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Abstract

We present a method for model reduction based on ideas from the behavioral the-
ory of dissipative systems, in which the reduced-order model is required to reproduce
a subset of the set of trajectories of minimal dissipation of the original system. The
passivity-preserving model reduction method of Antoulas and Sorensen proposed in
[2, 16] is shown to be a particular case of this more general class of model reduction
procedures.
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1 Introduction

Model reduction aims at finding a system that approximates a given one and has lower
complexity than the original, with the complexity being measured by its McMillan degree,
i.e. the minimal dimension of the state space of the model. In the linear setting, classical
model reduction methods are balancing (see [12]), Padé approximation (see [4]), moment-
matching (see [21, 9]), and H..-approximation (see [8]). An up-to-date and exhaustive
source on the problem of model reduction and approximation is the book [1].

Usually, besides the reduction in complexity of the original model, preservation of
certain properties of the original model is required. An example of this is preservation
of stability. However, often it is also demanded that the reduced model retains other
characteristics of the original system, passivity being one of them. Several methods for
model reduction with stability and passivity preservation have been introduced in the
past, see for example [6, 7, 22, 5, 13].

Recently, Antoulas (see [2]) and Sorensen (see [16]) have presented a new technique and
efficient numerical algorithms to perform model reduction with passivity- and stability
preservation. The novel approach pioneered by Antoulas in [2] is based on the idea
of combining Krylov projection methods with positive-real interpolation techniques; the
reduced-order model is obtained by interpolating a subset of the spectral zeros of the
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original system. In the closely related paper [16], Sorensen shows that for all practical
purposes there is no need for explicit interpolation in the implementation: rather, the
reduced-order model can be found by computing a suitable basis for the stable invariant
subspace of a Hamiltonian matrix associated with the system. This idea renders Antoulas’
model reduction method applicable also to systems with large McMillan degree.

The purpose of the present paper is to present a different point of view on the method
of [2] using ideas from the behavioral theory of dissipative systems. We show that the
model reduction approach of Antoulas can be interpreted as special case of a general
method for model reduction applicable to dissipative systems. For a given dissipative
behavior we introduce the subbehavior of trajectories that are in a sense local minima
of dissipation. Next, for the reduced order approximation we require that a particular
part of its subbehavior of minimal dissipation is contained in the subbehavior of minimal
dissipation of the original system: the approximating behavior 'inherits’ this part of the
subbehavior of minimal dissipation from the original system. We will call this technique
model reduction by retention of trajectories of minimal dissipation.

In our setting, the original system will be given as the behavior of a linear, time-
invariant differential system. We assume that the behavior is dissipative with respect to
a given supply rate. The complexity of the behavior is measured by its McMillan degree.
The problem that we will study in this paper is to find a (approximating) behavior: (1)
whose McMillan degree is strictly less than that of the original behavior, (2) that has the
same number of inputs as the original behavior, (3) that is again dissipative with respect
to the given supply rate, and (4) that retains (or: inherits) a maximal number of a priori
given antistable trajectories of minimal dissipation of the original behavior. Interpreted
in this sense, the method of passivity preserving model reduction as initiated by Antoulas
and Sorensen has the same heuristic flavour as the method of positive real balancing (see
[5]), where it can be argued that the reduced order model is obtained by deleting typically
that part of the system along which a relatively large amount of dissipation takes place.

We will establish algorithmic procedures to compute, for a given behavior represented
in driving variable representation or output nulling representation, a reduced order be-
havior that solves the problem stated above. Subsequently, we will show that certain
transfer matrices associated with our reduced order behavior are in fact solutions of a
Nevanlinna type tangential interpolation problem (see also [10]). In fact, both for driv-
ing variable as well as output nulling representations, the transfer matrix of the reduced
order behavior will turn out to interpolate the transfer matrix of the original behavior in
certain directions, with interpolation points at some of the antistable spectral zeroes of
the original behavior.

The outline of this paper is as follows. In section 2 we review the basic material on
behaviors that we need in this paper. Section 3 reviews the concepts of dissipativity,
storage function, and dissipation function. Also, in this section the notion of subbehavior
of minimal dissipation is introduced and elaborated. In section 4 we state the exact prob-
lem that this paper deals with: the problem of dissipativity preserving model reduction
by retention of trajectories of minimal dissipation. In section 5 we turn to behaviors in
driving variable representation, and characterize strict dissipativity in terms of the repre-
sentation. We also establish a representation of the subbehavior of minimal dissipation in
terms of the matrices of the driving variable representation. Using these results, in section
6 we give an algorithm to solve our main problem (the problem introduced in section 4)
for the case that the behavior to be reduced is in driving variable representation. We



also show that our reduced order behavior solves a Nevanlinna tangential interpolation
problem. Sections 7 and 8 deal with behaviors in output nulling representation. In sec-
tion 9 we give concluding remarks. Finally, section 10 contains an Appendix in which we
review the necessary material on driving variable and output nulling representations and
the way they interact.

In this paper we will use the following notation:

The space of n dimensional real, respectively complex, vectors is denoted by R®, re-
spectively C*, and the space of m x n real, respectively complex, matrices, by R™*®
respectively C™*®. Whenever one of the two dimensions is not specified, a bullet o is
used. Given two column vectors x and y, we denote with col(z, y) the vector obtained by
stacking x over y; a similar convention holds for the stacking of matrices with the same
number of columns. Given a Hermitian matrix S € C"*¥, we define its inertia as the
triple o(S) := (0_, 00,04) where o is the number of positive eigenvalues of S, o_ is the
number of negative eigenvalues of S, and o is the multiplicity of 0 as an eigenvalue of S.

The ring of polynomials with real coefficients in the indeterminate ¢ is denoted by R[¢];
the ring of two-variable polynomials with real coefficients in the indeterminates ¢ and 7
is denoted by R[(,n]. The space of all m X n polynomial matrices in the indeterminate
¢ is denoted by R™®[¢], and that consisting of all m x n polynomial matrices in the
indeterminates ¢ and n by R™®[(,n]. Given a matrix R € R™*[{], we define R™(&) :=
R(-€)T € Rv<a[g].

We denote with €>°(R,R¥) the set of infinitely often differentiable functions from R
to R¥, with ®(R,R") the subspace of €*°(R,R") consisting of all compactly supported
functions, with £°¢(R, R¥) the set of all Lebesgue measurable functions w from R to R¥
for which the integral [, [|w]|?d¢ is finite for all compact sets  C R. Sometimes, when
the domain and co-domain are obvious from the context, we simply write €, D and £4*.
If F(t) is a real p x m matrix valued function, then the space of all functions formed as
real linear combinations of the columns of F'(t) is denoted by span{F'(t)} := {F(t)zo |
xo € Rm},

2 Behaviors and quadratic differential forms

A subset B C €°(R,R") is called a linear time-invariant differential system (briefly,
a behavior ) if there exists a polynomial matrix R € R**"[{] such that B = {w €
C*(R,R"Y) | R(%)w = 0}. By £" we denote the set of all linear time-invariant differential
systems with w variables. We note that while we define B € £¥ as the kernel of a
differential operator, B is often not specified in this way. We speak about a kernel
representation when B € L£¥ is represented by R(%)w =0, i.e, B = {w € C°R,R") |
R(%)w = 0}. Another representation is a latent variable representation, defined through
polynomial matrices R and M by R($)w = M($)¢, with B = {w € ¢€®(R,RY) | I L €
¢°(R,R?) such that R(&)w = M(£)¢}. This type of model is the kind of model that
usually results from first principles modeling, with the w’s the vector of variables that the
model aims at, and the £’s the vector of auxiliary variables introduced in the modeling
process (for example state variables). The behavior 9B is then called the external behavior,
and By = {(w,0) € C®(R,R) | R($)w = M($)}, the full behavior. If B is the
external behavior of By, then we often write B = (B )ext-

We also need the notion of state for a behavior. We refer to [15] for a detailed exposition,



with only a brief review here. A latent variable representation of %6 € £¥ is called a state
representation if the latent variable (denoted here by z ) has the property of state, i.e.:
if (w1,21), (w2, x2) € By are such that z1(0) = x2(0) then (wy,z1) A (we,x2), the
concatenation (at ¢t = 0, here), belongs to the Llloc—closure of B, We call such an x a
state for B.

