Q� , and for any storage function Q� there exists a unique dissipation function Q�

such that (Q�, Q�, Q�) is matched on B.

Now we introduce the notion of subbehavior of minimal dissipation. For a given
�-dissipative system B, let Q� be a storage function, and Q� be a dissipation function
such that (Q�, Q�, Q�) is matched on B. Let w ∈ B. Then the integral

∫ t1
t0

Q�(w)dt
is equal to the dissipated supply over the interval [t0, t1] when B is taken through the
trajectory w. It is tempting to state that for w ∈ B, over the whole real axis the amount
of dissipated supply is equal to

∫∞
−∞ Q�(w)dt . However, in general this integral will

not converge. Yet, we would like to consider trajectories w ∈ B that are local minima
of dissipation. Therefore we consider the change in dissipation if w is compared to
w + δ, with δ ∈ B of compact support: Fix w ∈ B, and for δ ∈ B ∩ D define
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Dissipativity preserving model reduction 177

Jw(δ) :=
+∞∫

−∞
Q�(w + δ) − Q�(w)dt.

Note that this integral always converges.

Definition 3.3 We call w ∈ B a trajectory of minimal dissipation if Jw(δ) ≥ 0 for
all δ ∈ B ∩ D, i.e if whenever w ∈ B is perturbed to w + δ with δ ∈ B of compact
support, there is no decrease in dissipated supply.

In a sense then, such w’s are local minima of the amount of dissipated supply
∫∞
−∞ Q�

(w)dt , keeping in mind that the integral might not converge. In the sequel we show
that there are many of these local minima, and that, together, they form a subbehavior
of B. In fact, define

B∗ := {w ∈ B | w is a trajectory of minimal dissipation} . (3)

It turns out that the subbehavior B∗ of B of trajectories of minimal dissipation is inde-
pendent of the chosen dissipation function Q�, forms a behavior again, and admits
an easy characterization in terms of B and �. For this, define the �-orthogonal com-
plement B⊥� of B as

B⊥� :=
⎧
⎨

⎩
w ∈ C∞ |

+∞∫

−∞
w��δdt = 0 for all δ ∈ B ∩ D

⎫
⎬

⎭
.

It can be proven that B⊥� is also a controllable behavior, see Section 10 of [30]. If
� = I , we simply write B⊥, called the orthogonal complement of B. We then have:

Theorem 3.4 Let B ∈ Lw
contr and � = �� ∈ R

w×w. Assume that B is �-dissipative.
Then B∗ ∈ Lw and

B∗ = B ∩ B⊥� = B ∩ (�B)⊥.

Proof Let Q� be a dissipation function. Let Q� a storage function such that d
dt Q� =

Q� − Q�. It is then easily seen that for all w ∈ B and for all δ ∈ B ∩ D we have

Jw(δ) =
+∞∫

−∞
Q�(w + δ) − Q�(w)dt.

Clearly, Jw(δ) = ∫ +∞
−∞ δ��δdt + 2

∫ +∞
−∞ w��δdt , and it can be seen that Jw(δ) ≥ 0

for all δ ∈ B ∩ D if and only if the linear term is equal to zero for all δ ∈ B ∩ D.
Consequently, the subset of trajectories B of minimal dissipation is equal to
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B∗ =
⎧
⎨

⎩
w ∈ B|

+∞∫

−∞
w��δ dt = 0 for all δ ∈ B ∩ D

⎫
⎬

⎭
= B ∩ (B)⊥� .

��
The subbehavior B∗ plays an important role in the sequel:

Definition 3.5 Let B ∈ Lw
contr and � = �� ∈ R

w×w. Assume that B is �-dissipative.
B∗ as defined by (3) is called the subbehavior of minimal dissipation.

It turns out that if B is strictly dissipative, then the subbehavior B∗ of minimal dissi-
pation is autonomous. In fact, we have

Theorem 3.6 Assume that B ∈ Lw
contr is strictly �-dissipative. Then

1. B∗ is autonomous,
2. B∗ = (B∗)stab ⊕ (B∗)antistab, where we define (B∗)stab := {w ∈ B∗ | limt→∞

w(t) = 0} and (B∗)antistab := {w ∈ B∗ | limt→−∞ w(t) = 0},
3. n(B∗) = 2n(B) and n((B∗)stab) = n((B∗)antistab) = n(B).

Proof A proof of this follows immediately from Lemma 5.4 (and the remarks follow-
ing it) in Sect. 5. ��

If B∗ is autonomous there exists a square, nonsingular polynomial matrix, say R̄(ξ)

such that B∗ is represented by R̄( d
dt )w = 0, see [16]. The roots of the polynomial

det(R̄) do not depend on the particular representation, since any two representations
R̄ and R̄′, square and nonsingular, are related via a unimodular matrix: R̄ = U R̄′ (see
[16]).

Definition 3.7 Let R̄(ξ) be a square, nonsingular polynomial matrix such that B∗ is
represented by R̄( d

dt )w = 0. Then the roots of the polynomial det(R̄) are called the
spectral zeros of B.

Clearly, these complex numbers coincide with the characteristic values that appear in
the exponential parts of the trajectories in B∗.

Remark 3.8 In Lemma 5.4 of this paper, a state space representations for B∗ will be
obtained for the case that the original behavior B is given in DV-representation. In
Example 3.9 below, B∗ is computed for the case that B is given in input-state-output
representation. If B is given in image representation, w = M( d

dt )�, then a representa-
tion of B∗ is given by w = M( d

dt )�, M�(− d
dt )�M( d

dt )� = 0. The spectral zeros are
the roots of the polynomial matrix M�(−ξ)�M(ξ). If B is given in kernel represen-
tation R( d

dt )w = 0 and � is invertible, then it can be shown that a representation of
B∗ is given by w = �−1 R�(− d

dt )�, R( d
dt )�

−1 R�(− d
dt )� = 0. This also shows that

the spectral zeros of B are the roots of the polynomial matrix R(ξ)�−1 R�(−ξ). The
stable part of B∗ is then represented by w = �−1 R�(− d

dt )�, H( d
dt )� = 0, where

R(ξ)�−1 R�(−ξ) = A(ξ)H(ξ) is a polynomial factorization with A anti-Hurwitz
and H Hurwitz (this can be obtained using spectral factorization). The antistable part
is obtained analogously. Since these result are not used in this paper, the details are
omitted.
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Example 3.9 In order to connect our work with that of Sorensen [19], as an extended
example we consider the class of strictly passive input–output systems. Let A ∈ R

n×n,
B ∈ R

n×u, C ∈ R
y×n, D ∈ R

y×u, with A stable, (A, B) a controllable pair and (C, A)

an observable pair, and consider the equations

ẋ = Ax + Bu,

y = Cx + Du. (4)

Let B ∈ L
u+y
contr be the external behavior corresponding to these equations, i.e.,

B = {(u, y) ∈ C∞(R, R
u+y)| there exists x ∈ C∞(R, R

n) such that (4) holds}.

Assume the system is strictly passive, i.e., there exists ε > 0 such that
∫ t
−∞ u(s)�y(s)

ds ≥ ε
∫ t
−∞ u(s)�u(s)ds for all t ∈ R and all (u, y) ∈ B ∩ L2(R, R

u+y). It is easily
verified that this property is equivalent to B being strictly �-dissipative on R−, with
� given by

� = 1

2

[
0 Iu
Iu 0

]

.

By [31], Section VI, B⊥� is equal to the external behavior corresponding to the equa-
tions

ż = −A�z + C�u,

y = B�z − D�u. (5)

The subbehavior of minimal dissipation B∗ = B ∩ B⊥� is thus equal to the external
behavior of the behavior represented by the combined equations (4) and 5). Subtract-
ing the two equations for y, we get Cx − B�z + (D + D�)u = 0. By strict passivity
we have that D + D� > 0. Thus u = −(D + D�)−1Cx + (D + D�)−1 B�z, so B∗
is equal to the external behavior corresponding to the equations

[
ẋ
ż

]

= H

[
x
z

]

,

[
u
y

]

= L

[
x
z

]

, (6)

where we define H to be the Hamiltonian matrix

H :=
[

A − B(D + D�)−1C B(D + D�)−1 B�
−C�(D + D�)−1C −(A − B(D + D�)−1C)�

]

(7)

and L in the output of equation (6) by

L :=
[−(D + D�)−1C (D + D�)−1 B�

C − D(D + D�)−1C D(D + D�)−1 B�
]

. (8)
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Note that, indeed, B∗ is autonomous, and its dynamics is governed by the Hamiltonian
matrix H of (7). The eigenvalues of H coincide with the spectral zeros (see Defini-
tion 3.7) of the system B. In turn these coincide with the zeros of G(ξ) + G�(−ξ),
where G(ξ) = D + C(ξ I − A)−1 B. The stable part (B∗)stab is obtained from (6) as
follows: let X and Y be real n× n matrices such that

H

[
X
Y

]

=
[

X
Y

]

R−

with R− an n× n matrix such that Re(λ) < 0 for all λ ∈ σ(R−). Then

(B∗)stab =
{[

u
y

]

| ∃ ξ ∈ R
n such that

[
u(t)
y(t)

]

= L

[
X
Y

]

eR−tξ

}

.