A latent variable representation is a state representation of its manifest behavior if and
only if its full behavior can be represented by a differential equation that is zero-th order
in w and first order in z, i.e., by Row = Mox+ M; %x, with Rg, My, M constant matrices.
There are many, more structured, state representations as, for instance, a driving variable
representation %x = Ax + Bv, w = Cx + Dwv, with v an, obviously free, additional
latent variable; an output nulling representation %z = Ax 4+ Bw, 0= Cz+ Dw; or
an input/state/output representations %x = Az + Bu, y = Cx+ Du, w = (u,y),
the most popular of them all. Every system B € £¥ admits such a representation after
a suitable permutation of the components of w and a suitable choice of the state. In
this paper, an important role is played by driving variable representations and output
nulling representations. We have collected the basic material on these representations in
Appendix A.

In this paper, we restrict ourselves to controllable behaviors. Roughly speaking, con-
trollable behaviors are defined as behaviors in which for any two of its elements there
exists a third element which coincides with the first one on the past and the second one
on the future (for details, see [14]). £ . (a subset of £%) denotes the set of controllable
behaviors.

Given a behavior 8 € £¥, it is possible to choose some components of w as any function
in €°(R,R). The maximal number of such components that can be chosen arbitrarily is
called the input cardinality of 8 and is denoted as m(*8). This number is exactly equal
to the dimension of the input u in any input/state/output representation of B. The
complementary number w —m(8) is called the output cardinality of B.

This paper also uses the formalism of quadratic differential form (QDF') developed in
[27]. We now review the basic elements of the theory of QDF’s. A two-variable polynomial
matrix & € R¥*¥[(, n] can be written as ®({,n) = lez\[kzo <I>h7kChnk, where @, j, € R¥*¥ for
all h, k, and N is a nonnegative integer. The two-variable polynomial matrix ®(¢,n) in-
duces a quadratic functional acting on w-dimensional infinitely differentiable trajectories,
defined as Qg (w) = Zﬁk:o(%)T‘I’h,k% Such a functional is called a quadratic differ-
ential form (QDF). It is easy to see that without loss of generality we may restrict our
attention to symmetric two-variable polynomial matrices ®(¢,7), i.e. ®(¢,n) = ®(n,¢)".
In this paper we always assume that this is the case. By R¥*¥[(,n] we will denote the
subset of R"*¥[(,n] of all symmetric two-variable polynomial matrices.

3 Dissipativity and the subbehavior of minimal dissipation

For an extensive treatment of dissipative systems in a behavioral context we refer to
[24, 27, 28, 17]. Here we review the basic material. Let ¥ € R"*¥ and B € £¢ . Write

Qx(w) = wTSw. B is said to be dissipative with respect to Qx (or briefly, X-dissipative)
if fj;o Qx(w)dt > 0 for all w € B ND. Further, it is said to be dissipative on R_ with

respect to @y, (or briefly, ¥-dissipative on R_) if f_ooo Qx(w)dt > 0 for all w € BND.
We also use the analogous definition of dissipativity on R. It is easily seen that if 95 is



Y-dissipative on R_ or R, then it is Y-dissipative. A controllable behavior B is said to
be strictly dissipative with respect to Qx (or briefly, strictly X-dissipative) if there exists
an ¢ > 0 such that B is dissipative with respect to @Qx._.;. We have the obvious definitions
for strict dissipativity on R_ and on R. If B is strictly >-dissipative on R_ or R, then
it is strictly X-dissipative.

The QDF Qg induced by ¥ € R¥*¥[(, ] is called a storage function for (B, Qx) if

%Q\D(w) < Qx(w) for all w € BN E>®, (1)

The QDF Qa induced by A € R¥*¥[(,n] is called a dissipation function for (B, Qy) if
Qa(w) >0 for all w € BN E>® and

/°° Qx(w)dt = /00 Qa(w)dt for all w € BND.

If the supply rate @y, the dissipation function @Qa, and the storage function Qg satisfy
LQu(w) = Qs(w) — Qa(w) for all w € BNE® (2)

then we call the triple (Qx, Qw, @A) matched on B. Equation (2) expresses that, along
w € ‘B, the increase in internal storage is equal to the rate at which supply is delivered
minus the rate at which supply is dissipated. The following is well-known, see e.g. [17].

Proposition 3.1 : The following conditions are equivalent
1. (B, Qx) is dissipative,
2. (B, Qx) admits a storage function,

3. (!B, Qx) admits a dissipation function.

Furthermore, for any dissipation function Qa there exists a unique storage function Qy,
and for any storage function Qg there exists a unique dissipation function Qa such that
(@s, Qu, Q) is matched on *B.

We now introduce the notion of subbehavior of minimal dissipation. For a given 3-
dissipative system B, let Q¢ be a storage function, and Qa be a dissipation function
such that (Qx,Qw, @A) is matched on B. Let w € B. Then the integral fttol Qa(w)dt
is equal to the dissipated supply over the interval [tg,t1] when 9B is taken through the
trajectory w. We will now look at those w’s in B that are, in a sense, local minima for
the dissipated supply. Fix w € B, and for § € ‘B ND define

Ju(0) == o Qa(w +6) — Qa(w)dt.

—00

Then w is called a trajectory of minimal dissipation if J,,(§) > 0 for all § € BND. Define
PB* :={w e B | wis a trajectory of minimal dissipation}.

It turns out that the subset B* of B of trajectories of minimal dissipation is independent
of the chosen dissipation function Qa, forms a behavior again, and admits an easy char-
acterization in terms of 8 and ¥. For this, define the X-orthogonal complement B+= of
B as

+o00
DR ::{wEQOO/ w' %6 dt =0 for all § € BND}.

5



It can be proven that 8= is also a controllable behavior, see section 10 of [27]. If & = I,
we simply write B, called the orthogonal complement of B. We then have:

Theorem 3.2 : Let B € &7 . and ¥ = X7 € R¥™¥. Assume that B is X-dissipative.
Then B* € £' and
B =BNBE =B (EB)L
Proof : Let QA be a dissipation function. Let Qg a storage function such that %Q\p =
Qs — Qa. It is then easily seen that for all w € 26 and for all § € BN we have
+oo
Jw(é) = Qx(w+ (5) — Qg(w)dt.

—00

Clearly, J,(6) = [T206T%6 dt+2 [T2w %6 dt, and it can be seen that J,,(6) > 0 for all
0 € BND if and only if the linear term is equal to zero for all § € B ND. Consequently,
the subset of trajectories B of minimal dissipation is equal to

+o0
B* = {weB | / w!' N dt =0forall 6 € BND} =B N (B)*1=.
—0o0

g

In the sequel, we will refer to B* as the subbehavior of minimal dissipation. It turns
out that if 9B is strictly dissipative, then the subbehavior 8B* of minimal dissipation is
autonomous. In fact, we have

Theorem 3.3 : Assume that B is strictly X-dissipative. Then

1. B* is autonomous,

antistab’

={w € B* | limy_,_ w(t) = 0},

antistab —

3. n(B*) = 2n(B) and n(BL,,) = n(B: ictan) = 0(B).

2. B* =B, DB, where we define By, = {w € B* | limy_o w(t) = 0} and

Proof : A proof of this follows immediately from lemma 5.3 (and the remarks following
it) in section 5 of this paper. O

4 Problem statement

In this section we will formulate the problem of model reduction by retention of trajec-
tories of minimal dissipation.

Main Problem. Let B € £ Let ¥ = X7 € R"™¥. Assume that 9B is strictly -

contr*
dissipative on R™. Let (8*)antistable e the antistable part of the subbehavior of minimal

dissipation B*. Let k < n(‘AB) be given together with a subbehavior B’ C (B*)antistable
such that n(B’) = k. Find B € £, such that

contr
~

1. n(*B) <k,

2. m(B) =n(B),



3. B is strictly dissipative on R™ with respect to Qyx,

4. The antistable part (%*)antistable of B* is a subbehavior of B’
Any behavior B as above has the property that the n-dimensional antistable part of

the subbehavior of minimal dissipation (with & = n(B)) is contained in the antistable
part of the subbehavior of minimal dissipation of the original system 8. Thus B inherits
from B a n-dimensional subbehavior of its subbehavior of minimal dissipation. By virtue
of this property, 9B is considered as an approrimation of B. Note that there are many
choices for the k-dimensional subbehavior B’ of (B*).utistable- Different choices of B’ will
of course result in different approximations B.

In the sequel we will prove that the the subbehavior of minimal dissipation B* is
associated with the so called spectral zeroes of the original system. It will turn out
that any of the approximants B that we will obtain as solution to our problem allows
an interpretation as a solution of a rational interpolation problem, with as interpolation
points some of the antistable spectral zeroes, see also [2] and [10].

Of course, it is also possible to formulate a version of the above problem with strict
dissipativity on RT, and with B’ a subbehavior of the stable part of B*, in which the
problem is to find a reduced order behavior 9B such that B* is a subbehavior of the stable
part of B*. The details are left to the reader.