Likewise, the antistable part (B∗)antistab is obtained by computing the antistable
(n-dimensional) invariant subspace of H (note: H has no eigenvalues on the imaginary
axis due to strict dissipativity). We will return to this example in Sect. 4.

Remark 3.10 Another important special case is the case of strictly bounded real input–
output systems, in which case � is given � = diag(−Iu, Iy). Similar computations
as in Example 3.9 can be given in this case. The spectral zeros then coincide with the
zeros of G�(−ξ)G(ξ) − I , where G(ξ) = D + C(ξ I − A)−1 B.

4 Problem statement

In this section, we will formulate the problem of model reduction by retention of
trajectories of minimal dissipation.
Main Problem. Let B ∈ Lw

contr. Let � = �� ∈ R
w×w. Assume that B is strictly

�-dissipative on R
−. Let (B∗)antistable be the antistable part of the subbehavior of

minimal dissipation B∗. Let k < n(B) be given together with a subbehavior B′ ⊂
(B∗)antistable such that n(B′) = k. Find B̂ ∈ Lw

contr such that

1. n(B̂) ≤ k,
2. m(B̂) = m(B),
3. B̂ is strictly dissipative on R

− with respect to Q� ,
4. The antistable part (B̂∗)antistable of B̂∗ is a subbehavior of B′.

Any behavior B̂ as above has the property that the n̂-dimensional antistable part of
the subbehavior of minimal dissipation (with n̂ = n(B̂)) is contained in the antistable
part of the subbehavior of minimal dissipation of the original system B. Thus, B̂
inherits from B a n̂-dimensional subbehavior of its subbehavior of minimal dissipa-
tion. By virtue of this property, B̂ is considered as an approximation of B. Note that
there are many choices for the k-dimensional subbehavior B′ of (B∗)antistable. Differ-
ent choices of B′ will of course result in different approximations B̂. Note that the
given behavior B′, as a subbehavior of the autonomous behavior B∗, is autonomous.
It does therefore itself not qualify as a solution to our problem: property (2) does not
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hold, and property (3) cannot hold since dissipativity is only defined for controllable
systems.

In the sequel we will prove that the subbehavior of minimal dissipation B∗ is asso-
ciated with the spectral zeros of the original system. This already appeared to be the
case in Example 3.9. It will turn out that any of the approximants B̂ that we will obtain
as solution to our problem allows an interpretation as a solution of a rational inter-
polation problem, with as interpolation points some of the antistable spectral zeros
together with their mirror images in the imaginary axis, see also [2] and [11].

Of course, it is also possible to formulate a version of the Main Problem with strict
dissipativity on R

+, and with B′ a subbehavior of the stable part of B∗, in which the
problem is to find a reduced order behavior B̂ such that B̂∗ is a subbehavior of the
stable part of B̂∗. The details are left to the reader.

Next, we continue with Example 3.9, and show that the method of Sorensen [19]
solves our Main Problem for the special case of strictly passive input–output systems.

Example 4.1 In order to obtain a strictly passive reduced order model with state space
dimension k < n, in [19] a k-dimensional H -invariant subspace of the n-dimensional
antistable subspace of H given by (7) is computed. In particular, [19] computes real
n×k matrices X, Y , and a real k×k matrix R with Re(λ) > 0 for all λ ∈ σ(R) such
that

H

[
X
Y

]

=
[

X
Y

]

R. (9)

It is proven in [19] that X and Y have full column rank, and that X�Y is symmetric.
In addition, since the system is strictly passive, X�Y is positive definite (note that in
this paper, we use the opposite sign convention of [19]). Next, let X�Y = QS2 Q�
be a spectral decomposition, with Q�Q = Q Q� = I and S a real diagonal matrix
with positive diagonal elements, and put V = X QS−1, W = Y QS−1. Next, define
the reduced order system B̂ as the external behavior of

ẋ1 = Âx1 + B̂u,

y = Ĉx1 + D̂u. (10)

with ( Â, B̂, Ĉ, D̂) := (W � AV, W � B, CV, D). Sorensen proves in [19] that this
reduced order system is stable and strictly passive again. We will now explain how
this relates to our Main Problem.

Thek-dimensional H -invariant subspace im
[

X
Y

]
corresponds to a uniquek-dimen-

sional subbehavior B′ of the n-dimensional antistable part (B∗)antistab, namely

B′ =
{[

u
y

]

| ∃ ξ ∈ R
k such that

[
u(t)
y(t)

]

= L

[
X
Y

]

eRtξ

}

(11)

We prove that B′ is equal to the antistable part (B̂∗)antistable of the reduced order sys-
tem B̂, so that, in addition to the first three conditions, also Condition 4 of our Main
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Problem is satisfied by the reduced order behavior B̂. Observe that B̂∗ is equal to the
external behavior corresponding to the equations

[
ẋ1
ż1

]

= Ĥ

[
x1
z1

]

,

[
u
y

]

= L̂

[
x1
z1

]

, (12)

with Ĥ and L̂ defined as in (7) and (8), with (A, B, C, D) replaced by ( Â, B̂, Ĉ, D̂).
Following [19], define k × k matrices X̂ and Ŷ by X̂ = Ŷ = SQ�. It is then easily
verified that

Ĥ

[
X̂
Ŷ

]

=
[

X̂
Ŷ

]

R,

so im

[
X̂
Ŷ

]

is equal to the k-dimensional antistable subspace of the reduced

Hamiltonian Ĥ . Thus the antistable part of B̂∗ must be equal to

(B̂∗)antistable =
{[

u
y

]

| ∃ ξ ∈ R
k such that

[
u(t)
y(t)

]

= L̂

[
X̂
Ŷ

]

eRtξ

}

.

Since, by construction L̂ X̂ = L X and L̂Ŷ = LY , the latter is indeed equal to B′
given by (11). Thus we have shown that the method of Sorensen computes for the
givenk-dimensional subbehavior B′ (corresponding to hisk-dimensional H -invariant

subspace im
[

X
Y

]
) a reduced order system B̂ that satisfies the four conditions of our

Main Problem. This concludes the example.

In formulating the problem of model reduction by retention of trajectories of min-
imal dissipation, we have kept with one of the tenets of behavioral systems theory,
that of articulating concepts at the most intrinsic possible level, that of trajectories. In
practice, though, the to-be-approximated behavior B is represented in some form, be
it kernel, image, latent variable, state space, etc., and the issue arises of how to pass
from the original representation to a representation of a reduced order approximation,
for example for the purposes of simulation, of control, etc. In the remainder of this
paper we consider this topic for only one type of model, namely driving-variable
(in the following abbreviated with DV), and delay the discussion of other types of
representations to Sect.7, where we outline some of the lines of research currently
pursued. The definitions of DV and output nulling (ON) representations, and some of
the essential notions necessary in order to understand the material presented in this
paper, are gathered in Appendix.

5 Dissipativity and minimal dissipation for DV representations

In this section, we examine strict dissipativity and the subbehavior of minimal dissi-
pation for the case that our system is represented by a DV-representation.
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The connection between dissipativity, the algebraic Riccati equation (ARE), and
the Hamiltonian matrix of the system is well known, see [27–29,32]. In the following,
we will review this connection for the case of half-line dissipativity. First note the
following:

Lemma 5.1 Let � = �� ∈ R
w×w. Let B ∈ Lw

contr be strictly �-dissipative. Then
there exists a minimal driving variable representation BDV(A, B, C, D) of B with
D��D = I and D��C = 0.

Proof Let Â, B̂, Ĉ, D̂ be such that BDV( Â, B̂, Ĉ, D̂) is a minimal DV representation
of B. Then D̂ has full column rank (see Appendix, Proposition 8.1). We prove now
that D̂�� D̂ > 0. Take the driving variable v(t) = √

δ(t)v0, with δ(t) representing
the Dirac pulse. Then, with state trajectory x(t) = 0 for all t ∈ R, ẋ = Ax + Bv

holds, so w(t) = D̂v(t). There exists ε > 0 such that

v�
0 D̂�� D̂v0 =

∞∫

−∞
v(t)� D̂�� D̂v(t)dt =

∞∫

−∞
w(t)��w(t)dt ≥ε

∞∫

−∞
w(t)�w(t)dt

≥ εv�
0 D̂� D̂v0.

Of course, a rigorous proof can be given using smooth approximations of δ. This
proves the claim. Let W be a nonsingular matrix such that D̂�� D̂ = W �W . By
applying the state feedback transformation v̂ = −(D̂�� D̂)−1 D̂��Ĉx + W −1v to
BDV( Â, B̂, Ĉ, D̂) we obtain a new driving variable representation BDV(A, B, C, D)

of B, with

A = Â − B̂(D̂�� D̂)−1 D̂��Ĉ,

B = B̂W −1,

C = Ĉ − D̂(D̂�� D̂)−1 D̂��Ĉ,

D = D̂W −1.

Observe that D is injective, and that from the minimality of BDV( Â, B̂, Ĉ, D̂) and
statement (2) of Proposition 8.1 it follows that BDV(A, B, C, D) is also a minimal
representation of B. It is easy to see that D��D = I , and moreover

D��C = W −� D̂��(Ĉ − D̂(D̂�� D̂)−1 D̂��Ĉ) = 0.

This concludes the proof. ��
We then have the following:

Proposition 5.2 Let B ∈ Lw
contr, and let � = �� ∈ R

w×w. Let BDV(A, B, C, D) be a
minimal driving variable representation of B such that D��D = I and D��C = 0.
If B is strictly �-dissipative then the Hamiltonian matrix

H =
[

A B B�
C��C −A�

]

(13)
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has no eigenvalues on the imaginary axis. Furthermore, the following statements are
equivalent:

1. B is strictly �-dissipative on R
−(R+),

2. the ARE

A�K + K A − C��C + K B B�K = 0 (14)

has a real symmetric solution K with K > 0(K < 0) and A+B B�K is antistable
(stable),

3. The Hamiltonian matrix (13) has no eigenvalues on the imaginary axis, and there
exists X1, Y1 ∈ R

n×n, with X1 nonsingular, and M ∈ R
n×n antistable (stable)

such that

H

[
X1
Y1

]

=
[

X1
Y1

]

M,

with X�
1 Y1 > 0(X�

1 Y1 < 0).

If K satisfies the conditions in (2.) above then it is unique, and it is the largest (small-
est) real symmetric solution of (14). We denote it by K +(K −). If X1, Y1 satisfy the
conditions in (3.) above, then Y1 X−1

1 is equal to this largest (smallest) real symmetric
solution K +(K −) of the ARE (14).

Proof Assume that H has an eigenvalue iω, with eigenvector (x∗
1 , x∗

2 )∗. Then Ax1 +
B B�x2 = iωx1 and C��Cx1 − A�x2 = 0. We will first prove that the vector

w0 := Cx1 + DB�x2 (15)

is unequal to 0. Indeed, assume w0 = 0. Then premultiplying with D�� yields
B�x2 = 0. This yields Ax1 = iωx1 and Cx1 = 0. By observability of the pair
(C, A) we then obtain x1 = 0. Thus (iωI + A�)x2 = 0, whence x∗

2 (A − iωI ) = 0.
Together with x∗

2 B = 0, by controllability of the pair (A, B) this yields also x2 = 0.
Consequently, w0 �= 0. It is also easily verified that w∗

0�w0 = 0.
Let � > 0. Consider the differential equation ẋ = Ax + Bv. Using controllability

of the pair (A, B), let ṽ1 : (−∞, 0] → R
v be a driving variable trajectory that drives

state 0 at t = −� to state x1 at time t = 0. Choose ṽ1 such that ṽ1(t) = 0 for t < −�.
Let x̃1(t) (t ≤ 0) be the corresponding state trajectory, and w̃1(t) := Cx̃1 + Dṽ1(t).
Likewise, let ṽ2 : [0,∞) → R

v be a driving variable trajectory that drives state x1 at
t = 0 to state 0 at time t = �. Choose ṽ2 such that ṽ2(t) = 0 for t > �. Let x̃2(t)
(t ≥ 0) be the corresponding state trajectory, and w̃2(t) := Cx̃2 + Dṽ2(t).

Denote T = 2π
ω

and define for our driving variable representationBDV(A, B, C, D)

a sequence of driving variable trajectories vn by

vn(t) =
⎧
⎨

⎩

ṽ1(t + nT ) t < −nT,

eiωt B�x2 −nT ≤ t < nT,

ṽ2(t − nT ) t ≥ nT .
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Define

xn(t) =
⎧
⎨

⎩

x̃1(t + nT ) t < −nT,

eiωt x1 −nT ≤ t < nT,

x̃2(t − nT ) t ≥ nT .

Then ẋn(t) = Axn(t) + Bvn(t) for all t ∈ R. Also, for t ∈ (−∞,−nT − �] ∪
[nT + �,∞) we have xn(t) = 0, so wn(t) = 0. For t ∈ (−nT − �,−nT ] we have
wn(t) = w̃1(t + nT ), for t ∈ (−nT, nT ) we have wn(t) = w0eiωt [with w0 given by
(15)], and for t ∈ [nT, nT + �) we have wn(t) = w̃2(t − nT ). In particular, for any
n, wn has compact support.

Now, clearly,
∫∞
−∞ |wn(t)|2dt → ∞ as n → ∞. On the other hand however,

wn(t)∗�wn(t) = w∗
0�w0 = 0 for t ∈ (−nT, nT ), so

∫∞
−∞ wn(t)∗�wn(t)dt =

∫ 0
−�

w̃1(t)dt+∫�

0 w̃2(t)dt , independent of n. Thus, for n sufficiently large the inequal-
ity
∫∞
−∞ wn(t)∗�wn(t)dt ≥ ε

∫∞
−∞ |wn(t)|2dt fails to hold. Now, wn is of course not

in D. However, D is dense in L2, and by approximating vn by driving variable trajec-
tories in D we can obtain a smooth wn , contradicting the assumption that our system
is strictly �-dissipative. This proves that H has no eigenvalues on the imaginary axis.

(1) �⇒ (2). In both cases, B is strictly �-dissipative, so the Hamiltonian H
has no eigenvalues on the imaginary axis. It then follows from standard results on the
Hamiltonian matrix, using controllability of (A, B), (see e.g. [32]) that the ARE (14)
has a real symmetric solution K such that A + B B�K is antistable, and also a real
symmetric solution K such that A + B B�K is stable. It was proven in [12], Theo-
rem 5.3.4 that if B is strictly �-dissipative on R− then the antistabilizing solution K
is positive definite. In a similar way it can be proven that if B is strictly �-dissipative
on R+ then the stabilizing solution K is negative definite.

(2) �⇒ (1). This was also proven in [12], Theorem 5.3.4.
(2) ⇐⇒ (3). This equivalence follows from standard results on the relation

between the algebraic Riccati equation and Hamiltonian matrices, see e.g. [32]. ��
Remark 5.3 It can be shown (see [20]) that any real symmetric solution K of the ARE
(14) yields a storage function Q�(w) = x�K x (with x the unique trajectory state
trajectory corresponding to w ∈ B). Moreover, the smallest (largest) storage function
is x�K−x (x�K+x). The unique dissipation function corresponding to the storage
function x�K x is Q�(w) = ‖B�K x − v‖2.

In the remainder of this section, for systems represented in DV form we will obtain
a representation of the subbehavior of minimal dissipation, and of its antistable and
stable part.