In formulating the problem of model reduction by retention of trajectories of minimal
dissipation, we have kept with one of the tenets of behavioral systems theory, that of
articulating concepts at the most intrinsic possible level, that of trajectories. In practice,
though, the to-be-approximated behavior B is represented in some form, be it kernel,
image, latent variable, state space, etc., and the issue arises of how to pass from the original
representation to a representation of a reduced-order approrimation, for example for the
purposes of simulation, of control, etc. In the remainder of this paper we consider this
topic for two types of models, namely driving-variable (in the following abbreviated with
DV) and output-nulling (in the following abbreviated with ON), and delay the discussion
of other types of representations to the conclusion section, where we outline some of the
lines of research currently pursued. The definition of DV and ON representation, and
some of the essential notions necessary in order to understand the material presented in
this paper, are gathered in the Appendix in section 10.

5 Dissipativity and minimal dissipation for DV representa-
tions

In this section we examine strict dissipativity and the the subbehavior of minimal dissi-
pation for the case that our system is represented by a DV-representation.

The connection between dissipativity, the algebraic Riccati equation (ARE), and the
Hamiltonian matrix of the system is well-known, see [24, 25, 26, 29]. In the following, we
will review this connection for the case of half-line dissipativity. First note the following;:

Lemma 5.1 : Let ¥ =X € RV, Let B € £¥ . be strictly X-dissipative. Then there

exists a minimal driving variable representation Bpy (A, B,C, D) of B with D'YSD =1
and DTXC = 0.

Proof : Let fl, E, C‘, D be such that %DV(A, B, C‘, D) is a minimal DV representation
of B. Then D has full column rank (see Appendix, Proposition 10.1). Then, using an



argument analogous to that used in the proof of Th. 5.3.4 of [11], it can be proven that
DTSD > 0. Let W be a nonsingular matrix such that DTSD=wTw. By applying the
state feedback transformation & = —(DTXD) ' DT2Cz +W'v to Bpy (A, B,C, D) we
obtain a new driving variable representation Bpy (A, B,C, D) of B, with

A = A-BD'=D)"'DTnC
B = Bw™!
C = C-DD'eD)'D'nC
D = Dw™L.

Observe that D is injective, and that from the minimality of 9B Dv(le, B.C, ﬁ) and state-
ment (2) of Proposition 10.1 it follows that Bpy (A4, B, C, D) is also a minimal represen-
tation of B. It is easy to see that D'¥.D = I, and moreover

D'sC = W 'D'S(C-DMD'sD)'DTEC) = 0.
This concludes the proof. O

We then have the following:

Proposition 5.2 : Let B € £ . and let ¥ = X7 € RV, Let Bpy (A, B,C, D) be

a minimal driving variable representation of B such that DTXD = I and DTXC = 0.
Then the following statements are equivalent:

1. B is strictly X-dissipative on R~ (RT),

2. the ARE
ATK+KA-C'SC+KBB'K =0 (3)
has a real symmetric solution K with K >0 (K <0) and A+ BB'K is antistable
(stable),
3. The Hamilton: triv H = A BB! h ' l the 1
. The Hamiltonian matrizc H = | 1o~ _ 4T as no eigenvalues on the imag-

mary axis, and there exists X1,Y7 € R*™™ with X1 nonsingular, and M € R»*"
antistable (stable) such that

o[- (2

with X{'Y1 >0 (X{Y1 <0).

If K satisfies the conditions in (2.) above then it is unique, and it is the largest (smallest)
real symmetric solution of (3). We denote it by K+ (K~ ). If X1,Y1 satisfy the conditions
in (3.) above, then Yle_1 is equal to this largest (smallest) real symmetric solution K+
(K~ ) of the ARE (3).

Proof : A proof of this was given in [11], theorem 5.3.4. The equivalence of (2) and (3)
follows from standard results on the relation between the algebraic Riccati equation and
Hamiltonian matrices, see e.g. [29]. O



In the remainder of this section, for systems represented in DV form we will obtain a
representation of the subbehavior of minimal dissipation, and of its antistable and stable
part.

From Proposition 10.12 in the Appendix it follows that if Bpy (A, B, C, D) is a minimal
driving variable representation of B € £ . then Boy(—AT,CTY, BT, -DTY) is a
minimal output nulling representation of B+=. Using theorem 3.2 we then find that if B

is >-dissipative, then the subbehavior of minimal dissipation of B is given by

B* = Bpy (4, B,C,D)ext NBon(—AT,CTE, BT, =D %) ey (4)
For strictly Y-dissipative systems this yields the following state space representation of
B

Lemma 5.3 : Let B € £¥ be strictly Y-dissipative, and let Bpy (A, B,C,D) be a

contr

minimal DV representation of B such that D'SD = I and DTSC = 0. Then B* is
equal to the external behavior of

2] - oo 212
w = [C DBT][”;], (5)

i.e., B* = {w € €°(R,RY) | there exist x,z € €°(R,R*) such that (5) holds}.

Proof : By (4), w € ®B* if and only if there exist x, z, v such that

& = Ax+ B,

3 = —ATz4C"Sw,

w = Cz+ Do, (6)
0 = B'z—D"xw. (7)

Since D'YD = I, and DTXC = 0 from, (6) and (7) it follows that BTz = DTSw =
DTY(Cx+Dv) =wv. Also, 2 = —AT2+CTY(Cx+ Dv) = —AT 2+ CTXCxz. This proves
the claim of the lemma. g

The full behavior represented by the equations (5) will be called the Hamiltonian behavior
of Bpv (A, B,C, D) with respect to ¥, and we denote it with By (A, B,C, D). Clearly,
the antistable (stable) part of the external behavior of (5) can be obtained by considering
the antistable (stable) invariant subspace X4 (H) (X_(H)) of the Hamiltonian matrix H.
Indeed, assuming that H has no imaginary axis eigenvalues, if X1,Y; € R®*® are such
that the columns of col(X1,Y7) form a basis of X, (H), and M € R**" is the matrix of
H |x, gy with respect to this basis, then

(%*)antistab = Span{(CXl + DBTyl)eMt}- (8)

Now suppose a subbehavior B’ of B* is given, with n(8’) = k. It can be shown that any
such B’ corresponds to a unique k-dimensional H-invariant subspace of R?®, the state
space of 26*. Thus we obtain the following;:



Theorem 5.4 : Let B € £ . be strictly X-dissipative on R™, and let Bpy (A, B,C, D)
be a minimal DV representation of B, with D'YD = I and D'"SC = 0. Let k < n(B)
be a positive integer. Let B be a subbehavior of (B*)antistab with n(B') = k. Then there
evist Xi, Y e Ro¥E X2 Ve R2*(@=K)  und matrices M1, Mia, Mag with Myy and Mo

antistable and X, = [X{ X?] nonsingular, such that

A BBT|[X] XP]_[X{ X{][Mu Mg
Yll }/'12 )

c'sc —-AT Yl Y? 0 My
=M
B’ = span{(CX] + DBTY})eMuty,
and
(B") antistab = span{(C X7 + DBTYl)eMt}.
Here, we define Y := [Y{ Y2].
Proof : A proof follows immediately from Lemma 5.3 and the remarks above. U

A similar theorem of course holds holds for the stable part (8*)staple of B* under the
assumption of strict X-dissipativity on R*.