From Proposition 8.6 in Appendix it follows that if BDV(A, B, C, D) is a minimal
driving variable representation of B ∈ Lw

contr, then BON(−A�, C��, B�,−D��)

is a minimal output nulling representation of B⊥� . Using Theorem 3.4 we then find
that if B is �-dissipative, then the subbehavior of minimal dissipation of B is given
by

B∗ = BDV(A, B, C, D)ext ∩ BON(−A�, C��, B�,−D��)ext. (16)
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For strictly �-dissipative systems this yields the following state space representation
of B∗:

Lemma 5.4 Let B ∈ Lw
contr be strictly �-dissipative, and let BDV(A, B, C, D) be a

minimal DV representation of B such that D��D = I and D��C = 0. Then B∗ is
equal to the external behavior of

[
ẋ
ż

]

=
[

A B B�
C��C −A�

] [
x
z

]

w = [
C DB� ]

[
x
z

]

, (17)

i.e., B∗ = {w ∈ C∞(R, R
w) | there exist x, z ∈ C∞(R, R

n) such that (17) holds}.
Proof By (21), w ∈ B∗ if and only if there exist x , z, v such that

ẋ = Ax + Bv,

ż = −A�z + C��w,

w = Cx + Dv, (18)

0 = B�z − D��w. (19)

Since D��D = I and D��C = 0, from (18) and (19) it follows that B�z =
D��w = D��(Cx + Dv) = v. Also, ż = −A�z + C��(Cx + Dv) = −A�z +
C��Cx . This proves the claim of the lemma. ��
As a consequence, the spectral zeros of B coincide with the eigenvalues of the
Hamiltonian matrix H (13). In turn, these can be shown to coincide with the zeros of
the proper rational matrix G�(−ξ)�G(ξ), with G(ξ) := C(ξ I − A)−1 B + D.

The full behavior represented by the Equations (17) will be called the
Hamiltonian behavior of BDV(A, B, C, D) with respect to �, and we denote it with
BH (A, B, C, D). Thus, B∗ is equal to the external behavior BH (A, B, C, D)ext of
the Hamiltonian behavior. Clearly, the antistable (stable) part of the external behav-
ior of (17) can be obtained by considering the antistable (stable) invariant subspace
X+(H) (X−(H)) of the Hamiltonian matrix H . Indeed, since (by strict �-dissipativi-
ty) H has no imaginary axis eigenvalues, if X1, Y1 ∈ R

n×n are such that the columns
of col(X1, Y1) form a basis of X+(H), and M ∈ R

n×n is the matrix of H |X+(H) with
respect to this basis, then

(B∗)antistab = span
{(

C X1 + DB�Y1

)
eMt

}
. (20)

Now suppose a subbehavior B′ of B∗ is given, with n(B′) = k. It can be shown that
any such B′ corresponds to a unique k-dimensional H -invariant subspace of R

2n, the
state space of B∗. Thus, we obtain the following:

Theorem 5.5 Let B ∈ Lw
contr be strictly �-dissipative on R

−, and let BDV(A, B,

C, D) be a minimal DV representation of B, with D��D = I and D��C = 0.
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Let k < n(B) be a positive integer. Let B′ be a subbehavior of (B∗)antistab with
n(B′) = k. Then there exist X1

1, Y 1
1 ∈ R

n×k, X2
1, Y 2

1 ∈ R
n×(n−k), and matrices

M11, M12, M22 with M11 and M22 antistable and X1 := [X1
1 X2

1] nonsingular, such
that

[
A B B�

C��C −A�

][
X1

1 X2
1

Y 1
1 Y 2

1

]

=
[

X1
1 X2

1

Y 1
1 Y 2

1

][
M11 M12

0 M22

]

︸ ︷︷ ︸
=:M

,

B′ = span
{(

C X1
1 + DB�Y 1

1

)
eM11t

}
,

and

(B∗)antistab = span{(C X1 + DB�Y1)e
Mt }.

Here, we define Y1 := [Y 1
1 Y 2

1 ].
Proof A proof follows immediately from Lemma 5.4 and the remarks above. ��
A similar theorem of course holds for the stable part (B∗)stable of B∗ under the
assumption of strict �-dissipativity on R

+.
To conclude this section we formulate a result that will be of importance in our

reduction procedure. The result deals with a general, possibly non-controllable behav-
ior, represented by a minimal DV-representation. It states that the subbehavior of min-
imal dissipation of the controllable part of B is contained in the external behavior of
the Hamiltonian system (17):

Lemma 5.6 Let B ∈ Lw and � = �� ∈ R
w×w. Let BDV(A, B, C, D) be a minimal

driving variable representation of B such that D��D = I and D��C = 0. Assume
that Bcontr is strictly �-dissipative. Then (Bcontr)

∗ ⊆ BH (A, B, C, D)ext. Conse-
quently, ((Bcontr)

∗)antistable is contained in the antistable part of BH (A, B, C, D)ext.

Proof Starting from the DV-representation BDV(A, B, C, D) we first compute a min-
imal driving variable representation of the controllable part of B. In order to do this,
we first compute a driving variable representation BDV( Ā11, B̄1, C̄1, D̄) of Bcontr
following Proposition 8.4. Observe that this is in general not a minimal representation
of Bcontr. Therefore, we apply the feedback transformation v = F̄ x + v′ with F̄ :=
−(D̄� D̄)−1 D̄�C̄1, and a state space transformation S to BDV( Ā11, B̄1, C̄1, D̄) (see
Proposition 8.2), in order to obtain a minimal DV-representation of Bcontr: S−1( Ā11 +
B̄1 F̄)S =

[
Ã11 0
Ã21 Ã22

]

, S−1 B̄1 =
[

B̃1

B̃2

]

, (C̄1 + D̄ F̄)S = [
C̃1 0

]
, D̃ = D̄. Then

BDV( Ã11, B̃1, C̃1, D̃) is a minimal DV-representation of Bcontr. By Theorem 3.4 we
have

(Bcontr)
∗ = Bcontr ∩ (Bcontr)

⊥�

= Bcontr ∩ (BDV( Ã11, B̃1, C̃1, D̃)ext)
⊥� . (21)
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By minimality of the DV-representation, applying Proposition 8.6 we have

(BDV( Ã11, B̃1, C̃1, D̃)ext)
⊥� = BON

(
− Ã�

11, C̃�
1 �, B̃�

1 ,−D̃��
)

ext
. (22)

Now observe that

BON

(
− Ã�

11, C̃�
1 �, B̃�

1 ,−D̃��
)

ext
⊆ BON

(
− Ā�

11, C̄�
1 �, B̄�

1 ,−D̄��
)

ext

⊆ BON

(
−A�, C��, B�,−D��

)

ext
.

(23)

We will prove the first of the above inclusions. A proof of the second inclusion can
be given in an analogous way. Let w ∈ BON(− Ã�

11, C̃�
1 �, B̃�

1 ,−D̃��)ext. Then
there exists z1 such that ż1 = − Ã�

11z1 + C̃�
1 �w, 0 = B̃�

1 z1 − D̃��w. Define z2 by
z2(t) = 0 for all t ∈ R, and put x := S

[ z1
z2

]
. Then it can be verified that x and w sat-

isfy the equations ẋ = −( Ā11 + B̄1 F̄)�x + (C̄1 + D̄ F̄)��w, 0 = B̄�
1 x − D̄��w,

equivalently, ẋ = − Ā�
11x + C̄�

1 �w, 0 = B̄�
1 x − D̄��w. This implies that w ∈

BON(− Ā�
11, C̄�

1 �, B̄�
1 ,−D̄��)ext, proving the inclusion.

Next, note that

Bcontr ⊂ B = BDV(A, B, C, D)ext. (24)

Combining (21), (22), (23) and (24), we obtain

(Bcontr)
∗ ⊆ BDV(A, B, C, D)ext ∩ BON(−A�, C��, B�,−D��)ext

= BH (A, B, C, D)ext.

The inclusion of the antistable parts then follows immediately. This concludes the
proof of the lemma. ��

6 A reduction algorithm for DV-representations

In this section, we give an algorithmic procedure to compute for a given controllable
behavior B, strictly �-dissipative on R

−, a given integer k ≤ n(B), and a given
McMillan degree k subbehavior of the antistable part of the subbehavior of minimal
dissipation, a DV-representation of a solution to our Main Problem as stated in Sect. 4.
Subsequently, we will show that the transfer matrix from driving variable to mani-
fest variable of any of our solutions is a solution to a rational interpolation problem
associated with the data of the model reduction problem.
Algorithm 1 (from DVR to DVR)
Input: B ∈ Lw

contr strictly �-dissipative on R
−, an integer 0 ≤ k ≤ n(B) and a

subbehavior B′ of (B∗)antistable of McMillan degree k.
Output: A minimal DV-representation of B̂ ∈ Lw

contr satisfying the requirements of
the Main Problem.
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Step 1. Represent B by a minimal DV-representation BDV(A, B, C, D) such that
D��D = I and D��C = 0.
Step 2. Compute X1 = [X1

1 X2
1] ∈ R

n×n nonsingular, Y1 = [Y 1
1 Y 2

1 ] ∈ R
n×n such

that

[
A B B�

C��C −A�

][
X1

1 X2
1

Y 1
1 Y 2

1

]

=
[

X1
1 X2

1

Y 1
1 Y 2

1

][
M11 M12

0 M22

]

,

where M11 and M22 are antistable and B′ = span{(C X1
1 + DB�Y 1

1 )eM11t }.
Step 3. Compute a Cholesky factorization P� P = X�

1 Y1, (P is a nonsingular upper
triangular matrix).
Comment: Such factorization exists, since B ∈ Lw

contr is strictly �-dissipative on R
−,

so X�
1 Y1 is symmetric and positive definite, see Proposition 5.2. This also implies that

Y1 is nonsingular. Note that in general in a Cholesky factorization the diagonal ele-
ments are understood to be positive. Positivity of the diagonal elements will however
not be used in the sequel, and only nonsingularity and the upper triangular structure
are relevant).
Step 4. Define S = X1 P−1 = Y −�

1 P�.
Step 5. Compute ( Ā, B̄, C̄, D̄) = (S−1 AS, S−1 B, C S, D).
Step 6. Denote the truncation of ( Ā, B̄, C̄, D̄) to the first k components of the state
vector by ( Ā11, B̄1, C̄1, D̄).
Step 7. Perform a Kalman controllability decomposition:

T −1 Ā11T =
[

Â ∗
0 ∗

]

, T −1 B̄1 =
[

B̂
0

]

, C̄1T = [
Ĉ ∗ ] , D̄ = D̂.

Step 8. Output

B̂ := BDV( Â, B̂, Ĉ, D̂)ext.

Proposition 6.1 The behavior B̂ computed by Algorithm1 is a solution to the Main
Problem as formulated in Sect. 4.

Proof By construction n(B̂) ≤ k. Also, D = D̂ has full column rank, so the number
of driving variable components in the original and new DV-representation are equal.
Since the number of driving variable components of a minimal DV-representation is
equal to the input cardinality of its external behavior, we obtain m(B̂) = m(B).

We now prove that B̂ is strictly �-dissipative on R
−. It is easily verified that for

( Ā, B̄, C̄, D̄) as computed in Step 5 above we have

[
Ā B̄ B̄�

C̄��C̄ − Ā�
] [

P
P

]

=
[

P
P

]

M, with M =
[

M11 M12
0 M22

]
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as in Step 2. Denote the (1, 1)-block of the upper triangular matrix P by P11. Then
the truncated system ( Ā11, B̄1, C̄1, D̄) computed in Step 6 satisfies

[
Ā11 B̄1 B̄�

1

C̄�
1 �C̄1 − Ā�

11

][
P11
P11

]

=
[

P11
P11

]

M11. (25)

From (25) it then follows that the maximal solution of the ARE

Ā�
11 K̄ + K̄ Ā11 − C̄�

1 �C̄1 + K̄ B̄1 B̄�
1 K̄ = 0 (26)

is given by K̄ + = P11 P−1
11 = I , the k × k identity matrix. Moreover, from (25) we

also obtain ( Ā11 + B̄1 B̄�
1 )P11 = P11 M11, which implies that Ā11 + B̄1 B̄�

1 is similar
to M11 and therefore antistable.

Now consider the ARE corresponding to the DV-representation of the reduced order
(controllable) behavior B̂ computed in Step 7:

Â� K̂ + K̂ Â − Ĉ��Ĉ + K̂ B̂ B̂� K̂ = 0 (27)

and observe that any solution of (27) is the (1, 1)-block of a solution of (26). In par-
ticular, K̂ = I (where I is the k1 × k1 identity matrix, with k1 the size of Â) is a
solution of (27). We claim that this solution K̂ = I is antistabilizing, in the sense that
Â + B̂ B̂� K̂ = Â + B̂ B̂� is antistable. Indeed,

Ā11 + B̄1 B̄�
1 =

[
Â + B̂ B̂� ∗
0 ∗

]

.

As noted above, the left-hand side is antistable, so indeed Â + B̂ B̂� is antistable as
well. Since K̂ = I > 0, by Proposition 5.2 we conclude that B̂ is strictly �-dissipative
on R

−.
We finally prove that the antistable part of the subbehavior of minimal dissipation

of the reduced order behavior B̂ is contained in B′. In order to do so, first observe that

B′ = span
{(

C X1
1 + DB�Y 1

1

)
eM11t

}

= span
{(

(C S)
(

S−1 X1
1

)
+
(

DB�S−�) (S�Y 1
1

))
eM11t

}

= span
{(

C̄
(

S−1 X1
1

)
+ D̄ B̄� (S�Y 1

1

))
eM11t

}

= span

{
[

C̄1 C̄2
]
[

P11
0

]

eM11t + [
D̄ B̄�

1 D̄ B̄�
2

]
[

P11
0

]

eM11t
}

= span
{
(C̄1 + D̄ B̄�

1 )P11eM11t
}

.

Note that the external behavior Btrunc := BDV( Ā11, B̄1, C̄1, D̄)ext may not be con-
trollable, but that we do have D̄�� D̄ = I and D̄��C̄1 = 0. By applying Lemma 5.6
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we have

B̂∗ = ((Btrunc)contr)
∗ ⊆ BH ( Ā11, B̄1, C̄1, D̄)ext.

This implies that the antistable part (B̂∗)antistable must be contained in the antista-
ble part of BH ( Ā11, B̄1, C̄1, D̄)ext. Using (25), the latter is equal to span{(C̄1 +
D̄ B̄�

1 )P11eM11t } = B′. This concludes the proof. ��

Remark 6.2 Algorithm 1 constructs a solution to our Main Problem. This solution
is not unique, since even the construction of the algorithm does not lead to a unique
solution. Indeed, starting with a DV-representation in Step 1, the matrices X1 and Y1
in Step 2 are of course not unique. Different choices of X1 and Y1 will lead to different
Cholesky factors in Step 3, to different state space transformations in Step 4, so to
different truncated systems in Step 6.

Remark 6.3 We note that our Algorithm 1 deals with DV-representations, whereas
Sorensen’s algorithm (see also Examples 3.9, 4.1) deals with input-state-output repre-
sentations. Both algorithms compute suitable eigenspaces of the Hamiltonian matrix
associated with the representation. However, whereas Sorensen’s algorithm uses pro-
jections to arrive at a reduced order system, our Algorithm 1 computes a reduced order
system by truncating the DV-representation obtained after a suitable state space trans-
formation.

Remark 6.4 Algorithm 1 is of course also applicable to systems B in input-state-
output representation ẋ = Ax + Bu, y = Cx + Du that are either strictly passive or
strictly bounded real. We will outline now how this can be done:
1. The strictly passive case: First transform the input-state-output representation for

B into a DV-representation ẋ = Ax + Bv,

[
u
y

]

=
[

0
C

]

x +
[

I
D

]

v. Transform

the latter into a DV-representation that satisfies the assumptions of Step 1 by apply-

ing feedback F = −(D + D�)−1C and transformation (D + D�)− 1
2 in the driving

variable space (see Lemma 5.1). This yields the ‘normalized’ DV-representation

ẋ = (A − B(D + D�)−1C)x + B(D + D�)−
1
2 v,

[
u
y

]

=
[ −(D + D�)−1C

C − D(D + D�)−1C

]

x +
[

(D + D�)− 1
2

D(D + D�)− 1
2

]

v.

Now, apply Steps 2–8 to this representation. The Hamiltonian matrix H in this case
is computed to be equal to the Hamiltonian matrix (7) of Sorensen’s algorithm. In
Step 8 we arrive at a DV-representation of the reduced order behavior B̂: ẋ1 =
Âx1 + B̂v,

[
u
y

]

=
[

Ĉ1

Ĉ2

]

x1 +
[

(D + D�)− 1
2

D(D + D�)− 1
2

]

v. As a last step, we trans-

form this DV-representation back to an input-state-output representation: note that

v = (D+ D�)
1
2 u−(D+ D�)

1
2 Ĉ1x1. Thus we obtain the following input-state-output
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representation of B̂:

ẋ1 =
(

Â − B̂(D + D�)
1
2 Ĉ1

)
x1 + B̂(D + D�)

1
2 u,

y =
(

Ĉ2 − D(D + D�)
1
2 Ĉ1

)
x1 + Du.