To conclude this section we formulate a result that will be of importance in our re-
duction procedure. The result deals with a general, possibly non-controllable behavior,
represented by a minimal DV-representation. It states that the subbehavior of mini-
mal dissipation of the controllable part of B is contained in the external behavior of the
Hamiltonian system (5):

Lemma 5.5 : Let B € £ and ¥ = X7 € R™Y. Let Bpy (A, B,C, D) be a minimal
driving variable representation of B such that DTY.D =1 and DTXC = 0. Assume that
Beontr 15 strictly L-dissipative. Then (Beontr)* € Br(A, B,C, D)ext. Consequently, if
the Hamiltonian matriz H has no imaginary axis eigenvalues, then ((Beontr)™)antistable 45
contained in the antistable part of the external behavior of the Hamiltonian system, as

given by (5)

Proof : We prove the first part of the lemma. The second part follows easily from
it. We proceed by computing a minimal driving variable representation of the control-
lable part of 9. In order to do this, we first compute a driving variable representation
%Dv(z‘_hl, By, Ch, D) of Beontr following proposition 10.4. Observe that this is in general
not a minimal representation of Beontr. Now apply a feedback transformation v = Fax+v/
as in Proposition 10.2, in order to obtain a minimal representation %DV(AH, By, Ch, 13)
of Beontr- Then we have

(Beontr)* = Bpv(Air, Bi,C1, D)ex N (Bpy (A1, B, C1, D)ext) ™™
= Bpy (A1, B1,C1, D)ext N (Bpy (A1, Bi, C1, D)ext )=
= Bpy (A1, B1,C1, D)es N Bon(—Al,C S, B, —D %)y
Now observe that
%ON(_‘ZG—D éirzv BI) _DTE)eXt %ON(_AID Cq—zv BI’ _DTE)GX'E
Bon(—AT,CTS, BT, —DT%) ey

N 1N
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Consequently we have
(Beontr)” € Bpv(Ai1, B1,C1,D)ext N Bon(—AT,CTE, BT, —D %)y
C Bpyv(A,B,C,D)exi N Bon(—AT, 0TS, BT, —D"%)exs
= Bg(A,B,C,D), 9)

which proves the claim of the lemma. O

6 A reduction algorithm for DV-representations

In this section we give an algorithmic procedure to compute for a given controllable
behavior B, strictly X-dissipative on R™ | a given integer k < n(8), and a given McMillan
degree k subbehavior of the antistable part of the subbehavior of minimal dissipation, a
DV-representation of a solution to our Main Problem as stated in section 4. Subsequently,
we will show that the transfer matrix from driving variable to manifest variable of any of
our solutions is a solution to a rational interpolation problem associated with the data of
the model reduction problem.

ALGORITHM 1. (from DVR to DVR)
Input: B € £, strictly X-dissipative on R™, an integer 0 < k < n(B) and a subbe-

contr
havior B’ of (B*)antistable of McMillan degree k.
Output: A minimal DV-representation of 8 € £¥ . satisfying the requirements of the

contr
Main Problem.

Step 1. Represent B by a minimal DV-representation Bpy (A, B,C, D) such that
DTSD =1 and D'SC = 0.

Step 2. Compute X; = [X{ X?] € R**® nonsingular, Y7 = [Y;! Y{!] € R**® such that
A BBT][ Xt X2] [ XP X2][ My Mo
c'sc —-AT i v || v v 0 My |’
where My, and Mag are antistable and B’ = span{(CX{ + DBTY}!)eMut}.

Step 3. Compute a Cholesky factorization PTP = X, Y7, (P is a nonsingular upper
triangular matrix).

Comment: Such factorization exists, since B € £, is strictly 3-dissipative on R™, so
X ir Y1 is symmetric and positive definite, see proposition 5.2. This also implies that Y7 is
nonsingular.

Step 4. Define S = X, P~ =Y, ' PT.

Step 5. Compute (4, B,C,D) = (S~'AS,S7'B,CS, D).

Step 6. Denote the truncation of (A,B,C, D) to the first k components of the state
vector by (A1, By, C1, D).

Step 7. Perform a Kalman controllability decomposition:

T—1A11T: |:13 ::|’T_131_ [ g :| ,C’lT: [ é * ],D:f).
Step 8 Output

B = %Dv(A, B, é, D)ext‘

11



Proposition 6.1 : The behavior B computed by Algorithm 1 is a solution to the Main
Problem as formulated in section 4.

Proof : By construction n(B) < k. Also, D = D has full column rank, so the number of
driving variable components in the original and new DV-representation are equal. Since
the number of driving variable components of a minimal DV-representation is equal to
the input cardinality of its external behavior, we obtain m(B) = m(B).

We now prove that B is strictly X-dissipative on R™. It is easily verified that for

(A, B,C, D) as computed in Step 5 above we have

A BBT][P] [P . [ My My
[CTZC —AT}[P]_[P}M’WIthM_[ 0 My

as in Step 2. Denote the (1,1)-block of the upper triangular matrix P by Pi1. Then the
truncated system (Aj1, By, Cy, D) computed in Step 6 satisfies

o 28 )[2:)-[2

CIE@ —Airl P P :| M. (10>

From (10) it then follows that the maximal solution of the ARE

ALK + KAy —C2C1+ KBiB{K =0 (11)
is given by K+ = Pllel1 = 1. Moreover, from (10) we also obtain (Aq; + Bléf—)Pll =
P11 Mj1, which implies that A1 + BlBlT is similar to M7, and therefore antistable.

Now consider the ARE corresponding to the DV-representation of the reduced order
(controllable) behavior B computed in Step 8:

ATK+KA-C"SC+KBB'K =0 (12)

and observe that any solution of (12) is the (1, 1)-block of a solution of (11). In particular,

I is a solution of (12). Moreover, we have
- o i RART

*

which implies that A + BBTI is antistable. By proposition 5.2 we conclude that B is
strictly Y-dissipative on R™.

We finally prove that the antistable part of the subbehavior of minimal dissipation of
the reduced order behavior B is contained in ®B’. In order to do so, first observe that

B = span{(CX} + DB YL} — span{((CS)(S™1XL) + (DBTS™T)(8T vt}
= span{(C(S7'X{)+ DBT(STY}))eMnty
— ([ G Oy ] [ P ] Mt 4 [ DB} DBJ | { P ] Mty
= span{(Cy + DB] )P M1t}

Note that the external behavior Birunc 1= %DV(All,Bl,C’l,D)ext may not be control-

lable, but that we do have D'¥D = I and D"¥C; = 0. By applying proposition 5.5 we
have

%* = ((%trunc>contr)>k g %H(Alla Bla Cla D)

12



We then conclude that

A

(B )antistable < (Br(A11, B, C1, D))antistable = span{(Cy + DB ) Pryettl = 9.

This concludes the proof. O

Of course, a similar algorithmic procedure can be given for the alternative problem in
which the original system 9B is strictly dissipative on RT, and with %’ a subbehavior of
the stable part of 6%, and where it is required to find a reduced order behavior B such
that $B* is a subbehavior of the stable part of B*. Again, the details are left to the reader.

6.1 Rational interpolation at the spectral zeroes

In this subsection we will show that the transfer matrix associated with any reduced order
system B obtained in Algorithm 1 is in fact a solution of a tangential Nevanlinna rational
interpolation problem. Let B ¢ £¢ ;. be represented by the minimal DV-representation
Bpy(A,B,C, D), and let G(s) := D+ C(sI — A)~!B be its transfer matrix from driving
variable to manifest variable. Let B’ be a given subbehavior of (B*)antistable, and let
B = Bpy (fl, B.C, ﬁ)ext be any reduced order system obtained from Algorithm 1. Let
G(s):=D+C(sI — A)'B.

As noted before, B’ is associated with a unique k-dimensional H-invariant subspace V
of the antistable subspace X, (H) of H. In the remainder of this section, for simplicity
we assume that the eigenvalues A1, A, ..., Ax of the restriction H|y are distinct. In that
case, the matrix Mj; in Step 2 of Algorithm 1 (being a matrix representation of this
restriction) can be diagonalized: there exists a nonsingular complex k x k matrix U such
that My; = U 'AU, with A := diag(\i, A2,..., ). Let P be a nonsingular upper
triangular matrix from Step 3 of Algorithm 1, say

| P P
p_{ ! Pm]

Pll

0
Finally, let (A, B,C, D) be the system matrices obtained after applying the similarity
transformation S in Step 5, and let H denote the corresponding Hamiltonian matrix.
We will now show that the reduced order transfer matrix G(s) is a solution of a rational
tangential interpolation problem at the interpolation points A1, Ag, ..., A, with data given
by the values G()\;) and the vectors p;:

Consider the complex n x k matrix { } U~" and let p1,po,...,px € C® be its k columns.

Theorem 6.2 : Fori = 1,2,...,k, assume \; is not an eigenvalue of A and not an
eigenvalue of A11. Define

v; == B p;, wi = G(\)v;.

~

Then G(s) satisfies w; = G(\)v; (i =1,2,... k).

Note that in the case that the driving variable is one-dimensional, equivalently, the input
cardinality of the systems B and B is equal to one, then G(\;) = G(\;) fori =1,2,... k,
so the transfer matrix G of the reduced order system actually interpolates the values
G()\;) at the interpolation points A1, Ag, ..., Ak.

13



Proof : First note that each p; is of the form (p;,0)7, with p;; € R¥ the ith column
of Pi1U~t. Also note that (p;r ,pZ-T)T € R? is an eigenvector of H with eigenvalue \;
(i = 1,2,...,k). This implies (A + BB")p; = \ips, so (I — A)"'BBTp; = p;. This
immediately implies

G(N)BTp; = (DB + O)p;. (13)

On the other hand, with (A1, By, Cy, D) the truncated system obtained in Step 6., we
have (A11 + B1B{ )pi1 = \ipi1, so (M — Ay1) " By B pi1 = pi1, which implies that

G1(\)B{ pi1 = (DB + C1)pi1, (14)

where G4 (s) := D+C1(Is— Ay1) "' By is the transfer mafrix associated with the truncated
system. Combining (13) and (14), upon noting that B p; = B{ p;1 and Cp; = Cip;s we
obtain that G(\)BTp; = G1(\)BTp;. The proof is then completed by noting that
G =G. O

The above shows that Algorithm 1 in fact computes, for the given transfer matrix G(s) =
D + C(sI — A)7!'B, a transfer matrix G (s) representing a reduced order behavior which
is strictly X-dissipative on R™, and which interpolates G(\;) in the sense that G(\;)v; =
G(M\)v; with v; := BTp; (i = 1,2,...,k). Thus Algorithm 1 solves a Nevanlinna type
tangential interpolation problem, with interpolation point at k (antistable) spectral zeroes
of the original system.

Remark 6.3 : It is well known that this tangential interpolation problem admits a
solution if and only if the associated Pick matriz is positive definite. The Pick matrix for
the problem at hand is the Hermitian k x k matrix 7" := (7};), with

1

T, = = TBGO\)EZG(\)B p..
J Ai_'_Aij ( ) ( ) Dj

We will show now that the Pick matrix T is indeed positive definite, since it is congruent
to (X{)TY}, the k x k left upper block of the positive definite symmetric matrix X, Y;.
Indeed, by (13),

1 _ _

_ _ _ 1 _ _
T = - YDBT +C)"S(DBT + C)p, = = CTsC + BB )p;
' )\i_‘_)\jpl( +C) Ty + C)p; Ah%jpl( + )p;

Since (pf,p;)* is an eigenvector of H with eigenvalue \;, we obtain p}(A4 + BBT)pj =
Ajpip; and p;(C_'TEC — ANp; = Aip;pi- Using this we get piT(CTEC + BBT)pj =
(Ai + A\j)pipj. We conclude that Tj; = pip; = phpj1, so T = (U H)*P\PLUL =
O XD YU

7 Dissipativity and minimal dissipation for ON representa-

tions

In this section we study the subbehavior of minimal dissipation for the case that our
system is represented by an ON-representation, and examine conditions under which a
system in output nulling representation is strictly 3-dissipative on R_ or R,.

14



Proposition 7.1 : Let B € £¥ Let ¥ = X1 € R™¥ be nonsingular. Assume that

contr*
B is strictly X-dissipative. Then there exists a minimal output nulling representation

Bon (A, B,C,D) of B such that
DD = J, with J = blockdiag(;owdim(p)—q> —Iq) and q = o (%), (15)
By~ 'DT =o. (16)

Proof : The proof follows easily by combining Lemma 5.1 and Proposition 10.9 given in
Appendix A. O

The following result is analogous to that of Proposition 5.2.

Proposition 7.2 : Let B € &7 ... Let ¥ = X7 € RV be nonsingular, and let
Bon (A, B,C,D) be a minimal ON representation of B such that (15) and (16) hold.
Then the following conditions are equivalent:

1. B is strictly X-dissipative on R~ (RT),
2. The ARE
AK +KA" +Bx'B" —KCTJCK =0 (17)
has a real symmetric solution K > 0 such that A — KCTJC is stable (antistable),
A Bx'BT
ctgc —AT
imaginary axis, and there exist X1,Y1 € R®® with Y1 nonsingular, and M € R***"
antistable (stable) such that
X1 X1
/ _
w =

3. the Hamiltonian matriz H' = { has no eigenvalues on the

with V1" X1 >0 (Y, X1 <0).

If K satisfies the conditions in (2.) above then it is unique, and it is the smallest (largest)
real symmetric solution of (17). We denote it by K~ (K ). If X1,Y} satisfy the conditions
in (3.) above, then X1Y1_1 is equal to this smallest (largest) real symmetric solution K~
(K+) of the ARE (17).

Proof : A proof of this can be given as follows: using Proposition 10.9 from Appendix A,
associate with the given minimal output nulling representation a minimal driving variable
representation satisfying the condtions of Proposition 5.2. Then apply proposition 5.2 to
this driving variable representation. Finally, restate the conditions obtained in terms of
the original output nulling representation (see also Theorem 5.3.5 in [11]). The equivalence
of (2) and (3) again follows from standard results on the relation between the algebraic
Riccati equation and the Hamiltonian matrix, see e.g. [29]. O

We now consider the problem of computing a representation for the subbehavior of
minimal dissipation of a strictly X-dissipative behavior represented in ON form. Recalling
the results on the representation of the orthogonal behavior of a behavior given in ON
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form, we find that if Bon(A, B,C, D) is a minimal representation of the Y-dissipative
behavior B, then the subbehavior of minimal dissipation 2B* is given by

%* == %ON(/L Ba 07 D)ext
NBpy(—AT,CT, 27 'BT —271DT) . (18)

This observation immediately leads to the following:

Proposition 7.3 : Let B € £7 . Let ¥ = X7 € R™Y be nonsingular. Assume that B
is strictly 3-dissipative, and let Bon (A, B,C, D) be a minimal ON representation such
that (15) and (16) hold. Then B* is equal to the external behavior of the state space

system
il A B BT |[=
| | ctuc AT z
w = [ -2DTJC E—lBT][ij] (19)

Proof : From (18), it follows that w € B* if and only if there exist z, z, v such
that # = Az + Bw, 2 = —A'24+CTv, 0 = Cx + Dw, w = ¥ 'BTz — 271Dy,
Since DX 'DT = J and BEY'DT =0, from w = ¥7'BTz — 71D "y it follows that
Dw=DY'BTz — DE"!D"Sy = —Jz. Subtituting in 0 = Cz + Dw, we get v = JCx.
Consequently, & = Az+B(X'BT2—X7 1D S0) = Az +BY"'BT2, 2 = —AT24CT JCx.
This yields the claim. O

Again, we call the full behavior represented by the equations (19) the Hamiltonian be-

havior of Bon (A, B, C, D) with respect to 3, and we denote it with By (A, B, C, D). The
following result is the analogue of Theorem 5.4, and follows immediately from Proposi-
tion 7.3. The result shows how we can use the Hamiltonian behavior of Bon (A4, B,C, D)
in order to represent subbehaviors of the antistable part of the subbehavior of minimal
dissipation.
Theorem 7.4 : Let B € £¢ . Let ¥ = X7 € R™¥ be nonsingular. Assume B strictly
Y-dissipative on R™, and let Bon(A, B,C, D) be a minimal ON-representation of B
such that (15) and (16) hold. Let k < n(B) be a positive integer. Let B’ be a subbehavior
(B*) antistab with n(B') = k. Then there exist X{,Y! € Rk X2 V2 € R2*(@=K)  gnd
matrices M1, Mya, Moy with My, and May antistable and Yy := [Y{} Y] nonsingular,
such that

A Bx~'BT Xt X3 [ Xt Xx? My My
- Yll Y12 9

ctixc  —AT Yl Y? 0 Moy
N—————
=M

B’ = span{ (-2 D" JCX] + 27 1BTy}eMuty,

and
(B*) antistable = span{(—ZleTJC)ﬁ + EleTYl)eMt}.

Here, we define X1 := [X{ X?].
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Again, a similar theorem of course holds holds for the stable part B, ,,, of B* under the
assumption of strict X-dissipativity on RT.

Finally, in a result parallel to that of Lemma 5.5, we show that the subbehavior of
minimal dissipation of the controllable part of B is contained in the external behavior of
the Hamiltonian system (19):

Lemma 7.5 : Let B € £°. Let ¥ = X7 € R"¥ be nonsingular. Let Bon(A, B,C, D) be
a minimal ON-representation of B such that (15) and (16) hold. Assume that Beontr s
strictly X-dissipative. Then (Beontr)™ C By (A, B,C, D)ext. Consequently, if the Hamil-
tonian matriz H' has no imaginary azis eigenvalues, then (Beontr) pptistable 8 contained in
the antistable part of the external behavior of the Hamiltonian system, as given by (19)

Proof : We prove only the first part of the claim, since the second one follows easily.
We first compute an ON representation of the controllable part of %5 using Proposition
10.8, thus obtaining a not necessarily minimal ON representation Box(A11, By, Cy, D) of
Beont- Observe that

(Beontr)* = Bon (A11, B1,C1, D)ext N [Bon(A11, B, C1,y D)ext| >

In order to compute a minimal ON representation of B, we apply Proposition 10.6,
obtaining Bon(A11, B1,C1, D). Conclude that

(Beontr)” = Bon(A11, Br,C1, D)exs N [Bon (A1, Br, C1, D)ext] >
- %ON(Ally Bl7 él? D)ext N %DV(_A1|717 é;, 271-@;7 _Eilb—r)ext’
It is not difficult to see that
%DV<_Airla CN']_Ta EilBiﬂ _Zilb—r)ext %DV(_AIL C_’]—_r7 EilBira _ZilDT)eXt
Bpy(—AT,CT, 27 IBT, —271D ).