2. The bounded real case: The DV-representation ẋ = Ax + Bv,

[
u
y

]

=
[

0
C

]

x +
[

I
D

]

v should again be transformed into a DV-representation satisfying the assump-

tions of Step 1. For this, we this time apply state feedback F = (I − D� D)−1 D�C ,

and transformation (I − D�D)− 1
2 in the driving variable space. The Hamiltonian

matrix in this case becomes

H =
[

A + B(I − D� D)−1 D�C B(I − D�D)−1 B�
−C�(I + D(I − D� D)−1 D�)C −(A + B(I − D�D)−1 D�C)�

]

.

As in the strictly passive case, Algorithm 1 leads to a DV-representation of a reduced
order behavior B̂, which can be transformed into an input-state-output representation
of the same behavior.

Remark 6.5 Of course, a similar algorithmic procedure can be given for the alternative
problem in which the original system B is strictly dissipative on R

+, and with B′ a
subbehavior of the stable part of B∗, and where it is required to find a reduced order
behavior B̂ such that B̂∗ is a subbehavior of the stable part of B̂∗. Again, the details
are left to the reader.

Example 6.6 In this example, we illustrate the application of Algorithm 1 to the case of
a third order strictly passive system to be reduced to a second-order model. The original
system is a single input, single output system with transfer function g(ξ) = n(ξ)/d(ξ),
with d(ξ) = 9+77ξ +39ξ2 +7ξ3 and n(ξ) = 196+137ξ +56ξ2 +7ξ3. The spectral
zeros are the zeros of g(−ξ) + g(ξ), and are ±1, ±2, and ±3. We plan to reduce it
by retaining B′, the trajectories of minimal dissipation corresponding to the spec-
tral zeroes 2 and 3. We construct a minimal DV-representation of this system, with
w = (u, y), and driving variable v. Such DV-representation is given by the matrices

Â =
⎡

⎣
0 1 0
0 0 1

− 9
7 −11 − 39

7

⎤

⎦ , B̂ =
⎡

⎣
0
0
1

⎤

⎦ , Ĉ =
[

0 0 0
187

7
60
7

17
7

]

, D̂ =
[

1
1

]

.

In Step 1 of the algorithm we apply state feedback and a transformation in the driving
variable space to obtain a new DV representation given by the matrices

A =
⎡

⎣
0 1 0
0 0 1

− 205
14 − 107

7 − 95
14

⎤

⎦ , B =
⎡

⎣
0
0
1√
2

⎤

⎦ , C =
[− 187

14 − 30
7 − 17

14

187
14

30
7

17
14

]

, D =
⎡

⎣
1√
2

1√
2

⎤

⎦ .
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We construct the Hamiltonian H corresponding to this representation, and following

Step 2 of the algorithm we compute

[
X1
Y1

]

with

X1 :=

⎡

⎢
⎢
⎣

7
2,080

7
1,125

7
528

21
2,080

14
1,125

7
528

63
2,080

28
1,125

7
528

⎤

⎥
⎥
⎦ , Y1 :=

⎡

⎢
⎢
⎣

211
56

107
21

223
28

195
56

92
21

145
28

1 1 1

⎤

⎥
⎥
⎦

whose columns are the eigenvectors of H corresponding to the eigenvalues 3, 2, 1, in

this order. Note that the first two columns of

[
X1
Y1

]

yield the given B′. It is easy to

verify that the matrix X1 is nonsingular, and that X�
1 Y1 has the Cholesky factorization

P� P , with

P :=

⎡

⎢
⎢
⎢
⎣

√
5

8
11

15
√

5
7

8
√

5

0 2
15

√
5

19
48

√
5

0 0
√

7
48

⎤

⎥
⎥
⎥
⎦

.

The transformation matrix S computed in Step 4 is

S = X1 P−1 =

⎡

⎢
⎢
⎢
⎢
⎣

7
260

√
5

133
1,560

√
5

1,057
√

7
85,800

21
260

√
5

7
312

√
5

− 1,561
√

7
85,800

63
260

√
5

− 623
1,560

√
5

1,453
√

7
85,800

⎤

⎥
⎥
⎥
⎥
⎦

.

After the transformation of the matrices of the original DV representation (Step 5)
and the truncation of the matrices to the first two components of the state (Step 6), we
obtain the DV representation induced by

Ar :=
[− 17

5 − 3
10

26
5 − 89

40

]

, Br :=
⎡

⎣
4
√

2
5

− 13
2
√

10

⎤

⎦, Cr :=
⎡

⎣
− 1√

5
− 17

26
√

5
−

√
5

52

1√
5

17
26

√
5

+
√

5
52

⎤

⎦, Dr :=
⎡

⎣
1√
2

1√
2

⎤

⎦.

It is easy to verify that the system obtained in this way is controllable, so that the
Kalman decomposition of Step 7 is not necessary. B̂ = BDV(Ar , Br , Cr , Dr )ext is
strictly passive. It can be verified that the eigenvalues of the reduced order Hamiltonian
matrix are ±2,±3 and that the antistable part of B̂∗ is in fact equal to the given B′.

By eliminating the driving variable and the state from BDV(Ar , Br , Cr , Dr ), we
obtain the transfer function from input to output of the reduced order system, given
by ĝ(ξ) = n̂(ξ)/d̂(ξ), with d̂(ξ) = 9 + 20ξ + 4ξ2 and n̂(ξ) = 64 + 25ξ + 4ξ2.
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6.1 Rational interpolation at the spectral zeros

In this subsection, we will show that the transfer matrix associated with any reduced
order system B̂ obtained in Algorithm 1 is in fact a solution of a tangential Nevanlinna
rational interpolation problem. Let B ∈ Lw

contr be represented by the minimal DV-rep-
resentation BDV(A, B, C, D), with D��C = 0 and D��D = I , and let G(ξ) :=
D+C(ξ I −A)−1 B be its transfer matrix from driving variable to manifest variable. Let
B′ be a given subbehavior of (B∗)antistable, and let B̂ := BDV( Â, B̂, Ĉ, D̂)ext be any
reduced order system obtained from Algorithm 1. Let Ĝ(ξ) := D̂ + Ĉ(ξ I − Â)−1 B̂.

As noted before, B′ is associated with a unique k-dimensional H -invariant sub-
space V of the antistable subspace X+(H) of H . In the remainder of this section, for
simplicity we assume that the eigenvalues λ1, λ2, . . . , λk of the restriction H |V are
distinct. In that case, the matrix M11 in Step 2 of Algorithm 1 (being a matrix repre-
sentation of this restriction) can be diagonalized: there exists a nonsingular complex
k×k matrix U such that M11 = U−1�U , with � := diag(λ1, λ2, . . . , λk). Let P be
a nonsingular upper triangular matrix from Step 3 of Algorithm 1, say

P =
[

P11 P12
0 P22

]

.

Consider the complex n × k matrix
[

P11
0

]

U−1 and let p1, p2, . . . , pk ∈ C
n be its k

columns. Finally, let ( Ā, B̄, C̄, D̄) be the system matrices obtained after applying the
similarity transformation S in Step 5, and let H̄ denote the corresponding Hamiltonian
matrix. We will now show that the reduced order transfer matrix Ĝ(ξ) is a solution of
a rational tangential interpolation problem at the interpolation points λ1, λ2, . . . , λk
and their mirror images in the imaginary axis −λ̄1,−λ̄2, . . . ,−λ̄k, with data given by
the values G(λi ), G(−λ̄i ), and the vectors pi :

Theorem 6.7 1. For i = 1, 2, . . . ,k, assume λi is not an eigenvalue of A and not
an eigenvalue of Ā11. Define

vi := B̄� pi , wi := G(λi )vi .

Then Ĝ(ξ) satisfies wi = Ĝ(λi )vi (i = 1, 2, . . . ,k).
2. For i = 1, 2, . . . ,k, assume −λ̄i is not an eigenvalue of A and not an eigenvalue

of Ā11. Define

zi := p∗
i C̄��, yi := zi G(−λ̄i ).

Then Ĝ(ξ) satisfies yi = zi Ĝ(−λ̄i ) (i = 1, 2, . . . ,k).