N 1N

Consequently

(%contr))’< C %ON(Alb Bla Clv D)ext N %DV(_ATa CT7 Z_IBTv _Z_lDT)eXt
C %ON(Aa B, 07 D)ext N %DV(_ATa CT7 Z_lBTa _E_IDT)ext
= BH’(AaBacaD)v

where By (A, B,C, D) is the Hamiltonian behavior defined by (19). O

8 A reduction algorithm for ON-representations

In this section we give an algorithmic procedure to compute for a given controllable be-
havior B, strictly 3-dissipative on R~ | a given integer k < n(B), and a given subbehavior
of the antistable part of the subbehavior of minimal dissipation, an ON-representation of
a solution to our Main Problem as stated in section 4. Again, we will also show that the
transfer matrix associated with the ON-representation of any of our solutions is a solution
to a rational interpolation problem

ALGORITHM 2. (from ONR to ONR)
Input: ¥ = T € R¥*¥ nonsingular, and B € £¥ strictly X-dissipative on R™, an

contr»

integer 0 < k < n(B) and a subbehavior B’ of (B*)antistable Such that n(B’) = k.
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W
contr

Output: a minimal ON-representation of Beg solving the Main Problem.

Step 1. Compute a minimal ON-representation Bon (A, B,C, D) of B such that (15)
and (16) hold.

Step 2. Compute X; = [X{ X7] € R*® and Y; = [V} Y] € R®™® nonsingular, such
that

A BE‘IBTHX% X%}:{X% X%HMH Mlg}

ctjc —-AT YooY Y Y 0 M
e e
=M

where My, and Mag are antistable and B’ = span{(-X'DTJCX] + £1BTY}!)eMut}

Step 3. Compute a Cholesky factorization PT P = Y;' X1, with P a nonsingular upper
triangular matrix.

Comment: Such factorization exists, since B € £
and consequently Y;" X7 > 0 (see Proposition 5.2).

Step 4. Compute S = X; P! = YI_TPT.
Step 5. Compute (A, B,C, D) := (S7'AS,S'B,CS, D).

Step 6. Let (A1, B1,C1, D) denote the truncation of (_fl, B,C, D) to the first k compo-
nents of the state, and let Birune : = Bon (411, B1,C1, D)ext

w
contr

is strictly X-dissipative on R~

Step 7. Perform a Kalman controllability decomposition to compute the controllable
part of Birune:

A ] 2 [B1 oA A oy -

A11:|:0 *:|aBlz|:0:|701:|:C*:|’D:D7

Step 8. Output ) o
B = (%trunc)contr = %ON(Aa B, C, D)ext-

Theorem 8.1 : The behavior B computed in Algorithm 2 is a solution to the Main
Problem.

Proof : By construction n(B) < k. Also, D = D has full row rank, so the number of
algebraic equations in the original and new ON-representation are equal. From the fact
that the number of algebraic equations in a minimal ON-representation is equal to the

output cardinality of its external behavior, we deduce m(8) = m(B).

We now prove that B is strictly ¥-dissipative on R™. For (A4, B,C, D) as computed in
Step 5 in Algorithm 2 we have
1 Ry —1RT
[ A BZB][P}:[P (20)

ctjc  —AT P P 0 My

]M, with M = [ My M ]
as in Step 2. Denote the (1,1)-block of the upper triangular matrix P by Pj;. Then the

truncated system (A1q, By, C1, D) computed in Step 6 satisfies

[ Ay Bix B/ ] [ Py } _ { Py

L - M. 21
clJc,  —A] Ppy PH] 1 (21)
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From (21) it follows that the maximal solution of the ARE
AH}? + KAL — KC’;JCHK -+ BlZ_lBlT =0 (22)

is K = P P! = 1. Since (Af, — C] JC1)Pyy = —Pii My and My, is antistable, Af; —
C’; J(C1 is stable. Now consider the ARE corresponding to the ON-representation of the
reduced order (controllable) behavior % computed in Step 8:

AK+KA" - KCTJCK + B 'B=0. (23)

Observe that any solution of (23) is the (1, 1)-block of a solution of (22). In particular, I
is a solution of (23). Moreover, we have

T AT A
Al -ctgo=| 4 - O]
which implies that AT — CTJC is stable. By Proposition 7.2 we conclude that B is
strictly Y-dissipative on R™.

Finally, we prove that the antistable part of the subbehavior of minimal dissipation of
the reduced order behavior B is contained in B’. From the definition of B’ conclude that

B = span{((-X7'DTJCS)(STIX}) + (Z7IBTSTT)(STYl))eMty
= span{(-X'DTJC(S7IX]) + 1B (STY))eMut}

— span{-'DTI[ G, C‘Q][Pél]eM”tJrzl[Bf BQT][PSI]eMUt}

= span{(—-27'D"JC, + 271B )P Mty

It follows from Lemma 7.5 tlrlat _%* = ((Btrunc)contr)™ C %H/(AH,Bl,C'l,D)_. T}_ms
(%*)Emtistable g (%H/(Allv B17 Cl) D))antistable- The latter is equal to Span{(_zil‘DT‘]Cl—’—
Y=LB) PreMit}) which is equal to 9B, O

Again, a similar algorithmic procedure can be given for the problem where the original
system B is strictly dissipative on R™, and with B’ a subbehavior of the stable part of B*,
and where it is required to find a reduced order behavior 9B such that B* is a subbehavior
of the stable part of B*. The details are left to the reader.

8.1 Rational interpolation at the spectral zeroes

Let B € £¥ .. be represented by the minimal ON-representation Bon (A, B,C, D), and
let G(s) := D+ C(sI — A)"1B. Let B’ be a given subbehavior of (B*)antistable, and let
B := Bpy (A, B,C, D)ext be any reduced order system obtained from Algorithm 2. Let
G(S) = b + C’l(SI — AH)*lBl.

As before, the given subbehavior 9B’ is associated with a unique H'-invariant sub-
space W of the antistable subspace X (H') of the Hamiltonian matrix H’. For sim-

plicity, assume that the eigenvalues Aj, Ag, ..., \¢ of the restriction H' |y are distinct.
Again, in that case the matrix Mp; from step 2 of Algorithm 2 can be diagonalized:
there exists a nonsingular complex k x k matrix 7 such that M;; = U 'AU, with
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A = diag(A1, A2, ..., Ak). Let P be a nonsingular upper triangular matrix obtained in
step 3, say

| Pu P2
P_[ 0 ng}'

0
columns. Then we have the following result:

Now consider the complex n X k matrix [ Pu } U~! and let p1,pa,...,px € C* be its k

Theorem 8.2 : Fori=1,2,...,k, assume that \; is not an eigenvalue of A and not an
eigenvalue of A11. Define

w; =SBy, 2= G (M) w;.
Then G(s) satisfies z; = G(\)w; (i =1,2,...,k).
Proof : The proof is analoguous to that of theorem 6.2. It uses the facts that p; is an
eigenvector of H’ with eigenvalue );, and that p; is of the form (p,},0)". The details are
left to the reader. O

9 Conclusions

In this paper we have introduced and resolved the problem of dissipativity preserving
model reduction by retention of trajectories of minimal dissipation. The problem is to
find, for a given dissipative behavior 8 of McMillan degree n, and a degree k subbehavior
B’ of the subbehavior of minimal dissipation, a dissipative approximative behavior B of
McMillan degree k whose subbehavior of minimal dissipation is contained in B’. This
means that the approximative behavior B ”inherits” trajectories of minimal dissipation
from B. We have given algorithmic procedures to compute B from B in two cases, the
case that 8 is given in driving variable representation, and the case that B is given in out-
put nulling representation. In both cases the algorithms are based on analysis of invariant
subspaces of a Hamiltonian matrix, and on truncation of a state space model obtained af-
ter suitable state space transformation. The use of the Hamiltonian matrix for computing
an approximative system is reminescent to the work of Sorensen in [16], where a Hamil-
tonian matrix is used to compute a passive approximation of a given input/state/output
system. Indeed, the work in the present paper can be seen as a behavioral formulation
and interpretation of the ideas of Antoulas [2] and Sorensen [16] on passivity preserving
model reduction using rational interpolation. Of course, the results in our paper are valid
for general supply rates. In our paper we show, a fortiori, that the transfer matrices of
our reduced order behaviors are solutions of certain tangential Nevanlinna interpolation
problems, with interpolation points at the spectral zeroes of the original behavior (see
also [10]).