Note that in the case that the driving variable is one-dimensional, equivalently, the
input cardinality of the systems B and B̂ is equal to one, then Ĝ(λi ) = G(λi ) for
i = 1, 2, . . . ,k, so the transfer matrix Ĝ of the reduced order system actually inter-
polates the values G(λi ) at the interpolation points λ1, λ2, . . . , λk.
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Proof (1) First note that each pi is of the form (p�
i1, 0)�, with pi1 ∈ R

k the i th column
of P11U−1. Also note that (p�

i , p�
i )� ∈ R

2n is an eigenvector of H̄ with eigenvalue λi

(i = 1, 2, . . . ,k). This implies ( Ā + B̄ B̄�)pi = λi pi , so (λi I − Ā)−1 B̄ B̄� pi = pi .
This immediately implies

G(λi )B̄� pi = (D̄ B̄� + C̄)pi . (28)

On the other hand, with ( Ā11, B̄1, C̄1, D̄) the truncated system obtained in Step 6, we
have (A11 + B1 B�

1 )pi1 = λi pi1, so (λi I − A11)
−1 B1 B�

1 pi1 = pi1, which implies
that

G1(λi )B�
1 pi1 = (D̄B�

1 + C1)pi1, (29)

where G1(ξ) := D + C1(I ξ − A11)
−1 B1 is the transfer matrix associated with the

truncated system. Combining (28) and (29), upon noting that B̄� pi = B�
1 pi1 and

C̄ pi = C1 pi1 we obtain that G(λi )B̄� pi = G1(λi )B̄� pi . The proof is then com-
pleted by noting that Ĝ = G1.

(2) In the same way as above we obtain C̄��C̄ pi = (λi I + Ā�)pi , which
implies B̄� pi = B̄�(λi I + Ā�)−1C̄��C̄ pi . Since D̄��C̄ = 0, this yields p∗

i B̄ =
−p∗

i C̄��G(−λ̄i ). Similarly, we obtain p∗
i1 B1 = −p∗

i1C�
1 �G1(−λ̄i ). Again note that

B̄� pi = B�
1 pi1 and C̄ pi = C1 pi1. We conclude that p∗

i C̄��G(−λ̄i ) = p∗
i C̄��Ĝ

(−λ̄i ). ��
The above shows that Algorithm 1 in fact computes, for the given transfer matrix
G(ξ) = D + C(ξ I − A)−1 B, a transfer matrix Ĝ(ξ) representing a reduced order
behavior which is strictly �-dissipative on R

−, and which interpolates G(λi ) and
G(−λ̄i ) in the sense that Ĝ(λi )vi = G(λi )vi with vi := B̄� pi and zi Ĝ(−λ̄i ) =
zi G(−λ̄i ) with zi := p∗

i C̄�� (i = 1, 2, . . . ,k).
Thus, Algorithm 1 solves a Nevanlinna type tangential interpolation problem, with

interpolation point at 2k spectral zeros of the original system, k of which are antista-
ble, and the remaining k their mirror images in the imaginary axis. We note that the
vectors vi = B̄� pi are in fact zero directions of the rational matrix G�(−ξ)�G(ξ),
in the sense that G�(−λi )�G(λi )vi = 0. Indeed, this is easily verified using G(ξ) =
C̄(ξ I − Ā)−1 B̄ + D̄, ( Ā + B̄ B̄�)pi = λi pi and C̄��C̄ pi − Ā� pi = λi pi . Finally,
the zi are related to the vi via vi = −G�(−λi )z∗

i .

Remark 6.8 The fact that Ĝ interpolates the original transfer matrix G at 2k spectral
zeros makes us (formally) consider B̂ to be an approximation of B. It can be shown
that if both G and Ĝ are inner, then the difference ‖G − Ĝ‖H∞ provides an upper
bound to the gap between the behaviors B∩L2 and B̂∩L2, considered as subspaces
of the Hilbert space L2(R, R

w). This makes it possible to prove that if one applies the
classical method of balanced truncation to an “inner” DV-representation of B, then
the gap between B and B̂ is bounded from above by “twice the sum of the remaining
Hankel singular values”. Up to now, for the reduction method elaborated in this paper
such error bound has not been established.
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Remark 6.9 In this section, we have assumed that the eigenvalues λ1, λ2, . . . , λk of the
restriction H |V are distinct, in which case the matrix M11 in Step 2 of Algorithm 1 can
be diagonalized. In the general case, with coinciding eigenvalues, the reduced order
transfer matrix Ĝ(ξ) can still be shown to solve a tangential interpolation problem. In
this case, also the derivatives d

ds Ĝ(ξ), d2

d2s
Ĝ(ξ) . . . up to some order (depending on

the geometric multiplicities of the eigenvalues λi ) are involved in the interpolation at
the λi ’s in certain directions. We omit the details.

7 Conclusions

In this paper, we have introduced and resolved the problem of dissipativity preserving
model reduction by retention of trajectories of minimal dissipation. The problem is to
find, for a given dissipative behavior B of McMillan degree n, and a degree k sub-
behavior B′ of the subbehavior of minimal dissipation, a dissipative approximative
behavior B̂ of McMillan degree k whose subbehavior of minimal dissipation is con-
tained in B′. This means that the approximative behavior B̂ “inherits” trajectories of
minimal dissipation from B. We have given an algorithmic procedure to compute B̂
from B in the case that B is given in driving variable representation. The algorithm is
based on analysis of invariant subspaces of a Hamiltonian matrix, and on truncation of
a state space model obtained after suitable state space transformation. The use of the
Hamiltonian matrix for computing an approximative system is reminiscent to the work
of Sorensen [19], where a Hamiltonian matrix is used to compute a passive approxi-
mation of a given input/state/output system. Indeed, the work in the present paper can
be seen as a behavioral formulation and interpretation of the ideas of Antoulas [2] and
Sorensen [19] on passivity preserving model reduction using rational interpolation.
Of course, the results in our paper are valid for general supply rates. In our paper we
show, a fortiori, that the transfer matrices of our reduced order behaviors are solutions
of certain tangential Nevanlinna interpolation problems, with interpolation points at
the spectral zeros of the original behavior (see also [11]).

The algorithm given in this paper computes, for a given behavior in driving variable
representation, a reduced order behavior B̂, also given in driving variable represen-
tation. Of course, in a certain sense this choice of representation is arbitrary, and one
would like to have algorithms to compute reduced order behaviors for different types
of representations as well, such as kernel representations, image representations, etc.
For output nulling representations, a theory analogous to the one presented in this
paper for driving variable representations, including an algorithm that computes for a
given behavior in output nulling representation a reduced order behavior B̂ in output
nulling representation, is available. For this we refer to [9].

As for kernel representations and image representations, at this moment the only
way to compute reduced order behaviors that solve our Main Problem is first to pass
from such representation to a driving variable representation or an output nulling rep-
resentation by applying some realization procedure (see for example [16,18,26]), next
to apply the results in this paper or in [9], and finally to apply an elimination procedure
to arrive at a kernel or image representation of the reduced order behavior (see [16]).
Improvements of this are the subject of current research.
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8 Appendix: Basics of driving-variable and output nulling representations

As already noted in Sect. 2, linear differential systems often result as external behavior
of systems with latent variables. Two particular instances of such latent variable rep-
resentations are systems with driving variables, and output nulling systems. In these
latent variable systems, the latent variable in fact satisfies the axiom of state. In this
Appendix, we have collected the basic material on driving variable and output nulling
representations.

8.1 Driving-variable representations

Let A ∈ R
n×n, B ∈ R

n×v, C ∈ R
w×n, D ∈ R

w×v, and consider the equations

ẋ = Ax + Bv

w = Cx + Dv. (30)

These equations represent the full behavior

BDV (A, B, C, D)

:= {(w, x, v) ∈ C∞(R, R
w) × C∞(R, R

n) × C∞(R, R
v) | (30) hold}.

In we interpret w as manifest variable and (x, v) as latent variable, then BDV(A, B,

C, D) is a latent variable representation of its external behavior

BDV (A, B, C, D)ext = {w ∈ C∞(R, R
w) | ∃ x ∈ C∞(R, R

n) and v ∈ C∞(R, R
v)

such that (w, x, v) ∈ BDV (A, B, C, D)}.

The variable x is in fact a state variable, the variable v is free, and is called the
driving variable.

If B = BDV(A, B, C, D)ext then we call BDV(A, B, C, D) a driving variable rep-
resentation of B. A driving variable representation BDV(A, B, C, D) of B is called
minimal if the state dimension n and the driving variable dimension v are minimal
over all such driving variable representations. In the following, let n(B) and m(B)

denote the McMillan degree of B, and the input cardinality of B, respectively. The
following result is well known:

Proposition 8.1 Let B ∈ Lw be given. Denote n = n(B) and m = m(B). Then

1. There exists matrices A ∈ R
n×n, B ∈ R

n×m, C ∈ R
w×n, D ∈ R

w×m such that
BDV(A, B, C, D) is a minimal driving variable representation of B,
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2. If BDV(A, B, C, D) represents B, then it is a minimal representation if and only
if D is injective and the pair (C + DF, A + B F) is observable for all F,

3. If BDV(A, B, C, D) is a minimal representation of B, then BDV(A′, B ′, C ′, D′)
is a minimal representation of B if and only if there exist invertible matrices S
and R and a matrix F such that

(A′, B ′, C ′, D′) = (S−1(A + B F)S, S−1 B R, (C + DF)S, DR).

Proof A proof of (1) is given in Section 3 of [18]. For a proof of (2), see [18], Cor-
ollary 4.2. For (3) we refer to [26], Theorem 7.2 (see also Remark 8.3 in that paper).

��
The next proposition states that in order to compute a minimal driving variable repre-
sentation from a given one, we can use state feedback.

Proposition 8.2 Let B ∈ Lw and let BDV(A, B, C, D) be a driving variable rep-
resentation of B, with D injective. Define F := −(D�D)−1 D�C. Then there is a

nonsingular matrix S such that S−1(A + B F)S =
[

A′
11 0

A′
21 A′

22

]

, S−1 B =
[

B ′
1

B ′
2

]

,

(C + DF)S = [
C ′

1 0
]

such that

1. The pair (C ′
1 + DF ′, A′

11 + B ′
1 F ′) is observable for all F ′,

2. BDV(A′
11, B ′

1, C ′
1, D)ext = BDV(A, B, C, D)ext.

Consequently, BDV(A′
11, B ′

1, C ′
1, D) is a minimal driving variable representation of

B.

Proof Let V∗ be the weakly unobservable subspace of (A, B, C, D) (see [22], Sec-
tion 7.3). By [22], Exercise 7.5, V∗ is equal to the unobservable subspace of the pair
(C + DF, A + B F), with F = −(D�D)−1 D�C . With respect to a basis adapted to
V∗, A+ B F , C + DF and B have matrices partitioned as claimed above. By construc-
tion, the weakly unobservable subspace of (A′

11, B ′
1, C ′

1, D) is zero and therefore, by
[22] Theorem 7.16, statement (1) of the proposition holds.

In order to prove that BDV(A′
11, B ′

1, C ′
1, D)ext = BDV(A, B, C, D)ext, observe that

since coordinate transformations and state feedback do not change the external behav-
ior, we have BDV(S−1(A+B F)S, S−1 B, (C+DF)S, D)ext = BDV(A, B, C, D)ext.
We now prove that BDV(S−1(A+ B F)S, S−1 B, (C + DF)S, D)ext = BDV(A′

11, B ′
1,

C ′
1, D)ext. The inclusion ⊆ follows immediately. In order to prove the converse inclu-

sion, let w ∈ BDV(A′
11, B ′

1, C ′
1, D)ext. Then there exist x1, v such that

ẋ1 = A′
11x1 + B ′

1v

w = C ′
1x1 + Dv.

Then, let x2 be any solution of ẋ2 = A′
21x1 + A′

22x2 + B ′
2v. This proves that w ∈

BDV(S−1(A + B F)S, S−1 B, (C + DF)S, D)ext, so statement (2) of the proposition
holds. Finally, the minimality of (A′

11, B ′
1, C ′

1, D) as a representation of B follows
from the fact that D is injective and from statement (1). ��
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In this paper, in the context of dissipative systems, we mostly work with control-
lable behaviors, and with the controllable part of a behavior. We now examine under
what conditions a behavior represented in driving variable form is controllable.

Proposition 8.3 Let B ∈ Lw be given. Then the following statements are equivalent

1. B is controllable,
2. There exist matrices A, B, C and D such that B = BDV(A, B, C, D)ext with

(A, B) controllable,
3. For every minimal representations B = BDV(A, B, C, D)ext, the pair (A, B) is

controllable.

Proof See Theorem 3.11 [23]. ��
Now let B be possibly non-controllable, and let BDV(A, B, C, D) be a driving var-
iable representation. The following result shows how to compute a driving variable
representation of the controllable part of B.

Proposition 8.4 Let B ∈ Lw and let BDV(A, B, C, D) be a driving variable repre-
sentation of B. Then there exists a nonsingular matrix S such that

1. S−1 AS =
[

Ā11 Ā12

0 Ā22

]

, S−1 B =
[

B̄1
0

]

, C S = [
C̄1 C̄2

]
,

2. ( Ā11, B̄1) is controllable.

Then, BDV( Ā11, B̄1, C̄1, D) is a driving variable representation of the controllable
part Bcont of B.

Proof First, clearly the full behavior BDV( Ā11, B̄1, C̄1, D) is controllable. Define
B0 := {(w, (x1, 0), v) | (w, x1, v) ∈ BDV( Ā11, B̄1, C̄1, D)}. Then B0 is control-
lable. Also we have B0 ⊆ BDV(S−1 AS, S−1 B, C S, D), and the input cardinali-
ties of these two behaviors coincide. By [3], Lemma 2.10.3, their controllable parts
then coincide, so we have B0 = BDV(S−1 AS, S−1 B, C S, D)cont. Finally, the two
operations of taking the controllable part and taking external behavior commute (see
[3], Lemma 2.10.4). Thus we obtain BDV( Ā11, B̄1, C̄1, D)ext = (B0)ext = (BDV
(S−1 AS, S−1 B, C S, D)cont)ext = (BDV(S−1 AS, S−1 B, C S, D)ext)cont = Bcont. ��

8.2 Output nulling representations

Output nulling representations are defined as follows. Let A ∈ R
n×n, B ∈ R

n×w,
C ∈ R

p×n, D ∈ R
p×w, and consider the equations

ẋ = Ax + Bw

0 = Cx + Dw (31)

These equations represent the full behavior

BON(A, B, C, D) := {(w, x) ∈ C∞(R, R
w) × C∞(R, R

n) | (31) hold}.
Again, if we interpret w as manifest variable and x as latent variable, then BON(A, B,

C, D) is a latent variable representation of its external behavior
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BON(A, B, C, D)ext = {w ∈ C∞(R, R
w) | ∃x ∈ C∞(R, R

n) such that

(w, x) ∈ BON(A, B, C, D)}.

Also here, the variable x is a state variable. If B = BON(A, B, C, D)ext then we call
BON(A, B, C, D) an output-nulling representation of B. BON(A, B, C, D) is called
a minimal output-nulling representation if n and p are minimal over all output null-
ing representations of B. In the following, let n(B) and p(B) denote the McMillan
degree of B, and the output cardinality of B, respectively. Again, the following is
well known:

Proposition 8.5 Let B ∈ Lw be given. Denote n = n(B) and p = p(B). Then,

1. There exist matrices A ∈ R
n×n, B ∈ R

n×w, C ∈ R
p×n, D ∈ R

p×w such that
BON(A, B, C, D) is a minimal output nulling representation of B,

2. If BON(A, B, C, D) represents B, then it is a minimal representation if and only
if D is surjective and (C, A) is observable,

3. If BON(A, B, C, D) is a minimal representation of B, then BON(A′, B ′, C ′, D′)
is a minimal representation of B if and only if there exist invertible matrices S
and R and a matrix J such that

(A′, B ′, C ′, D′) = (S−1(A + JC)S, S−1(B + J D), RC S, RD).

Proof See Theorem 3.20 in [23]. ��
To conclude this Appendix, we recall how driving variable and output nulling

representations of a behavior can be used in order to obtain representations for the
orthogonal behavior.

Proposition 8.6 Let B ∈ Lw
contr and let � = �� ∈ R

w×w be nonsingular. Then

1. If BDV(A, B, C, D) is a minimal driving variable representation of B, then
BON(−A�, C��, B�,−D��) is a minimal output-nulling representation of
B⊥� .

2. If BON(A, B, C, D) is a minimal output-nulling representation of B, then
BDV(−A�, C�, �−1 B�,−�−1 D�)) is a minimal driving variable representa-
tion of B⊥� .

Proof See Section VI.A of [31]. ��
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