10 Appendix: Basics of driving-variable and output-nulling

representations

As already noted in section 2, linear differential systems often result as external behavior
of systems with latent variables. Two particular instances of such latent variable rep-
resentations are systems with driving variables, and output nulling systems. In these
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latent variable systems, the latent variable in fact satisfies the axiom of state. In this
appendix we have collected the basic material on driving variable and output nulling
representations.

10.1 Driving-variable representations
Let Ae R**® B e R™, C € R"® D e R"V, and consider the equations
t = Ax+ Bv
w = Cz+ Dv. (24)
These equations represent the full behavior
Bpv(A,B,C,D) = {(w,z,v) € €(R,R") x €°(R,R") x €°(R,R") | (24) hold}.

In we interpret w as manifest variable and (x, v) as latent variable, then B py (A, B, C, D)
is a latent variable representation of its external behavior

Bpv(A,B,C,D)ext = {w € €°(R,R") | 3z € €°(R,R*) and v € €°(R,R")
such that (w,z,v) € Bpy (4, B,C,D)}.
The variable x is in fact a state variable, the variable v is free, and is called the driving
variable.

If B =Bpy(A,B,C,D)ext then we call Bpy (A, B,C, D) a driving variable represen-
tation of B. A driving variable representation Bpy (A4, B,C, D) of B is called minimal
if the state dimension n and the driving variable dimension v are minimal over all such
driving variable representations. In the following, let n(8) and m(*8) denote the McMil-

lan degree of B, and the input cardinality of 98, respectively. The following result is well
known:

Proposition 10.1 Let B € £7 be given. Denote n =n(B) and m =m(B). Then

1. there exists matrices A € R, B € R™® (C € R D € RY™ such that
Bpv(A,B,C, D) is a minimal driving variable representation of B,

2. if Bpy (A, B,C, D) represents B, then it is a minimal representation if and only if
D is injective and the pair (C' + DF, A+ BF) is observable for all F,

3. if Bpy (A, B,C, D) is a minimal representation of B, then Bpy (A, B',C", D) is
a minimal representation of B if and only if there exist invertible matrices S and
R and a matriz F' such that

(A,B'.C',D') = (S"Y(A+ BF)S,S™'BR, (C + DF)S, DR).
Proof : See Theorem 3.10 in [20]. O

The next proposition states that in order to compute a minimal driving variable repre-
sentation from a given one, we can use state feedback.

Proposition 10.2 Let B € £ and let Bpy (A, B,C,D) be a driving variable repre-
sentation of B, with D injective. Define F := —(D'D)"'DTC. Then there is a

!/ !/
nonsingular matriz S such that S™1(A + BF)S = [ ﬁ,ﬂ A(f ], STB = [ g} ],

21 A2 2
(C+DF)S=1[C} 0] such that

21



1. the pair (C} + DF', A}, + B} F’) is observable for all F’,
2. Bpy (A4, B},C1,D)ext = Bpy (A, B,C,D)ext-
Consequently, Bpy (A}, B}, C}, D) is a minimal driving variable representation of B.

Proof : Let V* be the weakly unobservable subspace of (A4, B,C, D) (see [19], section
7.3). By [19], Exercise 7.5, V* is equal to the unobservable subspace of the pair (C +
DF, A+ BF), with F = —(D"D)~'DTC. With respect to a basis adapted to V*, A4+ BF,
C + DF and B have matrices partitioned as claimed above. By construction, the weakly
unobservable subspace of (A}, By, CY, D) is zero and therefore, by [19] Theorem 7.16,
statement (1) of the proposition holds.

In order to prove that Bpy (A4}, B},C],D)ext = Bpyv (A, B,C,D)ext, observe that
since coordinate transformations and state feedback do not change the external behav-
ior, we have Bpy (S~ A+ BF)S,S™'B,(C + DF)S,D)ext = Bpv (A, B,C, D)ext. We
now prove that Bpy (S~ (A+ BF)S,S™'B,(C+ DF)S, D)ex = Bpy (AL, B, Cl, D)ext.
The inclusion C follows immediately. In order to prove the converse inclusion, let w €
Bpy (A}, By, C}, D)ext. Then there exist x1, v such that

Ty = Alllflfl—l—Bi'U
w = Clz1 + Dv.

Then, let x2 be any solution of #9 = AYx; + Abyxe + Bhv. This proves that w €
Bpy (ST A+ BF)S,S7'B,(C+ DF)S, D)exs, 50 statement (2) of the proposition holds.
Finally, the minimality of (A}, B],C}, D) as a representation of B follows from the fact
that D is injective and from statement (1). O

In this paper, in the context of dissipative systems, we mostly work with controllable
behaviors, and with the controllable part of a behavior. We now examine under what
conditions a behavior represented in driving variable form is controllable.

Proposition 10.3 Let B € £¥ be given. Then the following statements are equivalent
1. B is controllable,

2. there exist matrices A, B,C and D such that B = Bpy (A, B,C, D)ex, with (A, B)
controllable,

3. for every minimal representations B = Bpy (A, B, C, D)ext, the pair (A, B) is con-
trollable.

Proof : See Theorem 3.11 [20]. O

Now let B be possibly non-controllable, and let Bpy (A, B,C, D) be a driving variable
representation. The following result shows how to compute a driving variable represen-
tation of the controllable part of 5.

Proposition 10.4 Let B € £ and let Bpy (A, B,C, D) be a driving variable represen-
tation of B. Then there exists a nonsingular matrix S such that

A A B - -
aa 1 A g _ 1 _
1. S AS—|:O A22:|’S B |:0:|,CS [Cl CQ],
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2. (A11, By) is controllable.

Then %DV(AH?Bl,C_'l,D) 1s a driving variable representation of the controllable part
%Cont Of B.

Proof : First, clearly the full behavior Bpy (A1, By, Cy, D) is controllable. Define
B = {(w, (1,0),v) | (w,21,v) € Bpy(A11, B1,C1,D)}. Then By is controllable. Also
we have By C Bpy(S~1AS, S™1B,CS, D), and the input cardinalities of these two be-
haviors coincide. By [3], Lemma 2.10.3, their controllable parts then coincide, so we
have Bg = Bpy(S1AS,S™1B,CS, D)cons. Finally, the two operations of taking the
controllable part and taking external behavior commute (see [3], Lemma 2.10.4). Thus
we obtain %DV(A11;B1,017D)ext = (%O)ext = (%Dv(S_IAS, S_IB,CS, D)Cont)ext =
(%DV(S_lAS, S_lB,CS, D)ext)cont = %cont- O

Output-nulling representations

Output-nulling representations are defined as follows. Let A € R**®, B € R**¥ (' € RP*?
D € RP*¥ and consider the equations

= Az + Bw
0 = Czx+ Dw (25)
These equations represent the full behavior

Bon (A, B,C, D) = {(w,z) € €(R,R¥) x €°(R, R | (25) hold}.

Again, if we interpret w as manifest variable and x as latent variable, then Bon (A, B, C, D)
is a latent variable representation of its external behavior

Bon (A, B,C, D)ext = {w € €°(R,RY) | Iz € €°(R,R") such that
(w,z) € Bon(A,B,C,D)}.
Also here, the variable x is a state variable. If B = Bon(A, B,C, D)ex then we call
Bon(A, B,C, D) an output nulling representation of B. Bon(A4,B,C, D) is called a
minimal output nulling representation if n and p are minimal over all output nulling

representations of B. In the following, let n(8) and p(B) denote the McMillan degree of
9B, and the output cardinality of 9B, respectively. Again, the following is well-known:

Proposition 10.5 Let B € £7 be given. Denote n =n(B) and p = p(B). Then

1. there exist matrices A € R™®, B € R™¥, C € RP**, D € RP*Y such that
Bon (A, B,C, D) is a minimal output nulling representation of B,

2. if Bon (A, B,C, D) represents B, then it is a minimal representation if and only if
D is surjective and (C, A) is observable,

3. if Bon(A, B,C, D) is a minimal representation of B, then Bon(A', B',C", D) is
a minimal representation of B if and only if there exist invertible matrices S and
R and a matriz J such that

(A',B',C",D") = (S"'(A+JO)S,S (B + JD), RCS,RD).
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Proof : See Theorem 3.20 in [20]. O

The next proposition shows how to compute a minimal output nulling representation
of B from a given one.

Proposition 10.6 Let B € £ and let Bon (A, B,C, D) be an output nulling represen-
tation of B with D surjective. Then there exist a nonsingular matriz S such that

A 0 B
1. SlAS_[ 11 ],SlB—[ 1],05_ cool,
Ay A 5, o]

2. the pair (C1, A};) is observable.
3. BON(A/117 Bia Ci) D)ext == sBO]V(Aa BJ C7 D)ext-
Consequently, Bon (A}, B}, C1, D) is a minimal output nulling representation of B.

Proof : The existence of a nonsingular transformation matrix S such that the con-
ditions (1) and (2) hold follows from a standard argument. In order to prove that
Bon (A}, B,C1,D)ext = Bon(A, B,C, D)ext, observe first that the transformation S
does not change the external behavior. We now prove that Box(S™1AS, S™I1B,CS, D)ext =
Bon(A}y, B}, C}, D)ext- The inclusion C follows immediately from the equations. In or-
der to prove the converse inclusion, let w € Bon (4], B}, C1, D)ext. Then there exist x;
such that

i = Az + Blw
0 = C{a:l—FD/w.

With these z; and v, let x5 be any solution of Z9 = ALz + Abyzo + Biw. The claim
follows. g

As noted before, in the context of dissipative systems we work with controllable behav-
iors, and with the controllable part of a behavior. We now examine under what conditions
a behavior represented in output-nulling form is controllable.

Proposition 10.7 Let B € £¥ be given. Then the following statements are equivalent
1. B is controllable,

2. there exist matrices A, B,C and D such that B = Bon(A, B,C, D)exty with (A +
JC, B + JD) controllable for all real matrices J,

3. for every minimal representation B = Bon (A, B,C, D)exy we have: the pair (A +
JC, B+ JD) is controllable for all real matrices J.

Proof : See Theorem 3.11 [20]. O

Next, we show how to compute an output nulling representation of the controllable
part of B from a given output nulling representation.

Proposition 10.8 Let B = Bon(A, B,C, D)ext, with D surjective. Define an output
injection by G := —BDT(DD")~'. Then there exists a nonsingular matriz S such that
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Ay Apg
0 Ag

B

1. ST A+ GC)S = [ 0

},sl(mc:p)_[ },cs_ (G Gl

2. (A11 + G'Cy, By + G'D) is controllable for all real matrices G'.

Furthermore, ‘BON(AH, By, (4, D) is an output nulling representation of the controllable
part Beont of B.

Proof : A proof of this can be given using the the notion of strongly reachable subspace
(see [19], section 8.3), combined with similar ideas as in the proof of Proposition 10.4.
The details are left to the reader. 0

Relations between DV and ON representations

Driving variable and output nulling representations of the same behavior enjoy certain
duality properties. These will be examined in this section. The first result we prove
explaines how an output nulling representation can be obtained from a driving-variable
representation of the same behavior, and the other way around. In order to state it, we
need to introduce the ”annihilator” of a matrix, defined as follows. Let D be a p X m
matrix of full column rank; then D) denotes any full row rank (p —m) X p matrix such
that D; D = 0. If D is p x m matrix of full row rank, then D, denotes any m X (m — p)
full column rank matrix such that DD = 0.

Proposition 10.9 Let B € £ . and let ¥ = 2T € R¥™¥ be nonsingular.
1. Let Bpy (A, B,C, D) be a minimal driving variable representation of B such that
a. DTYD =1,
b. DTEC =0.
Define A:= A, B:=BD'S, C:=—-D,C, D:=D,. Then Bon(A,B,C,D) is a

minimal output nulling representation of B and
c. DY'DT = J, where J := block diag(I,
d. BY'DT =0.

row(D)—q» _Iq) and q = U—(Z):

2. Assume that Bon (A, B,C, D) is a minimal output nulling representation of B such
that the conditions ¢ and d of statement 1 hold. Define A := A, B := BD,|,
C .= —Zflf?TJC’, D:=D,. Then Bpyv (A, B,C, D) is a minimal driving variable
representation of B satisfying the conditions a and b of statement 1.

Before giving a proof of Proposition 10.9 we need two lemmas. In the following, D%
denotes a right inverse of a full row rank matrix D, i.e. DD™® = I, and D~F denotes a
left inverse of a full row rank matrix D, i.e. DD = I. The following result appears as
Lemma 5.1.5 in [11].

Lemma 10.10 Let %DV(A B,C,D) deﬁne a minimal drwmg variable representation of
B. Then Bon(A,B,C,D) given by A := A— BDLC, B := BD™%, ¢ = -D,C,
D:=D, defines a minimal output nulling representation of B.

Let ‘BON(A,B,C', ﬁ) define a minimal output nulling representation of B. Then
Bpv(A,B,C,D) given by A := A—-BDRC, B:=BD,, C:=—-DRC,D:=D,

defines a minimal driving variable representation of B.
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We now prove the following “inertia Lemma”.
Lemma 10.11 Let ¥ = X7 € R¥¥¥ be nonsingular.

1. Let D be such that DTXD = I. Then there exists a full row rank constant matriz
D such that D = D, and DX~'DT = block diag(1, Iy) =: J, where q is
number of negative eigenvalues of 3.

rou(B)—q ~

2. Let D be such that DX'DT = block diag(I, rou(®)—q» —1q) =t J, where q is number
of negative eigenvalues of 3. Then there exists a full column rank constant matriz
D such that D =D, and D'SD = 1.

Proof : (1). Let D be a full row rank matrix such that D = D . It follows from

D — T [ DD" DxD | [ DD" DED
[DT][D ED]_[ 0 DTZD]_[ 0 I }

that [ DT ¥D ] is nonsingular. Moreover,

D it AT [ D=7IDT 0 [ D="IDT o0
[DTE]Z [ D ED]_[ 0 D'ED |~ 0 I (26)

is then also nonsingular, and this implies that DX"!DT is nonsingular as well. By
Sylvester’s inertia law, the identity (26) implies that o_ (DZleT) =o0_ (2*1) = q.
Consequently, there exists a nonsmgular matrix W such that DX"1DT = WJW . Set
D :=W=1D. It follows that D = D, and DY1DT = J.

(2). Let D be a full column rank matrix such that D = D . It follows from

.D —1AT — o Dg_lﬁT 0 . J 0
o (=0T PI= | 553 pts | = | antr 57h

that [ >1DT D ] is nonsingular. This implies that
Dx-! AT =1 _ [ DE=IDT 0 g o0
[ DT }E[E b D}—[ o pxp|~|ooxn| O

is nonsingular, and consequently also D' X.D. Observe that q = o_ () equals the number
of negative eigenvalues of the right hand side of (27). It follows that D'XD > 0, and
that there exists a nonsingular matrix W such that DX ~!DT = WWT. Set D := W~1D.
Then D =D, and D'ED = I. O

We now give a proof of Proposition 10.9.

Proof : (1). Use Lemma 10.11 to conclude that there exists D such that D = D
and DX 'DT = J. Since D'SD = I, we can choose D~ := DTX. It follows from
Lemma 10.10 that ‘BoN(A B,C,D) given by A:=A—-BD~ LC A—BDTYC = A,
B:=BD L =BD'S,C:=—-D,C, D:= D, is a minimal output nulling representation
of B. Tt is straightforward to see that Bon (A, B, C, D) satisfies conditions (¢) and (d).

(2). Lemma 10.11 implies that there exists D such that D = D, and DXD' = I. The
fact that DX"'DT = J implies that we can choose D~ := ©~1DTJ. It follows from
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Lemma 10.10 that Bpy (A, B,C, D) given by A := A-BDRC=A-Bx'DTJC = A4,
B = Bﬁj_, C:=-DRC= —E_lﬁTJC', D := D, is a minimal driving variable repre-
sentation of B. It is straightforward to check that B py (A, B,C, D) satisfies conditions
(a) and (b). O

To conclude this Appendix, we recall how driving variable and output nulling repre-
sentations of a behavior can be used in order to obtain representations for the orthogonal
behavior.

Proposition 10.12 Let B € £7 and let ©. = X7 € R¥¥ be nonsingular. Then

contr

1. If Bpv (A, B,C, D) is a minimal driving variable representation of B, then
Bon(—AT,CTE, BT, —-D'Y) is a minimal output nulling representation of B>.

2. If Bon(A, B,C, D) is a minimal output nulling representation of B, then
Bpy(—AT,CT,271BT —¥~1DT)) is a minimal driving variable representation of
B,

Proof : See section VI.A of [28]. O
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